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Abstract

None of the proposed mechanisms of Alzheimer’s disease (AD) fully explains the distribution 

patterns of the neuropathological changes at the cellular and regional levels, and their clinical 

correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental 

landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the 

vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E 

(APOE) known to confer a 5–20 fold increased risk with partial penetrance. Mechanisms by which 

genetic variants and environmental factors influence the development of AD pathological changes, 

especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of 

the involvement of the monoaminergic systems in AD. The changes in the serotonergic, 

noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly 

described. We also summarize the possibilities for monoamine-based treatment in AD. Besides 

neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis 
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is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among 

the first to be affected by tau protein abnormalities in the course of sporadic AD, causing 

behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-

bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or 

oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex 

emphasizes their selective vulnerability and warrants further investigations of the monoaminergic 

systems in AD.
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1. Clinical and neuropathological criteria for AD diagnosis

Alzheimer’s disease (AD) accounts for 60–70% of cases of dementia (World Health 

Organization, WHO Fact Sheet No. 362, March 2015). The report of Alzheimer’s Disease 

International (ADI, Alzheimer World Report, 2015) showed that nearly 35.6 million people 

suffered from dementia in 2012. It is estimated that this number will quadruple by 2050. 

Therefore, the WHO in 2012 declared AD a global public health priority. There is still no 

effective treatment to prevent or cure AD. Currently, approved drugs only temporarily 

alleviate some of the disease’s symptoms to a limited extent. Cholinomimetics (tacrine, 

rivastigmine, donepezil, and galantamine) do so by enhancing the cholinergic 

neurotransmission, whereas memantine (a non-competitive antagonist of N-methyl-D-

aspartate receptors, NMDAR) is considered to have protective activity against glutamate-

induced excitotoxic neuronal death (Yiannopoulou and Papageorgiou, 2013).

1.1. Clues to the etiology of AD

After the milestone discoveries that cerebrovascular amyloid (due to cerebral amyloid 

angiopathy, CAA) and senile plaques (SP) are composed of amyloid β (Aβ) protein, that the 

same antigenic determinants (Glenner and Wong, 1984a; Wong et al., 1985) are shared in 

both AD and Down’s syndrome (Glenner and Wong, 1984b), and that the Val717Ile 

missense (“London”) mutation in the amyloid precursor protein (APP) gene on chromosome 

21 was found to be causally related to the early-onset autosomal-dominant familial AD 

(Goate et al., 1991), Hardy, Selkoe and colleagues (Hardy and Allsop, 1991; Selkoe, 1991; 

Hardy and Higgins, 1992) formulated the amyloid cascade hypothesis, which has become a 

dominant view of AD pathogenesis ever since. An illustration of amyloid plaques in the 

brain of an AD case is given in Figure 1. According to the amyloid theory, excessive 

production of Aβ (which exists in monomeric, oligomeric, and aggregated forms as SP) via 

serial cleavage of the larger amyloid precursor protein (APP) molecule by β-secretase (β-site 

APP cleaving enzyme, BACE, encoded by the BACE1 gene) and γ-secretase (multiprotein 

complex now known to minimally consist of 4 individual proteins: presenilin, nicastrin, 

anterior pharynx-defective 1, APH-1, and presenilin enhancer 2, PEN-2) (Blanquet et al. 
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1987; Robakis et al., 1987; St George-Hyslop et al., 1987; Shoji et al., 1992; Citron et al., 

1992), is the key pathological event which drives all other pathological changes. These 

pathological changes include altered calcium homeostasis, microglial activation/

inflammation, astrocytosis, an upregulated production of nitric oxide and DNA damage 

(Šimić et al., 2000), dysregulation of energy metabolism and cell cycle control, a significant 

increase in the full-length mitochondrial DNA (mtDNA) accompanied by extensive 

fragmentation of the unamplified mtDNA (Diana et al., 2008), the development of 

neurofibrillary tangles (NFT), synaptic loss, excitotoxicity, neuronal death, and dementia, 

not only in early-onset cases (EOAD) but also in late-onset cases of AD (LOAD). In 1987 

Goldgaber and collaborators isolated APP and localized its gene to chromosome 21 

(Goldgaber et al., 1987). Interestingly, the first APP mutation discovered, a G to C mutation 

at codon 693 (APP Glu693Gln) was not causing AD, but instead coused hereditary cerebral 

hemorrhage with amyloidosis – Dutch type (HCHWA-D; Van Broeckhoven et al., 1990; 

Levy et al., 1990). This is most probably due to the fact that affected individuals died from 

cerebral bleeding at a younger age before developing clinical AD. Interestingly enough, two 

out of four other known mutations within the Aβ-coding part of APP (exons 16 and 17) also 

cause fatal hemorrhages due to amyloid angiopathy (APP Cys692Gly – Flemish, and APP 
Glu693Lys – Italian), while only the rare “Arctic” (APP Glu693Gly) and Osaka (APP 
Glu693Δ) mutations cause EOAD.

The long-known fact that there are many families in which AD has an early onset (before 

age of 60) and is inherited in an autosomal dominant manner (Lowenberg and Waggoner, 

1934) could therefore not be explained by a very small number of AD families with APP 
mutations. This question had been resolved by the discovery of mutations in the presenilin 1 

(PSEN1) gene on chromosome 14 (St. George-Hyslop et al., 1992; Sherrington et al., 1995) 

and homologous gene PSEN2, on chromosome 1 (Schellenberg et al., 1992; Levy-Lahad et 

al., 1995). PSEN1 and PSEN2 are components of the γ-secretase complex, which can cleave 

APP at several points resulting in Aβ of various lengths. The peptides associated with AD 

are 40 and 42 amino acid-long, with Aβ42 more likely to aggregate to form SP in the brain 

than Aβ40. All PSEN mutations lead to an increase in the Aβ42:Aβ40 ratio, although the total 

quantity of Aβ produced remains constant (Citron et al., 1997; Czech et al., 2000). Whether 

PSEN mutations correspond to a gain or loss of function is still controversial, although PS1 
mutations were expressed at normal levels, they impaired γ-secretase activity but not γ-

secretase-independent functions of PS1 (Woodruff et al., 2013). Thus, PS1 mutations do not 

act as simple loss of PS1 function, but instead dominantly as gain of PS1 activity toxic to 

some, but not all conditions. Presenilins are also implicated in the processing of Notch 

(Okochi et al., 2002; De Strooper et al., 2012), an important developmental protein. PS1 
knockout mice die early in development from abnormalities similar to those found when 

Notch is disrupted (Shen et al., 1997). APP can also be cleaved by α-secretases such as a 

disintegrin and metalloprotease 10 (ADAM10) and tumor necrosis factor alpha (TNF-α) 

converting enzyme (TACE), but this cleavage does not result in Aβ, instead generating a 

neurotrophic and neuroprotective fragment APPs-α (Corrigan et al., 2011; for review see 

Endres and Fahrenholz, 2012).

Šimić et al. Page 3

Prog Neurobiol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.1.1. The role of amyloid β protein (Aβ)—Most researchers still held the view, usually 

unwritten, that Aβ was just a waste product of APP metabolism, while some others have 

suggested that Aβ1–42 may have an acute “protective” role in sealing microhemorrhages in 

the extensive network of blood vessels that meanders for more than 600 km through the 

human brain (Atwood et al., 2003; Hardy, 2007; Hardy, 2009). The upregulation of N-

terminal fragment of APP would, under such a scheme, be part of the attempt to prevent 

clotting in the hemorrhaged region caused by blood contact with the brain tissue (if the 

coagulation cascade would exist in the brain, vascular blockage would lead to ischemic 

stroke and permanent neuronal death because the brain, unlike other tissues, has close to 

zero ability to replace terminally differentiated neurons), whereas Aβ would be a vascular 

sealant, anticoagulant and remodeling molecule (Atwood et al., 2003). This would also 

explain close and intimate relationships between plaques and blood vessels in transgenic 

mouse models (Kumar-Singh et al., 2005), the presence of iron in every plaque (Falangola et 

al., 2005), and the association of APOE ε2 genotype with cerebral hemorrhage (McCarron 

and Nicoll, 2000; Loehrer et al., 2014; Charidimou et al., 2015). Unlike microbleeds in the 

deep and infratentorial regions, which are thought to reflect hypertensive arteriopathy, lobar 

microbleeds are associated clinically with CAA, and frequently observed in seemingly 

asymptomatic populations (Loehrer et al., 2014). If the above concept is true, it would also 

be useful to explain the fact why about around 40% of AD patients have normotensive 

hydrocephalus (because CAA would prevent the proper exchange of water and ions through 

the blood-brain barrier, BBB), and why about 40% of adult patients with idiopathic chronic 

normal pressure hydrocephalus have histological lesions characteristic of AD, as revealed 

from cortical biopsies (Golomb et al., 2000). Alternatively, the role of Aβ in maintaining 

vascular homeostasis (mediated by sealing the BBB) may be related to restraining 

periarterial drainage in order to prevent the elimination of high molecular weight substances 

from the brain, as such a drainage of brain antigens from brain’s interstitial fluid to cervical 

lymph nodes would cause autoimmune encephalomyelitis and multiple sclerosis (Weller, 

1998). These insights may also explain the root cause of the encephalomyelitis suffered by 

individuals in immunotherapy trials as being directly associated with removal of Aβ from 

the vasculature, as immunological responses to Aβ vaccination do not discriminate between 

vascular deposits of Aβ and deposits of Aβ in SP (Lambracht-Washington and Rosenberg, 

2012), which has been confirmed in a mouse model (Furlan et al., 2003). Furthermore, it 

would also fit well to in vivo evidence that the removal of deposited Aβ from the vasculature 

leads to increased cerebral hemorrhages (Uro-Coste et al., 2010), again strongly supporting 

the above mentioned concept of APP/Aβ functions as sealant, anticoagulant and remodeling 

molecule (Atwood et al., 2003, Hardy, 2009).

1.1.2. Genetics of AD—Collectively, the genetic etiology of AD is very complex. EOAD 

(less than 1% of cases) is often familial (fAD), with autosomal dominant and fully penetrant 

inheritance and can be caused by any of more than 200 pathogenic mutations in APP (33 

mutations, duplication), PSEN1 (185 mutations) and PSEN2 (13 mutations; http://

www.molgen.ua.ac.be/ADmutations). A rare mutation in the APP gene that protects against 

AD and cognitive decline in the elderly without AD was also reported (Jonsson et al., 2012). 

Most AD cases (over 99%) however are sporadic, late-onset (sAD, LOAD) and have few 

evident genetic components. The ε4 variant of the gene encoding apolipoprotein E (APOE) 
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is known to confer increased risk for LOAD (Strittmatter et al., 1993; Saunders et al., 1993) 

with partial penetrance. Based on 320 meta-analyses of 1395 studies in which 695 genes and 

their 2973 polymorphisms have been tested as late-onset AD candidate genes, over 30 yield 

positive evidence for association. The number one gene is APOE, with a Bayes factor (BF) > 

50. Using APOE genotype ε3/ε3 as a neutral benchmark for comparison, individuals with a 

single copy of ε4 allele manifest a 5-fold increased risk of developing LOAD, while those 

with two copies have an estimated 20-fold increased risk (Strittmatter, 2012). It seems that 

different APOE alleles are not associated with an increase in Aβ production, but with an 

inability to clear Aβ from the brain (Mawuenyega et al., 2010; Castellano et al., 2011). This 

may be related to the reduced production of Aβ auto-antibodies in AD subjects (Qu et al., 

2014).

The next nine genes with the highest association with LOAD are: BIN1 (BF = 23.4) which 

encodes several isoforms of a nucleoplasmic adaptor protein, one of which was identified as 

MYC-interacting protein; CLU (BF = 20.1), which encodes apolipoprotein J, ABCA7 (BF = 

18.8) for ATP-binding cassette transporter, subfamily A [ABC1], member 7, CR1 (BF = 

18.1) for complement component receptor 1; PICALM (BF = 17.3), for phosphatidylinositol 

binding clathrin assembly protein; MS4A6A (BF = 8.7), CD33 (BF = 7.7) for a 

transmembrane receptor expressed on cells of myeloid lineage – cluster of differentiation 33; 

MS4A4E (BF = 6.9), coding for protein membrane-spanning 4-domains, subfamily A, 

member 4E, and CD2AP (BF = 6.6) which codes for a scaffolding molecule that regulates 

the actin cytoskeleton (according to www.alzgene.org assessed in December 2015). Genetic 

variants of all of these genes have a relatively minor influence on AD progression when 

altered (Cacabelos, 2007). Although their influence on the development and course of sAD 

remain largely unknown (Hollingworth et al., 2011; Naj et al., 2011; Lardenoije et al., 2015), 

most of them are presumably involved in the metabolism of Aβ. Some of them, such as 

APOE and ABCA7, are known to be also centrally involved in cholesterol transport and 

metabolism; both of these genes are targets of transcription factors and nuclear receptors 

called liver-X receptors (LXR) (Štefulj et al., 2013). Most recently, rare mutations of 

TREM2 (Jonsson et al., 2013, Guerreiro et al., 2013) and PLD3 (Cruchaga et al., 2014) were 

proposed to confer a much larger increase in risk for LOAD than the aforementioned 

common sequence variants. However, a role for PLD3 rare variants in AD could not be 

confirmed in a European Consortium Cohort (Cacace et al., 2015). Recent evidence also 

suggests that, besides mutations causing EOAD, there are novel, rare additional variants in 

APP, PSEN1, PSEN2, and ADAM10 that alter the risk for LOAD (Karch and Goate, 2015). 

For example, rare variants in APP may increase (e.g., APP Asn660Tyr), decrease (e.g., APP 
Ala673Thr), or have no effect on risk (e.g., APP Glu599Lys), whereas PSEN1 
polymorphism Glu318Gly (Benitez et al., 2013) and ADAM10 risk variants Gln170His and 

Arg181Gly (Kim et al., 2009) are associated with a significant increase in LOAD risk. In 

addition to increasing Aβ levels in vitro (Kim et al., 2009), in one of the best characterized 

mouse models for AD, the Tg2576, the two aforementioned ADAM risk variants were also 

shown to disrupt α-secretase activity and shift APP processing toward amyloidogenic 

cleavage, thus yielding increased plaque load (Suh et al., 2013).
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1.1.3. The role of tau protein—The significance of tau protein, essential for microtubule 

(MT) assembly (Weingarten et al., 1975), in the pathogenesis of AD remained in the shadow 

of the amyloid theory during the late 1980s and early 1990s. However, the distribution 

pattern and overall quantity of Aβ turned out to be of limited significance for pathological 

staging of AD progression and symptom severity. After detailed studies of the maturation 

and distribution of NFT showing correlation with the degree of cognitive decline and 

memory impairment in AD using classical silver staining (Braak and Braak, 1991; Fig. 2) 

and immunohistochemical staining for hyperphosphorylated tau (Braak et al., 2006; see 

example in Fig. 3), a neuropathological staging of tau deposition in the brain, including NFT 

and neuropil threads (NT) in neurites, was proposed (Fig. 4). The possibility that the burden 

of NFT provides a better association with cognitive impairment was soon confirmed 

(Arriagada et al. 1992; Bierer et al., 1995), supporting a significant role for tau pathology in 

the disease. As shown in Figure 4, the Braak’s staging system classifies the topographic 

progression of AD neurofibrillary degeneration in six stages. Spreading from the 

transentorhinal region to the hippocampal formation (initial stages I and II) clinically 

correlate with subjective or objective impairment of memory for recent events and mild 

spatial disorientation, but with preservation of general cognitive functioning with or without 

minimum impairment of daily living activities (Braak and Braak, 1991; Šimić et al., 2005; 

Šimić et al., 2009). Further spread to the temporal, frontal, and parietal neocortex 

(intermediate stages III and IV) correlates with impaired recall, delayed word recall and 

word finding difficulties, disorientation in time and space, and impaired concentration, 

comprehension, and conceptualization, among other symptoms of dementia. Finally, 

neurofibrillary degeneration affects unimodal and primary sensory and motor areas of the 

neocortex (late stages V and VI), which roughly correlates with disturbances in object 

recognition, and other perceptual and motor skills.

One explanation for early AD changes in the hippocampus, entorhinal cortex, and temporal 

neocortex can be an age-dependent BBB breakdown in the hippocampus, as recently 

revealed by an advanced dynamic contrast-enhanced magnetic resonance imaging (MRI) 

protocol with high spatial and temporal resolutions to quantify regional BBB permeability in 

the living human brain (Montagne et al., 2015). Indeed, the BBB breakdown in the 

hippocampus and dentate gyrus worsened with MCI that correlated with injury to BBB-

associated pericytes, as shown by CSF analysis (Montagne et al., 2015).

Neurons in layers II and III of the transentorhinal and entorhinal cortex are consistently 

affected by neurofibrillary degeneration, either during normal aging or in primary age-

related tauopathy, PART (Braak and Braak, 1991; Šimić et al., 2005; Crary et al., 2014; 

Jellinger et al., 2015). Stereologic estimates showed a 43.5% average neuron loss in 32–83 

year old subjects (Šimić et al., 2005). Hof and collaborators showed that a considerable 

proportion (73–77%) of entorhinal layer II neurons affected by neurofibrillary degeneration 

might preserve some function even at stages with a Clinical Dementia Rating (CDR) score 

of 3 (Hof et al., 2003). As long as elderly patients do not suffer from AD, they appear 

neuropathologically quite comparable as a group (Hof et al., 2003). It is therefore not 

surprising that significant neuron loss due solely to aging cannot be revealed without 

younger adult cases included in the regressions. On the other hand, when neuronal loss 
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attributable to aging is superimposed to an unbiased estimate of the number of NFT in AD, 

regions like the entorhinal cortex and hippocampal formation may display neuronal loss 

larger than that accounted for by NFT counts alone (Šimić et al., 1998; Krill et al., 2002). 

Thus, the pattern of neuron loss does not necessarily match the pattern of NFT formation, 

due to mechanisms other than neurofibrillary degeneration (Šimić et al., 1998a, 1998b; Hof 

et al., 2003; Andrade-Moraes et al., 2013). Based on the notion that NFT evolved from an 

accumulation of abnormally hyperphosphorylated tau without PHF formation (described as 

the ‘pretangle’ stage, Bancher et al., 1989), Braak and others also demonstrated that 

hyperphosphorylation is probably a crucial step leading to the formation of both soluble and 

insoluble tau filaments (Braak et al., 1994), that neuronal damage in AD actually begins 

many years before any clinical symptoms and signs (Braak and Del Tredici, 2015), and that, 

unlike Aβ, the distribution of tau pathology is associated with the clinical progression of AD 

(Bierer et al., 1995). In contrast to the amyloid cascade hypothesis of AD, which implies that 

tau pathology is a secondary, downstream phenomenon, the neuropathological findings of 

Braak and collaborators have fueled a significant controversy concerning the importance or 

contributions of Aβ burden-induced damage compared to that caused by tau pathology, 

particularly in LOAD. Additionally, the pathological Aβ and tau proteins mutually interact 

and are influenced by many other factors, such as epigenetic (Lardenoije et al., 2015), 

inflammatory (Joshi and Praticò, 2014), vascular, and possibly direct environmental causes 

(metals, metalloids, pollutants, various compounds in food), as well as compensatory 

neuroplastic response to counteract neural injury associated with neurodegenerative 

processes (Wang et al., 2011), all of which may promote cognitive and behavioral decline.

