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Abstract

We consider the task of automatically annotating free texts describing clinical trials with concepts 

from a controlled, structured medical vocabulary. Specifically we aim to build a model to infer 

distinct sets of (ontological) concepts describing complementary clinically salient aspects of the 

underlying trials: the populations enrolled, the interventions administered and the outcomes 

measured, i.e., the PICO elements. This important practical problem poses a few key challenges. 

One issue is that the output space is vast, because the vocabulary comprises many unique 

concepts. Compounding this problem, annotated data in this domain is expensive to collect and 

hence sparse. Furthermore, the outputs (sets of concepts for each PICO element) are correlated: 

specific populations (e.g., diabetics) will render certain intervention concepts likely (insulin 

therapy) while effectively precluding others (radiation therapy). Such correlations should be 

exploited.

We propose a novel neural model that addresses these challenges. We introduce a Candidate-

Selector architecture in which the model considers setes of candidate concepts for PICO elements, 

and assesses their plausibility conditioned on the input text to be annotated. This relies on a 

‘candidate set’ generator, which may be learned or relies on heuristics. A conditional 

discriminative neural model then jointly selects candidate concepts, given the input text. We 

compare the predictive performance of our approach to strong baselines, and show that it 

outperforms them. Finally, we perform a qualitative evaluation of the generated annotations by 

asking domain experts to assess their quality.
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1 Introduction

There has been rapid growth in the volume and diversity of available healthcare data, 

ranging from electronic health records (EHRs) to biomedical literature. This proliferation of 

data provides unprecedented opportunity to improve patient care [6, 8, 9, 19], but 

simultaneously the volume of published information makes it difficult to efficiently retrieve 

and compile relevant evidence. In this work we focus on biomedical literature, and in 

particular on texts that describe the conduct and results of randomized controlled trials 

(RCTs), which are considered the gold standard in evidence for particular interventions.

In general, the clinically salient aspects of an RCT include: (1) the Population(s) enrolled; 

(2) the Intervention and Comparator treatments administered (the distinction between these 

is arbitrary, and so these may be grouped); (3) the Outcomes measured. Collectively these 

are referred to as PICO elements. Clinical questions are widely considered answerable only 

when mapped onto a PICO frame. However, retrieving all articles that describe trials 

relevant to a given PICO frame (and hence question) is non-trivial, in part because reports of 

RCTs are communicated in unstructured (free-text) articles. Structured representations of 

articles that explicitly assign ontological terms to distinct PICO elements would support 

automated retrieval and question-answering systems [4]. We therefore aim to develop an 

automated approach to mapping from free-texts to distinct sets of terms from the Unified 

Medical Language System (UMLS) corresponding to each PICO element. This is depicted 

schematically in Figure 1.

This multilabel and multitask setting presents formidable challenges from a machine 

learning perspective. In particular, the output space is vast: there are hundreds of thousands 

of terms in the controlled medical vocabulary we are targeting (UMLS). Second, as is the 

case in many biomedical tasks, we have a relative dearth of available training data with 

which to estimate model parameters. Third, outputs (i.e., sets of UMLS terms corresponding 

to the respective PICO elements) are correlated: a given study population constrains the 

space of plausible interventions and outcomes. For example, if the population comprises 

adult males, it is unlikely that the outcome will be time to labor induction. These 

correlations between label outputs should be exploited. We address these problems in this 

paper by introducing a novel neural approach involving two parts: candidate term generation 
and selection/classification.

The specific contribution of this work is a novel method for multilabel classification into 

multiple distinct, but correlated label sets using a neural model that considers ‘candidate’ 

label tuples, conditioned on the text being annotated. Our approach addresses training data 

sparsity by re-framing the annotation task as a two step process in which we first generate a 

set of candidate annotations relevant to the input text, and then we select and group these. In 

our case, we generate candidates using both (a) a multitask model directly trained to 

generate candidate concepts, and, (b) the MetaMap tool.1 We then use a neural 
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discriminative model to infer plausible triplets of concepts from the unstructured candidate 

set, conditioned on the free-text being annotated. We demonstrate that this model improves 

performance (compared to relevant baselines) on the important task of automatically 

annotating biomedical literature with structured UMLS concepts. As far as we aware, this is 

the first work to tackle this challenging problem.

