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Abstract

Exome and whole-genome sequencing are becoming increasingly routine approaches in 

Mendelian disease diagnosis. Despite their success, the current diagnostic rate for genomic 

analyses across a variety of rare diseases is approximately 25 to 50%. We explore the utility of 

transcriptome sequencing [RNA sequencing (RNA-seq)] as a complementary diagnostic tool in a 

cohort of 50 patients with genetically undiagnosed rare muscle disorders. We describe an 

integrated approach to analyze patient muscle RNA-seq, leveraging an analysis framework focused 

on the detection of transcript-level changes that are unique to the patient compared to more than 

180 control skeletal muscle samples. We demonstrate the power of RNA-seq to validate candidate 

splice-disrupting mutations and to identify splice-altering variants in both exonic and deep intronic 

regions, yielding an overall diagnosis rate of 35%. We also report the discovery of a highly 

recurrent de novo intronic mutation in COL6A1 that results in a dominantly acting splice-gain 

event, disrupting the critical glycine repeat motif of the triple helical domain. We identify this 

pathogenic variant in a total of 27 genetically unsolved patients in an external collagen VI–like 

dystrophy cohort, thus explaining approximately 25% of patients clinically suggestive of having 

collagen VI dystrophy in whom prior genetic analysis is negative. Overall, this study represents a 

large systematic application of transcriptome sequencing to rare disease diagnosis and highlights 

its utility for the detection and interpretation of variants missed by current standard diagnostic 

approaches.

INTRODUCTION

The advent of whole-exome sequencing (WES) and whole-genome sequencing (WGS) has 

greatly accelerated our capacity to identify variants that explain many Mendelian diseases in 

both known and new disease genes. Although these technologies are mainstays in Mendelian 

disease diagnosis, their success rate for detecting causal variants is far from complete, 

ranging from 25 to 50% (1–4). The primary challenge of these genome-based diagnostics is 

that the capacity of WES and WGS to discover genetic variants substantially exceeds our 

ability to interpret their functional and clinical impact (5–7).
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One approach to improve the interpretation of genetic variation is to integrate functional 

genomic information such as RNA sequencing (RNA-seq), which provides direct insight 

into transcriptional perturbations caused by genetic changes (8, 9). Analysis of the 

complementary DNA (cDNA) of single genes has proven useful on a case-by-case basis to 

provide diagnoses to patients with Mendelian disorders (10–13), and RNA-seq has 

previously been used to observe the effect of pathogenic variants, which were identified 

through DNA sequencing (14, 15). However, the use of transcriptome sequencing has not yet 

been assessed for the discovery of pathogenic variants in a cohort of Mendelian disease 

patients. Such approaches have already proven useful for elucidating mechanisms of cancer 

and common disease (16, 17) but are not currently systematically applied to rare disease 

diagnosis.

Here, we describe the application of this technology to the diagnosis of patients with a range 

of primary muscle disorders, including myopathies and muscular dystrophies, using RNA 

obtained from affected muscle tissue (table S1). To investigate the value of RNA-seq for 

diagnosis, we obtained primary muscle RNA from 63 patients with putatively monogenic 

muscle disorders. Thirteen of these cases had been previously diagnosed with variants 

expected to have an effect on transcription, such as loss-of-function or essential splice site 

variants, allowing us to validate the capability of RNA-seq to identify transcriptional 

aberrations (table S2). The remaining cohort of 50 genetically undiagnosed patients included 

cases for whom DNA sequencing had prioritized variants predicted to alter RNA splicing or 

strong candidate genes, as well as cases with no strong candidates from genetic analysis (see 

Fig. 1A and Materials and Methods for inclusion criteria).

RESULTS

Importance of sequencing the disease-relevant tissue

Recent large-scale studies have shown that gene expression and mRNA isoforms vary 

widely across tissues, indicating that for many diseases, sequencing the disease-relevant 

tissue will be valuable for the correct interpretation of genetic variation (18, 19). This is 

illustrated by the relative expression of known muscle disease genes in skeletal muscle, 

whole-blood, and fibroblast samples from the Genotype-Tissue Expression (GTEx) 

Consortium project (fig. S1) (20). A majority of the most commonly disrupted genes in 

muscle disease are poorly expressed in blood and fibroblasts, suggesting that RNA-seq from 

these easily accessible tissues may be underpowered to detect relevant transcriptional 

aberrations in certain genes. For these reasons, we chose to pursue RNA-seq from primary 

muscletissue biopsies, which are routinely performed as part of the diagnostic evaluation of 

undiagnosed muscle disease patients (21, 22).