Compelling evidence that tau malfunction or dysregulation alone can be sufficient to cause 

neurodegeneration came from the identification of mutations in the tau-encoding MAPT 
gene on chromosome 17, which cause frontotemporal dementia with parkinsonism 

(FTDP-17; Hutton et al., 1998). This finding strengthens cytoskeletal abnormalities as a 

possible pivotal mechanism in neurodegeneration in AD (Terry, 1996; Šimić et al., 1998a), 

and positioned AD as the most important secondary tauopathy (as the tau-coding MAPT 
geneitself is not mutated), while mutations in the MAPT gene subsequently identified into a 

new group of diseases now called primary tauopathies. In the years to follow, both in vitro 
and in vivo studies have shown that reducing endogeneous tau ameliorates Aβ-induced 

deficits (Roberson et al., 2007; Bhatia and Hall, 2013; for review see Wang and Mandelkow, 

2016), which provided compelling evidence that tau is sufficient and necessary for Aβ-

induced neurodegeneration.

Genetic studies, including genome-wide association (GWAS), have demonstrated the 

importance of both the inversion polymorphism and haplotype-specific polymorphisms (the 

common haplotype clades marking the majority and inverted sequences are termed H1 and 

H2, respectively) of MAPT in various tauopathies (Anaya et al., 2011; for review, see 

Trabzuni et al., 2012). More specifically, abnormal phosphorylation, aggregation, and 

proteolysis of the tau protein in a “pre-tangle” stage of neurofibrillary degeneration have 

been neuropathologically documented to be an early and crucial event in the pathogenesis of 

AD, but also other sporadic tauopathies, such as progressive supranuclear palsy (PSP) (Luk 

et al., 2010) and argyrophilic grain disease (AgD) (Šimić, 2002; Williams, 2006; Murray, 

2014), confirming involvement of tau in common pathogenetic pathways. Based on the tau 
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isoforms found in the aggregates, tauopathies are classified into three groups: 4R tauopathies 

(including PSP, AgD, and cortico-basal degeneration, CBD), 3R tauopathies (e.g. 

frontotemporal lobar degeneration with tau inclusions, FTLD-tau, previously known as 

Pick’s disease) and 3R/4R tauopathies (e.g. AD). Owing to an additional repeat microtubule-

binding domain (R2), 4R tau isoforms show higher affinity for microtubules than 3R 

isoforms. Tau repeat domains bind at the interface between α- and β-tubulin heterodimers, 

suggesting that there is competition between their physiological interaction with tubulin and 

pathogenic misfolding (Kadavath et al., 2015). Most recently, Huntington’s disease has been 

confirmed as 4R tauopathy (Fernández-Nogales et al., 2014).

1.1.3.1. Phoshorylation of tau protein: Phosphorylation plays a crucial role in regulating 

functions of tau, including it binding to microtubules. The longest brain isoform of tau, 

tau1–441, has about 80 Ser/Thr and 5 Tyr residues that can be phosphorylated by various 

protein kinases encoded by 518 protein kinase genes in the human genome (Buée et al., 

2000; Manning et al., 2002; Šimić et al., 2016). Immunolabeling with phopho-dependent 

antibodies raised against various tau phosphorylation sites, as well as spectrometric analysis, 

revealed that over 40 Ser/Thr and 2 Tyr residues are phosphorylated in PHF (Buée et al., 

2000; Iqbal et al., 2016; Šimić et al., 2016). In AD, Ser/Thr residues followed by Pro are the 

most frequently phosphorylated sites, accounting for about half of phosphorylated residues. 

These sites are outside the microtubule-binding domain and are phosphorylated by proline-

directed protein kinases (PDPK). The main PDPK are glycogen synthase kinase-3β 
(GSK-3β), mitogen-activated protein kinase (MAPK), JNK (c-Jun N-terminal kinase), 

cyclin-dependent-like kinase 5 (CDCK5) and dual specificity tyrosine-phosphorylation-

regulated kinase 1A (DYRK1A; Buée et al., 2000; Iqbal et al., 2016). Ser/Thr residues that 

are not followed by Pro (i.e. non-proline-directed sites of tau) are phosphorylated by non-

PDPK. Non-PDPK are directed toward KXGS-motif and some of the most well known are: 

calcium/calmodulin-activated protein kinase II (CaMKII), microtubule-affinity-regulated 

kinase 110 (MARK p110), protein kinase A (PKA), and kasein kinase 1 (CK1; Buée et al., 

2000; Iqbal et al., 2016). Phosphorylation of KXGS motifs in the repeat domain of tau 

(particularly Ser262) reduce the affinity of tau to microtubules and, together with 

phosphorylation of Ser212 Thr231, trigger the detachment of tau from microtubules (Wang 

and Mandelkow, 2016), similarly as MAPT mutations affecting tau protein near the 

microtubule-binding domain (e.g., Gly272Val, Asn279Lys, ΔLys280, Pro301Leu, 

Val337Met and Arg406Trp) reduce its affinity for microtubules and increase tendency for 

aggregation (Hong et al., 1998).

Regardless of the large number of various protein kinases that can phosphorylate tau, the 

phosphorylation state of a protein is the net sum of the activities of both its kinases and 

phosphatases. The main regulator of tau dephosphorylation is protein phosphatase 2A 

(PP2A), which accounts for about 70% of the total tau phosphatase activity in the human 

brain (Liu et al., 2005). PP2A regulates dephosphorylation of tau directly and indirectly, by 

regulating the activities of CaMKII, PKA, CDK5, and GSK-3β; Iqbal et al., 2005; 

Jazvinšćak Jembrek et al., 2013). As it has been well known that PP2A activity is 

compromised in AD (Gong et al., 1995), PP2A represents one of the most important 

therapeutic targets. Targeting PP2A for potential treatment of AD has gained even more 
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attention after finding that dietary supplementation with a minor component of coffee 

unrelated to caffeine, eicosanoyl-5-hydroxytryptamide (EHT), provided protection in a rat 

model of AD (Basurto-Islas et al., 2014). The effect of EHT was due to its ability to inhibit 

demethylation of the PP2A catalytic C subunit (PP2Ac), thereby preventing a decline in 

PP2A activity (Basurto-Islas et al., 2014). A similar effect of enhancing PP2A activity had 

also been observed for metformin and sodium selenite, which are currently under 

development for inhibition of tau phosphorylation (Iqbal et al., 2016).

Normal tau protein is thought to have a paper clip-like form, where its C- and N-termini fold 

over the microtubule-binding domains as short and long ‘arms’, respectively, probably 

preventing the protein from self-aggregation (Mandelkow et al., 2007). According to Luna-

Muñoz and collaborators, at least five different events take place in the “pre-tangle” stage: 1) 

C-terminal truncation of tau species (Glu-391); 2) a cascade of specific phosphorylations of 

tau protein in the N-terminus; 3) C-terminal truncation by the action of caspase-3; 4) 

oligomerization and aggregation of tau; and 5) assembly of tau into PHF (Luna-Muñoz et 

al., 2013; reviewed in Šimić et al., 2016). However, which form of tau is the most toxic 

(aggregated misfolded/fibrillar, soluble hyperphosphorylated/mislocalized, or both) and 

whether that toxicity represents a gain or loss of function continues to be debated. The 

hypothesis that soluble forms of tau are more toxic to neuronal and synaptic function is 

increasingly gaining favor, implying that the formation of NFT may protect neurons acutely 

from the effects of toxic soluble tau (Kopeikina et al., 2012). This hypothesis is supported by 

the observation that neuron loss in the cerebral cortex of the superior temporal sulcus 

(Gómez-Isla et al., 1997), as well as entorhinal cortex and hippocampal formation exceeds 

the number of NFT in AD (Šimić et al., 1998b; Krill et al., 2002).

As tau AD-like hyperphosphorylation occurs in vivo during animal hibernation (Arendt et 

al., 2003) and in anaesthesia-induced hypothermia (as a consequence of the fact that 

hypothermia inhibits phosphatases exponentially, but inhibits protein kinases linearly, Planel 

et al., 2004), it is still not known whether hyperphosphorylation alone is sufficient for tau 

aggregation. Conversely, aggregation of tau can be induced in vitro e.g. by heparin or other 

polyanions (Goedert et al., 1996), regardless tau phosphorylation status. Thus, besides 

hyperphosphorylation, the truncation of tau also seems to be of paramount importance as it 

promotes tau aggregation through oligomerization of the microtubule-binding repeats (Iqbal 

et al., 2016; Wang and Mandelkow, 2016). However, although the phosphorylation of tau is 

in general considered to increase chances of tau for aggregation, phosphorylation of tau at 

some specific sites seem to be protective, e.g. phosphorylation at Ser422 inhibits the 

cleavage of tau by caspase-3 at Asp421 (Guillozet-Bongaards et al., 2006), illustrating 

insufficient knowledge of precise sequence of early molecular events that lead to tau 

aggregation. What is much better known is that microtubule-binding repeat region R3, which 

is common to all six tau isoforms, and R2, which is an extra repeat in 4R tau, contain the 

two hydrophobic hexapeptide motifs with β-sheet structure (VQIINK and VQIVYK, 

respectively, see Fig. 2 in Šimić et al., 2016), which are responsible for downstream tau 

aggregation by a nucleation-elongation mechanism (von Bergen et al., 2000) and PHF 

formation (for review, see Šimić et al., 2016). It is believed that generation of tau transgenic 

mouse strains with ‘pro-aggregant’ (e.g. ΔK280 mutation in the R2 domain) and ‘anti-

aggregant’ (e.g. by adding proline substitutions in the hexapeptide motifs) it will enable 
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better understanding of the importance of tau aggregation for neurodegeneration. 

Aggregation of tau can experimentally be accelerated in mouse models by adding external 

seeds from preformed PHF (see below). The third most important post-translational 

modification of tau is probably O-GlcNAcylation, because it depends highly on intracellular 

glucose metabolism (Knezović et al., 2015).

1.1.3.2. Acetylation of tau protein: Since its discovery, the role of acetylation of tau 

pathology has been controversial. First, it has been proposed that tau protein acetylation may 

be responsible for tau aggregation in AD. On the contrary, however, it was recently shown 

that the acetylation of tau on KXGS motifs inhibits phosphorylation of the same motif, 

consequently also preventing tau polymerization and aggregation (Cook et al., 2014). 

Namely, using a site-specific antibody to detect acetylation of KXGS motifs, it has been 

found that these sites are hypoacetylated in AD patients as well as in a mouse tauopathy 

model, suggesting that loss of acetylation on KXGS motifs may be an early event in AD 

(and that augmenting acetylation of the KXGS motifs would probably decrease tau seeding 

capacity) (Cook et al., 2014). The first antibody developed to detect acetylation of tau at 

Lys280 (Irwin et al., 2012) showed that tau acetylated at this epitope colocalized with other 

classical markers of tau pathology (most prominently in moderate to severe disease stages), 

and is therefore rather a response to than a cause of the disease process (Cook et al., 2014). 

Strikingly, subsequent usage of the second antibody developed to dectect acetylation at 

Lys274 residue of tau, has shown that that acetylation of this epitope is a very early change 

in AD brains (Min et al., 2015), which occurs even before tangles are detectable (Grinberg et 

al., 2013). Interestingly enough, acetylation of tau at Lys274 was detected in all tauopathies 

(both primary and secondary), except in AgD (Grinberg et al., 2013). Argyrophilic grain 

disease is a common sporadic 4R tauopathy. The term ‘argyrophilic grains’ is derived from 

their strong staining with the Gallyas silver iodide method, although not all silver methods 

permit their visualization. In combination with AD or alone, AgD significantly contributes 

to dementia in older age subjects and alone accounts for about 5% of all dementia cases 

(Braak and Braak, 1998; Šimić, 2002). Due to the fact that AgD pathological changes are 

mostly confined to the CA1 subfield of the cornu ammonis, entorhinal and transentorhinal 

cortices, the amygdala, and the hypothalamic lateral tuberal nuclei (Šimić, 2002), it has been 

hypothesized that tau acetylation at Lys274 could also promote spreading of tau pathology 

(whereas in AgD it could have a protective role in this respect) (Cook et al., 2014). The 

acetylation of tau protein, however, seems to be much more complex than described here 

due to the fact that, besides Lys274 and Lys280, there are many self-acetylation (including 

Lys280 site, Luo et al., 2014) and sites acetylated by the CBP (cAMP response element 

binding protein) and P300 acetyltransferase (Kamah et al., 2014). Lysin residues acetylated 

by CBP may be deacetylated by histone deacetylase 6 (HDAC6), whereas P300 

acetyltransferase sites can be deacetylated by sirtuin 1 (SIRT1) (Cook et al., 2014). In 

conclusion, depending on the sites involved, the acetylation of tau could both inhibit its 

degradation (lysine residues 163, 280, 281, and 369) or facilitate its degradation, at the same 

time suppressing its phosphorylation and aggregation (lysine residues within the KXGS 

motifs 259, 290, 321, 353, according to the numbering of the longest isoform; acetylation of 

these sites is reduced in AD and rTg4510 transgenic mice). Targeting specific lysine 

residues through specific binding of the molecular tweezer molecule CLR01 has been shown 
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to inhibit both tau (Sinha et al., 2011) and Aβ aggregation and fibrillogenesis in vitro (Attar 

et al., 2013).

1.1.3.3. Propagation of tau protein pathology: Since 2009, the evidence has been 

mounting that tau protein can also be directly involved in spreading of AD pathology to 

neighbouring neurons, however, strong evidence supporting this hierarchical progression 

(“prion-like behavior of misprocessed tau”) is still missing (Hall and Patuto, 2012). Data 

support the hypotesis that tau hyperphosphorylation alone or in combination with other post-

translational tau modifications of tau protein, such as truncation, acetylation, ubiquitination, 

glycation, N-glycosylation, O-GlcNAcylation, nitration, lipoperoxidation and sumoylation, 

can induce its ability to template normal tau (for review see Iqbal et al., 2016; Šimić et al., 

2016), but whether misfolded tau can catalyse the conformational changes of normal tau to 

cause the propagation of pathological changes still remains to be elucidated.

At first, it was shown that injection of brain extract from mice that express human mutant 

Pro301Ser tau into transgenic mice expressing human wild-type tau (ALZ17 model) was 

sufficient to induce tau pathology not only within, but also adjacent to, the injection site 

along anatomically connected pathways (Clavaguera et al., 2009). Second, injection of brain 

extracts from humans who had died with different tauopathies into the hippocampus or 

cerebral cortex of either ALZ17 or nontransgenic mice was shown to be not only sufficient 

to drive inclusion formation, but actually effectively reproduced the classic hallmark lesions 

of the specific tauopathy characteristic of the inoculating brain extract, either AgD, PSP or 

CBD (Clavaguera et al., 2013). By measuring synaptic levels of total tau using 

synaptosomes prepared from cryopreserved human postmortem AD and control samples, 

Sokolow and collaborators demonstrated the abundance of tau, mainly C-terminal truncated 

tau, in synaptic terminals in aged control and AD samples, whereas tau fragments and 

dimers/oligomers were found to be a prominent feature of AD synapses (Sokolow et al., 

2015). By using quantitative in vitro models, Calafate and collaborators showed that, in 

parallel to discovered non-synaptic mechanisms, synapses (but not merely the close distance 

between the cells) enhance the propagation of tau pathology between acceptor hippocampal 

neurons and tau donor cells (Calafate et al., 2015). Taken together, these studies have 

provided additional support for the concept that pathologically altered tau species possess a 

remarkable self-propagating and seeding capacity, and also indicate that seeding-competent 

tau species are somehow different and distinct across the class of tauopathies (likely 

depending on a precise biochemical pattern of post-translational modifications that 

differentially impact conformation and determine aggregate structure), such that the 

inoculating material acts as an exact template in the new host (Cook et al., 2014).

Tau pathology can indeed be induced and propagated after the injection of tau oligomers 

(seeds) or aggregates in either wild-type or mutated MAPT transgenic mice (Iba et al., 2013; 

Peeraer et al., 2015), in a transgenic mouse model overexpressing Pro301Leu mutated 

MAPT under the control of an inducible neuropsin promoter in the entorhinal cortex (de 

Calignon et al., 2012; Liu et al., 2012), and tau aggregates can be spread from cell to cell in 
vitro (Frost et al., 2009; Guo et al., 2013). These new findings suggest that suppressing tau 

spreading could be an attractive target for the development of disease-modifying 

therapeutics for AD and other tauopathies, although more in vitro and in vivo studies are 
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needed to determine whether pathologic tau oligomers spread trans-synaptically, by 

exosomes, or both ways. In the case of soluble monomeric or small oligomeric tau protein, 

the endocytosis appears to be clathrin-dependent (reviewed in Rubinsztein, 2006). In 

contrast, larger aggregates of tau could bind heparin in the extracellular matrix and be 

internalized through macropinocytosis (Holmes et al., 2014). Additionally, it seems that 

microglia, the primary phagocytes in the brain, may also spread tau via smaller exosome 

vesicle (40–100 nm in diameter, Asai et al., 2015) or larger ectosome vesicle (50–1000 nm) 

secretion (Dujardin et al., 2014). Hypotheses on mechanisms by which products of several 

of the top LOAD risk genes (APOE, BIN1, CLU, ABCA7, CR1 and PICALM), may be 

involved in spreading tau have been recently formulated (Avila et al., 2015).

1.1.3.4. The role of tau pathology in synaptic damage: Another important aspect of how 

tau may be involved in neurodegeneration is through its involvement in neurotransmission 

(for review, see Jadhav et al., 2015). Namely, finding that tau protein can also be 

phosphorylated on tyrosines, in addition to threonine and serine residues, led to the 

discovery that human tau Tyr18 in the N-terminal projection domain is phosphorylated in 

synapses by Fyn tyrosine kinase from the Src family (at least two tyrosine residues - Tyr18 

and Tyr29 - are phosphorylated in NFT; Lee et al., 2004). Additionally, as the projection 

domain of tau in synapses also interacts with postsynaptic density protein 95 (PSD-95) and 

NMDAR, it is not surprising that tau is essential for NMDA-dependent long-term 

potentiation (LTP) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA)-

dependent long-term depression (LTD), as shown in tau knockout mice (Frandemiche et al., 

2014; Jadhav et al., 2015). Thus, pathological tau proteins play an important role in the 

synaptic impairment of human tauopathies and these changes may occur due to an increase 

in intracellular Aβ.