While our motivating application concerns biomedical literature processing, we emphasize 

that the problem we consider is general, and the candidate-generator/discriminator approach 

we propose may have broad application for similarly structured tasks.

2 Methods

Our proposed approach comprises two components. The first is a candidate generator, 
responsible for inducing an unstructured set of ‘candidate’ UMLS concepts deemed likely to 

apply to a given input text. Ideally this would be a high-recall (but possibly low-precision) 

set of terms. The second component is a selector, which accepts the candidate concepts as 

input, along with the text to be annotated, and conditioned on these selects and outputs likely 

structured sets of concepts, i.e., concepts pertaining to the aforementioned PICO elements.

Formally, denote an input text by x. Then we run through this our candidate generator, g:

(1)

and the outputs are consumed by the selector s:

(2)

Here  is assumed to be structured, i.e., include particular concepts corresponding to the 

PICO elements. Thus  = { P, I/C, O}.

This component approach affords the important advantage of allowing g to effectively map 

from the vast universe of possible structured terms (here, UMLS terms) to a relatively small 

set of those deemed reasonably likely for the text at hand. The selector model s can then 

perform more in-depth processing of candidates to infer likely configurations of candidate 

terms across the {P, I/C, O} elements, taking into consideration correlations between these 

subsets. In our case, this architecture was motivated in part by the existence of MetaMap, a 

tool that uses rules and heuristics to map from free text snippets to possible terms. This 

forms one part of our generator model, complementing a purely data-driven approach.

1https://metamap.nlm.nih.gov/
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2.1 Selector Model

We begin by describing the selector model, s, which assigns a subset of the concepts 

contained in an unstructured candidate set C to the respective PICO elements, conditioned 

on the input text. An instance of this model (described in greater detail below) is depicted in 

Figure 2. Following [17, 33], we adopt a convolutional neural network (CNN) to encode 

texts. Concretely, we accept input texts to be annotated as sequences of words that are 

passed to an embedding layer that associates vectors (distributed representations) with 

words, thus forming an input matrix. We initialize word embeddings to pre-trained vectors 

induced over the entire set of abstracts indexed on MEDLINE, a repository of biomedical 

literature; we update these representations during model training via back-propagation. We 

apply independent convolutional filters of varying length over this matrix. That is, these 

filters consume one or more consecutive word embedding inputs at a time. Outputs from 

each filter are passed through a max-pooling operation to extract one scalar per filter (note 

that we use multiple filters of each filter size). These scalars are concatenated to form a final 

vector representation of the input text with a number of dimensions equal to the total number 

of convolutional filters. We will denote this induced representation of input i by xi.

The input text encoding approach just described is the same across the different Candidate-

Selector (CS) model variants we discuss. What differs between them is the handling of the 

candidate concept(s) under consideration. For all variants we use embedded representations 

of controlled (UMLS) terms. We initialize these to pre-trained embeddings induced via 

DeepWalk [25], an approach to unsupervised distributed representation learning for graph-

structured entities. During candidate classification, embedded representations of one or more 

candidate concepts are considered and the task is to decide whether these apply to the text 

under consideration, and if so, which PICO element they describe. We next describe three 

variants of our candidate-selector architecture, in ascending order of complexity.

CS-ind—The simplest variant of our model treats predictions regarding the designation of 

individual terms to respective PICO elements as independent, given the text. This model 

variant thus comprises three independent instances of the same model (i.e., with separate 

sets of parameters), one per PICO element. We concatenate the induced vector 

representations of the input text i and the (single) candidate concept under consideration 

(indexed by j) and estimate the probability of it being applicable to a given PICO element by 

running it through a logistic function σ:

(3)

Where e indexes PICO elements and hence models, making explicit the fact that the 

respective PICO model parameter sets are independent;  denotes a vector representation 

of input text i (induced via a CNN);  a weight vector parameterizing the output 

probability model; C(e) the concept embeddings matrix;  a weight matrix for a hidden 

dense layer; and  denotes vector concatenation. Here λ(·) denotes an element-wise 
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activation function (in our case, identity) and dropout regularization [27]. We reiterate that 

these predictions are made separately for each PICO element.