Comparison of patient RNA-seq to a muscle RNA-seq reference panel

Patient muscle samples were sequenced using the same protocol as in the GTEx project (20) 

and analyzed using identical pipelines to minimize technical differences, with patients 

sequenced at or above the same coverage as GTEx controls. From 430 skeletal muscle RNA-

seq samples available through GTEx, we selected a subset of 184 samples based on RNA-

seq quality metrics including RNA integrity score and ischemic time, as well as phenotypic 
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features such as age, body mass index (BMI), and cause of death to more closely match our 

patient samples.

Comparison between our GTEx reference panel and patient muscle RNA-seq samples 

showed analogous quality metrics (table S3). Principal component analysis (PCA) of 

expression and splicing profiles demonstrated that patient muscle RNA-seq closely 

resembled control muscle when compared to tissues that potentially contaminate muscle 

biopsies, such as skin or fat, despite variation in the site of muscle biopsy across patients 

(Fig. 1B, fig. S2A, and table S1). On the basis of this clustering, we removed two samples 

from analysis because their expression patterns clustered more closely with GTEx adipose 

tissue than muscle, consistent with tissue contamination or late-stage degenerative muscle 

pathology (fig. S2B). We also performed fingerprinting on patient WES, WGS, and RNA-

seq data to ensure that the source of DNA sequencing and muscle RNA-seq data was the 

same individual.

We explored the utility of analyzing patient RNA-seq data to detect aberrant splice events 

and allele-specific expression and performed variant calling from RNA-seq data to identify 

pathogenic events or to prioritize genes for closer analysis (Fig. 1C). We also identified 

outlier gene expression status in patients; however, this analysis was under-powered to 

prioritize candidate genes in our study (fig. S3). The resulting diagnoses were made 

primarily through the detection of aberrant splice events in patients, with information on 

gene-level allele imbalance playing a complementary role.

In previously diagnosed cases, manual evaluation of pathogenic essential splice site variants 

revealed a splice aberration, such as exon skipping or extension, demonstrating that RNA-

seq can help resolve the effect of variants on transcription (fig. S4, A to F). To detect 

aberrant transcriptional events genome-wide, we developed an approach based on 

identifying high-quality exon-exon splice junctions present in patients or groups of patients 

and missing in GTEx controls (code available at https://github.com/berylc/MendelianRNA-

seq). We performed splice junction discovery from split-mapped reads, considering only 

those that were uniquely aligned and nonduplicate. To account for library size and stochastic 

gene expression differences between samples, we performed local normalization of read 

counts based on read support for overlapping annotated junctions (fig. S5, A and B). We 

then performed filtering of splice junctions based on the number of samples in which a 

splice junction is observed and the number of reads and normalized value supporting that 

junction in each sample. Our approach successfully reidentified all known pathogenic events 

in patients in whom manual evaluation had revealed aberrant splicing around splice variants 

previously identified through genomic testing. We defined filtering parameters that 

selectively identified these previously known aberrant splice events and applied them to our 

remaining cohort of undiagnosed patients. This method resulted in the identification of a 

median of 5, 26, and 190 potentially pathogenic splice events per sample in ~190 

neuromuscular disease associated genes, Online Mendelian Inheritance in Man (OMIM) 

genes, and all genes, respectively (fig. S6), which required manual curation to interpret 

pathogenicity and led to the diagnoses made in this study.
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Diagnoses made via RNA-seq

RNA-seq allowed the diagnosis of 17 previously unsolved families, yielding an overall 

diagnosis rate of 35% in this challenging subset of rare disease patients for whom extensive 

prior analysis of DNA sequencing data had failed to return a genetic diagnosis. We also 

identified splice disruption in other known and putatively novel disease genes in several 

patients; however, due to unavailability of additional information, such as parental DNA, we 

could not pursue these cases further (fig. S7). Detection of aberrant splicing led to the 

identification of a broad class of both coding and noncoding pathogenic variants, resulting in 

a range of splice defects such as exon skipping, exon extension, and exonic and intronic 

splice gain, which were validated by reverse transcription polymerase chain reaction (RT-

PCR) analysis (see Fig. 2, Table 1, and the Supplementary Materials and Methods). RNA-

seq patterns also helped pinpoint three structural variants in DMD that were subsequently 

confirmed by WGS (fig. S8).