Lastly, and importantly, tau acts as a HDAC6 inhibitor. This finding places tau on the map of 

genotype - environment interactions, because it may mediate environmental stresses via its 

influence on the regulation of transcriptional activity (Valenzuela-Fernández et al., 2008; 

Perez et al., 2009). Large protein aggregates such as tau aggregates are excluded from the 

proteasome and can only be degraded by autophagy in lysosomes. Because selective 

autophagy of protein aggregates requires ubiquitin-binding receptor proteins such as 

HDAC6, an excess of tau protein expectedly impairs autophagic clearance by binding to 

HDAC6 (Leyk et al., 2015). Conversely, decrease in HDAC activity or expression, e.g. by 

using a novel ubiquitin ligase C-terminus of Hsp70 interacting protein (CHIP) that binds and 

ubiquitinates HDAC6, could serve to alleviate abnormal tau accumulation (Cook et al., 

2012; Cook et al., 2014).

1.1.4 Epigenetic changes in pathogenesis of AD—AD is not an accelerated form of 

aging (Morrison and Hof, 1997; Šimić et al., 1997) and gene changes alone cannot explain 

the etiopathogenesis of AD. The moderate concordance of AD among twins (Iacono et al., 

2014) suggests other factors, potentially epigenetic and environmental, are related to AD 

pathogenesis. Epigenetics relate to stable and heritable patterns of gene expression and 

genomic functions that do not involve changes in DNA sequence, but act at the interface of 

genetic and environmental factors. Many individual studies have suggested a possible role 
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for epigenetic changes in AD etiology. The most investigated epigenetic mark is DNA 

methylation, a reversible modification that affects genome function and chromosomal 

stability through the addition of methyl groups to cytosine located in CpG dinucleotides to 

form 5-methylcytosine (5mC). In a rare set of monozygotic twins discordant for AD, 

significantly reduced levels of DNA methylation were observed in the neuronal nuclei of 

temporal neocortex in the AD twin (Mastroeni et al., 2009). Significantly reduced DNA 

methylation was also found in entorhinal cortex layer II neurons of 20 AD patients and in 

particular in the PHF-1/pSer396-immunoreactive NFT-containing neurons (Mastroeni et al., 

2010). Together with the repetitive DNA elements Alu and Satellite-α, long interspersed 

element 1 (LINE-1) is one of the three major contributors of global DNA methylation 

pattern, which constitute 17%, 4% and 11% of the genome, respectively. Interestingly, a 

group of AD patients with the best Mini-Mental State Examinaton (MMSE) scores showed a 

higher level of LINE-1 methylation, than the AD group with the worst MMSE scores 

(Bollati et al., 2011). However, firm conclusions cannot be drawn yet as, unfortunately, 

epigenomic studies of AD so far had only limited coverage of DNA methylation sites and 

microRNAs (miRNAs), whereas other epigenomic markers have not been systematically 

studied (for review, see Bennett et al., 2015). Of particular interest is the fact that AD 

patients diplay high homocysteine and low B12 vitamine and folate levels in blood, which 

represents a physiological response to prevent methionine deficiency is the so-called ‘methyl 

folate trap’ (Scott and Weir, 1981), and may also occur due to B12 deficiency. This suggests 

a dysregulation in the S-adenosylmethionine cycle that strictly contributes methyl donors for 

DNA methylation of the promotors of the genes involved in Aβ processing (Scarpa et al., 

2006). A further support for this possibility is the observation of an age-specific epigenetic 

drifts associated with consistently lower methylation patterns in elderly and LOAD subjects 

than in young and mid aged people, supporting a strong role for epigenetic effects in the 

development of AD (Wang et al., 2008).

Environmental toxins, pollutants and metals negatively affect global DNA methylation 

patterns (LaSalle, 2011). For example, prenatal methylmercury exposure resulted in long-

lasting depression-like behavior and hypermethylation of brain-derived neurotropic factor 

gene (Bdnf) in mouse hippocampus (Onishchenko et al., 2008). Air pollution exposure 

especially damages the BBB in the brainstem and can trigger an autoimmune response 

contributing to the neuroinflammatory and AD pathology present in children from very large 

urban centers (Calderón-Garcidueñas et al., 2015; Brockmeyer and D’Angiulli, 2016). Even 

though numerous studies connect specific metals and metalloids with Aβ and tau pathology 

(e.g., Aβ spontaneously self-aggregates in the presence of divalent metals like Fe, Cu, and 

Zn into amyloid fibrils, Mandel et al., 2007), recently bringing a “metal hypothesis of AD” 

into focus (Bush and Tanzi, 2008; Bush, 2013; Singh et al., 2014), such data remain rather 

controversial, warranting further investigations until convincing conclusions might be 

drawn. Some environmental toxins, such as β-methylamino-L-alanine (BMAA) produced by 

cyanobacteria cause misfolding and aggregation of various proteins (Dunlop et al., 2013). 

Chronic dietary exposure to BMAA has been shown to trigger the formation of both NFT 

and Aβ deposits in the brain of vervet monkeys (Cox et al., 2016).
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1.2. Diagnosis of AD

The clinical diagnosis of AD has been generally based on the original 1984 protocol of the 

National Institute of Neurological and Communicative Disorders and Stroke – Alzheimer’s 

Disease and Related Disorders Association (NINCDS-ADRDA; McKhann et al., 1984). It 

required that the presence of cognitive impairment and a suspected dementia syndrome be 

confirmed by neuropsychological testing for a diagnosis of possible or probable AD. 

Similarly to NINCDS-ADRDA, the American Psychiatric Association issued its 4th revised 

edition of the Diagnostic and Statistical Manual for Mental Disorders (DSM-IV-TR) criteria 

in 2000. Besides a memory disorder and impairment in at least one additional cognitive 

domain, the DSM-IV-TR criteria also required both of these impairments to interfere with 

social functioning or activities of daily living (ADL; American Psychiatric Association, 

2000). The advances in newly developed functional neuroimaging techniques, such as 

single-photon emission computed tomography (SPECT) and positron emission tomography 

(PET), that had proven their utility to differentiate AD from other possible causes (Okamura 

et al., 2002; Dougall et al., 2004; Patwardhan et al., 2004), as well as the discovery of 

distinctive cerebrospinal fluid (CSF) biomarkers (Blennow and Hampel, 2003; Hansson et 

al., 2006; Blennow et al., 2010; Counts and Mufson, 2010a; Babić et al., 2014), led to a 

proposed revision of the NINCDS-ADRDA criteria to take into account findings obtained 

using these methods (Dubois et al., 2007). Unfortunately, multicenter studies showed that 

usage of enzyme-linked immunosorbent assay (ELISA) kits from different manufacturers 

significantly affects outcome, making it impossible to use them interchangeably to achieve 

consensus cut-off values (Babić et al. 2013). In addition to so-called core CSF biomarkers 

(Aβ1–42, total and tau phosphorylated at Thr181 and Thr231), the usage of new proteomics-

based strategies are revealing additional new biomarkers in CSF, some of which have been 

already validated in clinics (Babić Leko et al., 2016). AD biomarkers are considered of 

extreme importance due to their use for improving the accuracy of clinical diagnosis, 

stratification of AD cases, safety monitoring and theragnostics (Blennow et al., 2010).

After this initial effort to incorporate biomarkers into the diagnosis of AD and mild cognitive 

impairment (MCI; Dubois et al., 2007), the National Institute on Aging and the Alzheimer’s 

Association (NIA/AA) launched new guidelines for AD in 2011 (Sperling et al., 2011; 

Albert et al., 2011; McKhann et al., 2011; Hyman et al., 2012; http://www.alz.org/research/

diagnostic_criteria/). These guidelines identify three stages of AD: 1) preclinical 

(presymptomatic) AD (Sperling et al., 2011); 2) MCI, or minor neurocognitive disorder 

according to the DSM-5 (American Psychatric Association, 2013) due to AD, at which stage 

it is considered that mild changes in episodic memory and thinking are noticeable and can be 

measured by neuropsychological testing, but are not severe enough to disrupt a person's 

daily life (Albert et al., 2011); and 3) dementia (or major neurocognitive disorder, according 

to DSM-5) due to AD, where impairments in memory, thinking, and behavior decrease a 

person's ability to function independently in everyday life (McKhann et al., 2011). In 

addition, the neuropathological criteria for AD have been updated and revised to recognize 

the preclinical stage of AD (Hyman et al., 2012). In a "preclinical" disease stage, biological 

changes are under way, but the disease has not yet caused any noticeable (clinical) 

symptoms. Indeed, it has been shown that in preclinical AD, brain changes caused by the 

disease may begin even decades before symptoms such as memory deterioration and 
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confusion occur (Braak and Braak, 1997; Braak et al., 2011; Sperling et al., 2011). The 

guidelines do not include specific diagnostic criteria for this stage; rather, they propose a 

research agenda to identify biomarkers, such as brain imaging and identification of proteins 

in CSF, which may signal when presymptomatic brain changes appear (Sperling et al., 

2011).

1.3. Neuropathological criteria for AD

The fourth part of the NIA/AA guidelines (Hyman et al., 2012; Montine et al., 2012) 

updated the 1997 NIA/Reagan Institute neuropathological criteria for AD (Hyman and 

Trojanowski, 1997). Basically, AD neuropathologic changes are ranked along three 

parameters to obtain an “ABC score” (A – for amyloid β, Aβ, score: A0: no Aβ or amyloid 

plaques (AP), A1 Thal phase 1 or 2, A2: Thal phase 3, and A3: Thal phase 4 or 5 (modified 

from Thal et al., 2002); B – for the Braaks’ six neurofibrillary tangles (NFT) stages (Braak 

and Braak, 1991; see Fig. 4) that can be reduced to four with improved inter-rater reliability 

(Nagy et al., 1998): B0: no NFT, B1: Braak stages I/II, with NFT predominantly in 

entorhinal cortex and closely related areas, B2: stages III/IV, with NFTs more abundant in 

the hippocampus and amygdala while extending slightly into association cortex, and B3: 

stages V/VI, with NFT, neuropil threads and dystrophic neurites widely distributed 

throughout the neocortex and ultimately involving primary motor and sensory areas; and C – 

for neuritic plaques (composed of a core of Aβ and surrounded by dystrophic neurites made 

of abnormally hyperphosphorylated tau aggregated into PHF), NP, score: C0: no NP, C1: 

sparse NP, C2: moderate NP, and C3: frequent NP (modified from the Consortium to 

Establish a Registry for Alzheimer’s disease, CERAD; Mirra et al., 1991). Recommended 

brain regions for such tiered evaluation are: the medulla oblongata (including the dorsal 

motor nucleus of the vagus), pons (including the locus coeruleus, LC), midbrain (including 

the substantia nigra, SN), cerebellar cortex and dentate nucleus, thalamus and subthalamic 

nucleus, basal ganglia at the level of anterior commissure with the basal nucleus of Meynert, 

hippocampus and entorhinal cortex, anterior cingulate cortex, amygdala, mid frontal gyrus, 

superior and mid temporal gyri, inferior parietal lobule, occipital cortex (Brodmann’s areas 

17 and 18), and white matter at the anterior, middle, and posterior cerebral arteries’ 

watershed areas.

The preferred method for visualization of Aβ plaques is immunohistochemistry for Aβ, and 

for NFT is immunohistochemistry for tau or phosphorylated tau epitopes (Braak et al., 2006; 

see Fig. 3). Other acceptable methods for NFT are thioflavin S or sensitive silver 

histochemical stains (Braak and Braak, 1991). The preferred method for NP is thioflavin S 

or modified Bielschowsky stain (water solution of silver nitrate, AgNO3; Fig. 2), as 

recommended by the CERAD protocol (Mirra et al., 1991). Although CAA is not a part of 

the ABC score, it is suggested to report it using the staging system for CAA of Vonsattel et 

al. (1991) and association with inheritance of the ε4 allele of apolipoprotein E (APOE) 

recognized (Thal et al., 2008). Finally, the ABC scores obtained are transformed into one of 

four levels of AD neuropathologic change: no change, low, intermediate, or high level of AD 

neuropathologic change, where intermediate or high AD neuropathologic changes are 

considered as a sufficient explanation for the presence of dementia/major neurocognitive 

disorder.
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1.4. Clinicopathologic correlations

With respect to clinicopathologic correlations, the NIA/AA guidelines also provide a table 

with the frequency and confidence intervals of cases within each range of ABC scores for 

CDR sum of boxes score, which represents the sum of scores of clinical impression of 

symptom severity (ranging from 0 - normal to 3 - marked impairments), in each of six 

domains of behavioral and cognitive function (Morris, 1993; O’Bryant et al., 2008), to help 

interpret results from autopsies with incomplete medical records. Although AD is the most 

common cause of dementia/major neurocognitive disorder and can exist as a pure form in 

17–72% of cases irrespective of the clinical symptoms, according to Jellinger and Attems 

(2015), it commonly coexists with pathologic changes of other diseases that also contribute 

to cognitive and behavioral impairments.

The most common comorbidities are: 1) Lewy body disease (LBD, a subset of diseases 

which includes Parkinson’s disease, PD, and dementia with Lewy bodies, DLB, that share 

the feature of abnormal accumulation of α-synuclein in neurons); 2) cerebrovascular 

diseases (CVD) that cause vascular brain injury (VBI), including atherosclerosis, 

arteriolosclerosis (small-vessel disease or lipohyalinosis), and CAA; 3) hippocampal 

sclerosis (HS); 4) argyrophilic grain disease (AgD); 5) TDP-43 proteinopathy; and 6) 

cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) as well as many other neuropathologic changes.

For a given amount of AD neuropathologic change, cognitive and behavioral symptoms tend 

to be worse in the presence of these comorbidities (which are frequently missed clinically 

and may be difficult to identify neuropathologically) that may have an additive or synergistic 

effect, although their mutual impact often remains unclear (for a review see Nelson et al., 

2012, and Jellinger and Attems, 2015). As such, it may be very difficult to judge the extent 

to which each disease process observed at autopsy may have contributed to a given patient’s 

cognitive state, particularly when a low level of AD-related neuropathology is observed in 

the setting of cognitive and behavioral impairment. Additionally, the recommended 

semiquantitative ABC criteria for routine use does not preclude the possibility that other 

processes or lesions may critically contribute to the pathophysiology of AD. In this respect it 

is important to emphasize that soluble forms of both Aβ (Walsh and Selkoe, 2007) and tau 

protein (Kopeikina et al., 2012) have been implicated in AD pathogenesis, but would not be 

apparent through using by the conventional techniques used and described in the NIA/AA 

guidelines.

It needs to be kept in mind that medial temporal lobe NFT may be found in old and very old 

people in the absence or relative absence of Aβ or NP (Yamada, 2003; Jellinger and Attems, 

2007; Nelson et al., 2009). Previously known as “tangle-predominant senile dementia” 

(TPSD, Jellinger and Attems, 2007) or “tangle-only dementia” (Yamada, 2003), this 

neuropathological entity has recently been termed primary age-related tauopathy (PART; 

Crary et al., 2014; Jellinger et al., 2015). Symptoms in persons with PART usually range 

from normal to amnestic cognitive changes, with only a minority exhibiting profound 

impairment (Crary et al., 2014). In addition, other diseases that must be considered in the 

differential diagnosis of dementia/major neurocognitive disorder include tauopathies other 

than PART, most importantly FTLD (its clinical presentation is usually called 
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frontotemporal dementia, FTD) and its subtypes, such as FTLD-tau, FTLD-TDP (for 

TDP-43 protein), FTLD-FUS (fused in sarcoma protein), FTLD-UPS (ubiquitin proteasome 

system), FTLD-ni (no inclusions, also known as dementia lacking distinctive 

histopathology; Mackenzie et al., 2010), and prion disease. Mutations in several genes have 

been associated with the majority of genetic FTLD: MAPT (encoding protein tau), GRN 
(encoding for protein progranulin), TARDBP (encoding transactive response DNA-binding 

protein 43, TDP-43, which is often associated with amyotrophic lateral sclerosis, ALS, or 

ALS/FTD, but also with FTD subjects without ALS), VCP (encoding valosin-containing 

protein, which is also mutated in ALS), C9ORF72 (encoding C9orf72 protein, also mutated 

in ALS), and TMEM106B (Benussi et al., 2015). Two new loci associated with FTLD have 

been recently reported: one linked to HLA (human leukocyte antigen) locus on 6p21.3 and 

the other to 11q14 locus (CHMP2B, whose transcripts are related to lysosomes), suggesting 

that immune system processes and possibly lysosomal and autophagy pathways, may also 

potentially be involved in FTLD (Ferrari et al., 2014; Clayton et al., 2015).

Several recent reports drew attention to the possibility of selective and early involvement of 

not only the LC (Hyman and Trojanowski, 1997) but also the raphe nuclei, particularly the 

DRN, in the pathogenesis of AD (Rüb et al., 2000; Grinberg et al., 2009; Michelsen et al., 

2008; Šimić et al., 2009). In a clinicopathological series of 118 cases, out of which 38 were 

categorized as stage B0 (at least four sections at different levels of transentorhinal cortex 

were free of neurofibrillary changes, based on lack of immunoreactivity for monoclonal 

antibodies PHF-1 and AT8), and 80 as stage B1 (rare neurofibrillary changes in the 

transentorhinal cortex), more than 20% of B0 and all of B1 cases had substantial 

neurofibrillary changes in the DRN. However, because raphe nuclei dysfunction due to 

neurofibrillary changes is not included even in the new criteria (Hyman et al., 2012; Montine 

et al., 2012), its possible behavioral consequences are not yet considered as a potential early 

characteristic clinical feature of AD.

Numerous clinical and neuropathological studies performed from the early 1980s to the 

present have established compelling links between wide range of structural and functional 

abnormalities of subcortical monoaminergic systems and the pathophysiology of AD. Here 

below, we first provide brief general information on involvement of each monoaminergic 

system in AD, followed by its more detailed chemical neuroanatomy (origins of neurons, 

distribution of receptors) and functional relevance of their alterations in AD. Finally, we 

discuss interactions among monoaminergic systems and with the cholinergic system in AD 

and prospect for future monoamine-based treatments in AD.