CS-cond—The patient population enrolled in a trial is not independent of the interventions 

and outcomes considered, as the former will clearly influence the latter. A first attempt to 

exploit such correlations is our CS-cond model, which starts by predicting which candidate 

terms describe the population, and then conditions the subsequent selection of terms 

corresponding to interventions on these. Finally, the selection of outcomes terms is explicitly 

conditioned on the preceding two sets of terms (i.e., the terms designated as describing the 

study population and interventions).

More formally, we use CS-ind to select terms . We then use a modified architecture 

for the models that select intervention and outcomes terms. In particular, the model for 

predicting interventions accepts a third input matrix comprising the stacked embeddings 

corresponding to the terms in .2 Because the order of these terms is arbitrary, we pass 

only length 1 convolutional filters over this matrix (such filters consider a single concept at a 

time). We again apply max-pooling over these to induce a vector representations of the 

population concepts selected by the model in the preceding step, which we designate by 

.

(4)

The model for outcomes is analogous, except that it takes as an additional input a matrix 

comprising the embeddings for the terms selected both for populations and interventions/

comparators, i.e., in addition to merging  to the model input we concatenate 

before passing through the network. Thus the selection of outcomes terms is conditioned 

jointly on the inferred population and intervention descriptors.

CS-joint—Our final variant is a fully joint approach to selecting P, I/C and O candidate 

terms. This model consumes structured triplets as input (i.e., one candidate concept per 

PICO element) and estimates the conditional probability that these jointly apply to the text 

under consideration. The model is depicted schematically in Figure 2. In brief, we create an 

input matrix comprising the embeddings of the candidates in a given triplet, and run 

convolutional filters of lengths ranging from 1 to 3 over this input; this induces a vector 

representation of the triplet of candidate concepts which is then concatenated with the 

inferred representation of the input text to form a penultimate representation used to make a 

joint prediction concerning the applicability of the structured triplet of terms.

2Operationally, we impose an upper-bound k on the number of terms that can be selected for a given element; thus the input matrix 
here is k × d, where d is the embedding dimension.
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This model is attractive in that it affords a truly joint estimate regarding assignment of terms 

to PICO elements. However, it does mean that at test time we have to generate permutations 

of candidate concepts to make predictions for possible triplets in turn.

2.2 Candidate Generation

Having presented our approaches for candidate selection s, we now turn our attention to 

generating candidates provided an input text, i.e., specification of g. Broadly, we consider 

two approaches here, the outputs of which we compose: in the first we use a separate, pre-

existing system called MetaMap to generate an unstructured set of candidate terms. We also 

adopt a data-driven learned approach to candidate generation. We describe these in turn 

below.

2.2.1 MetaMap—MetaMap [1] is a tool developed by the National Library of Medicine 

(NLM) that assigns concepts from Unified Medical Language System (UMLS) vocabularies 

to free-texts. Note, however, that it does not attempt to categorize these assigned concepts 

into PICO elements. The UMLS is a meta-ontology, incorporating ∼200 standardised 

medical vocabularies. Synonymous terms are linked across vocabularies by unique semantic 

identifiers. MetaMap provides rich semantic information for biomedical informatics, but for 

our purposes it suffices to know that it implements a service which provides UMLS terms 

that match a given input text. We thus use MetaMap to generate an initial list of unstructured 

candidate concepts. A schematic of this process is shown in Figure 3. In general, under the 

settings used here, we found the candidate set generated by MetaMap to be high recall but 

relatively low precision.

2.2.2 Learning to Generate Candidates—In addition to MetaMap, we consider the 

approach of directly predicting UMLS concepts corresponding to the respective PICO 

elements from free-text. This model is one of the baseline approaches to which we compare 

our proposed Candidate-Selector models. Learning to map directly from free-text to 

structured UMLS terms has the advantage of allowing recognition of concepts not identified 

by MetaMap (the recall of the generated candidate set is an upper bound on the recall the 

selector model will be able to achieve). However, the disadvantage of this approach is that 

the output space is vast: there are hundreds of thousands of concepts; learning to predict 

directly into this space is thus challenging, especially given our limited training data. 