Cases diagnosed in this study highlight several key advantages of RNA-seq in rare disease 

diagnosis to confirm the pathogenicity of variants and to detect previously unidentified 

variation. In four patients with previously detected extended splice site VUS, RNA-seq 

confirmed splice disruption in two patients (Fig. 1A and fig. S9, A and B). The variants had 

no observable effect on local splicing patterns in the remaining two patients, emphasizing 

the value of RNA-seq in ruling out non-pathogenic VUS (fig. S9, C and D).

RNA-seq also led to the identification of an additional disruptive extended splice site variant 

missed by exome sequencing. In a nemaline myopathy patient with one previously detected 

recessive frameshift variant in the NEB gene, RNA-seq identified an exon extension event 

caused by an underlying variant at the +3 position of the donor site, which led to the 

introduction of a premature stop codon to the transcript as the second recessive allele (Fig. 

2B). The exon harboring this variant was not captured in the exome kit used to screen the 

patient (fig. S10), underlining the utility of RNA-seq at complementing WES to identify 

previously undetected variants.

Synonymous and missense variants in large, variation-rich genes, such as TTN, are 

exceptionally challenging to interpret and are often filtered out in DNA sequencing pipelines 

(23, 24). With RNA-seq, we were able to assign pathogenicity to a missense variant in TTN 
and two synonymous variants in RYR1 and POMGNT1 (fig. S11). In patient N22, the 

identified missense variant created a GT donor splice site for which the consensus motif 

included a G nucleotide in the +5 position, known to contribute to the strength of the splice 

site (25, 26). The well-conserved donor +5-G motif was missing in the competing canonical 

splice site, thus resulting in a stronger novel splice site and gain of splicing from the exon 

body (Fig. 2C). A similar mechanism was observed in RYR1, caused by a synonymous 

variant in a patient carrying a second pathogenic allele in the gene (fig. S11A). In an 

additional patient carrying an essential splice site variant in POMGNT1, we identified a 

synonymous variant disrupting an exonic splice motif and resulting in exon skipping (fig. 

S11, B to D).

In eight cases, RNA-seq aided in the identification of noncoding pathogenic variants. We 

identified splice site–creating hemizygous deep intronic variants in DMD that resulted in the 
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creation of a pseudoexon and led to a premature stop codon in the coding sequence in three 

patients (Fig. 2D and fig. S12). Although RNA-seq from a patient with severe Duchenne 

muscular dystrophy showed only splicing to the pseudoexon (fig. S12), wild-type splicing 

between annotated exons was observed in two patients with a milder Becker muscular 

dystrophy phenotype, indicating the presence of residual functional DMD transcripts that 

explain the milder disease course. Such intronic variants are unobservable with WES and too 

abundant to be interpretable with WGS alone, emphasizing the utility of RNA-seq at 

resolving pathogenicity of these noncoding variants.

In two patients with no strong candidates from WES and WGS (N22 and N25), we identified 

heterozygous splice disruption in two commonly disrupted recessive muscle disease genes, 

NEB and TTN. These genes harbor regions with highly similar sequences, the so-called 

triplicate repeat regions (27, 28). Because of high sequence similarity, the region has poor 

mapping quality, resulting in low-quality variant calls that are filtered by the most current 

diagnostic pipelines. To identify possible pathogenic variants in the triplicated regions of 

NEB and TTN in these two patients, we developed a method based on remapping the 

triplicate regions to a detriplicated pseudoreference and performing hexaploid variant calling 

(fig. S13, A to C). This method was applied to available WES/WGS and RNA-seq data for 

all patients and identified one novel nonsense and one novel frameshift variant in NEB and 

TTN in these two patients, which finalized their diagnoses (fig. S13D, N25, and fig. S13E, 

N22).

