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Abstract (250 WORDS) 

 

Objective: Brain proton (1H) magnetic resonance spectroscopy (MRS) lactate/N-Acetylaspartate 

(Lac/NAA) peak area ratio is used for prognostication in Neonatal Encephalopathy (NE). At 3-Tesla 

in NE babies, the objectives were to assess: (i) sensitivity and specificity of basal ganglia and 

thalamus (BGT) 1H MRS Lac/NAA for prediction of Bayley III outcomes at 2-years using optimized 

metabolite fitting (Tarquin) with threonine and total NAA; (ii) prediction of motor outcome with 

diffusion-weighted MRI; iii) BGT Lac/NAA correlation with the NICHD MRI score.  

Materials and methods: 55 (16 inborn, 39 outborn) NE infants at 39w+5d (35w+5d-42w+0d) 

admitted between February 2012 and August 2014 to UCH for therapeutic hypothermia underwent 

MRI and 1H MRS at 3T on day 2-14 (median day 5). MRIs were scored. Bayley III was assessed at 

24 (22-26) months.  

Results: Sixteen babies died (1 inborn, 15 outborn); 20, 19 and 21 babies had poor motor, 

cognitive and language outcomes. Using a threshold of 0.39, sensitivity and specificity of BGT 

Lac/NAA for 2-year motor outcome was 100% and 97%, cognition 90% and 97% and language 

81% and 97% respectively. Sensitivity and specificity for motor outcome of mean diffusivity (MD; 

threshold 0.001 mm2/s) up to day 9 was 72% and 39% and fractional anisotropy (FA; threshold 

0.198) was 100%, and 94% respectively. Lac/NAA correlated with BGT injury on NICHD scores 

(2A, 2B, 3). 

Conclusions: BGT Lac/NAA on 1H MRS at 3T within 14 days accurately predicts 2-year motor, 

cognitive and language outcome and may be a marker directing decisions for therapies after 

cooling. 
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Background 
 
Intrapartum-related neonatal encephalopathy (NE) is a major health care problem across the 

world.1 The incidence of NE in Western Europe and North America is around 1-3/1000 term births 

depending on the definitions used.2 Although improvements in care might prevent NE and neonatal 

death in some cases,3 many cases cannot be prevented and therapies are limited. Therapeutic 

hypothermia (HT) initiated within 6h of birth improves outcome, yet despite this therapy 44-53% of 

infants with NE die or suffer moderate to severe disabilities including cerebral palsy, 

developmental delay, epilepsy and visual impairment.4 

 

Magnetic resonance imaging (MRI) is the imaging modality of choice for assessment of injury 

pattern, severity and prognostication in NE with an optimal timing between 5 and 14 days. The 

pattern and severity of the National Institute of Child Health and Human Development (NICHD) 

Neonatal Research Network (NRN) MRI score5 correlates with the outcome of death or disability 

and with disability among survivors. In a nested MRI study in the TOBY cooling trial, major MRI 

abnormalities in the first 4 weeks after birth predicted death or severe disability at 18 months in 

cooled babies with a sensitivity of 88% and a specificity 82%.6  Proton (1H) magnetic resonance 

spectroscopy (MRS) is increasingly used as an independent quantitative tool for clinical 

prognostication in NE and has been used in the TOBY-Xenon clinical neuroprotection trial as a 

surrogate outcome measure.7 1H MRS in the neonatal brain has prominent signal peaks related to 

the presence of N-Acetylasparate (NAA), choline, creatine, and lactate (Lac). Metabolite ratios (the 

signal amplitude of one metabolite versus another) are typically calculated for voxels positioned in 

the basal ganglia and thalamus (BGT). In the pre-cooling era, a meta-analysis demonstrated that a 

Lac/NAA threshold  of 0.29 (0.24 to 0.4) at 1.5T had a sensitivity of 82% and specificity 95% for 

predicting an abnormal outcome8 and was more accurate than conventional MRI and diffusion 

weighted imaging (DWI).  

 
Interest is now moving towards the tertiary phase of injury with therapies that can reduce 

neuroinflammation and improve regeneration and repair.9 A robust marker of brain injury and 

prediction of outcome following HT will be essential to detect babies who are likely to have adverse 

outcomes despite having had cooling therapy. An increased lactate and reduced NAA on MRS 