Additionally, as we discuss further below, this approach precludes the possibility of 

identifying concepts that were not encountered during model training.

To directly predict candidate terms for input texts we adopt a convolutional neural multitask 
[5] architecture, depicted in Figure 4.3 In brief, we run input text through a CNN to induce a 

vector representation, as described in the preceding section. This learned representation is 

shared across the classification tasks corresponding to the respective PICO elements, thus 

affording transfer learning across tasks, insofar as the model learns parameters that induce a 

representation useful for recognizing terms descriptive of the respective PICO elements. 

Output layers, however, are treated as conditionally independent, given the shared input 

3This is similar to the multitask model used in [10].
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representation. Thus, e.g., the output layer corresponding to population comprises | | binary 

output nodes (with associated weight vectors) corresponding to concepts in the vocabulary 

. Here, | | = 366,772. This was prohibitively large, and so as a practical matter we 

restricted the output size to 150,000 terms (the same 150,000 for each PICO element). These 

terms include (1) all that appear in the available training sample for any given run, 

augmented with, (2) terms randomly (IID) sampled from the vocabulary.

2.3 Candidate set sampling details

We use the above two methods to generate candidates at test time. Here we describe the 

training and testing processes related to candidate sampling in greater detail.

During training, we draw positive triplets using the ground truth annotations. For example, 

if we have a set of ground truth annotations P, I/C and O for an instance x then we 

construct positive triplets ( P, I/C, O) by randomly and independently sampling one 

concept each from P, I/C and O.

We also need to construct negative examples to be fed to the model during training. For this 

we use a ‘negative sampling’ approach in which we draw one or two concepts from the 

ground truth set, and the remaining concept(s) from the set of all concepts . We draw five 

negative triplets for every positive triplet, and pass these as input to the model in Figure 2. In 

addition to constructing triplets using concepts from the standard vocabulary, we assume the 

presence of a universal concept “_” in all annotations. This induces triplets of the form of 

{(cP, _, _), (cP, cI/C, _)}, in addition to fully specified triplets (cP, cI/C, cO). Our CS-Joint 

model is defined directly over triplets in order to learn the joint distribution of concepts 

contained in different distinct sets. The introduction of underspecified triplets such as (cP, _, 

_) effectively allows the model to also learn marginal probabilities of concepts for a 

particular element, given an input text. We later empirically show the benefit of this 

approach.

During testing, we use the models described in the preceding subsections to generate 

candidate sets. Specifically, for a given input text, we use MetaMap to generate an 

unstructured list of candidate terms. We also use the multitask model described above 

(trained on the available training data) to make predictions based on the text, thereby 

inducing a supplementary, structured candidate set of terms, i.e., these are explicitly 

associated with individual PICO elements. We then exhaustively construct input candidate 

tuples by placing the MetaMap candidates into arbitrary slots, combining these with 

candidates assigned to specific PICO elements by the MT model. In this way, we construct 

every possible triplet (cP, cI/C, cO) that can be derived from the candidate sets; this includes 

all possible incomplete specifications of the form (_, cI/C, _).

3 Experimental Setup

We begin this section by providing details regarding the dataset used for experiments. We 

then describe the baseline models to which we compare our proposed approaches. Finally, 

we outline the evaluation setup we adopt and the metrics we use to assess performance.
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3.1 Dataset

We use a real-world dataset provided by the Cochrane Collaboration,4 which comprises 

manual annotations applied to biomedical publications. Specifically, aligning with the task 

we have outlined throughout this paper, trained annotators have applied tags from a subset of 

the Unified Medical Language System (UMLS) to free text summaries of biomedical 

articles, corresponding to the PICO elements. Recall that PICO stands for Population, 

Intervention/Comparator and Outcomes. These are defined briefly as follows. Population 

concerns the characteristics of or clinical problem shared by trial participants (e.g., diabetic 

males). Interventions are the active treatments being studied (e.g., aspirin); Comparators are 

baseline or alternative treatments to which these are compared (e.g., placebo) – the 

distinction is arbitrary, and hence we collapse I and C. The outcomes are the variables 

measured to assess the efficacy of different treatments (e.g., headache severity).