2. Chemical neuroanatomy of the monoaminergic systems

2.1. Serotonergic system

The impairment of serotonergic system in AD was shown in humans both in vivo and 

postmortem. Early non-cognitive behavioral and psychological symptoms of dementia 

(BPSD), such as disturbances in mood, emotion expression and recognition (Waanders-Oude 

Elferink et al., 2015), appetite, wake-sleep cycle, confusion, agitation, and depression are 

probably clinical signs of serotonergic nuclei involvement in AD (Šimić et al., 2009). One of 

them, sundowning (the increase in one or more abnormal behaviors such as agitation or 
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activity during evening hours), is estimated to occur in about 45% of individuals diagnosed 

with AD (Scarmeas et al., 2007). Depression as the most pronounced clinical symptom is 

considered as a risk factor for neurodegeneration (Donovan et al., 2015). AD patients also 

typically show sleep fragmentation with frequent awakenings during the night, and a 

propensity to sleep during the daytime (Ancoli-Israel et al., 1994; Lim et al., 2014). Recent 

animal studies confirmed how early occurence of AD pathology in serotonergic nuclei leads 

to wake-sleep cycle disturbances (Sterniczuk et al., 2010; Roh et al., 2012).

Many studies found reductions of serotonin (5-hydroxytryptamine, 5-HT), along with its 

metabolites and receptors in AD postmortem brain tissue (Nazarali and Reynolds, 1992; 

Garcia-Alloza et al., 2005; Ramirez et al., 2014), as well as reduced serotonergic innervation 

of the cerebral cortex, amygdala, hippocampus, globus pallidus, lateral nucleus of the 

thalamus and elsewhere (for review see Trillo et al., 2013).

5-HT is an indoleamine produced from L-tryptophan by the sequential action of tryptophan 

hydroxylase (TPH, EC 1.14.16.4) and aromatic-L-amino acid decarboxylase (AAAD, EC 

4.1.1.28) (Green, 1989). TPH is the rate-limiting enzyme in 5-HT biosynthesis. For many 

years, only one gene encoding TPH in vertebrates was known. In 2003, a second TPH gene 

(termed TPH2) was identified on chromosome 12 (Walther et al., 2003). The finding that 

TPH2 is predominantly expressed in the brain, whereas TPH1 is expressed in peripheral 

tissues justified the concept of the “central” serotonergic system (Côté et al., 2003; Patel et 

al., 2004). Unlike other monoamines that are mainly metabolized by monoamine oxidase A 

(MAO-A, EC 1.4.3.4), serotonergic neurons and astrocytes contain predominantly 

monoamine oxidase B (MAO-B, EC 1.4.3.4), which metabolizes 5-HT into 5-

hydroxyindoleacetic acid (5-HIAA) (Beck et al., 1987; Green, 1989; Fitzgerald et al., 1990). 

Therefore, the role of MAO-B in serotonergic neurons might be to eliminate intracellular 

competition of 5-HT with dopamine and other monoamines at low concentrations (as at high 

concentrations of substrates, MAO isoenzymes loose their selectivity). Besides 5-HT, MAO 

oxidases catalyze the oxidative deamination of noradrenaline, adrenaline, dopamine, 

melatonin, tryptamine, histamine, and taurine. In addition to an aldehyde, in MAO catalyzed 

reaction ammonia and hydrogen peroxide are also formed. Aldehydes are further oxidized 

by aldehyde dehydrogenase into carboxylic acids, whereas hydrogen peroxide in the 

presence of transition divalent metals (iron, copper, zinc) may be converted to highly 

reactive hydroxyl radical (by the Fenton reaction). Thus, along with mitochondrial oxidative 

phosphorylation, MAO activity is probably the second most significant source of reactive 

oxygen species (ROS) and oxidative stress in the brain (Edmondson et al., 2014). Another 

unfavourable consequence of MAO activity, the production of ammonia, puts additional 

strain on the NH4+-clearing system of monoaminergic neurons making them more 

vulnerable, because it involves glutamate transporters (Šalković-Petrišić and Riederer, 

2010), glutamate dehydrogenase 1 (GLUD1) and glutamine synthetase (also glutamate 

ammonia ligase, GLUL), which decrease the 2-oxoglutarate (2OG) and glutamate pools. 

Neurons are very sensitive to the depletion of these pools, especially 2OG, because it 

decreases adenosine triphosphate (ATP) production in the citric acid cycle. Interestingly, by 

inhibiting ATP synthase and target of rapamycin (TOR), α-ketoglutarate (α-KG) has been 

shown to be a key metabolite that mediates longevity by dietary restriction and extends 

lifespan of Caenorhabditis elegans (Chin et al., 2014). It can be thus concluded that lowered 
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metabolism of monoamine neurotransmitters, as a consequence of therapeutic effect of 

MAO inhibitors, increases availability of monoamine neurotransmitters, which underlie the 

antidepressant action, and at the same time decreases oxidative stress, particularly in the 

case of MAO-B inhibitors. That was the main reason they have been suggested as options 

for AD treatment (Bortolato et al., 2008; Di Giovanni et al., 2014). MAO inhibitors are 

therefore an integral part of the concept of the multitarget-directed ligand design strategy 

based on combination of pharmacophores of diverse compounds to get hybrid drugs. New 

drugs for AD, for example, may combine acetylcholinesterase inhibitors (AChEI) with 

compounds acting on metabolism of Aβ, tau, monoamines, iron, transporter activities, 

channels, etc. (Bolea et al., 2013). Consumption of coffee appears to improve glucose 

metabolism and reduce the risk of dementia, but more studies are required to identify the 

active components involved to address this issue (Varghese et al., 2014).

5-HT is produced in serotonergic neuron groups. These groups are mainly embedded in the 

raphe nuclei. The general organization of the raphe nuclei and the distribution of 

serotonergic neurons appear to be very similar among mammalian species with the 

exception of the B4 group in the floor of the fourth ventricle, which is absent in primates, 

and has been confirmed in humans (Halliday et al., 1988; Halliday and Törk, 1989; Törk, 

1990; Hornung 2003, 2004) (see Table 1). The raphe nuclei are located along the midline of 

the brainstem and span as loosely arranged cells aggregations from the midbrain to the 

junction of the medulla oblongata with the spinal cord. The continuity of the raphe nuclei is 

interrupted only by the reticulotegmental nucleus of the pons, which separates the 

serotonergic neurons into two large groups: one in the rostral pontine and mesencephalic 

tegmentum (rostral raphe group, B5–B9) and one in the medulla oblongata (caudal raphe 

group, B1–B3) (Takahashi et al., 1986; Halliday et al., 1988; Baker et al., 1990; Törk, 1990; 

Törk and Hornung, 1990; Nieuwenhuys et al., 2008).

The rostral (oral) raphe group in humans comprises the centromedian part, which consists of 

the nucleus raphe centralis pars principalis (NRC-P), the nucleus raphe centralis pars 

annularis (NRC-A), and the nucleus raphe linearis (NRL). The dorsal part is also known as 

the DRN. There are apparent difficulties when comparisons are made in regard to the DRN 

subdivisions used in various publications. For example, Ohm and collaborators considered 

the interfascicular, dorsofascicular and intercalate subnuclei as principal minor subdivisions 

of DRN (Ohm et al., 1989), whereas Baker and collaborators subdivided the DRN into five 

subnuclei: interfascicular, ventral, ventrolateral, dorsal, and caudal (Baker et al., 1990). 

According to the classification made by Braak (1970), which is one of the most commonly 

used (Michelsen et al., 2008), the DRN is comprised of the pars supratrochlearis (DRN ST), 

pars interfascicularis (DRN IF), pars caudalis compacta (DRNCC), and the caudal lamellar 

subnucleus (DRN CL). These nuclei generally correspond to the B5–B9 nuclei originally 

described in rodents (Dahlström and Fuxe 1964a, 1964b; Fuxe, 1965) (see Fig. 5). The 

rostral group gives rise to ascending cortical, cerebellar, and local cortical and subcortical 

projections. The caudal raphe group consists of the nucleus raphe magnus (NRM), nucleus 

raphe obscurus (NRO), and the nucleus raphe pallidus (NRP), which correspond to B3, B2, 

and B1, respectively (Fig. 5). The caudal group is reciprocally connected to the brainstem, 

the cerebellum, and the spinal cord, whereas ascending projections are not as far-reaching as 

in the case of the rostral group (Table 1).
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Quantitative studies of the total number of serotonergic neurons in the raphe nuclei report 

that the human DRN contains about 235,000 ± 13,000 neurons (Baker et al., 1990), of which 

approximately 165,000 ± 34,000 neurons (or about 70%) contain serotonin (Baker et al., 

1991a). Using a monoclonal antibody raised against TPH (PH8), which recognizes the 5-

HT-synthesizing enzyme in formalin-fixed human brain tissue, it was shown that the 

contingent of serotonergic neurons within the DRN amounts to about 80% of the total 

neuronal population, while the caudal raphe group contains only about 10–20% of 

serotonergic neurons (Baker et al., 1991b; Hornung, 2004). The large numbers of scattered 

5-HT-synthesizing neurons in the pontine, and particularly in the mesencephalic tegmentum 

in primates, contrast with their relative paucity in nonprimate species (Baker et al., 1991a).

There are two morphologically distinct classes of serotonergic axons (Kosofsky and 

Molliver, 1987): beaded axons with large, spherical varicosities (up to 5 µm in diameter), 

which make synaptic contact with their targets (so-called M-fibers, Törk, 1990), and fine 

axons with small (smaller than 1 µm in diameter) varicosities (the main fibers, ubiquitous 

throughout the mammalian cerebral cortex and also called D-fibers, Törk, 1990), which lack 

membrane junctional complexes (synapse) and release serotonin diffusely through volume 

transmission (Törk, 1990; Descarries et al., 1991; Descarries and Mechawar, 2000; De-

Miguel and Trueta, 2005; Fuxe et al., 2012). The third and least common type was first 

described in the marmoset, and is thought to be the stem fibers for M-fibers (Hornung et al., 

1990). This third type of fibers can be noted throughout the cortex of all mammalian species. 

The M-fibers are found in the supragranular cortical layers, but can also be occasionally seen 

in infragranular layers of chimpanzees and humans (Raghanti et al., 2008a). Compared with 

macaque monkeys, humans and chimpanzees also display a greater density of serotonergic 

axons in layers V and VI in prefrontal cortical areas 9 and 32 (implicated to mediate 

working memory and higher cognitive functions), but not in the primary motor cortex 

(Raghanti et al., 2008). Interestingly, morphological specializations of M-fibers called coils 

of axons were observed in humans and chimpanzees in all cortical layers, but are absent in 

macaques and all other primate and non-primate mammalian species (Raghanti et al., 

2008a). It has been hypothesized that these morphological features similar to coils described 

for tyrosine-hydroxylase-immunoreactive axons in humans (Gaspar et al., 1989; Benavides-

Piccione and DeFelipe, 2003; Raghanti et al., 2008b) and clusters described for choline 

acetyltransferase (ChAT)-containing fibers, also in humans, may represent a substrate for a 

greater capacity for cortical plasticity (hence behavioral flexibility) exclusive to hominoids 

(anthropoid apes and humans) (Raghanti et al., 2008a).

The described two types of axons originate from different raphe nuclei: M-fibres with coarse 

varicosities take their origin from the nucleus raphe pontis (medianus and dorsalis; fibers 

colored in purple in Fig. 5) and nucleus raphe pallidus (light blue fibers in Fig. 5) ascending 

through the tegmental area as the ventral bundle, whereas D-fibres with small varicosities 

arise from the DRN (fibers colored in light green in Fig. 5) and nucleus raphe magnus 

(fibers colored in dark green in Fig. 5) and collect in the dorsal bundle. There is an increase 

in serotonergic neuron number in the nucleus raphe pontis medianus of cats and primates 

relative to rodents (Jacobs et al., 1984; Azmitia and Gannon, 1986). The dorsal bundle was 

identified and described by Forel in 1877; the area containing ascending fibers of this bundle 

first coincides approximately with the dorsal longitudinal fasciculus (Arslan, 2015) and then 
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with the dorsal trigeminothalamic tract. At the border with the forebrain, the ventral and 

dorsal bundles join together and continue towards the subthalamus and thalamus and their 

cortical targets via the medial forebrain bundle that passes through the internal capsule. The 

dorsal bundle (also known as the dorsal raphe cortical tract) is phylogenetically newer than 

the ventral bundle, is more prominent in primates (presumably due to an increase in fibers 

projecting to the cortex through the dorsal pathway, Piñeyro and Blier, 1999) and more 

vulnerable to neurotoxic amphetamine derivatives methylenedioxyamphetamine and p-

chloroamphetamine (Mamounas et al., 1991).

The two systems of serotonergic fibers coexist in most parts of the brain, with the cerebral 

cortex being the best example of dual contribution to serotonergic innervation. However, 

although they share many of their targets (Table 1), the main targets of the dorsal bundle 

(comprised mostly of DRN projections) are the entorhinal cortex, lateral geniculate nucleus, 

the olfactory bulb, the amygdala, and the striatum, which is almost exclusively innervated by 

the Dfibers of this system, whereas the pontine dorsal (B6) raphe nucleus mainly projects 

via the ventral bundle (M-fibers) to the septum, basal forebrain, and especially hippocampus 

(Steinbusch et al., 1980; Kohler and Steinbusch, 1982; Imai et al., 1986; Morrison and 

Foote, 1986; Törk, 1990). The pontine median (B5) raphe nucleus connects with the 

interpeduncular nucleus, substantia nigra, and the mammillary body, but its cortical 

projection is rather sparse (O’Hearn and Molliver, 1984).

The serotonergic system is one of the oldest neurotransmitter systems and seven distinct 

serotonergic receptors (5-HT1 – 5HT7), each with several subpopulations of receptors 

(altogether, at least 14 members in the family are known), mediate both central and 

peripheral control on numerous physiological functions such as sleep-wake cycle, feeding 

behavior, thermoregulation, nociception, affective (mood) control and sexual behavior, 

locomotion and motor control (via interactions with the basal ganglia dopaminergic system), 

blood coagulation, and cardiovascular homeostasis (Darmon et al., 2015). 5-HT receptors 

are different in terms of localization and downstream signaling. All 5-HT receptors are G-

protein-coupled receptors except 5-HT3, which is a Cys-loop ligand-gated ion channel. 5-

HT1 (1A, 1B, 1C, 1D, and 1E) and 5-HT5 receptors (5A and 5B) have an inhibitory effect on 

adenylyl cyclase through Gαi/o protein. 5-HT2 receptors (2A, 2B, and 2C) activate 

phospholipase C cascade through the Gαq/11 protein. 5-HT3 receptors (3A, 3B, and recently 

discovered 3C, 3D and 3E) have a direct influence on the cell’s processes as ion channels. 5-

HT4, 5-HT6 and 5-HT7 receptors activate adenylyl cyclase through GαS protein. The 

majority of 5-HT receptors are postsynaptic, except for 5-HT1B and 5-HT1D receptors, 

which are mostly presynaptic, and 5-HT1A receptors that are located both on presynaptic and 

postsynaptic membranes (Seyedabadi et al., 2014 and Darmon et al., 2015).

2.2. Noradrenergic system

The most prominent effect of AD on the noradrenergic system is the loss of up to 70% of 

locus coeruleus (LC) noradrenergic neurons (Bondareff et al., 1982; Iversen et al., 1983; 

Zweig et al., 1989). Together with the serotonergic nuclei, the LC is involved in the control 

of the sleep-wake cycle and, among other symptoms, its impairment can cause early and 

prominent wake-sleep cycle disturbances in AD (Roh et al., 2012). As noradrenergic 
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projections innervate cerebral vasculature and optimize neurovascular coupling, the 

diminished ability to couple blood volume to oxygen demand may also contribute to AD 

pathogenesis (Bekar et al., 2012).

The catecholamine noradrenaline is synthesized from dopamine by the enzyme dopamine-β-

hydroxylase (DBH, EC 1.14.17.1) and is metabolized by MAO and catechol-O-

methyltransferase (COMT; EC 2.1.1.6). Noradrenaline binds solely to metabotropic α-

(α1A, α1B, α1D, α2A, α2B, α2C) and β-adrenoreceptors (β1, β2 and β3) (Ruffolo and 

Hieble, 1994). The noradrenergic system regulates visceral functions (respiration, 

cardiovascular function, secretion of hormones), cognitive functions (responsiveness to 

novel stimuli, vigilance, learning through reinforcement), arousal, attention, sleep-wake 

cycle, emotion, mood, motor control, and pain control (Harley, 1987; Szabadi, 2013).

The brainstem neurons that produce noradrenaline form noradrenergic nuclei (A1–A7) are 

divided into dorsal (A2, A4, A6) and ventral (A1, A5, A7) columns. A1, A2, A5 and A7 

project to the basal telencephalon, hypothalamus, brainstem, and spinal cord, while A4 and 

A6 (locus coeruleus, LC) project to the cortex, cerebellum, thalamus, and spinal cord 

(Pearson et al., 1991). The nucleus locus coeruleus (A6) contains approximately 50% of all 

noradrenergic neurons and is the only noradrenergic nucleus that innervates the cortex 

(Samuels and Szabadi, 2008).

While fibers from the LC project to the forebrain, cerebellum and spinal cord, noradrenergic 

fibers from the lateral brainstem tegmentum project to the ventral forebrain, hypothalamus, 

amygdala and spinal cord (Heimer, 1995). More precisely, noradrenergic fibres from the LC 

together with cholinergic and serotonergic fibres form an ascending arousal system (AAS). 

Noradrenergic and serotonergic fibres form the ventral branch of the AAS, enter the 

hypothalamus and as a part of the medial forebrain bundle reach the mediobasal 

telencephalon. On this path, noradrenergic fibers innervate forebrain regions like the basal 

forebrain, preoptic area, olfactory structures, hypothalamus, thalamus, hippocampus, and 

neocortex (Foote and Morrison, 1987; Raghanti et al., 2009). Fibers from the LC and A5 and 

A7 noradrenergic nuclei descend to the spinal cord as a part of tractus pontospinalis and 

tractus coeruleospinalis, and innervate many regions of the rhombencephalon (Westlund et 

al., 1982). The cerebellum is also innervated by the noradrenergic fibers from the LC, A5, 

and A7 noradrenergic nuclei (Voogd et al., 1996). In addition to the neighboring structures, 

fibers from the A1 and A2 noradrenergic nuclei innervate the thalamus, amygdala, and 

hypothalamus (Petrov et al., 1993).

The projections from the LC constitute an arousal system, since the noradrenergic neurons 

are active specifically during waking (Kayama and Koyama, 2003). Broadly speaking, if LC 

activity is too low, an animal is drowsy and inattentive. If LC activity is too high, the animal 

is distractible and anxious, but with the intermediate levels of LC activity, the animal is 

optimally attentive and aroused (España and Scammell, 2011). Mice deficient of 

noradrenaline exhibit normal sleep and wake states, but fall asleep after exposure to a mild 

stressor more rapidly than control mice, measured both behaviorally and with 

electroencephalography (Hunsley and Palmiter, 2003). Noradrenaline tone is also clearly 

related to cognition as LC neurons in monkeys fire phasically in response to a salient 
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stimulus that signals a reward such as food, but do not respond to a distracting stimulus 

(Aston-Jones et al., 1994), suggesting that LC activity promote arousal in a way that 

optimizes attention and task performance (Aston-Jones and Cohen, 2005).