(translating to a high Lac/NAA peak area ratio) suggest brain mitochondrial impairment and 

impaired oxidative metabolism which may be amenable to late therapies. Unlike mean diffusivity, 

which pseudonomalizes around day 10 in babies who have been cooled,10 Lac/NAA remains 

stable over the first 2 weeks after birth and has potential to be used as a quantitative marker of 

brain injury after HT. Widespread hospital access to 3T MRI is now possible; a higher field strength 

as well as improved MRS analysis techniques are likely to further strengthen accuracy of Lac/NAA.  
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1H MRS measurements of brain Lac have focused on the methyl proton resonance at 1.31 ppm 

with an optimized long echo time (TE) to reduce contamination with lipid signal.11 The methyl group 

of threonine (Thr), an essential amino acid present in the brain, also resonates close by at 

approximately 1.32 ppm.12 The proximity of the methyl resonances of Lac and Thr mean that with 

conventional MRS they are not independently resolvable in in vivo spectra.13 A potential benefit of 

including threonine, in addition to lactate, in the spectral analysis is improvement in the spectral fit 

in the region around 1.3ppm in cases where lactate is raised. Similarly, including  both NAA and 

NAA-glutamate (NAAG, an abundant neurotransmitter released from axonal terminals with 

neuronal activity and hydrolyzed to NAA and glutamate; NAA+NAAG = total NAA (tNAA)) improves 

fitting in the region around 2.0ppm at field strength of 3T.14 

 

The objectives of this study were, in NE babies who have been cooled, to assess: (i) basal ganglia 

and thalamus (BGT) 1H MRS Lac+Thr/tNAA sensitivity and specificity at 3T for motor, cognitive 

and language Bayley III outcomes at 2 years; (ii) prediction of motor outcome of Lac+Thr/tNAA 

versus other MRI biomarkers (MD and FA) before pseudonormalization; iii) BGT Lac+Thr/tNAA 

correlation with the NICHD MRI score.  
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Subjects and Methods 

Approval was given from the University College London Hospital Research Ethics Committee for 

this retrospective service improvement project. Anonymized data that is routinely collected in our 

centre was used and requirement for informed consent was waived.  

 

Infants treated with therapeutic hypothermia for moderate to severe NE in University College 

London Hospitals between February 2012 and August 2014 were reviewed. Infants with perinatal 

stroke, major congenital malformations and metabolic or congenital infection were excluded from 

the study. Neurodevelopmental follow up data at 2 years were available in all 58 term newborn 

infants who were cooled.  Of the 58 infants 3 were excluded as they were part of another 

multicentre trial protocol. Fifty-five term neonates with a mean (range) gestational age (GA) of 

39+5 (35+5 - 42+0) weeks and a birth weight of mean (standard deviation; +sd) 3260 (566) g were 

included. Thirty-nine infants were inborn and 16 were outborn. These neonates fulfilled criteria for 

HT based on the National Institute for Clinical Excellence criteria.15 In 5 deliveries, there was 

uterine rupture and in 2 deliveries there was placental abruption. The mean +sd arterial gas (cord 

or within 60 minutes of birth) was 6.9 +0.2 and base deficit -15 +7. Mean Apgar scores 2 +2 at 1 

minute, 4 +2 at 5 minutes and 6 +3 at 10 minutes. All neonates required resuscitation at birth. 

Seven infants had a birthweight <10th centile. All infants received intravenous morphine sulphate 

(up to 30 microgram/kg/hr) during therapeutic hypothermia. All infants were monitored with 

continuous video EEG throughout cooling and rewarming. Following clinical or electrographic 

seizure activity, infants received phenobarbitone as first line (up to 40 mg/kg total), phenytoin as 

second line (20 mg/kg) and midazolam (bolus followed by infusion) as third line anti-epileptic drug. 

Seizure burden was not assessed as part of this study.  

 

Magnetic resonance imaging and spectroscopy 

Magnetic resonance imaging 

Scanning was performed at a median (range) age of 5 (2-14) days. In 47 infants the MRI was 

performed after the 72h HT and following rewarming to normothermia; in 8 infants the MRI was 

done during cooling to inform the direction of care. Scanning was performed either during natural 

sleep or after sedation with a morphine infusion. Most neonates (48) were ventilated during 

scanning and were transported and studied in a Lammers Medical MR Conditional transport 

incubator (LMT Medical Systems GmbH, Luebeck, Germany) with gentle head restraint. 

Throughout the examination, neonates were monitored by using MR-compatible pulse oximetry 

and electrocardiogram and supervised by an experienced neonatologist trained in clinical MR 

imaging safety.  

 



   6 

MRI was performed on a 3T MR system (Philips Medical Systems, Best, The Netherlands). The 

scanning protocol included T1-weighted imaging (Inversion-prepared 3D gradient echo readout: 

TI= 1465ms, TR =17ms, TE = 4.6ms, sagittal slice thickness = 1mm, in-plane resolution = 0.82 x 

0.97 mm), T2-weighted imaging (Coronal and axial, Turbo  Spin Echo: Echo Train length = 11, TR 

=10,721ms, TE = 130ms, slice thickness = 3mm, in-plane resolution = 0.50 x 0.52 mm), DTI (32 

directions, b = 750, EPI readout: TR = 7500ms, TE = 49ms, slice thickness = 2mm, in-plane 

resolution = 2.0 x 2.04 mm).   