Identification of a recurrent splice site–creating variant in collagen VI–related dystrophy

A notable example of the power of transcriptome sequencing is our discovery of a genetic 

subtype of severe collagen VI–related dystrophy, which is caused by mutations in one of the 

three collagen VI genes (COL6A1, COL6A2, and COL6A3) (21). In four patients who had 

previously tested negative with deletion/duplication testing and fibroblast cDNA sequencing 

of the collagen VI genes as well as clinical WES and WGS, we identified an intron inclusion 

event in COL6A1 using RNA-seq (Fig. 3A). The splicing-in of this intronic segment, which 

is missing in GTEx controls and all other patients in our cohort, is caused by a donor splice 

site–creating GC>GT variant that pairs with a cryptic acceptor splice site 72 base pairs (bp) 

upstream, creating an in-frame pseudoexon (Fig. 3B). This variant is missing in the 1000 

Genomes Project data set (29) as well as an in-house data set of 5500 control WGS samples. 

The resulting inclusion of 24 amino acids occurs within the N-terminal triple-helical 

collagenous G-X-Y repeat region of the COL6A1 gene, the disruption of which has been 

well established to cause dominant-negative pathogenicity in a variety of collagen disorders 

(30). Notably, cDNA analysis shows that the aberrant transcript is observable in muscle but 

in much smaller amounts in cultured dermal fibroblasts, making the event identifiable by 

muscle transcriptome analysis despite being previously missed by fibroblast cDNA 

sequencing (Fig. 3C). Using this information, we genotyped the variant in a larger, 

genetically undiagnosed collagen VI–like dystrophy cohort and identified 27 additional 

patients carrying the intronic variant. We confirmed that the variant had occurred as an 

independent de novo mutation in all 16 families for whom trio DNA was available. On the 

basis of this screening, we estimate that up to a quarter of all cases clinically suggestive of 
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collagen VI–related dystrophy but negative by exon-based sequencing are due to this 

recurrent de novo mutation (see the Supplementary Materials and Methods).

Evaluation of splice prediction algorithms and RNA-seq in alternative tissues

Exons harboring the pathogenic variants identified in this study show low coverage in GTEx 

whole-blood and fibroblast samples, indicating that a majority of these diagnoses likely 

could not have been made using RNA-seq from these tissues (fig. S14). Furthermore, many 

of the diagnoses made in this study could not have been made on genotype information 

alone, because splice prediction algorithms alone are currently insufficient to classify 

variants as causal (31, 32). Although existing in silico algorithms correctly predicted 

disruption for the two extended splice site VUS in our study, they also generated false-

positive predictions for the remaining two extended splice site variants with no effect on 

splicing (see fig. S15A and the Supplementary Materials and Methods). In addition, existing 

algorithms showed poor specificity in identifying splice site–creating coding variants, 

identifying on average more than 100 putative splice site–creating rare variants [<1% 

population frequency in Exome Aggregation Consortium (ExAC)] exome-wide (fig. S15B).

DISCUSSION

Our results show that RNA-seq is valuable for the interpretation of coding as well as 

noncoding variants and can provide a substantial increase in diagnosis rate in patients for 

whom exome or whole-genome analysis has not yielded a molecular diagnosis. In our 

cohort, RNA-seq led to the diagnosis of 66% of patients where clinical phenotyping and 

DNA sequencing prioritized a strong candidate gene. In comparison, through identifying 

aberrant splice events found in patients and missing in GTEx controls, we were able to 

diagnose 21% of patients with no strong candidates from WGS or WES.

Our work illustrates the value of large multitissue transcriptome data sets such as GTEx to 

serve as a reference to facilitate the identification of extreme splicing or allele balance 

outlier events in patients. In the case of muscle disorders, our diagnoses were made 

primarily through direct identification of aberrations in splicing using the GTEx skeletal 

muscle RNA-seq data set as a reference panel. Our present work focused on identifying such 

aberrations in known muscle disease genes, and the considerably lower number of putatively 

pathogenic events identified in neuromuscular disease genes versus all genes underlines the 

advantage of a candidate gene list for this analysis. Further improvements in filtering 

identified splice junctions to obtain a smaller list of candidate events will be useful to 

expand this work for new disease gene discovery. In addition, with increasing sample sizes 

and improvements in methods, RNA-seq can also be used to identify somatic variants and to 

detect regulatory variants upstream, through analysis of expression status and allelic 

imbalance.