Trained annotators attach concept (UMLS) terms for each PICO element to individual free-

text summaries of articles. These summaries comprise fields pertaining to each PICO 

element for every study. For this work, we merge them into single texts that span all PICO 

elements; this represents a more typical setup. All collected annotations undergo a rigorous 

quality assurance process; every annotation is subsequently checked by a domain expert.

3.2 Baselines

Two straightforward ways of performing the task under consideration are: (1) simply use 

MetaMap output, and, (2) train a model that learns to predict UMLS terms for each PICO 

element directly from the input text.

MetaMap—In the case of using MetaMap, it is not clear how best to assign the unstructured 

list of terms it provides for a piece of text to the respective PICO elements. Therefore, to 

make this baseline as competitive as possible, we ‘cheat’ in its favor by using text explicitly 

corresponding to different PICO elements. In particular, recall from above that in addition to 

attaching terms to abstracts, annotators also highlight the text corresponding to each PICO 

element. Therefore, we know which subspans correspond, e.g., to the population description 

in a given text. To induce P terms using MetaMap, we then pass only this population-

specific text to MetaMap and retrieve the corresponding terms that it provides. We 

emphasize that only this baseline model has access to the span-level annotations at test time, 

which would not generally be available. Therefore, this represents an upper-bound on the 

performance we can expect to realize using MetaMap alone.

Multitask neural model—As a second baseline, we use the output candidate generation 

model introduced in Section 2.2.2 (and depicted in Figure 4). Recall that this is a multitask 

CNN that directly predicts terms for each PICO element, given the input text.

3.3 Evaluation Details—We divided the data into 60/40 for train/test split. We had 

ground truth annotations for all instances and for all three PICO elements, i.e., all texts have 

4Cochrane is an international organization that focusses on improving healthcare decisions through evidence: http://
www.cochrane.org/.
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been annotated by domain experts with structured UMLS terms. The texts here are 

themselves summaries of each element written for previous reviews; we therefore 

concatenated these together, forming contiguous texts for each instance comprising spans 

relevant to the respective elements. We used only the ‘Cochrane subset’ of the UMLS. This 

is because the annotations we have (performed by Cochrane) contain only terms from this 

set. The Cochrane vocabulary comprises 366,772 concepts.

All hyper-parameter tuning was performed via nested validation (i.e., within train set). In 

particular, we used 30% of the training data for hyperparameter tuning. This included 

iteratively experimenting with and improving the structure of the network. The dropout rate 

[27] was tuned over a range of 10 equidistant values in the interval [0, 1]. The threshold for 

binary classification for each term (i.e., the threshold above which a term will be assigned) 

was tuned over the same range and interval. During hyperparameter search we optimized for 

average F1-score outputs. We trained for 100 epochs, caching and ultimately using the 

parameters that performed best on a nested validation set.

As mentioned previously, word embeddings were initialized to pre-trained vectors ft by 

running word2vec over all biomedical abstracts indexed on MEDLINE.

3.4 Metrics—We evaluated the performance of our approach using three standard metrics: 

precision, recall, and their harmonic mean (i.e., F1 score). We calculated these metrics for 

each instance and category (i.e., for each PICO element) separately, and aggregated over all 

instances for the respective categories to obtain MicroPrecision, MicroRecall and MicroF1 

scores.

These metrics are strict because they require exact matches between predicted and true 

concepts. Results will thus be pessimistic in the sense that the model will be heavily 

penalized for predicting a concept that is semantically similar to (i.e., nearby in the 

ontology) — but not an exact match to — a target concept. As a simple means of relaxing 

match criteria, we therefore additionally report precision and recall at ‘2-hops’ distance 

between annotations. Briefly, this counts a predicted term as a match to a target term if the 

former can reach the latter by taking two hops or fewer. More generally, we also report 

precision and recall at k hops for varying values of k in Figure 6.

4 Results

4.1 Quantitative Results

We report results for all models in Table 2. When reading the results here, which are low in 

absolute terms, it is important to keep in mind two key points. First, the output space is vast, 

which makes the task inherently quite difficult. And second, as mentioned above, the metrics 

are pessimistic here because they are very strict in requiring exact (or near-exact, in the case 

of the 2-hop metrics) matches.