 

Images were scored using the NICHD NRN MRI5 score by RG who was blind to the perinatal 

history and clinical outcome. NICHD NRN MRI score has been validated to predict death or IQ at 

6-7 years of age following hypothermia for NE. The score describes pattern 0 (normal MRI), 1A 

(minimal cerebral lesions), 1B (extensive cerebral lesions), 2A (basal ganglia thalamic, anterior or 

posterior limb of internal capsule, or watershed infarction), 2B (2A with cerebral lesions) and 

pattern 3 (hemispheric devastation).  

 

Magnetic resonance spectroscopy 

MRS was performed using PRESS (15x15x15 mm voxel position on the left thalamus / basal 

ganglia, TR=2288ms, TE=288ms, a dynamic series of 16 spectra were acquired each with 8 

averages). The dynamic spectra were summed offline after phase and frequency correction and 

rejection of motion-corrupted data. MRS analysis was performed using Tarquin.16 The basis set 

included Threonine (Thr),11 but did not include lipids or macromolecules. When the signal around 

1.3ppm is high we have observed that the spectral fit in this region often has a significant residual.  

Including Thr in the basis set typically improves the fit in this region of the spectrum (Figure 1).  

The ratio of lactate (Lac) plus Thr to total NAA (N-acetylaspartate plus N-acetylaspartate 

glutamate), (Lac+Thr)/tNAA was calculated using the amplitudes of the fitted components. The 

position of the voxel and representative 1H MRS spectra in normal and abnormal outcomes are 

shown in Figure 2. 

 

Mean Diffusivity and Fractional anisotropy 

The DTI volumes were analyzed using tools from the FSL brain imaging software library17 and the 

DTI-TK toolbox.18 Non-brain tissues were first removed using image segmentation software and 

the FSL-EDDY tool used to correct the DTI volumes for eddy current induced distortions in the 

image and subject movement.  After this the diffusion datasets were inspected and those with 

severe un-correctable motion artifacts were rejected from further analysis. There were 49 usable 

datasets. These were then processed using the FSL-FDT toolbox, which contains tools to fit the 

diffusion tensors from the DTI data and calculate mean diffusivity (MD) and fractional anisotropy 
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(FA) maps. MD and FA values for the BGT (Figure 3) were segmented using the atlas described 

below.  

 

Regional analysis 

Regional MD and FA were computed in BGT using BGT masks generated automatically based on 

both atlas based probabilistic tissue segmentations of 5 tissue classes19 and a joint multi-atlas 

label propagation and fusion of 50 manual segmentations of neonatal brain regions.20 T2W atlas 

images were non-linearly registered to T2W image of each neonate, and the probabilistic maps 

and parcellations were propagated to individual subject space using the Nifty-Reg package.21 

Probability maps were used to segment T2W images by the AdaPT22 algorithm using Nifty-Seg 

package.23 T2W subject images were co-registered to the MD maps using rigid registration, with 

tissue segmentations and brain parcellations propagated to MD space and resampled using point 

spread function matching.24  BGT mask was created by combining propagated parcellations of the 

thalami, sub-thalamic, caudate and lentiform nuclei.20 The internal capsule was not defined as part 

of the segmentation and no additional steps were undertaken to separate this structure. All 

generated segmentations were checked visually for correct anatomical correspondence.  Voxels 

that were obviously mis-assigned (typically within vessels and less than 10 voxels per dataset) 

were manually edited if necessary. Finally, MD and FA were quantified within BGT segmentation 

mask. 

 

Tract based Spatial Statistics (TBSS)  

Tract based Spatial Statistics (TBSS) is a method allowing for the voxel-wise statistical analysis of 

the WM tract anatomy between subjects.25 It is therefore distinct from the measurement of FA 

within a specific brain region such as the BGT as described above. TBSS was performed on the 

corrected DTI volumes using an integration of the DTI-TK diffusion toolbox with the FSL-TBSS 

pipeline. This aimed to combine spatial normalization provided by DTI-TK together with voxel-wise 

statistical inference for white matter anatomy provide by TBSS. DTI-TK allows the tensor 

registration of each subject to a population specific template.   