Access to the disease-relevant tissue for many Mendelian disorders remains a major barrier 

for the use of transcriptome sequencing in genetic diagnosis. The RNA-seq framework 

developed in this study can be adapted for rare diseases where biopsies are available, such as 

Mendelian disorders affecting the heart, kidney, liver, skin, and other tissues. For example, 

during the preparation of this paper, the application of RNA-seq to fibroblast samples for the 
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genetic diagnosis of mitochondrial disease was reported in an unpublished preprint (33). For 

disorders where biopsy of the disease-relevant tissue is unattainable, analyses are possible 

through identification of proxy tissues using databases such as GTEx and careful 

consideration of the expression status of the relevant genes in the proxy tissue. Alternatively, 

the framework developed in this study can also enable diagnoses through reprogramming 

patient cells into induced pluripotent stem cells and differentiation into disease-relevant 

tissues of interest.

Evaluation of existing splice prediction algorithms for the splice-disrupting variants 

identified in the study highlights that information on DNA sequence alone does not currently 

match the ability of RNA-seq to identify the transcriptional consequences of variants on a 

genome-wide scale. The diagnoses made in our study with RNA-seq, particularly the 

discovery of the highly recurrent mutation in COL6A1, demonstrate that other such cryptic 

splice-affecting variants may contribute substantially to undiagnosed diseases that have 

evaded prior detection with exome or whole-genome analysis. Overall, this work suggests 

that RNA-seq is a valuable component of the diagnostic toolkit for rare diseases and can aid 

in the identification of new pathogenic variants in known genes as well as new mechanisms 

for Mendelian disease.

MATERIALS AND METHODS

Study design

We sought to explore the utility of transcriptome sequencing as a complementary diagnostic 

tool to exome and whole-genome analysis. We reasoned that RNA-seq would allow us to 

interpret variants previously identified through genetic analysis and may pinpoint genetic 

lesions that may have eluded DNA sequencing. To interpret transcriptional aberrations seen 

in patients, we obtained a reference panel of 184 sets of skeletal muscle RNA-seq data from 

the GTEx project. Our framework was based on identifying transcriptional aberrations 

present in patients but missing in GTEx controls. We first validated the capacity of RNA-seq 

to resolve transcriptional aberrations in 13 patients with prior genetic diagnosis and then 

analyzed the remaining 50 genetically undiagnosed patients to detect aberrant splice events 

and allele-specific expression and performed variant calling from RNA-seq data to identify 

pathogenic events or to prioritize genes for closer analysis.

Clinical sample selection

Patient cases with available muscle biopsies were referred by clinicians from March 2013 

through June 2016. Samples fell into four broad categories:

1. Patients for whom previous genetic analysis had resulted in a diagnosis with at 

least one loss-of-function or essential splice site variant, serving as positive 

controls to assess the capability of RNA-seq to identify the transcriptional effect 

of the variants (n = 13; patient IDs starting with “D”).

2. Patients with candidate extended splice site variants that had been categorized as 

VUS, for which assignment of pathogenicity would result in a complete 

diagnosis for the patient (n = 4; patient IDs starting with “E”).

Cummings et al. Page 8

Sci Transl Med. Author manuscript; available in PMC 2017 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Patients for whom a strong candidate gene was implicated because of either a 

well-defined monogenic disease phenotype, such as patients with clear Duchenne 

muscular dystrophy evidenced by clinical diagnosis and loss of dystrophin 

expression (n = 6), or the presence of one pathogenic heterozygous variant 

identified in a gene matching the patient’s phenotype, without a second 

pathogenic variant in that gene (n = 6; patient IDs starting with “C”).

4. Patients with no strong candidates based on previous genetic analysis such as 

WES or WGS (n = 34; patient IDs starting with “N”).

Patients who fit categories 2 to 4 are referred to as undiagnosed before RNA-seq and 

constitute the denominator for the 35% diagnosis rate. All patients had prior analysis of 

WES and/or WGS data, except two cases (patients E4 and D11) for whom targeted 

sequencing had identified candidate extended and essential splice site variants, respectively. 

We favored cases with previous trio WES or WGS: 29 of 63 patients had complete trios, 

with 3 additional patients having one parent sequenced. Although age of onset was not 

considered as an exclusion criterion, most of the patients in the cohort had a congenital or 

early childhood–onset primary muscle disorder.