The methods prefixed with ‘CS-’ (below the dotted lines) are the three instantiations of the 

Candidate-Selector framework we introduced in Section 2; these are compared to the two 

baselines described in Section 3.2. A few observations: CS- approaches uniformly best 
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baseline strategies, and the gains are considerable: we realize a 7-15 point absolute boost in 

F1-score, compared to the multitask neural model baseline. We also observe that the CS-

Joint approach (Figure 2) yields the best performance for both precision and recall (and so 

also F1) for interventions and outcomes categories, and remains competitive with respect to 

population predictions (achieving the best recall at a modest cost in precision). This 

demonstrates the advantage of exploiting correlations between the PICO elements.

Figure 6 shows mean r-precisions and r-recalls (mean taken over the three PICO elements) 

achieved, as a function of r. Thus these plots show the results achieved under increasingly 

relaxed definitions of concept matches. Note that we omit the MetaMap baseline from these 

plots because it performed very poorly, to the extent that it rendered the plots difficult to 

read. The salient observation here is that the CS- models dominate the multitask CNN 

baseline, and the CS-joint model is consistently the best performing. In other words, the 

results just reported are robust to more relaxed definitions of concept matches.

4.1.1 Unseen Concepts—As mentioned at the outset of this paper, a challenge in 

healthcare applications of machine learning is limited training data. In our case, this is 

compounded by the very large output (label) space. As a consequence, the test data often 

contains concepts (i.e., labels) that were never seen in the training data.

Approaches that learn to directly map from texts to predicted concepts would be generally 

incapable of predicting unseen concepts, by construction. Thus, e.g., our multitask CNN 

cannot predict a concept it has never seen in the training data, as there is no means of 

training the weights parameterizing the node corresponding to the unseen concept. However, 

because our Candidate-Selector architecture takes as inputs (embeddings of) candidate 

concepts, these can indeed be completely novel from the models perspective. Our use of 

MetaMap – and external candidate generator, effectively – means that it is entirely possible 

to select previously unseen terms. We show this in Table 6.

4.1.2 Pre-trained vs. Randomly Initialized Concept Embeddings—Recall that we 

use pre-trained distributed representations of medical concepts, induced via DeepWalk [25] 

performed over the UMLS graph. Here we explore the benefit (if any) of initializing 

embeddings to pre-trained vectors, as compared to randomly initializing them. In Table 4 we 

report results using these two initialization strategies. In general, using pretrained 

embeddings for initialization perhaps provides a slight edge, but the differences are not 

consistent.

4.1.3 Marginal vs. ‘Complete’ CS-Joint variant—Recall (Section 2) that the proposed 

CS-Joint model accepts as input triplets of candidate concepts, each assigned to a particular 

PICO element. This allows the model to exploit correlations between, e.g., populations and 

corresponding interventions. However, we would like to also enable the model to consider 

marginal probabilities of individual terms, conditioned on the input text). The model should 

be able to select these when appropriate, regardless of the other PICO term designations. To 

this end, in Section 2.3 we introduced the trick of including partially specified triplets, e.g., 

(cP, cI/C, _)}. Such partially specified triplets are also considered at test time during our 

exhaustive consideration of candidate triplets. The alternative would be to use only fully 
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specified PICO triplets. To validate the ‘marginals’ approach adopted, we therefore 

compared these two strategies. We report results in Table 5. Using the partially specified 

(marginal) triplets clearly and uniformly improves model performance.

4.1.4 Results on final heldout data—Finally, we report results achieved by the final 

models (trained on the entire dataset explored thus far) on a completely new/heldout set of 

data, collected while we developed the model. This dataset comprises 88 instances, 

annotated in total with 76, 87, and 139 unique concepts corresponding to population, 

intervention/comparator and outcomes, respectively.

Results on this dataset are reported in Table 3. Here we report only one-hop measures for 

brevity, although results with respect to two-hop metrics are comparable. We can see that the 

proposed CS- models again generally best baselines, and that on average CS-Joint model 

performs the best of these, achieving a mean F1 across elements of 0.43, versus 0.42 for CS-

Cond and 0.37 for the multitask model.