 

An initial template was formed from 5 well-aligned datasets. This was then refined through three 

stages of alignment; rigid, affine and deformable. Tensor based registration has been shown to 

provide an improved alignment of WM tracts compared to using the derived FA maps in the 

standard TBSS pipeline.26 A population specific template also may avoid biases associated with 

templates based on the most typical subject. The template and spatially normalized data sets were 

then used to create a mean FA skeleton and a 4D FA map respectively. These were introduced 

into the final stages of the standard TBSS pipeline. This allowed for the voxel-wise analysis of 

white matter FA between outcome groups (normal versus abnormal motor outcome).  The FA 
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threshold used in this study was 0.15.  No additional steps were taken to remove non-white-matter 

voxels from the FA skeleton. 

 

Clinical data and outcome 

Neurodevelopmental outcome was assessed at 3, 6, 12 and 24 months as per local and regional 

protocols. At 24 (22-26) months, the Bayley Scales of Infant Development 3rd edition was used for 

assessment (Bayley III).27 The Bayley III has five scales (Cognitive, Language (Receptive and 

expressive), Motor (Fine and Gross motor), Social Emotional and Adaptive Behavior). The Bayley 

III independently assesses cognitive and language skills (previous Bayley editions combined 

cognitive and language into one mental scale). Cognition’s raw score is transformed into a 

composite score. Language and Motor raw scores are analyzed independently for each subscale 

or as a composite score. Death or a composite score of <85 on language, motor or cognitive 

scales at 2 years of age was considered abnormal. 

 

Statistical analysis 

The values of (Lac+Thr)/tNAA peak area ratio are not normally distributed in this cohort.  

Therefore, in order to use parametric statistics on this dataset, (Lac+Thr)/tNAA was transformed to 

log10[(Lac+Thr)/tNAA] prior to analysis. 

 

The relationship between log10[(Lac+Thr)/tNAA] and the probability of motor, cognitive and 

language outcome was assessed using logistic regression modelling to each outcome separately. 

For each model, the value of log10[(Lac+Thr/tNAA)] that gave the optimum sensitivity and 

specificity was chosen for classification of ‘abnormal’ for values above the threshold.  From this 

value, the optimum threshold of (Lac+Thr)/tNAA peak area ratio for classification of ‘abnormal’ 

could then be calculated. The relationship between MD and also white matter FA and the 

probability of motor outcome was also assessed using logistic regression up to 9 days (before 

pseudonormalization) and for all scans (up to 14 days). 

 

One-way analysis of variance (ANOVA) was used to compare (i) mean Lac+Thr/tNAA levels in 

‘abnormal’ versus ‘normal’ outcome groups for each of motor, language and cognitive outcomes, 

and (ii) mean Lac+Thr/tNAA levels across NICHD MRI classification groups 2A, 2B and 3. 

 

Voxel-wise analysis of white matter FA, performed using TBSS, is presented by color-coding 

voxels with a significant difference (p<0.05) in FA between outcome groups.  
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Results 
 
Of the 55 infants included, 16 infants died (one inborn, 15 outborn), 20 infants had abnormal motor 

outcome, 19 had abnormal cognitive outcome and 21 had abnormal language outcome by 2 years 

of age (Table 1). There were 18 infants who had abnormal outcomes in all three domains (motor, 

language and cognitive). Two other infants had abnormal motor outcome (total 20) without any 

cognitive or language problems. One other infant had an abnormal cognitive outcome (total 19), 

without any other motor or language problem. Three other infants had an abnormal language 

outcome (total 21) without any motor or cognitive problems. 

 

MRI 

NICHD MRI score was 0 in 20 babies, 1A in 7 babies, 1B in 3 babies, 2A in 3 babies, 2B in 7 

babies, 3 in 15 babies.  

 

1H MRS 

The Lac+Thr/tNAA and log10[(Lac+Thr)/tNAA] ratios by age at scan are shown in Supplementary 

Figure 1. Using a log10[(Lac+Thr)/tNAA] cut off threshold of -0.41, the sensitivity and specificity for 

predicting motor outcome in the Bayley III assessment was 100% and 97% respectively with an 

AUC of 0.997 (Figure 4A). This threshold predicted cognitive outcome with sensitivity of 90% & 

specificity of 97%, AUC of 0.967 (Figure 4B) and language outcome with a sensitivity of 81% & 

specificity of 97%, AUC of 0.913 (Figure 4C) (Table 2). Comparing the group means of the normal 

and abnormal outcomes grouped by motor, cognitive and language outcomes respectively, there 

were significant differences in the log10[(Lac+Thr)/tNAA] (p<0.0001 for all comparisons) (Figure 

4D, E, F). The log10[(Lac+Thr)/tNAA] threshold of -0.41 equates to an untransformed 

(Lac+Thr)/tNAA threshold of 0.39. 