Muscle biopsies or RNA were shipped frozen from clinical centers via a liquid nitrogen dry 

shipper and stored in liquid nitrogen cryogenic storage. Before submission to the sequencing 

platform, all muscle samples were visually inspected, photographed, cut into 50-μm sections 

on a Leica CM1950 model cryostat, and transferred to prechilled cryotubes in preparation 

for RNA extraction. When muscle arrived embedded in optimum cutting temperature 

compound, 8-μm transverse cryosections were mounted on positively charged Superfrost 

Plus slides (VWR, 48311–703) and stained with hematoxylin and eosin (H&E) to assess the 

relative proportion of muscle versus fibrosis and adipose infiltration as well as the presence 

of overt freeze-thaw artifact. All samples analyzed with H&E showed muscle quality 

sufficient to proceed to RNA-seq.

RNA sequencing

RNA was extracted from muscle biopsies via the miRNeasy Mini Kit from QIAGEN 

according to the kit’s instructions. All RNA samples were measured for quantity and quality. 

Samples had to meet the minimum cutoff of 250 ng of RNA and RNA quality score (RQS) 

of 6 to proceed with RNA-seq library preparation. A fraction of samples falling below an 

RQS of 6 were also submitted for sequencing. All samples submitted had a range of RQSs 

between 3.5 and 8.

Sequencing was performed at the Broad Institute Genomics Platform using the same non–

strand-specific protocol with poly-A selection of mRNA (Illumina TruSeq) used in the 

GTEx sequencing project (20) to ensure consistency of our samples with GTEx control data. 

Paired-end 76-bp sequencing was performed on Illumina HiSeq 2000 instruments, with 

sequence coverage of 50 million or 100 million reads. One sample (patient N33) was 

sequenced to a higher depth at 500 million reads to permit downsampling analysis of the 

effects of increasing RNA-seq depth.
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Selection of GTEx controls

GTEx data were downloaded from the Database of Genotypes and Phenotypes (dbGaP) 

(www.ncbi.nlm.nih.gov/gap) under accession phs000424.v6.p1. From 430 available GTEx 

skeletal muscle RNA-seq samples, we selected 184 samples on the basis of RNA integrity 

score (between 6 and 9), number of nonduplicate uniquely mapped read pairs (between 35 

million and 75 million reads), and ischemic time (<12 hours) to remove any samples that 

were outliers for these quality metrics. GTEx samples were further filtered to remove those 

with known clinical conditions such as Klinefelter’s syndrome or those for whom death 

followed after long- or intermediate-term illness or medical intervention (Hardy scale 0, 3, 

or 4). Overall, approximately 80% of GTEx samples with available muscle RNA-seq are 

older than 40 (median age, 54) and have a BMI over 25 (median BMI, 27). Thus, we 

selected samples to enrich for younger GTEx donors to more closely match our patient 

cohort. All samples younger than 50 were selected, resulting in 76 samples with high-quality 

RNA-seq data. We then added older samples back on the criterion that their BMI was below 

30. This resulted in a total of 184 GTEx control samples for our reference panel, with 

comparable male and female sample count (105 males and 79 females). This filtering 

method also enriched the RNA-seq data from organ donors and surgical donors as opposed 

to postmortem samples (72% of selected GTEx controls are derived from surgical or organ 

donors versus 45% in the unfiltered data set). A full list of GTEx sample IDs used as the 

reference panel can be found in table S4.

RNA-seq alignment and quality control

GTEx BAM files downloaded from dbGaP were realigned after conversion to FASTQ files 

with Picard SamToFastq. Both patient and GTEx reads were aligned via STAR 2-Pass 

version v.2.4.2a using hg19 as the genome reference and GENCODE V19 annotations. 

Briefly, first-pass alignment was performed for novel junction discovery, and the identified 

junctions were filtered to exclude unannotated junctions with less than five uniquely mapped 

read supports, as well as junctions found on the mitochondrial genome. These junctions 

were then used to create a new annotation file, and second-pass alignment was performed as 

recommended by the STAR manual to enable sensitive junction discovery. Duplicate reads 

were marked with Picard MarkDuplicates (v.1.1099).

Quality metrics for patient and GTEx RNA-seq data were obtained by running RNA-SeQC 

(v1.1.8) on STAR-aligned BAM files (34). PCA on gene expression was performed on the 

basis of RPKM (reads per kilobase of transcript per million mapped reads) values calculated 

by RNA-SeQC. Two samples (D6 and N3) were removed because of outlier status in PCA, 

consistent with a high proportion of nonmuscle tissue in the samples (fig. S2B). For GTEx 

samples, the expression and exon-level read count data were downloaded from dbGaP under 

accession phs000424.v6. For PCA of exon inclusion metrics, we obtained PSI (percentage 

spliced in) values for GTEx samples as described in (35).