2.3. Dopaminergic system

The reduction of dopamine, dopamine metabolites, and dopamine receptors has been 

observed in AD (Storga et al., 1996; Trillo et al., 2013). Additionally, polymorphisms in 

dopaminergic system genes are associated to BPSD in AD (Holmes et al., 2001; Borroni et 

al., 2004). Enhancement of dopaminergic transmission alleviates cognitive impairment in 

AD (Martorana et al., 2013; Stefani et al., 2015).

Dopamine is a catecholamine synthesized from tyrosine by the rate-limiting enzyme tyrosine 

hydroxylase (TH, EC 1.14.16.2) and AAAD, and degraded by the enzymes MAO and 

COMT. Dopamine binds to five metabotropic receptors (D1–D5) that are divided into two 

families; D1-like receptors (D1 and D5) and D2-like receptors (D2, D3, and D4) 

(Wolstencroft et al., 2007; Beaulieu and Gainetdinov, 2011).

Dopamine is produced by dopaminergic neurons that form the A8–A17 nuclei within the 

mesencephalon and diencephalon. These nuclei are located in the retrorubral field (A8), 

substantia nigra pars compacta (SNc; A9), ventral tegmental area (VTA; A10), nucleus 

linearis (A11), preoptic area (A12–A15), olfactory bulb (A16) and retina (A17) (Dahlström 

and Fuxe, 1964; Frederick et al., 1982). Dopaminergic neurons send their axons through 

four major dopaminergic tracts: 1) nigrostriatal tract, 2) mesolimbic tract, 3) mesocortical 

tract and 4) tuberoinfundibular pathway. The nigrostriatal pathway is a dopaminergic 

projection from the SNc (A9) into the basal ganglia (striatum) and is important for motor 

control. The mesolimbic and mesocortical tracts are often termed mesocorticolimbic 

pathway. This pathway originates in the VTA (A10), projects to the nucleus accumbens and 

further to subcortical structures, hippocampus, and neocortex (Anden et al., 1964; Dahlström 

and Fuxe, 1964). It is a key component of the reward system, crucial for the development of 

bonding/attachment and addictive behaviors (Šešo-Šimić et al., 2010). The 

tuberoinfundibular system projects from hypothalamic arcuate nucleus to the pituitary gland 

and regulates the secretion of prolactin. In addition to addictive behaviors and attachment 

disorder, two severe neurologic and psychiatric conditions are the results of the disturbed 

dopaminergic pathways: Parkinson’s disease (nigrostriatal pathway) and schizophrenia 

(mesocorticolimbic pathway) (Bogerts et al., 1983; Schultz, 2002; Mladinov et al., 2010).

The dopaminergic system is involved in the regulation of a plethora of physiological 

functions such as the control of movement, mood, cognitive functions (motivation, attention, 

working memory, motor planning, thinking and abstract reasoning, temporal analysis, 

speech and language, learning, maternal/paternal and social behaviors), reward system, 

emotions, pain control, visceral functions and secretion of hormones (Sawaguchi and 

Goldman-Rakic, 1991; Jääskeläinen et al., 2001; Schultz, 2002; Iversen and Iversen, 2007; 

Šešo-Šimić et al., 2010; Yamaguchi et al., 2015). A general theory has been proposed that 

attributes the evolution of human intelligence and cognitive specializations to an expansion 

and elaboration of the laminar, sublaminar and regional pattern of dopaminergic cortical 

innervation (e.g. human-specific coils/clusters of axons and a greater dopamine innervation 
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of infragranular layers in cortical areas involved in high-level processing, such as 

Brodmann's areas 9 and 32), particularly in the left hemisphere (Hof et al., 1995; Previc, 

1999; Raghanti et al., 2008b).

2.4. Histaminergic system

The tuberomammillary nucleus, the major histaminergic nucleus, is affected early by 

neuropathological changes in AD (Braak and Braak, 1991; Nakamura et al., 1993). A lack of 

histamine in the AD brain contributes to the disturbances of cognitive functions and sleep. 

Thus, the enhancers of histamine release in the brain such as histamine H3 receptor 

antagonists were considered as potential therapeutics in AD (Egan et al., 2012; Grove et al., 

2014).

Histamine is synthesized from the essential amino acid histidine by decarboxylation by the 

histidine decarboxylase (HDC, EC 4.1.1.22). It is mainly metabolized by transmethylation 

by the N-methyltransferase (HMT, EC 2.1.1.8) to N'-methylhistamine. N'-methylhistamine 

is further metabolized by MAO-B and aldehyde dehydrogenase. It could by also be 

metabolized with diamine oxidase (also known as histaminase) to imidazole acetaldehyde 

(Schayer et al., 1978). Histamine binds to four metabotropic histamine receptors (H1R, H2R, 

H3R and H4R) and histamine-gated chloride channel (Panula et al., 2015).

Histaminergic neurons in humans are exclusively located in the posterior lateral 

hypothalamus within the tuberomammillary nucleus into two clusters, one located 

ventrolaterally, and the other dorsomedially (Panula et al., 1990; Shan et al., 2015). Clusters 

of histaminergic neurons contain five cell groups: medial, ventral, caudal, lateral, and 

diffuse. The fact that the lateral hypothalamus contains about 32,000 histaminergic neurons 

indicates the importance of this system (Airaksinen et al., 1991). Histaminergic neurons give 

rise to fibers that innervate the whole brain, including the cerebral cortex.

The histaminergic system is involved in the regulation of the level of behavioral arousal, 

sleep-wake cycle, learning and memory, cognition, attention, control of body temperature, 

and food uptake (Haas et al., 2003). Injury of the tuberomammillary nucleus causes 

hypersomnia and blockade of histaminergic neurons with antihistaminic drugs promotes 

sleep (Brown et al., 2001). Classic antihistamines cause sedation via H1 receptors 

(Mochizuki et al., 2002).

2.5. Melatonergic system

Secretion of melatonin is decreased in AD (Mishima et al., 1999). Therefore, melatonin 

supplementation was tested in many clinical trials in the past 20 years as a potential therapy 

in AD (for review, see Cardinali et al., 2010). While the majority of studies showed 

ameliorating effects on sundowning, sleep disturbance, and cognitive impairment in AD (for 

review see Cardinali et al., 2010), some of them failed to confirm these findings (Serfaty et 

al., 2002; Gehram et al., 2009).

Melatonin (N-acetyl-5-methoxytryptamine) is synthesized in the pineal gland from 5-HT as 

its precursor (Axelrod, 1974; Namboodiri et al., 1987). More precisely, 5-HT is acetylated 

by arylalkylamine N-acetyltransferase (AANAT, EC 2.3.1.87) to N-acetylserotonin. By the 
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action of N-acetylserotonin O-methyltransferase (ASMT, EC 2.1.1.4), N-acetylserotonin is 

turned into melatonin (Wurtman et al., 1968). Melatonin binds to metabotropic MT1 and 

MT2 melatonin receptors (Dubocovich et al., 2005). Melatonin controls the circadian rhythm 

of the sleep-wake cycle. Pinealocytes, the main cells of the pineal gland, produce melatonin 

in high concentration principally during the night (Vaughan et al., 1976).

The suprachiasmatic nucleus (SCN) located in the anterior hypothalamus acts as circadian 

pacemaker (“Zeitgeber”) and is the main regulator of rhythmic melatonin release. It is 

activated by light, while light is inhibitory in the pineal gland. Through the direct 

retinohypothalamic projection, SCN receives information on the luminance of retina (Sadun 

et al., 1984). SCN projects to hypothalamic paraventricular nucleus. These neurons are 

connected to the preganglionic sympathetic neurons in the thoracic spinal cord, which 

project to the superior cervical ganglion (postganglionic sympathetic neurons). These 

neurons are directly connected with the pineal gland and activate pinealocytes 

(Nieuwenhuys et al., 2008).

3. Monoaminergic systems in AD

3.1. Alterations of the serotonergic system in AD

Similarly to NIA/AA guidelines, the current clinical criteria for diagnosis of AD of the 

American Psychiatric Association (DSM-5) are mostly focused on cognitive deficits 

produced by the dysfunction of hippocampal and association neocortical areas. These 

changes are neuropsychologically scored as number of points that, in the most commonly 

used Mini-Mental State Examination (MMSE), ranges from 0 to 30 points, where 30 reflects 

normal mental status across many cognitive domains (Folstein et al., 1975). Depending on 

demographic variables such as age, gender, and education, the optimal cutoff point for 

screening (cognitively normal vs. MCI/minor neurocognitive disorder and dementia/major 

neurocognitive disorder) can be standardized and validated for any given general population 

(Boban et al., 2012). However, non-cognitive BPSD have been much less considered, 

perhaps due to their transient and fluctuating nature and variable severity. The early 

occurrence of these symptoms, especially mood change (most often depressive mood), 

anxiety, apathy, social withdrawal/socially intrusive behavior, confusion, irritability, 

agitation, restlessness, hyperactivity, aggression (first verbal then also physical), psychosis, 

disinhibition, and disturbances in wake-sleep cycle (“sundowning”), emotion and appetite, 

and others (hallucinations, delusions, etc.), suggests primarily early involvement of the 

serotonergic raphe nuclei, particularly the DRN, but also of dopaminergic pathways (Borroni 

et al., 2010; Martorana et al., 2013; Stefani et al., 2015). An example of early neurofibrillary 

changes in the DRN of a subject with MCI and BPSD is given in Figure 6. Unfortunately, in 

spite of the possibility of selective early involvement of the DRN in the pathogenesis of AD 

(Rüb et al., 2000; for review, see Šimić et al., 2009), among brainstem structures, only the 

dorsal motor nucleus of the vagus, LC, and SN have been specifically included in the current 

diagnostic criteria (Hyman et al., 2012; Montine et al., 2012). Additionally, the relationship 

between depression and AD pathology is of significant interest because diagnosed 

depression is likely to represents a risk factor of AD (Ownby et al., 2006). In some cases, 

this can be explained by depression occurring as a preclinical manifestation of 
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neurocognitive disorder/dementia in the context of AD progression. Moreover, chronic or 

recurrent episodes of depressive symptoms have been found to be associated with 

hippocampal volume reduction, hypometabolism, and an increased risk for neurocognitive 

disorder/dementia, suggesting that depression per se is indeed a risk factor for 

neurodegeneration (Donovan et al., 2015).

Extensive serotonergic denervation of the neocortex and hippocampus has been reported in 

AD (Curcio and Kemper, 1984; Halliday et al., 1992; Chen et al., 2000; for review see Trillo 

et al., 2013), while reduction of 5-HT as well as its metabolites, primarily 5-HIAA, have 

been reported in many studies of postmortem AD brains (for instance, Nazarali and 

Reynolds, 1992; Garcia-Alloza et al., 2005). Both 5-HT and 5-HIAA cortical levels 

negatively correlate with the number of NFT, suggesting that the impairment of serotonergic 

system parallels AD progression (Palmer et al., 1987). It has been shown that 5-HT levels 

are more severely affected in AD brains than the levels of catecholamines (Gottfries et al., 

1986). As pointed out by Ramirez et al., similarly to [3H]5-HT binding in AD patients, 

depletion of 5-HT and its metabolites is more severe in EOAD than LOAD brains, which 

suggests that serotonergic changes occurring in both aging and AD are degenerative 

(Ramirez et al., 2014). Depletion of 5-HT also leads to decreased melatonin synthesis, so its 

concentrations in the CSF samples of AD patients are significantly reduced, particularly in 

the preclinical stages of the disease (Zhou et al., 2003). As 5-HT is produced from L-

tryptophan, reduced dietary intake of tryptophan in AD patients accelerates deterioration of 

cognitive symptoms (Porter et al., 2000).

Impaired serotonergic functioning has been implicated in many different neurological and 

psychiatric disorders, among others antisocial personality disorder and depression, both of 

which have been characterized by the reduced CSF concentrations of 5-HIAA (Deakin, 

2003), and higher 5-HT turnover, particularly in female patients (Hou et al., 2006). Animal 

data suggest that these neurochemical and behavioral changes in adults may have their 

origins in perinatal exposure, e.g. to 5-HT precursor 5-hydroxytriptophan, 5-HTP, or MAO 

inhibitors (Blažević and Hranilović, 2013), as well as other pre- and postnatal factors, most 

likely via epigenetic mechanisms (Pishva et al., 2012). Such changes have also been 

described as a part of the clinical picture in very early stages of AD (Cummings, 1992; 

Mychack et al., 2001; Michelsen, 2008). However, as the M-fiber system mainly arises from 

the median (B5) and dorsal (B6) pontine raphe nuclei it may be of higher relevance for 

depression and learning and memory, based on its innervation of the hippocampus and the 

entorhinal cortex (Deakin, 2003; Lei, 2012), while the D-fiber system may be more 

implicated in personality changes.

The entorhinal cortex is the gate to control the flow of information into and out of the 

hippocampus and the place from which neurofibrillary degeneration spreads throughout the 

cerebral cortex (Braak and Braak, 1991). Therefore, it is of great importance to know that 

the entorhinal cortex receives profuse serotonergic innervations from both the nuclei raphe 

pontis and DRN and expresses a very high density of serotonergic receptors, including 5-

HT1A, 5-HT1D, 5-HT1E, 5-HT2A, 5-HT3 and 5-HT6 (Lei, 2012). Mood disorders, 

depression, and anxiety have been managed with different drugs and diets (Dixon Clarke and 

Ramsay, 2010), modulating serotonin metabolism (for example, by inhibiting monoamine 
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oxidase A and B), 5-HT transporters and reuptake systems for almost 30 years. Based on 

preclinical studies, certain 5-HT receptor ligands may the ability to modify or improve 

memory and cognition, specifically acting at 5-HT1A, 5-HT4 and 5-HT6 receptors (Ramirez 

et al., 2014).

Together with the noradrenergic LC, the cholinergic pedunculopontine and lateral dorsal 

tegmental nucleus, with which it is highly interconnected, the serotonergic DRN is also 

involved in sleep-waking control (España and Scammell, 2011; Monti, 2011). The activity of 

the DRN is high during waking, low during slow wave sleep and abolished during rapid eye 

movement (REM) sleep (España and Scammell, 2011). Thus, some drugs, such as modafinil, 

which modulate 5-HT transmission in the DRN and prefrontal cortex, reduce sleep and 

promote vigilance (Ferraro et al., 2013), whereas lesions of the raphe nuclei cause insomnia 

(Monti, 2011). In fact, recent data showed that plaque formation in the brain of the APPswe/

PS1ΔE9 mouse model of AD causes the deterioration of the sleep-wake cycle and loss of 

diurnal fluctuation of Aβ measured in the interstitial fluid (Roh et al., 2012). In addition to 

the effect that accumulated Aβ causes sleep deprivation, it has been shown that sleep 

deprivation leads to the inadequate clearance of Aβ (Roh et al., 2012; Ju et al., 2013; Lim et 

al., 2014; Šimić et al., 2014), contributing to more Aβ accumulation and creating a vicious 

circle. Besides Aβ release from raphe projection axons (Braak and Del Tredici, 2013), 

accumulation of Aβ due to sleep deprivation may also add to the pathology of raphe and 

other brainstem nuclei, particularly in the ‘pre-tangle’ stage.

It has been demonstrated that even cognitively normal individuals with biomarker evidence 

of preclinical AD have worse quality sleep and sleep efficiency than control individuals (Ju 

et al., 2013). This in turn can cause a disruption of the default-mode network (DMN) 

connectivity (for review, see Šimić et al., 2014). Two studies have revealed that the DMN 

(also known as the resting-state or task-negative network) cortical hubs exhibit high amounts 

of Aβ deposits in AD (Sheline and Raichle, 2010; Wang et al., 2013) and that clinically 

normal subjects with high amyloid burden in these regions have significantly reduced 

functional correlations within the DMN. It is therefore possible that due to DMN neurons’ 

enhanced (constant) activity dependent processing of APP, these neurons may produce and 

release more Aβ than occur elsewhere in the neocortex. In a recent cross-sectional cohort 

study, the decreased CSF values of Aβ1–42 (<500 pg/ml) and increased CSF values of p-

tau181 (more than 80 pg/ml) were associated with significant reduction in DMN functional 

integrity (Wang et al., 2013). The most prominent decreases in functional connectivity were 

observed between the posterior cingulate and medial temporal regions, and were not 

attributable to age or structural atrophy, suggesting that both Aβ and tau pathology affect 

DMN integrity before the clinical onset of AD. Because processing of the APP is activity-

dependent, where regional increases in neuronal activity are associated with regional 

increases in the concentration of Aβ in the interstitial fluid (Cirrito et al., 2005), it can be 

speculated that due to their constant activity, DMN neurons produce and release more Aβ 
than occur elsewhere in the neocortex. As DMN connectivity persists during light sleep 

because self-reflective thoughts do not abruptly cease but rather decrease gradually as a 

person falls asleep, what particularly matters is the duration of the deepest stages of slow-

wave sleep (SWS) during which the activity of DMN is virtually absent and cerebral 

metabolic rate declines by 43.8% in comparison with wakefulness and REM sleep (Horovitz 
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et al., 2009; Dang-Vu et al., 2010). Out of three models constructed to determine the nature 

of the interaction among Aβ deposition in the medial prefrontal cortex (mPFC) and its non-

REM SW activity, hippocampal activation and memory retention, the model with the best 

statistical fit was a sleep-dependent one, in which the Aβ impairs memory via its effect on 

sleep (Mander et al., 2013). As sleep deprivation accelerates Aβ deposition in APP 

transgenic mice, whereas orexin (hypocretin) deficiency (which increases sleep) decreases it, 

a bidirectional relationship between sleep and Aβ deposition has been proposed: sleep 

disruption leads to Aβ deposits and Aβ deposits result in sleep disturbance (Lucey and 

Holzman, 2015).

Serotonergic receptors are selectively affected in AD, especially 5-HT2 (Ramirez et al., 

2014). The loss of 5-HT2A receptors has also been supported by PET imaging (Marner et al., 

2012). Reduced 5-HT1A receptor binding in the temporal cortex has been shown to correlate 

with aggressive behavior in AD patients (Lai et al., 2003), whereas their reduced binding in 

the hippocampus is better correlated with cognitive decline (Kepe et al., 2006). Also, PET 

imaging revealed a reduction in 5-HT1A receptor binding in the hippocampus and 

parahippocampus of patients with mild AD (Truchot et al., 2008). Density of 5-HT1B/1D and 

5-HT6 receptors was reduced in the frontal and temporal cortex of AD patients (see Table 2; 

Garcia Alloza et al., 2004). Studies on polymorphisms in 5-HT receptors support the 

important role of the serotonergic system in AD too. For instance, T102C polymorphism in 

the gene for 5-HT2A receptor has been linked to psychosis and psychotic symptoms, 

including hallucinations and delusions in AD patients (Trillo et al., 2013).