4.2 Qualitative Analysis

In addition to the quantitative results reported above, we performed a modest qualitative 

analysis. In particular, a selection of the model output on the test set was assessed 

qualitatively by an author who is clinically trained, and by an external annotation quality 

expert. We provide an illustrative example of model output in Figure 7. Qualitatively, the 

output was deemed usable for information retrieval purposes, and the majority of fields 

examined were populated with correct concepts. Missing concepts appeared to be the most 

common error type (e.g. ‘Third Trimester Pregnancy’ was correctly detected in Figure 7, but 

‘Second Trimester Pregnancy’ was not); these typically appeared to be caused by a concept 

not being present in the candidate set generated via MetaMap. Some source texts were short 

and lacking in detail (particularly those describing outcomes), resulting in missed 

annotations.

Perhaps unsurprisingly, longer and more descriptive source texts appeared to result in better 

quality output from MetaMap. Our system currently does not make use of negation 

information; so, e.g., characteristics of excluded populations would be assigned a positive 

concept. Overall, the annotations appeared more useful qualitatively than the quantitative 

results might suggest (given the low absolute values, which we discussed in brief above).

5 Related Work

We briefly review two threads of work related to our present effort: research on automated 

biomedical text annotation (Section 5.1) and then approaches to structured and multilabel 

classification. (Section 5.2).

5.1 Biomedical Text Annotation

Biomedical natural language processing is a broad, active field [12, 34]. Here we briefly 

review work relevant to our specific task of annotating text with structured PICO element 

concepts. One early system developed to extract clinical trial characteristics from free-texts 

is ExaCT [18], which aimed to identify and extract data elements from free texts describing 
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clinical trials necessary for evidence synthesis. ExaCT used a hybrid of statistical and rule-

based approaches. A similar system was developed by Summerscales [28]. His system 

attempted to automatically calculate summary statistics reported in an abstract by first 

identifying treatment group and outcome mentions and then processing numerical quantities 

in the text with reference to these.

Related work has attempted to identify spans or sentences of texts describing trials that 

correspond to the PICO elements. For example, Boudin et al. described ensemble methods 

for identifying sentences in abstracts corresponding to each PICO element [3]; they 

demonstrated that automatic PICO tagging can improve clinical IR [4]. More recently, 

Wallace and colleagues developed a model of extracting PICO sentences from full-texts, by 

exploiting a novel form of distant supervision [31].

Work has also been done on automatically assessing the ‘risks of bias’ in clinical trials, e.g., 

due to improper randomization, based on the text in the articles describing them. This work 

has entailed jointly extracting the sentences supporting these assessments [20, 21, 24, 32].

As far as we are aware, the present work is the first to consider the task of mapping from 

free-texts to structured concepts explicitly corresponding to the respective PICO elements.

5.2 Structured Multilabel Classification

The task we have considered may be viewed as an instance of structured multilabel 

classification. There is of course a rich body of work on general multilabel classification 

(e.g., [13, 14, 26]). It is challenging to learn an accurate and effective multilabel classifier in 

domains with many labels [29, 30]. Label space reduction methods provide one means of 

mitigating the problem of large label spaces [2, 7, 15].

More specific to the current application, multilabel classification for text has also received a 

fair amount of attention [16, 22]. A classic approach for multilabel text classification is to 

posit a generative mixture model wherein documents are associated with a set of labels that 

are in turn ascribed partial responsibility for generating the words comprising a given 

document [22]. It is not clear how to generalize this approach to our setting, however, 

because: (1) Labels are grouped as PICO elements which implies a correlation between 

these label sets, i.e., documents are not associated unstructured bags of labels; (2) Our 

output space (defined by a medical ontology) is vast, and thus a mixture model would 

require an unwieldy number of latent components.

Another sub-area of machine learning research relevant to our setting is multitask learning 

[5]. In particular, the PICO elements (and associated multilabel sets) may be viewed as 

distinctive ‘tasks’; thus we find ourselves in effectively a multitask multilabel setting. 

Standard multitask learning has been studied at length in general, and in the context of 

natural language processing in particular [10, 11]. Indeed, we build upon the basic neural 

multitask architecture in [10] as a component in our approach.