To ensure that patient DNA and RNA data were identity-matched, we compared variants 

identified in WES, WGS, and RNA-seq data. WES, WGS, and RNA-seq data were joint-

genotyped for a set of ~5800 common single nucleotide polymorphisms (SNPs) collated by 

Purcell et al. (36) using the Genome Analysis Toolkit (GATK) HaplotypeCaller package 
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version 3.4. We then calculated pairwise inheritance by descent estimates between DNA 

sequencing and RNA-seq data using PLINK (v1.08p). Relatedness coefficients for WES, 

WGS, and RNA-seq data from the same individual ranged from 0.67 to 1.00 across our 

samples (mean, 0.9), compared to a range of 0 to 0.18 (mean, 0.001) for non-matching 

individuals, confirming that the sources for DNA sequencing and RNA-seq were the same 

for each patient in our data set.

Exome sequencing and WGS

WES on DNA samples (>250 ng of DNA, at >2 ng/μl) was performed using Illumina or 

Agilent SureSelect v2 exome capture. The exome sequencing pipeline included sample 

plating, library preparation (2-plexing of samples per hybridization), hybrid capture, 

sequencing (76-bp paired reads), and sample identification quality control check. Hybrid 

selection libraries covered >80% of targets at 20× with a mean target coverage of >80×. The 

exome sequencing data were demultiplexed, and each sample’s sequence data were 

aggregated into a single Picard BAM file. WGS was performed on 500 ng to 1.5 μg of 

genomic DNA using a PCR-free protocol. These libraries were sequenced on the Illumina 

HiSeq X10 with 151-bp paired-end reads and a target mean coverage of >300×.

Exome and genome sequencing data were processed through a Picard-based pipeline using 

base quality score recalibration and local realignment at known insertions/deletions (indels). 

The Burrows-Wheeler Aligner was used for mapping reads to the human genome build 37 

(hg19). SNPs and indels were jointly called across all samples using GATK 

HaplotypeCaller. Default filters were applied to SNP and indel calls using the GATK variant 

quality score recalibration, and variants were annotated using Variant Effect Predictor (v78); 

additional information on this pipeline is provided in the first supplementary section of (37). 

The variant call set was uploaded to the seqr analysis platform (seqr.broadinstitute.org) to 

perform variant filtering using inheritance patterns, functional annotation, and variant 

frequency in reference databases including ExAC (37) and 1000 Genomes (29).

Identification of pathogenic splice events

Splice junctions were identified from split-mapped reads, considering only uniquely aligned, 

nonduplicate reads that passed platform/vendor quality controls. For each splice junction, we 

noted the following:

1. the genomic coordinates

2. the gene in which the junction was observed based on GENCODE v.19

3. the number of samples in which the splice junction was observed

4. the number of total reads supporting the junction in 245 samples (184 GTEx and 

61 patient samples)

5. the per-sample read support for the junction.

We then performed local normalization of per-sample read support on the basis of the 

support for the highest shared annotated junction (fig. S5A). For example, an exon-skipping 

event harbors two annotated exon-intron junctions, and we normalized this by the maximum 
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of read count support for canonical splicing at these two wild-type junctions. This local 

normalization allows for filtering low-level mapping noise and accounts for stochastic gene 

expression and library size differences between samples (fig. S5B).

To identify pathogenic splice events, splice junctions in protein coding genes were filtered in 

terms of the number of samples a splice junction is present in and the number of reads and 

the normalized value supporting that junction. Specifically, we defined a sensitive cutoff at 

which an aberrant splice event is seen with at least 5% of the read support as compared to 

the shared annotated junction, with at least two reads supporting the event. We also required 

a splice junction to contain at least one annotated exon-exon junction, indicating that the 

event was spliced into an existing transcript (fig. S5A). We performed analysis on a per-

sample basis, each time requiring the normalized value of a given splice junction to be 

maximum in that sample and twice that of the next highest sample, allowing us to search for 

unique events in the patient.