3.2. Alterations of the serotonergic system in other primary and secondary tauopathies

Although not as prominent as in AD, NFT in the DRN are seen in both PSP and CBD; 

Ishino et al., 1975; Shiozawa et al., 2000). In PSP, NFT and NT are seen in the nucleus raphe 

magnus and nucleus raphe obscurus less than one year after initial clinical symptoms and do 

not correlate in number with the disease duration. It is suspected that tau pathology is 

present in the preclinical stages of the disease (Rüb et al., 2002). In PSP and 

postencephalitic parkinsonism (PEP), NFT and NT are found in raphe nuclei, partly 

contributing to oculomotor abnormalities (Revesz et al., 1996; Yang et al., 2001). 

Supranuclear gaze palsy was also described in a case with clinical PSP, which was later 

pathologically confirmed as CBD with NFT and tau-positive inclusions present in the raphe 

nuclei (Shiozawa et al., 2000). Marked reduction in a number of neurons and NFT pathology 

to a lesser extent was found in the NRC and DRN in FTD (Yang et al., 2001). Low brain 

levels of serotonin have been evident in patients with FTD, manifesting aggression, 

impulsivity, depressive symptoms and alterations in frontal cortex metabolism, leading to 

clinical improvement after usage of selective 5-HTreceptor inhibitors (Huey et al., 2006; 

Mendez, 2009). A significant reduction in the number of neurons in the NRC and DRN with 

NFT in pontine (B5 and B6) and DRN is speculated to contribute to hypersomnia in 

myotonic dystrophy (Yoshimura et al., 1990; Ono et al., 1995; Ono et al., 1998; Oyamada et 

al., 2006). In Down’s syndrome, NFT in the raphe nuclei also increase in number with age 

(Mann et al., 1986). Low 5-HTlevels are seen in the amygdala and cingulate cortex, which 

receive serotonergic projections from the NRC and DRN, both in AD and Down’s syndrome 

(Yates et al., 1986). NFT in the raphe nuclei are also seen in the amyotrophic lateral 
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sclerosis/parkinsonism-dementia complex of Guam, Gerstmann-Sträussler-Scheinker 

syndrome, chronic subacute sclerosing panencephalitis, non-Guamanian motor neuron 

disease and white matter tauopathy with globular glial inclusions (Yamamoto et al., 1985; 

Mandybur et al., 1990; Hilton et al., 1995; Yamazaki et al., 1999; Kovacs et al., 2008). 

Further investigations are needed fully to understand the extent of the raphe nuclei 

involvement in the clinical expression of these tauopathies.

In an animal model for tau aggregation, THY-Tau22 mouse (Schindowski et al., 2006), 

which expresses human 4R tau mutated at sites Gly272Val and Pro301Ser under a Thy1.2 

promotor, and shows hyperphosphorylation of tau on several AD-relevant epitopes and NFT-

like inclusions, in addition to the cognitive impairments, at least some BPSD were seen (Van 

der Jeugd et al., 2013). Namely, in addition to early tau pathology in hippocampus and basal 

forebrain (Belarbi et al., 2009), 12-month old THY-Tau22 mice, relative to wild-type 

littermates displayed increased depression-like and aggressive behavior, co-occurring with 

disturbances in nocturnal activity (Van der Jeugd et al., 2013). These changes were linked to 

a decreased hippocampal concentration in 5-HT and 5-HIAA (Van der Jeugd et al., 2013).

3.3. Alterations of the noradrenergic, dopaminergic systems, histaminergic, and 
melatonergic systems in AD

The LC is the main noradrenergic nucleus affected in AD (Zarow et al., 2003), with up to 

70% LC neurons being lost in the brain of AD patients (Bondareff et al., 1982; Zweig et al., 

1989). The loss of noradrenergic neurons from the LC correlates with the increase of 

extracellular Aβ deposition in mice (Heneka et al., 2010), neurofibrillary abnormalities in 

early stage of AD (Grudzien et al., 2007), onset (Counts and Mufson, 2010b), and duration 

of dementia (Counts and Mufson, 2010). New studies hypothesize that accumulation of 

heavy metals such as organic mercury in LC may be an early event in AD, since LC neurons 

are prone to taking up circulating toxins. Mercury leads to the development of AD pathology 

within the LC, and pathology is spread further to the neighboring raphe neurons. Actually, 

dorsal raphe neurons in AD subjects often contain as much hyperphosphorylated tau as those 

in the LC (Pamphlett and Kum Jew, 2015). To date, clinical and experimental evidence 

indicate that neurons of the LC modulate several processes that are altered in the brains of 

AD patients, including synaptic plasticity, neuronal metabolism, and BBB permeability, 

while enhancement of the brain's noradrenergic neurotransmission reduces both 

neuroinflammation and cognitive decline (Mravec et al., 2014). Importantly, noradrenergic 

projections from the LC also regulate neurovascular coupling, so that degeneration of LC 

neurons diminish the ability to couple blood volume to oxygen demand in AD subjects 

(Bekar et al., 2012). Apart from its role as a neurotransmitter, noradrenaline may also act as 

an endogeneous anti-inflammatory agent by inhibition of activation of microglial cells 

(Feinstein et al., 2002), thereby potentially contributing to the pathogenesis of AD. It seems 

that the inconsistent findings regarding the role of noradrenaline modulators in improving 

behavioral symptoms (such as agitation and aggression) in AD patients, such as the use of 

classical α1-adrenoreceptor agonist prazosin (e.g., Gliebus and Lippa, 2007; and Wang et al., 

2009), can only be explained by a strong compensatory mechanism, where the increase in 

noradrenaline is detected in the absence of metabolite increase consistentwith compensatory 

activation of surviving noradrenergic projections (Raskind et al., 1999). That the activity and 
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levels of plasma DBH are reduced from early stages of AD suggests that treatment with 

selective noradrenaline reuptake inhibitors may be helpful in compensating for the loss of 

noradrenergic activity due to degeneration of neurons in LC in the early stages of AD 

(Mustapić et al., 2013).

Both the LC and DRN nuclei have been shown to be among the first affected by tau protein 

abnormalities during the course of AD, causing fluctuating non-cognitive, but also cognitive 

symptoms of varying degrees of severity (Zweig et al., 1989; for review, see Šimić et al., 

2009). In one of the most comprehensive clinicopathological studies that analyzed the 

earliest AD-related cytoskeletal pathology, 8 of 38 individuals who were categorized as 

Braak stage 0 and all of the 80 cases characterized as Braak stage 1 or higher than 1 had 

substantial neurofibrillary changes in the DRN (Grinberg et al., 2009). Braak stages were 

defined based on the level of neurofibrillary lesions in the transentorhinal cortex. Braak 

stage 0 had no lesions, stage 1 had rare changes and stages higher than 1 showed more 

extensive neurofibrillary pathology in the transentorhinal cortex. The finding that all cases of 

Braak stage 1 and higher, and even a fifth of the cases with Braak stage 0 had neurofibrillary 

lesions in the brainstem nuclei supports the model in which AD pathology starts in the 

brainstem and spreads transneuronally to the cortical targets, primarily transentorhinal 

cortex. This possibility is in agreement with the clinical observations showing that BPSD 

occur 2–3 years before the onset of cognitive impairment (for review, see Šimić et al., 2009).

Despite the direct harmful effects of hyperphosphorylated soluble tau and progression of 

intracellular tau protein changes characteristic for AD, as well as their accumulation of 

heavy metals (Pamphlett and Kum Jew, 2015), many of the tangle-bearing neurons of the LC 

and DRN are remarkably sturdy and survive for a lifetime (Rüb et al., 2000). Therefore, 

even when affected by neurofibrillary changes, LC and DRN projecting neurons may release 

Aβ (Braak and Del Tredici, 2013), as well as soluble monomeric or small oligomeric tau 

protein, trans-synaptically through M-fibers or, more likely, from the non-synaptic 

varicosities of their fine D-axons (otherwise dedicated to volume transmission) (Braak and 

Del Tredici, 2015). As LC and DRN neurons massively project to transentorhinal and 

entorhinal cortex, it should be also taken into account that they may be contributing to early 

neurofibrillary changes seen in those regions (Fig. 7), from where tau pathological changes 

may spread throughout the cerebral cortex. The described presumptive set of events may 

help explain similarities in size distribution of Aβ deposits in the cerebral cortex of AD 

subjects and patients with other neurodegenerative disorders (Armstrong, 2012) and the 

prion-like behavior of misprocessed tau in various tauopathies (de Calignon et al., 2012; 

Hall et al., 2012; Liu et al., 2012; Avila et al., 2015).

Dopamine, dopamine transporter, L-3,4-dihydroxyphenylalanine (L-DOPA), DOPAC, D1 

and D2 receptors are reduced in AD brains (Storga et al., 1996; Trillo et al., 2013). 

Dopamine is also variably decreased in the CSF of AD subjects (Tohgi et al., 1992; Stefani 

et al., 2015). D1 and D3 receptor polymorphisms have been linked with psychosis and 

aggression in AD (Holmes et al., 2001), while certain COMT polymorphisms lead to 

psychosis in AD (Borroni et al., 2004). Biochemical, genetic, and animal models studies 

have also documented alterations of the dopaminergic system in AD. Both double mutant 

APP mice and 3xTg-AD mouse models of AD have reduced dopamine release in the 
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hippocampus and insular cortex (Ambree et al., 2009; Guzman-Ramos et al., 2012). In 

conclusion, cognitive impairment in AD may, at least in part, be also mediated through 

deficit in dopaminergic transmission.

Neuropathological changes characteristic for AD are pronounced in tuberomammillary 

nucleus of the hypothalamus (Braak et al., 1993). These changes may condition disturbances 

in sleep and thermoregulation in AD patients. The acetylcholinesterase inhibitor tacrine 

(1,2,3,4-tetrahydro-9-acridinamine monohydrochloride), used as a symptomatic treatment in 

AD, also increases the levels of histamine by activation of histaminergic hypothalamic 

neurons and inhibition of histamine-N-methyltransferase (Taraschenko et al., 2005). 

Histamine H3R antagonists also enhance the release of histamine in the brain. An effect of 

H3R antagonists on acetylcholine, noradrenaline, and dopamine levels that also modulate 

cognition has been reported (Medhurst et al., 2007; Galici et al., 2009). As such, H3R 

antagonists were tested in preclinical and clinical trials for their effect on cognitive processes 

in AD (see Table 3; for review see Brioni et al., 2011).

The production of melatonin from the pineal gland decreases with the increasing age (Pandi-

Perumal et al., 2005). This is relevant as age is the main predisposing factor in AD. The fact 

that melatonin secretion is also decreased in AD is thus not surprising (Mishima et al., 

1999). Decreased melatonin levels in cerebrospinal fluid in preclinical AD could serve as an 

early biomarker of AD (Zhou et al., 2003). Additionally, patients with the APOE ε4/ε4 

genotype have a more prominent melatonin decrease (Liu et al., 1999). Decrease in 

melatonin secretion results in heightened afternoon agitation seen in so many AD patients 

(Volicer et al., 2001), sleep disturbance, and circadian rhythm disorganization in patients 

with AD. In the elderly, melatonin mainly promotes non-rapid eye movement (non-REM) 

restorative phases of sleep (Monti et al., 1999). In addition to melatonin antioxidant effects, 

its anti-amyloid properties were also observed. Melatonin inhibits Aβ generation, formation 

of amyloid fibrils, and protects cells from Aβ-mediated toxicity (Matsubara et al., 2003; 

Feng et al., 2004). Melatonin receptors MT2 also appear to be important in mechanisms of 

hippocampal learning and memory in mice (Larson et al., 2006).

3.4. Interactions among monoaminergic systems and with the cholinergic system in AD

Monoaminergic systems are not functioning independently. In fact, their interconnection is 

obvious at both the anatomical and molecular levels. Often different monoaminergic systems 

innervate the same brain regions and their fibres together share pathways in the brain, the 

most obvious example being the medial forebrain bundle. The control of the sleep-wake 

cycle is mainly regulated by the noradrenergic LC (REM sleep), and the serotonergic DRN 

and cholinergic pedunculopontine and lateral dorsal tegmental nuclei (non-REM sleep; 

Arslan, 2015). The serotonergic and melatonergic systems are closely related at the 

molecular level, 5-HT being the precursor of melatonin (Axelrod, 1974; Namboodiri et al., 

1987). Association of the serotonergic and dopaminergic systems also occurs in the 

activation of 5-HT1B receptors leading to increase of dopamine release in the brain 

(Gonzalez-Burgos and Feria-Velasco, 2008), while neonatal lesions of raphe nuclei cause 

compensatory increase in number of dopaminergic fibers in adult rats (Bolte Taylor et al., 

1998). Association of histaminergic system with other monoaminergic systems has been 
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shown, for example H3R antagonists stimulate 5-HT, noradrenergic and dopaminergic 

neurotransmission (Flik et al., 2015). Trillo et al. (2013) elaborated that monoaminergic 

systems are especially vulnerable in AD due to: 1) the fact that the number of 

monoaminergic neurons is low in the brain, 2) having long, unmyelinated axons, 

monoaminergic neurons have increased vulnerability to abnormalities of anterograde or 

retrograde transport, and 3) monoaminergic fibers innervate many regions affected by 

amyloid and tau pathology. Besides the possibility that plaques and NFT could damage 

monoaminergic nerve endings, Aβ and tau could be also retrogradely transported back to 

their cell bodies (Trillo et al., 2013). Finally, degeneration of the cholinergic neurons is one 

of the main features of late-stage AD. As the cholinergic system is most important for the 

generation and modulation of the event related potential component P300 wave (since its 

initial discovery, it has been shown that it has two components - P3a – related to novelty, and 

the classic P300, which has been renamed P3b), some parts of the cholinergic magnocellular 

chain of nuclei that can be of particular clinical significance for non-invasive diagnostics and 

follow-up of AD subjects could be those rostro-lateral parts of the basal nucleus involved in 

innervation of the cortical speech areas (Šimić et al., 1999; Boban et al., 2006; Raghanti et 

al., 2011). Blockade of serotonergic and cholinergic systems leads to loss of learning and 

memory abilities in rats (Vanderwolf, 1987). Garcia-Alloza et al. (2005) postulated that 

imbalance of cholinergic and serotonergic system contributes to both cognitive and 

behavioral symptoms in AD patients. Interdependence of monoaminergic and cholinergic 

systems can also be seen as a possibility to create potential multifunctional therapeutics for 

AD treatment in the future. For example, ladostigil, is a reversible AChE and 

butyrylcholinersterase (BuChE) inhibitor and an irreversible MAO-B inhibitor that combines 

the mechanisms of action of older drugs rivastigmine (an AChEI) and rasagiline (MAO-B 

inhibitor) into a single molecule, which also enhances the expression of neurotrophic factors 

BDNF and glia-derived neurotrophic factor (GDNF), and shows beneficial effects in 

neurodegenerative rat models (Weinreb et al., 2012). Another example could be the 

compound ASS234, a multipotent drug that inhibits monoamine oxidase enzymes (MAO A 

and B), AChE and BuChE, Aβ aggregation, protects cells from Aβ-induced apoptosis, and 

shows antioxidant properties (Bolea et al., 2013). Therapeutics targeting of cholinergic 

system only can also show beneficial effects on monoaminergic systems. Treatment with 

tacrine, an AChEI, increased histamine release in the brain (Taraschenko et al., 2005). 

Additionally, therapeutics tested for treatment of AD and targeting one monoaminergic 

system can influence another, such as the supposedly antihistaminic drug latrepirdine, which 

besides its autophagy-enhancing properties (Steele and Gandy, 2013) has also shown affinity 

for 5-HT receptors, adrenoreceptors, and dopamine receptors (Okun et al., 2010).

3.5. Monoamine-based treatments in AD

Numerous potential AD therapeutics targeting the serotonergic system have been tested in 

preclinical and clinical trials (Table 3). 5-HT is seen as having indirect influences on 

neuronal degeneration and memory deficits (Jia et al., 2014). 5-HT1A, 5-HT4, and 5-HT6 

receptors are even considered as novel therapeutic targets in AD (Ramirez et al., 2014). 

Lecozotan, a 5-HT1A receptor antagonist, was a very promising drug in preclinical and 

clinical studies, but due to adverse effects failed in phase II of clinical trials (Sabbagh, 

2009). Nevertheless, partial agonists of the 5-HT1A receptor, tandospirone and buspirone, 
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are useful in the treatment of BPSD (Salzman, 2001; Sato et al., 2007). Additionally, 5-HT4 

receptor agonists increased the release of acetylcholine and reduce Aβ in both preclinical 

and phase I clinical trials (PF-04995274, PRX-3140, RQ-9; Ramirez et al., 2014). 

Pharmacological activation of the 5-HT4 receptor by the SSP-002392 compound decreased 

production and deposition of Aβ in the hAPP/PS1 mouse model of AD, making it another 

potential AD therapeutic (Tesseur et al., 2013; Pimenova et al., 2014). Interestingly, 

although they have not found evidence for a direct α-secretase stimulation neither in vivo 
nor in vitro, De Strooper and collaborators (Tesseur et al., 2013; Pimenova et al., 2014) 

explained their findings by stating that activation of 5-HT4 receptors had probably 

stimulated α-secretase activity, which in turn increased non-amyloidogenic proteolysis of 

APP responsible for the observed decreased soluble and insoluble Aβ concentrations 

measured (both in cultured human neuroblastoma cells and in the hippocampus of the 

hAPP/PS1 mouse model of AD). Because Aβ may leak from serotonergic afferents (Braak 

and Del Tredici, 2013), an alternative and much simpler explanation not considered by the 

authors would be that it is a decreased activity of the originating serotonergic neurons (due 

to a pharmacological overstimulation of their target receptors), with consequent decreased 

Aβ leakage and deposition, responsible for the observed lower concentrations of Aβ (rather 

than due to a shift in APP processing, as the authors tried to explain). Besides the mentioned 

ones, several different 5-HT6 receptor antagonists are also currently in clinical trials as drug 

candidates for AD (Table 3). Because 5-HT6 antagonists were reported to rescue 

anticholinergic drug-induced amnesia (Hirst et al., 2003), evidence indicates that inhibition 

of 5-HT6 receptors could facilitate acetylcholine release and, via elevated cholinergic 

activity, improve memory and learning deficits. Two new agents, PRX-03140 (a 5-HT4 

antagonist) and SB-742457 (a 5-HT6 antagonist), have also recently completed phase II 

trials, whereas LuAE58054, an antagonist of the 5-HT6 receptor, has progressed to a phase 

III trial with 930 mild to moderate AD patients, in combination with the AChEI donepezil 

(Jia et al., 2014).