  

MD and FA 

For all scans up to day 14, BGT MD predicted motor outcome with a sensitivity 65% and specificity 

100% with an AUC of 0.769. BGT FA predicted motor outcome with a sensitivity 45% and a 

specificity 91% with an AUC 0.544 (Table 2A). Some correlation existed between Lac+Thr/tNAA 

and BGT MD (R2 0.51) but not with BGT FA (R2 = 0.01).  

 

Limiting the analysis to scans done up to day 9 after birth, before the return of MD to normal 

(pseudonormalization), BGT MD predicted motor outcome with a sensitivity 72% and specificity 

100% with an AUC of 0.819 (Table 2B, Figure 5A). BGT FA predicted motor outcome with a 

sensitivity 39% and a specificity 94% with an AUC 0.507 (Figure 5B). Comparing the means of the 

normal and abnormal groups for motor outcomes, there was a significant difference between MD 
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(p=0.001) (Figure 5C) but not for FA (p=0.707) (Figure 5D).  

 

Relation between Lac+Thr/tNAA and MRI score 

Analysis of variance to compare BGT mean log10[(Lac+Thr)/tNAA] across the different MRI scores 

showed an increase in BGT mean log10[(Lac+Thr)/tNAA] with increasing BGT severity on the 

NICHD MRI score from score 2A onwards (pattern 2A, any BGT, anterior limb of internal capsule 

(ALIC) or posterior limb of internal capsule (PLIC) involvement or watershed infarction noted 

without any other cerebral lesions; pattern 2B, involvement of either BGT, ALIC or PLIC or area of 

infarction and additional cerebral lesions; and pattern 3, cerebral hemispheric devastation (Figure 

6).5 

 

TBSS 

There were 541 significantly lower FA voxels out of a total of 69851 in the mean FA skeleton in the 

abnormal compared to the normal motor outcome group. There were no other statistically 

significant associations. The mean FA map was produced through the registration of all subjects 

diffusion datasets using DTI-TK. The mean FA skeleton was overlaid on the mean FA map and the 

results of the statistical analysis for Bayley III motor outcome are shown in Supplementary Figure 

2. Voxels wherein infants with poor motor outcome had lower FA (p<0.05) are shown in red-yellow. 

On the axial view there were significantly lower voxels in the ALIC and PLIC in the abnormal motor 

outcome group. On the coronal view, there were significantly lower voxels in optic radiations in the 

abnormal motor outcome group.   
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Discussion 
 
This study shows that a 1H MRS spectrum acquired at 3T from the BGT using a long echo time 

(288ms) for Lac+Thr/tNAA peak area ratio within 14 days of birth in babies with moderate to 

severe NE who had HT accurately predicts 2-year outcome. Using a threshold of 0.39, BGT 

Lac+Thr/tNAA peak area ratio predicts motor, cognition and language outcomes (sensitivity and 

specificity of 100% and 97%, 90% and 97%, 81% and 97% respectively).  Normal and abnormal 

motor, cognitive and language outcome groups had significantly different mean BGT 

log10[(Lac+Thr/tNAA)] levels (p < 0.001). BGT log10[(Lac+Thr/tNAA)] correlated with BGT 

involvement in the NICHD MRI score (scores 2A, 2B, 3).  

 

In the 2010 meta-analysis of Lac/NAA peak area ratio, including 32 studies (860 infants) with NE 

who were not cooled, sensitivity and specificity was 82% and 95% for motor outcome for data 

acquired between day 1-30.8  In our study at 3T in babies in the cooling era, BGT Lac+Thr/tNAA 

had a sensitivity and specificity for predicting motor outcome of 100% and 97% respectively. 

Therefore, BGT Lac+Thr/tNAA acquired within 14 days of birth and after HT remains a robust 

predictor of motor outcome in babies who have had HT. For the first time BGT Lac+Thr/tNAA, 

using a threshold of 0.39, is shown to predict cognitive and language outcomes as well as motor 

outcomes (Table 2 and Figure 3). The improved accuracy and prediction across other domains 

may be attributed to the improved spectral fitting with inclusion of Thr, acquiring MRS within 14 

days and the use of higher field strengths allowing for a greater spectral separation. The prediction 

of specific neurodevelopmental domains with BGT Lac+Thr/tNAA further emphasizes the central 

importance of injury to the BGT in determining outcome across several domains. The influence of 

BGT on outcome was also seen in the correlation between Lac+Thr/tNAA and the BGT 

involvement in the NICHD MRI score (pattern 2A, 2B, 3 BGT involvement). The importance of the 

BGT predicting outcome was observed in the MRI score described by de Vries and colleagues; in 

their study only the grey matter score was included, suggesting this location most closely 

determines outcome in NE.28 The sensitivity and specificity for 2-year neurodevelopmental 

outcome of this MRI score was 92% and 95% for the retrospective cohort and 42% and 98% for a 

prospective cohort. There was no 1H MRS included in the prospective cohort, which may explain 

the reduced accuracy.28 

 