All candidate pathogenic splice events were manually evaluated using the Integrative 

Genomics Viewer. This resulted in the identification of aberrant splicing at eight of nine 

pathogenic essential splice site variants and resulted in the diagnosis of 10 of 17 patients in 

the study. A splice aberration was not observed around an essential splice site variant found 

in TTN in patient D5 because of insufficient number of reads mapping to the local region 

(fig. S4E). We extended filtering parameters to identify splice junctions present in fewer than 

10 samples, but with high read support in each sample, allowing us to identify the intronic 

splice-gain event present in four patients in COL6A1 (Fig. 3A). We note that this approach 

would also identify putatively pathogenic splice aberrations, for which there are GTEx 

carriers. The remaining three Duchenne muscular dystrophy patients were diagnosed 

through manual analysis of splicing patterns in DMD and resulted in the identification of 

splice disruption. Overlapping structural variants at these regions were confirmed by 

subsequent WGS (fig. S8).

Statistical analysis and code availability

Our approach to evaluating outlier status for allele imbalance in patients involved defining 

the 95% confidence interval (means ± 2 SD) of mean allele balance in GTEx individuals for 

each gene and identifying patients for whom the gene-level allele balance fell outside of the 

range. Comparison between GTEx and patient RNA-seq data quality metrics relied on a t 
test for significance. Data processing, analysis, and figure generation were performed using 

scripts written in Python 2.7 and R 3.2; code for identifying and filtering splice junctions 

and for variant calling in the triplicate regions of NEB and TTN is available at https://

github.com/berylc/MendelianRNA-seq.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Experimental design and quality control
(A) Overview of the number of samples that underwent RNA-seq. We performed RNA-seq 

on 13 previously genetically diagnosed patients, 4 patients in whom previous genetic 

analysis had identified an extended splice site variant of unknown significance (VUS), 12 

patients in whom genetic analysis had identified a strong candidate gene, and 34 patients 

with no strong candidates from previous analysis. RNA-seq enabled the diagnosis of 35% of 

patients overall, with the rate, shown above the bar plots, varying depending on previous 

evidence from genetic analysis. (B) PCA based on gene expression profiles of patient 

muscle samples passing quality control (n = 61) and GTEx samples of tissues that 

potentially contaminate muscle biopsies shows that patient samples cluster closely with 

GTEx skeletal muscle. (C) Overview of experimental setup and RNA-seq analyses 

performed. Our framework is based on identifying transcriptional aberrations that are 

present in patients and missing in GTEx controls. Upon ensuring that GTEx and patient 

RNA-seq data were comparable, we validated the capacity of RNA-seq to resolve 

transcriptional aberrations in previously diagnosed patients and performed analyses of 

aberrant splicing, allele imbalance, and variant calling in our remaining cohort of genetically 

undiagnosed muscle disease patients.
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Fig. 2. Types of pathogenic splice aberrations discovered in patients
RNA-seq identified a range of aberrations caused by both coding and noncoding variants, 

such as (A) exon skipping caused by an essential splice site variant in patient D7, (B) exon 

extension caused by a donor +3 A>C extended splice site variant in nemaline myopathy 

patient C9 (where disruption of splicing at the canonical splice site results in splicing from 

intact GTA motifs from the intron), (C) exonic splice gain caused by a C>T donor splice 

site–creating variant in patient N22 with a donor +5-G sequence context, resulting in a 

stronger splice motif than the existing canonical splice site, and (D) intronic splice gain in 

patient N33 caused by a C>T donor splice site–creating deep intronic variant. Evidence for 

wild-type splicing in addition to the inclusion of the pseudoexon in the patient is in line with 

the milder Becker’s muscular dystrophy phenotype. Splice aberrations shown in (B) to (D) 

result in the introduction of a premature stop codon to the transcript.
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Fig. 3. Identification of a recurrent splice site–creating variant in four collagen VI–related 
dystrophy patients
(A) Splicing-in of the pseudoexon was observed in four patients in our cohort (red) and 

missing in all other patients and GTEx samples (blue). (B) Inclusion of the 24–amino acid 

segment is caused by a C>T donor splice site–creating variant, which pairs with an AG 

splice acceptor site 72 bp upstream. The variant is found in a CpG nucleotide context, which 

likely explains its recurrent de novo status, and disrupts the Gly-X-Y repeat motifs of 

COL6A1. (C) The inclusion event is observable in RT-PCR amplicons from patient muscle 

but is found at comparatively lower levels in cultured dermal fibroblasts derived from the 

patients, explaining why the pathogenic event was missed in all four patients through 

previous fibroblast cDNA sequencing.
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