To the best of our knowledge, this is the first work to explicitly consider the problem of 

jointly annotating texts with ontological labels for multiple, correlated aspects.
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6 Conclusions

We developed a new model for structured clinical text annotation that can work effectively 

with limited training data. In particular, our model learns to infer terms from the UMLS 

metathesaurus that describe the individual PICO elements relevant to a given study, as 

described in an input free-text. This is an important practical task for biomedical natural 

language processing. Our model defines a novel Candidate-Selector architecture composed 

of two parts: candidate generation and then (possibly joint) selection and assignment of 

these candidates to constituent PICO elements. In our CS-Joint model the selection model is 

a Convolutional Neural Network jointly conditioned on a triplet of structured PICO UMLS 

terms and the free-text to be annotated, thus realizing a fully joint approach. This model 

achieved consistently strong empirical results, besting alternative approaches.

Moving forward, we believe we can further improve upon this model within the same 

framework, by better exploiting the ontological structure underlying UMLS. We also hope to 

focus efforts on improving the recognition of novel (unseen) terms, as this is important for 

the present task.
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Figure 1. 
Illustration of the annotation task. The output comprises concepts drawn from the UMLS 

controlled medical vocabularly, grouped into terms that describe the study Population, 

Interventions/Comparators and Outcomes.
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Figure 2. 
A schematic of our selector network variant CS-joint. This accepts as input the text snippets 

describing a study and a triplet of candidate concepts (cP, cI/C, cO), thus associating each 

candidate concept in the tuple with a particular PICO element. This induces a joint model 

that considers the likelihood of these three candidate concepts mapping to particular PICO 

concepts, given the input text. The output is a binary decision regarding the applicability of a 

candidate triplet.
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Figure 3. 
Schematic illustration of the use of MetaMap to generate a high recall set of candidate 

concepts. The target subset of concepts (here being those describing the interventions 

studied) are highlighted. Note that MetaMap output includes two types of noise: 1) An 

ambiguous string being assigned to the incorrect concept (e.g. ‘Sub’ being mapped to 

‘substance amount’) and 2) the concept being correctly mapped from text but not describing 

our aspect of interest.
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Figure 4. 
The multitask neural architecture we use to directly predict structured vocabulary terms from 

free texts.
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Figure 5. 
We consider two nodes at a distance of less than r hops as an ‘r-hop match’; with this we 

compute the precision@r-hops and recall@r-hops metrics.
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Figure 6. 
Average (over PICO elements)r-precisions (a) and recalls (b) for each method as a function 

of r (i.e., using increasingly relaxed metrics; r-precision) counts a predicted concept as 

matching the truth concept when it is ≤ r hops away.
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Figure 7. 
Illustrative example of model output.
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Table 1

Dataset statistics.

samples (clinical trials) 4306

distinct population concepts 875

distinct intervention concepts 1115

distinct outcome concepts 1731

population concepts 9387

intervention concepts 5458

outcome concepts 13800
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Table 3

Results on completely held out data (reference annotations were collected during model development).

Category Model Precision Recall F1-score

Population

MetaMap 0.190 0.274 0.224

Multitask 0.355 0.562 0.435

CS-Ind 0.413 0.758 0.534

CS-Cond 0.490 0.731 0.587

CS-Joint 0.413 0.772 0.539

Interventions

MetaMap 0.119 0.296 0.170

Multitask 0.298 0.371 0.331

CS-Ind 0.162 0.230 0.191

CS-Cond 0.196 0.250 0.219

CS-Joint 0.234 0.420 0.300

Outcomes

MetaMap 0.270 0.397 0.321

Multitask 0.339 0.319 0.328

CS-Ind 0.352 0.560 0.432

CS-Cond 0.356 0.601 0.447

CS-Joint 0.355 0.633 0.455
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Table 6

The number of unseen concepts identified correctly by the proposed CS-Joint model. The proposed model can 

identify such unseen concepts due to the use of MetaMap to generate candidate concepts, which may be novel 

from the perspective of the model. However, our use of pre-trained concept embeddings means that even when 

previously unseen, the model is sometimes able to correctly select such concepts. Models that explicitly learn 

to map input texts to concepts will in general be incapable of recognizing concepts not present in the training 

data.

Category Unseen concepts Correctly classified

Population 193 24

Intervention 326 54

Outcome 423 77
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