Drugs targeting the noradrenergic system have mainly been used in ameliorating behavioral 

symptoms in AD, like the α1-adrenoreceptor agonist prazosin (Wang et al., 2009), the β-

adrenoreceptor antagonist propranolol (Shankle et al., 1995) for aggression and agitation, 

and the antidepressant imipramine (Reifler et al., 1989) and venlafaxine (NCT01609348) for 

depression, as well as β-blockers for slowing cognitive decline (Hajjar et al., 2005; 

Khachaturian et al., 2006; Rosenberg et al., 2008). Preclinical studies have shown that drugs 

targeting the noradrenergic system can in fact reduce amyloid burden and 

neuroinflammation (reviewed in Chalermpalanupap et al., 2013). α2-Adrenoreceptor 

antagonists improved memory deficits in aged mice (piperoxane; Zornetzer et al., 1998) and 

APP/PS1 mice (fluparoxan; Scullion et al., 2011), while the β3-adrenoreceptor agonist 

CL316243 improved learning in chicks impaired by the injection of Aβ42 (Gibbs et al., 

2010). The noradrenaline precursor L-thre-odihydroxyphenylserine (L-DOPS) showed very 

good results in improving memory of APP transgenic mice (Heneka et al., 2010) and DBH−/

−, APP/PS1 double-mutant mice (Hammerschmidt et al., 2013) and in reducing Aβ burden 

in 5xFAD mice (Kalinin et al., 2012). By taking into account the beneficial effects of L-

DOPS in animal models of AD, its effects on cognitive functions of demented patients 

should be further investigated. The efficacy of noradrenaline reuptake inhibitors atomoxetine 
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(used in the treatment of attention-deficit disorder) and reboxetine (used in depression) in 

the treatment of demented patients is currently in clinical trials. Phase II trials on the effect 

of atomoxetine on CSF biomarkers of AD in MCI patients is ongoing, whereas the effect of 

reboxetine in treatment of patients with dementia is investigated along with other potential 

therapeutics in a large multicenter study currently in phase III of clinical trials (Table 3).

Cognitive impairment in AD can be partially restored by levodopa and dopamine agonists 

(Martorana et al., 2013). The dopamine agonist rotigotine was shown to be effective in 

restoring LTP-like cortical plasticity in AD patients (Koch et al., 2014). This finding is not 

surprising as pharmacological experiments demonstrated the efficacy of the non-selective 

dopamine agonist apomorphine in reverting perturbed behavioural tasks (such as water-

maze) due to oxidopamine-induced parkinsonism in rodents (Brusa et al., 2003), promoting 

Aβ degradation and protecting of hippocampal neurons from oxidative stress (Himeno et al., 

2011). The MAO-B inhibitor selegiline was also considered as a promising therapeutic for 

AD (Tariot et al., 1987), but it was rejected from further use as it failed to show beneficial 

effect on cognitive and behavioral functions in AD patients (Burke et al., 1993; Freedman et 

al., 1998). An effect of many dopaminergic drugs sought in the treatment of AD is to reduce 

apathy, a behavioral symptom in about 70% of patients (Mitchell et al., 2011). Dopamine 

uptake inhibitors dextroamphetamine and methylphenidate (Herrmann et al., 2008), used to 

treat attention deficit hyperactivity disorder and the antidepressant bupropion have been 

tested for treatment of apathy in AD. Haloperidol, an antipsychotic D2 receptor antagonist 

has been tested in phase IV clinical trials for treatment of psychosis and agitation in AD. 

The antipsychotic risperidone, a dopamine receptor antagonist, was tested for the treatment 

of hallucinations and delusions, and agitation and aggression in AD patients. A currently 

ongoing phase IV clinical trial is testing the effect of repetitive transcranial magnetic 

stimulation (rTMS) for treatment of apathy in AD (Table 3).

The research for potential therapeutics targeting histaminergic system in AD focused on 

histamine H3R antagonists. Seven H3R antagonists showed beneficial effects on cognition in 

preclinical models: thioperamide, BF2.649, ABT-239, ABT-288, GSK189254, 

JNJ-10181457 and PF-03654746 (see Table 3; for review, see Brioni et al., 2011). In clinical 

studies, the H3R antagonist ABT-288 was shown to be safe in healthy elderly subjects and 

demonstrated efficacy across several cognitive domains (Haig et al., 2014). However, the 

drug failed in patients with mild to moderate AD (Haig et al., 2012). A pilot randomized 

controlled trial (RCT) study showed that MK-0249, a histamine H3R inverse agonist, could 

not improve cognition in mild to moderate AD (Egan et al., 2012). However, the histamine 

H3R antagonist GSK239512 improved episodic memory in mild to moderate AD patients, 

but had no effect on executive function and working memory (Grove et al., 2014). This 

suggests that H3R antagonists can selectively affect cognitive function in AD patients 

(Grove et al., 2014). The H2R antagonist nizatidine failed to show any benefical effect in AD 

(Carlson et al., 2002).

Therapeutic effects of melatonin in AD have been tested in 14 trials including AD patients 

and 8 trials including MCI patients (reviewed in Cardinali et al., 2014). Melatonin 

supplementation slows the progression of cognitive impairment in AD and MCI patients, 

ameliorates sundowning and improves sleep (reviewed in Cardinali et al., 2010). A search of 
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ClinicalTrials.gov on 15th February 2016 yielded two studies that tested the effect of 

melatonin on cognitive functions in MCI patients (phase II) and sleep disturbance associated 

with AD (phase III). However, some clinical trials in AD patients showed no effects of 

melatonin on sleep disturbance and agitation (Serfaty et al., 2002; Gehram et al., 2009), 

suggesting that its efficacy in AD should be further investigated possibly at higher doses 

(Cardinali et al., 2014). The focus of recent studies is the development of melatonin analogs 

that could prolong the effect of melatonin. The effect of prolonged-release melatonin on 

patients with mild to moderate AD is in phase II of clinical trials (Table 3).

4. Conclusions

Pathological changes in monoaminergic nuclei, particularly the noradrenergic LC and 

serotonergic DRN, but also dopaminergic, histaminergic and melatonergic nuclei and 

pathways, observed during the early course of AD probably have a profound influence not 

only on the complex symptoms and pathogenesis in AD, but also in other primary and 

secondary tauopathies, especially FTD (Boban et al., 2010). The link between depression 

and AD, depression being a frequent preclinical manifestation of AD, is important in this 

context. Association of depressive symptoms with hippocampal volume reduction in early 

stages of AD (Šimić et al., 1997), as well as hypometabolism and an increased risk for 

neurocognitive disorder or dementia, further strengthen the concept of depression as a risk 

factor for neurodegeneration in general (Brendel et al., 2015).

One of the problems surrounding depression is that many of its primary symptoms (such as 

low self-esteem, depressed mood, suicidal ideation, guilt) are by nature difficult to measure 

in animals. However, the lack of interest in pleasurable experiences may be similar to 

anhedonia in laboratory animals (Anisman and Matheson, 2005), which can be assessed by a 

variety of tests, including those based on food consumption and sucrose preference.

Another important connection is disruption of the sleep-wake cycle in AD, which is also 

most probably caused by the neuropathological changes of the DRN (mostly involved in 

non-REM sleep) and LC (mostly involved in REM sleep). Both of these brainstem nuclei are 

among the first to be affected by tau protein abnormalities in the course of LOAD, causing 

behavioral and cognitive symptoms of variable severity. The possibility that most of the 

tangle-bearing neurons of the LC and DRN may still release Aβ as well as soluble 

monomeric or small oligomeric tau protein trans-synaptically by their diffuse projections to 

the cerebral cortex warrants further investigations of the monoaminergic systems in AD.

In conclusion, evidence from human and animal studies suggest that alterations in 

serotonergic and noradrenergic transmission may be the link to the early mood, aggression, 

feeding, and sleep changes observed in AD patients (Šimić et al., 2009). Therefore, 

expanding our understanding of the brainstem nuclei, particularly the LC and DRN 

involvement in the early stages of AD to functional concepts beyond neuropathological 

descriptions, will likely have a significant impact on diagnosis and tracking of AD 

progression as well as on development of biomarkers, novel therapeutic targets, and 

preventive strategies. One of the recent breaktroughs in that direction was the successful 

visualization of the DRN using PET imaging of 5-HT1A receptor binding (Kranz et al., 
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2012). Other potential pharmacological interventions directed mainly at serotonergic system 

targets are expected to alleviate symptoms of neurodegeneration, and to expand our 

understanding of the relationship between monoaminergic systems and the pathogenesis of 

AD.

A more comprehensive assessment of the genome and improvements in understanding of 

how the epigenomic influences change the methylome and structure of chromatine through 

histone protein modifications will enable detection of the early molecular networks that 

drive AD pathology. Because the human DNA methylomes of different neurodegenerative 

diseases, including AD, share common epigenomic patterns, at least for the prefrontal cortex 

(Sanchez-Mut et al., 2016), a key challenge for future studies will be to describe how genetic 

and environmental interactions shape epigenetic changes of genes related to 

monoaminergicand other neurotransmitter systems, and their differential vulnerability to 

AD. Moreover, an evaluation of younger subjects with life experiences such as depression 

will also be necessary to investigate the role of non-genetic factors to delineate more 

precisely the cause-effect relationships of molecular events that lead to dementia. 

Fortunately, the approval of epigenetic drugs for cancer (Adwan and Zawia, 2013) paves the 

road for the development of such drugs for other disorders, including neurodegenerative 

diseases such as AD.
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Abbreviations

2OG 2-oxoglutarate

5-HT 5-hydroxytryptamine

5-HIAA 5-hydroxyindoleacetic acid

5mC 5-methylcytosine

α-KG α-ketoglutarate

AAAD aromatic-L-amino acid decarboxylase

AANAT aralkylamine N-acetyltransferase

AAS ascending arousal system

Aβ amyloid β

AChE acetylcholinesterase

AD Alzheimer’s disease
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ADI Alzheimer’s Disease International

ADAM10 a disintegrin and metalloprotease 10

ADL activities of daily living

AgD argyrophilic grain disease

Alu Alu (repetitive) element

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors

AP amyloid plaques

APOE apolipoprotein E

APP amyloid precursor protein

ASMT N-Acetylserotonin O-methyltransferase

ATP adenosine triphosphate

BACE β-site APP cleaving enzyme

BBB blood-brain barrier

BDNF brain-derived neurotrophic factor

BF Bayes factor

BMAA β-methylamino-L-alanine

BPSD behavioral and psychological symptoms of dementia

BuChE butyrilcholinesterase

CAA cerebral amyloid angiopathy

CADASIL cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy

CDR Clinical Dementia Rating

CERAD Consortium to Establish a Registry for Alzheimer’s disease

ChAT choline acetyltransferase

CHIP carboxyl-terminus of Hsp70 interacting protein

COMT Catechol-O-methyltransferase

CSF cerebrospinal fluid

CVD cerebrovascular diseases

DBH dopamin-β-hydroxylase
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DLB dementia with Lewy bodies

DMN default-mode network

DRN dorsal raphe nucleus

DRN-CC dorsal raphe nucleus, pars caudalis compacta

DRN-CL dorsal raphe nucleus, caudal lamellar subnucleus

DRN-IF dorsal raphe nucleus, pars interfascicularis

DRN-ST dorsal raphe nucleus, pars supratroclearis

DSM Diagnostic and Statistical Manual for Mental Disorders

ELISA Enzyme-Linked Immunosorbent Assay

FTD frontotemporal dementia

FTLD frontotemporal lobar degneration

GWAS genome-wide association study

HCHWA-D hereditary cerebral hemorrhage with amyloidosis – Dutch 

type

HDC histidine decarboxylase

HLA human leukocyte antigen

HMT histamine N-methyltransferase

HS hippocampal sclerosis

HSV1 herpes simplex virus type 1

LBD Lewy body disease

LC locus coeruleus

L-DOPA L-3,4-dihydroxyphenylalanine

LINE-1 long interspersed (repetitive) element 1

LTD long-term depression

LTP long-term potentiation

MAO-A monoamine oxidase A

MAPT microtubule-associated protein tau

MCI mild cognitive impairment

miRNA microRNA
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MMSE Mini-Mental State Examination

MRI magnetic resonance imaging

mtDNA mitochondrial DNA

NFT neurofibrillary tangles

NIA/AA National Institute on Aging and the Alzheimer’s 

Association

NINCDS-ADRDA National Institute of Neurological and Communicative 

Disorders and Stroke – Alzheimer’s Disease and Related 

Disorders Association

NMDAR N-methyl-D-aspartate receptors

NRC-A nucleus raphe centralis, pars annularis

NRC-P nucleus raphe centralis, pars principalis

NRD nucleus raphe dorsalis

NP neuritic plaques

NRL nucleus raphe linearis

NRM nucleus raphe magnus

NRO nucleus raphe obscures

NRP nucleus raphe pallidus

NT neuropil threads

PART primary age-related tauopathy

PD Parkinson’s disease

PET positron emission tomography

PHF paired helical filaments

PP2A protein phosphatase 2A

PSEN presenilin

PSP progressive supranuclear palsy

RCT randomized controlled trial

REM sleep rapid eye movement sleep

rs reference single nucleotide polymorphism

rTMS repetitive transcranial magnetic stimulation
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Sat-α Satellite-α repetitive element

SCN suprachiasmatic nucleus

SDS sodium dodecylsulfate

SF straight filaments

SN substantia nigra

SNc substantia nigra pars compacta

SP senile plaques

SPECT single-photon emission computed tomography

SWS slow-wave sleep

TACE TNF-α converting enzyme

TH tyrosine hydroxylase

TNF-α tumor necrosis factor alpha

TPSD tangle-predominant senile dementia

TPH tryptophan hydroxylase

VBI vascular brain injury

VTA ventral tegmental area

WHO World Health Organization
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Highlights

• Monoaminergic systems are altered in Alzheimer’s disease.

• Noradrenergic LC and serotonergic DRN are among the first affected by tau 

pathology.

• Changes in DRN and LC lead to the deterioration of the sleep-wake cycle in 

AD.

• Depression in preclinical AD further indicates monoaminergic alteration in 

AD.

• In view of its early involvement in AD, the serotonergic system could serve as 

a therapeutic target.
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Fig. 1. 
Amyloid plaques, as revealed by Campbell-Switzer-Martin's method. The anterior part of the 

parahippocampal gyrus of an 84-year-old woman who died 3.5 years after the clinical 

diagnosis of AD was made. Scale bar = 1 mm.
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Fig. 2. 
Neurofibrillary changes in AD. Modified silver staining of the CA1 field from the body of 

the hippocampus of an 84-year-old woman, who died 3.5 years after clinical diagnosis of 

AD was made. NP = neuritic plaque. Numbers designate groups or "classes" of neurons with 

neurofibrillary changes, as defined and described in Braak et al., 1994b: 2 = early rod-like 

argyrophilic inclusions in the soma, 3 = typical developed NFT, which fills almost the whole 

cytoplasm and therefore acquires the shape of the neuron („flame-like“ appearance in the 

case of this pyramidal neuron), 4 = early extracellular NFT (such tangles are called 
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„tombstone“ or „ghost“ tangles because the neurons have died and only the NFT remain), 5 

= late extracellular tangle. Scale bar = 100 µm.
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Figure 3. 
Vizualization of the hyperphosphorylated tau protein by using antibody AT8. A. The earliest 

detectable changes: hyperphosphorylated tau is localized in somatodendritic compartment of 

an isolated layer III pyramidal neuron in the transentorhinal cortex of a cognitively normal 

59-year-old adult person. According to the criteria put forward in Braak et al. 1994b, such 

neurons belong to the group 1 neurons (they cannot be revealed by silver staining as they are 

bearing no tangle, just containing hyperphosphorylated tau). It is not known whether this 

change is reversible. B. Enlarged image from A. Note evenly distributed AT8-

immunoreactive material in soma and all neuronal processes as well as grossly normal 

neuronal morphology. C. A group of temporal cortex pyramidal neurons in advanced stages 

of neurofibrillary degenerative changes in the brain of a 73-year old subject with a 7-year 

history of AD. A spectrum of conspicuous cytoskeletal alterations is visible in all five 

neurons (belonging to all groups/“classes“ neurons according to Braak et al., 1994, except 

group 5 end-stage neurons when their AT8 immunoreactivity is gone). All of these neurons 

also show argyrophilia, meaning that their neurofibrillary tangles can be revealed by using 

silver stainging methods. D. AT8 - immunoreactivity in 'granules' and tortuous apical and 

basal dendrites of granule cells of the hippocampal dentate gyrus of the same subject as in C. 