1H MR Spectra were analyzed using Tarquin, a freely available spectroscopy analysis tool that fits 

signals in the time-domain using a metabolite basis set. Tarquin is similar to LCModel in that it 

uses a basis set of metabolite signals to fit to the acquired spectrum. Tarquin has been shown to 

be robust, to produce similar results to LC Model in healthy volunteers,16 and to have comparable 



   12 

errors to LC Model using monte carlo simulations.13  It has been used for the quantitative 

evaluation of brain and brain-tumour metabolites in humans29-31 and in an animal model.32 

 

Threonine (Thr) was included in the basis set for the spectral analysis. Thr is an essential amino 

acid, which is important for protein synthesis and folding. Foods such as meat, milk, beans and fish 

are a source of Thr. Thr has been detected in human brain on autopsy30 and also by 1H MRS.16 

Thr brain levels are known to be affected by protein intake with low protein diets leading to reduced 

Thr levels in experimental rats.31 Chronic energy deficiency however was not associated with 

changes in brain Thr levels.33  Nevertheless, we have observed that including Thr in the metabolite 

basis set improves the signal fit in the region around 1.3ppm, especially when the signal in this 

region is large (Figure 1).  Lac and Thr are not easily resolvable in in vivo spectra16 and so the 

sum of Lac+Thr is the most meaningful quantity to report.34  The inclusion of Thr has only a small 

effect on the fitting of other metabolites in the basis set other than Lac due to minimal overlap. 

 

Restricting to scans acquired up to day 9 when pseudonormalization of MD occurs in cooled 

babies with NE,10 sensitivity and specificity for motor outcomes for MD (threshold 0.001mm2/s) was 

72% and 100% and FA (threshold 0.198) was 39% and 94%. These values were similar to MD and 

FA sensitivity and specificity for all scans up to day 14; as only 5 babies were scanned after day 9 

these would have had a small influence. DTI analyzed by TBSS has been previously used to show 

a treatment effect of HT in babies with NE;35 babies who were not cooled (and likely to have 

adverse outcomes) had lower FA in the ALIC, PLIC and optic radiations. These findings are similar 

to the regional differences in our normal and abnormal motor outcome groups. In a subsequent 

study, Tusor et al report that NE infants with unfavorable outcomes after HT had lower FA values 

(p < 0.05) in centrum semiovale, corpus callosum, ALIC, PLIC, fornix, cingulum, cerebral 

peduncles, optic radiations, and inferior longitudinal fasciculus.36  It is notable that the current 

cohort demonstrates a relatively limited distribution of lower FA after HT compared with that 

reported by Tusor. The reason this discrepancy is not clear as patient populations, acquisition and 

TBSS methods for the two studies are similar.    

 

There are some limitations to the study. Firstly, the threshold of 0.39 Lac+Thr/tNAA was chosen as 

the threshold for normal/abnormal outcome for motor, cognitive and language outcomes by 

assessing the value that gave the optimum sensitivity and specificity on logistic regression. This 

Lac+Thr/tNAA threshold needs to be validated in another cohort of babies with NE. Secondly, the 

accuracy of Lac+Thr/tNAA for predicting cognitive and language as well as motor outcome may be 

influenced by overlap of poor outcome domains within individuals (18 infants had abnormal 

outcomes in all domains). Thirdly, the highest brain lactate levels were seen in the scans acquired 
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during the first 4 days; this pattern may have been influenced by earlier scans done in the most 

severely affected infants to help with clinical management decisions. Lastly, the process of 

pseudonormalization of MD is a biological continuum and the cut-off of day 9 is somewhat arbitrary 

and based on a small retrospective study.10 Variation in pseudonormalization within the study 

population could therefore have confounded the diffusion weighted MRI analysis (MD). 

 

Brain lactate has been observed to persist for months in the brain of babies with adverse 

outcome after NE;37 38 this persisting brain lactate is associated with abnormal MRI and brain 

alkalosis.38 Mechanisms leading to persisting raised brain lactate include impaired mitochondrial 

function and oxidative phosphorylation leading to an increase in anaerobic glycolysis , an altered 

redox state, the presence of phagocytic cells, gliosis, loss of perfusion autoregulation and/or 

altered buffering mechanisms. This persisting abnormal brain metabolism may reflect tertiary 

brain injury9 and be a marker of ongoing injury, which may be a target for therapies. NAA is the 

second most abundant amino acid-related metabolite in the brain after glutamate. Both NAA 

and NAAG synthesis in neurons is ATP-dependent and hypoxia-ischemia initiates a decline in 