Perikarya of granule cells are rarely AT8-positive and do not usually contain typical NFT 

(even in cases with long-lasting history of AD), perhaps because this special neuronal type 

does not express MAPT mRNAs containing exon 10 (4R isoforms), supposedly conferring 

their resistance to neurofibrillary changes. Scale bars = 100 µm.
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Fig. 4. 
The Braak’s staging system (Braak and Braak, 1991). The topographic progression of AD 

classifies neurofibrillary degeneration in 6 stages, spreading from the transentorhinal region 

to the hippocampal formation (initial stages I and II, which clinically correlates with 

subjective or objective impairment of memory for recent events and mild spatial 

disorientation, but with preservation of general cognitive functioning without or with 

minimum impairment of activities of daily living), then to the temporal, frontal, and parietal 

neocortex (intermediate stages III and IV, which correlates with impaired recall, delayed 
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word recall and word finding difficulties, disorientation in time and space, and impaired 

concentration, comprehension and conceptualization, among other symptoms of dementia), 

and finally to unimodal and primary sensory and motor areas of the neocortex (late stages V 

and VI, which roughly correlates with disturbances in object recognition, and other 

perceptual and motor skills). Braak staging system can be reduced to four with improved 

inter-rater reliability (Nagy et al., 1998): B0: no NFT, B1: Braak stages I/II, with NFT 

predominantly in entorhinal cortex and closely related areas, B2: stages III/IV, with NFTs 

more abundant in hippocampus and amygdala while extending slightly into the association 

cortex, and B3: stages V/VI, with NFT, neuropil threads and dystrophic neurites widely 

distributed throughout the neocortex and ultimately involving primary motor and sensory 

areas.
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Figure 5. 
Schematic drawing of monoaminergic nuclei (except histaminergic and melatonergic cell 

groups). A1–A7 denote noradrenergic cell groups (A3 is missing in primates), A8–A16 

dopaminergic cell groups (A11 is missing in humans, whereas retinal dopaminergic neurons 

are sometimes denoted as A17 group), B1–B9 serotonergic cell groups (B4 is missing in 

primates), whereas C1 and C2 denote adrenergic cell groups (C3 group is not present in 

humans). Histamine neurons in humans are located exclusively in tuberomammilary nucleus 

(stippled area caudal to A12). Melatonin neurons are located in the pineal gland (stippled 

area posterior to LGN). Emphasis is given on a rough sketch of two main ascending 

serotonergic systems: M-fibres with coarse varicosities take their origin from the nucleus 

raphe pontis (dorsalis, B6, purple lines) and nucleus raphe pallidus (B1, light blue lines) as 

well as from the nucleus raphe pontis medianus (B5) to a lesser extent (fibers from B5 not 

drawn) ascending through the tegmental area as the ventral bundle (vb), whereas fibres with 

small varicosities arise from NRD (light green lines, B7) and nucleus raphe magnus (dark 

green lines, B3) and collect in a dorsal bundle (db). Large serotonergic axons of the ventral 

bundle make synaptic contact with their targets, whereas fine axons with small varicosities 
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release serotonin diffusely (volume transmission). AMY, amygdala; BF, basal forebrain; 

LGN, lateral geniculate nucleus; db, dorsal bundle of serotonergic fibers; EC, entorhinal 

cortex; HIPP, hippocampus; OB, olfactory bulb; NPF, nucleus parafascicularis; PFC, 

prefrontal cortex; S, septum; vb, ventral bundle of serotonergic fibers; see Table 1 for the 

designation of the serotonergic cells groups and their afferent and efferent connections. See 

text for detailed description.
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Fig. 6. 
Bielschowsky silver staining (left panel) and Gallyas silver iodide staining (right panel) of 

the supratrochlear part of the nucleus raphe dorsalis (NRD) of a 69-year-old woman with 

mild cognitive impairment (MCI), who had also documented several behavioral and 

psychological symptoms of dementia (BPSD). Although silver staining seems not to show 

many changes, on one of the adjacent sections from the same block of tissue more sensitive 

Gallyas silver iodide reveals a plethora of neurofibrillary changes, including NFT and 

degenerating neurites. Scale bars = 100 µm.
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Figure 7. 
Schematic drawing of a speculative spreading of tau pathology from LC and DRN to the 

transentorhinal/entorhinal cortex.
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Table 2

Overview of the involvement of the monoaminergic systems in animal models of Alzheimer’s disease and 

humans.

Monoaminergic
system

Component of
monoaminergic

system in
Alzheimer’s

disease

Animal studies Human subject research

In vivo Postmortem

Serotonergic system

Serotonin
innervation

(fibers),
serotonin, SERT,

serotonin
metabolites and

enzymes

Progressive degeneration 
and loss of
forebrain afferent 5-HT 
fibers in
APPswe/PS1ΔE9 mouse 
model of AD (Liu et al., 
2008)
No 5-HT fiber 
degeneration and SERT
reduction in APPswe/
PS1ΔE9 mouse model of
AD (Holm et al., 2010)
Increased density of 5-HT 
afferent terminals
to hippocampal CA1 field 
with abnormal 5-
HT fiber sprouting in 
3×Tg-AD mouse model
of AD (Noristani et al., 
2011)

Decreased levels of serotonin, its 
precursor 5-HTP,
and its major metabolite 5-
HIAA in CSF in AD
(Soininen et al., 1981; Volicer et 
al., 1985; Zubenko et al., 1986; 
Bareggi et al., 1982; Blennow et 
al., 1992; Sjogren et al., 1998)
Increased levels of 5-HIAA in 
CSF in AD (Zubenko et al., 
1986; van der Cammen et al., 
2006)
No change in 5-HIAA levels in 
CSF in AD (Stuerenburg et al., 
2004)

Significantly decreased 
concentration of 5-HT in
amygdala, caudate nucleus, 
putamen, and temporal
cortex in postmortem AD 
brains (Nazarali and 
Reynolds, 1992)
Significantly decreased 
concentration of 5-HIAA in
amygdala and caudate 
nucleus in postmortem AD
brains (Nazarali and 
Reynolds, 1992)
Reduced levels of 5-HT and 
5-HIAA in postmortem AD
brains (Gottfries et al., 
1986)
Reduced levels of 5-HT and 
5-HIAA in postmortem
samples of frontal and 
temporal cortex in AD 
subjects
(Palmer et al., 1987; Garcia-
Alloza et al., 2005)
ChAT/5-HT ratio in frontal 
and temporal cortex
correlated with MMSE 
scores in 22 AD patients,
whereas AChE/5-HT and 
ACh/5-HT correlated with
MMSE decline in female 
patients (Garcia-Alloza et 
al., 2005)
Negative correlation of 5-
HIAA and tangle formation 
in
temporal and frontal cortex 
in AD subjects (Palmer et 
al., 1987)

Receptors 5-HT4 receptor activation 
decreases
quantity of both soluble 
and insoluble Aβ in
the hippocampus of 
hAPP/PS1 mouse
model of AD (Tesseur et 
al., 2013)
Significant decrease of 5-
HT2A receptor
binding in mPFC of 11-
month-old
APPswe/PS1ΔE9 mouse 
model of AD (Holm et 
al., 2010)

Reduced 5-HT1A receptor 
binding in the temporal
cortex (Lai et al., 2003), 
hippocampus (Kepe et al., 2006; 
Truchot et al., 2008) and 
parahippocampal
gyrus (Truchot et al., 2008)
Loss of 5-HT2A receptors 
exceeds loss of loss of
serotonergic projections in early 
AD (Marner et al., 2012)
Thr102Cys polymorphism in the 
gene for 5-HT2A

receptor linked to psychosis and 
psychotic symptoms
in AD patients (Trillo et al., 
2013)

Significantly reduced 
densities of 5-HT1B/1D and 
5-HT6

receptors in frontal and 
temporal cortex of AD
subjects (Garcia Alloza et 
al., 2004)

Nuclei Ectopic cell cycle events 
that are linked to
neurodegenerative 
process in AD are

Association of early occurrence 
of BPSD in AD with
early pathology of serotonergic 
raphe nuclei (Borroniet al., 

As the source of the 
ascending 5-HT system, the
involvement of the oral 
raphe nuclei, particularly 
DRN,
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Monoaminergic
system

Component of
monoaminergic

system in
Alzheimer’s

disease

Animal studies Human subject research

In vivo Postmortem

increased in dorsal raphe 
of 5 AD mice
models (Li et al., 2011)

2010; Martorana et al., 2013; 
Stefani et al., 2015)
Greater loss of DRN neurons in 
depressed AD
patients (Zweig et al., 1989)

may be responsible for the 
early manifestation of the
non-cognitive BPSD in AD 
(Rüb et al., 2000; Grinberg 
et al., 2009; for review, see 
Šimić et al., 2009; Braak 
and Del Tredici, 2013; 
Šimić et al., 2014)

Noradrenergic system

Noradrenaline
innervation

(fibers),
noradrenaline

metabolites and
enzymes

Progressive degeneration 
and loss of
forebrain afferent NA 
fibers in
APPswe/PS1ΔE9 mouse 
model of AD (Liu et al., 
2008)
Reduced levels of NA 
within hippocampus,
temporoparietal and 
frontal cortices, and
cerebellum in TgCRND8 
mouse model of
AD, which preceded 
memory impairment
for objects and behavioral 
despair in tail
suspension test (Francis et 
al., 2012)
One-month treatment of 
5-month old male
5xFAD transgenic mice 
with L-DOPS (NA
precursor), increases CNS 
NA levels and
improves learning in the 
Morris water maze
task (Kalinin et al., 2012)

Decreased plasma DBH activity 
in early AD (Mustapić et al., 
2013)
Concentrations of NA and its 
principal metabolite
MHPG in CSF increased with 
the progression of
intellectual disability of AD 
subjects (Tohgi et al., 1992; 
Elrod et al., 1997)
Reduction of NA and MHPG 
levels in CSF of AD
subjects (Martignoni et al., 
1991; Sjogren et al., 1998)
No change in NA and MHPG 
levels in CSF of AD
subjects (Parnetti et al., 1992; 
Blennow et al., 1992)

Decreased concentration of 
NA in temporal cortex of
AD subjects (Nazarali and 
Reynolds, 1992)
Decreased concentration of 
NA in temporal and
frontal cortex of AD 
subjects (Palmer et al., 
1987)
Increased concentration of 
MHPG in frontal cortex of
AD subjects (Palmer et al., 
1987)
Increased ratio of 
MHPG/NA in temporal 
cortex of AD
subjects (Palmer et al., 
1987)

Receptors Decreased density of α1-
adrenoreceptors in
olfactory bulb, piriform 
and somatosensory
cortex of LRP1 mouse 
model of AD (von 
Staden, 2014)
Increased density of α2-
adrenoreceptors in
olfactory bulb, motor and 
somatosensory
cortex, striatum, and 
hippocampus of LRP1,
tg5xFAD and tg5xFAD/
LRP1 mice (von Staden, 
2014)

α1-adrenoreceptor agonist 
prazosin showed positive
effects on behavioral symptoms 
of AD (agitation,
aggression) (Wang et al., 2009)
β1-adrenergic blockers can cause 
worsening of
delayed memory retrieval in 
cognitively impaired
patients (Gliebus and Lippa, 
2007)

Increased concentration of 
α2-adrenoreceptors, β1-
and β2-adrenoreceptors in 
cerebellar cortex of
aggressive AD patients in 
comparison to non-
aggressive patients (Russo-
Neustadt and Cotman, 
1997)

Nuclei Induced degeneration of 
LC neurons in APP-
transgenic mice resulted 
in elevated Aβ
deposition, increased 
expression of
inflammatory mediators, 
and impaired
microglial Aβ 
phagocytosis, while 
supplying
the mice with DOPS 
(precursor of NE)

Subjects with AD complicated 
by depression had
significantly fewer LC neurons 
than non-depressed
cases (Zweig et al., 1989)

LC is affected by 
neurofibrillary pathology 
very early
during the course of AD 
(Rüb et al., 2000; Grinberg 
et al., 2009; for review, see 
Šimić et al., 2009; Braak 
and Del Tredici, 2013; 
Šimić et al., 2014; 
Pamphlett and Kum Jew, 
2015)
About 70% of LC neurons 
lost in the AD brain
(Bondareff et al., 1982; 
Zweig et al., 1989)
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Monoaminergic
system

Component of
monoaminergic

system in
Alzheimer’s

disease

Animal studies Human subject research

In vivo Postmortem

restored microglial 
functions (Heneka et al., 
2010)

Dopaminergic system

Dopaminergic
innervation

(fibers),
dopamine

metabolites and
enzymes

Elevated level of 
dopamine in striatum and
frontal cortex and reduced 
levels in the
hippocampus (Ambree et 
al., 2009) and
insular cortex (Guzman-
Ramos et al., 2012)
of a murine and 3xTg-AD 
mouse models of
AD (respectively, 
compared to wild types)
Increased dopamine 
levels in the brain after
treatment with L-DOPA 
in a murine model
of AD (Ambree et al., 
2009)

Decreased levels of dopamine, 
and dopamine
metabolites HVA and DOPAC in 
CSF in AD (Soininen et al., 
1981; Zubenko et al., 1986; 
Tohgi et al., 1992;
Pinessi et al., 1987; Bareggi et 
al., 1982; Blennow et al., 1992; 
Sjogren et al., 1998)
Increased levels of HVA in CSF 
in AD (Zubenko et al., 1986; 
van der Cammen et al., 2006)
No change of HVA (Stuerenburg 
et al., 2004) and
dopamine levels (Stefani et al., 
2015) in CSF in AD
COMT polymorphisms linked 
with psychosis in AD
(Borroni et al., 2004)

Reduced content of HVA in 
caudate nucleus of AD
subjects (Nazarali and 
Reynolds, 1992)
Increased concentration of 
HVA in frontal cortex of 
AD
patients (Palmer et al., 
1987)
Reduced levels of 
dopamine, dopamine 
transporter, L-
DOPA and DOPAC in AD 
brains (Storga et al., 1996; 
Trillo et al., 2013)

Receptors Non-selective dopamine 
agonist
apomorphine reverted 
perturbed
behavioral tasks (such as 
water maze)
caused by 6-OHDA-
lesioned rodents
(Stefani et al., 2015)

Polymorphisms in D1 and D3 
receptors linked with
psychosis and aggression in AD 
(Holmes et al., 2001)

Concentrations of L-DOPA, 
DA, and DOPAC are
significantly reduced in 
post-mortem brains of AD
subjects (Storga et al., 1996)
Significant reduction in the 
number of D1 and D2
receptors in the striatum of 
AD subjects (for review,
see Trillo et al., 2013)
Density of D3 receptors in 
striatum was found to be
selectively increased in AD 
subjects with psychosis and
associated with Lewy body 
pathology (Sweet et al., 
2001)

Nuclei Allopregnanolone 
reverses the loss of
dopaminergic neurons in 
substantia nigra
pars compacta in 
3xTgAD mouse model of
AD by increasing 
neurogenesis (Sun et al., 
2012)

Loss of dopaminergic neurons in 
substantia nigra
associated with decreased 
binding of dopaminergic
transporter in striatum in vivo 
using using123I-N-
fluoropropyl-2β-
carbomethoxy-3β-(4-
iodophenyl)
nortropane SPECT (Colloby et 
al., 2012)

Substantia nigra affected by 
tau pathology in later
stages of AD (Attems et al., 
2012)

Histaminergic system

Histamine,
histamine

metabolites and
enzymes

HDC-knockout mice 
showed improved
contextual fear 
conditioning and
hippocampal CA1 long-
term potentiation
(Liu et al., 2007)
HDC-knockout mice 
showed improved
water-maze performance 
and impairment
in non-reinforced object 
memory (Dere et al., 
2003)

Reversible AChE inhibitor 
tacrine given to AD
subjects inhibited the activity of 
HNMT (the
histamine deactivating enzyme), 
resulting in
increased levels of histamine 
(Taraschenko et al., 2005)
Slightly decreased t-MeHA 
levels in CSF of AD
subjects (Motawaj et al., 2010)
H3R antagonists had modest 
positive effects on
episodic memory in mild to 
moderate AD subjects,

Histamine content was 
significantly reduced in
hypothalamus (42%), 
hippocampus (43%) and
temporal cortex (53% of 
control value) in 
postmortem
AD brains (Panula et al., 
1998)
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Monoaminergic
system

Component of
monoaminergic

system in
Alzheimer’s

disease

Animal studies Human subject research

In vivo Postmortem

Receptors Seven H3R antagonists 
(thioperamide,
BF2.649, ABT-239, 
ABT-288, GSK189254,
JNJ-10181457, and 
PF-03654746) showed
wake-promoting effects 
and improved
cognitive efficacy in 
preclinical models of
AD (for review see Brioni 
et al., 2011)
Knockout mice lacking 
H1R and H2R showed
impaired maze 
performance and object
recognition (Dai et al., 
2007)

while no improvements were 
observed on executive
functions, working memory, and 
other cognitive
domains (Grove et al., 2014)
H3R antagonists had no effect 
on cognitive functions
in AD patients (Haig et al., 
2012; Egan et al., 2012)
Neurodegenerative pathological 
changes in
tuberomammillary histaminergic 
system cause
disturbances of sleep and 
thermoregulation in
AD patients (for review, see 
Shan et al., 2013)

No change of H3R density 
in frontal and temporal
cortex of AD brains 
(Medhurst et al., 2009)
Higher binding density of 
H3R antagonist binding in
frontal cortex of AD 
patients with more severe
dementia (Medhurst et al., 
2009)

Nuclei Tuberomammillary 
hypothalamic area affected
relatively early during the 
course of AD (Braak et al., 
1993)

Melatonergic system

Melatonin,
melatonin

metabolites and
enzymes

Melatonin inhibits Aβ 
generation and
formation of amyloid 
fibrils, and protects
cells from Aβ-mediated 
toxicity in Tg2576
(Matsubara et al., 2003) 
and APP 695 (Feng et al., 
2004) transgenic mouse 
model of AD

Early neuropathological AD 
changes are
accompanied by decreased CSF 
melatonin levels
(Zhou et al., 2003)
Melatonin receptors MT1 and 
MT2 agonist ramelteon
suggested as protective against 
insomnia-induced
neuronal damage in AD 
(Srinivasan et al., 2010)
Pineal melatonin levels highly 
correlate with CSF
melatonin levels, which are 
decreased already in
cognitively intact subjects in 
preclinical AD with the
earliest neuropathological 
changes (Braak stages I–II)
(Wu et al., 2013)

Significantly decreased 
melatonin levels in CSF of 
AD
patients with ε4/ε4 
genotype than in AD 
patients with
ε3/ε4 genotype (Liu et al., 
1999)

Receptors Increase of MT2 receptor 
expression in the
hippocampus of adult 
male Sprague-Dawley
rats following chronic 
treatment with
valproic acid (Bahna et 
al., 2014)

Overall decrease of MT1 
and MT2 melatonin 
receptors
in pineal gland and occipital 
cortex in AD subjects
(Brunner et al., 2006)
Overall intensity of MT2 
receptor staining distinctly
decreased in AD 
hippocampus (Savaskan et 
al., 2005)

Nuclei Decreased 
nocturnalmelatonin 
production and
secretion from pineal gland 
with increasing age (Pandi-
Perumal et al., 2005)

Legend: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine; 5-HTP, 5-hydroxytryptophan; 6-OHDA, 6-hydroxydopamine; Aβ, 
amyloid β protein; ACh, Acetylcholin; AChE, Acetylcholinesterase; AD, Alzheimer’s disease; APOE, apolipoprotein E; APP, amyloid precursor 
protein; AT8, antibody specific for phospho-tau epitopes Ser202 and Thr205; BA, Brodmann area; BPSD, behavioral and psychological symptoms 
of dementia; ChAT, Cholinacetyltransferase; COMT, Catechol-O-methyltransferase; CSF, cerebrospinal fluid; CNS, central nervous system; DBH, 
dopamin-β-hydroxylase; DOPAC, dihydroxyphenylacetic acid; DRN, dorsal raphe nucleus; HDC, L-histidine decarboxylase; HNMT, histamine-N-
methyltransferase; HVA, homovanilic acid; L-DOPA, L-3,4-dihydroxyphenylalanine; L-DOPS, L-threo-dihydroxyphenylserine; LC, locus 
coeruleus; MHPG, 3-Methoxy-4-hydroxyphenylglycol; MMSE, Mini-Mental State Examination; mPFC, medial prefrontal cortex; NA, 
noradrenaline; SERT, serotonin transporter; SPECT, single-photon emission computed tomography; t-MeHA, tele-methylhistamine
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