NAA/NAAG within hours. Much of the NAA synthesized in the neuron is transported to 

oligodendrocytes where it is a substrate source for myelin synthesis; it is likely that decreases in 

NAA following NE will lead to a reduced myelination.14 In adult stroke, NAA levels can predict 

the fate of an acute ischemic lesion with more accuracy than DWI.39 40 The dissociation between 

NAA and DWI after hypoxia-ischemia has been well described; restoration of ADC occurred 

despite the subsequent infarction of tissue whereas NAA levels continued to show a decline in 

the same area.41 Our findings in babies with NE concur with the experience in adult stroke of 

better accuracy of 1H MRS in predicting outcome compared to MD and FA. We previously 

described the central importance of NAA in predicting outcome: absolute concentrations of NAA 

[NAA] in babies with NE were more accurate than peak area ratios of Lac/NAA and could 

discriminate control, normal/mild, and severe/fatal outcome groups during the first 4 days after 

birth.42 Time constraints, however, make collection of data for absolute concentration impractical in 

clinical MRI/MRS studies. Moreover, a significant advantage of peak-area ratios eg with 

Lac+Thr/tNAA, is that they depend on both metabolite T2s and concentrations, both of which are 

pathologically modulated and hence injury severity prediction is improved.42 

 

In conclusion, we have shown in 55 babies with moderate to severe NE who have undergone HT, 

that BGT Lac+Thr/tNAA acquired at 3T within 14 days after birth predicts Bayley III motor, 

cognitive and language outcomes with a high degree of accuracy; the central importance of the 

BGT in prediction of all three domains was clear. Optimized spectral fitting with Tarquin and higher 

field strength may contribute to the improved accuracy compared to previous studies.   

Lac+Thr/tNAA correlated with MRI scores of BGT injury. Lac+Thr/tNAA is a robust marker of 
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neurodevelopmental outcome on which decisions for adjunct therapies in the subacute phase after 

HT might be based upon. 
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What is already known on this topic 

1. Lac/NAA peak area ratio acquired in the first 30 days in non-cooled babies with NE predicts 

motor outcome with a sensitivity of 82% and specificity of 95% and is more accurate and 

stable than mean diffusivity  

2. MRS is easy to acquire on modern MRI scanners.  Peak area ratios are simple calculate 

and require only a single acquisition.   

3. Improved metabolite peak definition may be seen at 3T versus 1.5T 

 

 

 

 

 

What this study adds 

1. BGT Lac+Thr/tNAA acquired at 3T within 14 days after birth in babies who have been 

cooled predicts Bayley III motor, cognitive and language 2-year outcomes with a high 

degree of accuracy 

2. Higher field strength (3T) and inclusion of threonine with lactate in the metabolite basis set 

may contribute to better prediction  

3. BGT Lac+Thr/tNAA had improved sensitivity and specificity for motor outcomes than MD 

and FA during the period up to day 9 before MD pseudonormalization 
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Tables 

 

Gestational age (weeks + days) 39+5 (35+5 – 42 weeks) 

Birth weight (grams) 3260566 

Sex (Male: Female) 23:22 

Arterial cord gas pH 6.90.2 

Arterial cord base deficit  -157 

Apgar score at 1 min 22 

Apgar score at 5 min 42 

Apgar score at 10 min 63 

Inborn: Outborn infants 16:39 

Age at MRI (days) 5 (2-14) 

 
Table 1. Patient characteristics. Gestational age is presented as mean (range), age at MRI 

as median (range) while other parameters are presented as meanSD. 
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Bayley III 
outcome at 2 
years 

Cut off / 
Threshold 

Normal 
outcome at 
2 years (n) 

Abnormal 
outcome at 
2 years (n) 

Sensitivity Specificity AUC 

Lac+Thr/tNAA 
vs Motor  

0.39 35 20 100% 97% 0.997 

Lac+Thr/tNAA 
vs Cognitive 

0.39 33 19 90% 97% 0.967 

Lac+Thr/tNAA 
vs Language 

0.39 30 21 81% 97% 0.913 

Mean 
diffusivity (MD) 
(mm2/s) 
 vs Motor 

0.001 35 20 65% 100% 0.769 

Fractional 
Anisotropy 
(FA) vs Motor 

0.198 35 20 45% 91% 0.544 

 
Table 2A. The logistic regression model for all 55 subjects scanned between 2-14 days after birth. 
Log10(Lac+Thr/tNAA) was used to determine the diagnostic accuracy of a Lac+Thr/tNAA threshold 
of 0.39 for motor, cognitive and language outcomes at 2 years along with mean diffusivity (MD) 
and fractional anisotropy (FA).  

 
 
 

Bayley III 
outcome at 2 
years 

Cut off / 
Threshold 

Normal 
outcome at 
2 years (n) 

Abnormal 
outcome at 
2 years (n) 

Sensitivity Specificity AUC 

Lac+Thr/tNAA 
vs Motor  

0.39 31 19 100% 97% 0.997 

Lac+Thr/tNAA 
vs Cognitive 

0.39 31 18 94% 97% 0.987 

Lac+Thr/tNAA 
vs Language 

0.39 28 20 85% 96% 0.935 

Mean 
diffusivity (MD) 
(mm2/s) 
 vs Motor 

0.001 32 18 72% 100% 0.819 

Fractional 
Anisotropy vs 
Motor 

0.198 28 20 39% 94% 0.507 

 
Table 2B. The logistic regression model for subjects scanned between day 2-9 (n=50) after birth. 
Log10(Lac+Thr/tNAA) was used to determine the diagnostic accuracy of a Lac+Thr/tNAA threshold 
of 0.39 for motor, cognitive and language outcomes at 2 years along with mean diffusivity (MD) 
and fractional anisotropy (FA). 
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Figure Legends 
 

Figure 1: (A) Representative fitting of the 1H MR spectrum using Tarquin and a basis metabolite 

set that includes both lactate and threonine. The “residual” once the fitting has occurred is minimal 

(circle). (B) Removing threonine from the basis metabolite set leads to a large “residual” to the fit 

(circle), especially if the lactate signal in the region of 1.3ppm is elevated. 

 

Figure 2: Position of the thalamic 1H MRS voxel for spectral acquisition (sagittal A and axial B) 

from a neonate with normal outcome (Lac+Thr/tNAA 0.19) (C) and a neonate with poor outcome 

(Lac+Thr/tNAA 0.62) (D) after HT for NE. 

 
Figure 3: ROIs for MD and FA in BGT were defined automatically based on both an atlas based 

probabilistic tissue segmentation and on a joint multi-atlas label propagation and fusion of 50 

neonatal brain regions.  

 

Figure 4: Logistic regression analysis of log10Lac+Thr/tNAA for outcome prediction. Using a 

Lac+Thr/tNAA cut off threshold of 0.39 (equating to -0.41 for Log 10 Lac+Thr/tNAA), TARQUIN 

analysis gave 1 false positive (A) for predicting poor motor outcome at 2 years (sensitivity 100%, 

specificity 97%, AUC 0.997). Analysis for cognitive outcome gave 1 false positive and 2 false 

negative (sensitivity 90%, specificity 97%, AUC 0.967 (B). Analysis for language outcome gave 1 

false positive and 4 false negatives (sensitivity 81%, specificity 97%, AUC 0.913 (C). The normal 

and abnormal group means of log10Lac+Thr/tNAA were significantly different for motor (D), 

cognitive (E) and language (F) domains (p<0.0001). 

 

Figure 5: Logistic regression analysis of mean diffusivity (MD) (mm2/s) and fractional anisotropy 

(FA) restricted to scans acquired day 1-9 before pseudonormalization for motor outcome prediction 

only (50 of 55 scans). MD threshold of 0.001mm2/s gave a sensitivity of 72%, specificity 100%, 

AUC 0.819) (A); FA threshold of 0.198 gave a sensitivity 39%, specificity 94%, AUC 0.507) (B). 

The normal and abnormal group motor outcome means of MD were significantly different 

(p<0.001) (C); for FA there was no difference (p=0.707) (D). 

 

Figure 6: BGT Lac+Thr/tNAA correlated with BGT involvement in NICHD MRI score - scores 

2A,2B,3. The BGT injury on MRI is indicated by the dotted box. Analysis of variance to compare 

BGT mean log10[(Lac + Thr)/tNAA] revealed significant differences between score 2A and B 

(p=0.0003) and score 3 and 2B (p=0.001). 
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Supplementary Figure 1: Lac+T/tNAA (left) and log10[(Lac + Thr)/tNAA] (right) peak area ratio in 

all NE babies versus age of scan up to day 14.  

 

Supplementary Figure 2: Tract based spatial statistics (TBSS) analysis was performed with the 

mean FA skeleton overlaid in green on the mean fractional anisotropy map. Axial view at PLIC (A), 

midline sagittal view(B), coronal view at level of PLIC and splenium (C). Voxels wherein infants 

with poor motor outcome had lower FA (p<0.05) are shown in red-yellow. The axial view indicated 

lower voxels in PLIC and ALIC.  The coronal view revealed lower voxels in optic radiations. 

 

  

 

 

 

 

 

 

 

 
 
 
 
 
 


