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Abstract

To simulate the hydrodynamics and mixing characteristics of chemical reac-

tors by means of a lattice Boltzmann method (LBM), it is essential to consider

components with varying molecular weights (and therefore speeds of sound).

This option requires modi�cation of the standard equilibrium distribution func-

tion and the use of an extended velocity set. In this paper, we show that,

for isothermal incompressible single-component non-reactive �ows, tuning the

speed of sound with a modi�ed equilibrium distribution and an extended ve-

locity set allows for reproducing the proper �ow characteristics with strongly

reduced errors compared to LBM simulations on standard lattices. This is done

for two isothermal benchmarks, viz. a damped standing pressure wave and a

decaying viscous Taylor-Green vortex. The convergence as a function of the

number of lattice nodes used improves substantially for varying values of the

speed of sound.
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tunable speed of sound, damped pressure wave, Taylor-Green Vortex

1. Introduction

This paper reports on our results with respect to introducing, exploiting

and assessing variable speeds of sound in isothermal lattice Boltzmann (LBM)

�ow simulations. Our wish to introduce variable speeds of sound stems from

our interest in computationally simulating chemical reactors operated either

in batch, semi-batch, or continuous �ow modes. A rather unexplored aspect

of simulating reactive �ows by means of lattice Boltzmann methods (LBMs),

however, relates to the di�erences in molecular mass that are typical of chemical

reactions where mass is conserved but the number of moles and molecular mass

vary between reactants and products [1, 2]. One of the options for dealing with

these variations in molecular mass is by means of a tunable speed of sound.

In LBM, the speed of sound cs plays a major role although it is not a physi-

cally meaningful property of an incompressible �uid [3]. It �gures predominantly

in the Chapman-Enskog multi-scale analysis that relates the (discretized) Boltz-

mann equation to the macroscopic continuum description [4�6]. In the LBM

approach, (partial) pressure, temperature and kinematic viscosity are all pro-

portional to c2s, as in an ideal gas. In general, we have the isothermal sound

speed c2s = RT
M , where R is the universal gas constant, T is temperature, and

M is the molecular mass. This follows from the ideal equation of state p = ρRT
M

and c2s = ∂p
∂ρ

∣∣∣
T
. In the standard isothermal LBM, the speed of sound is �xed

and determined by the lattice. For certain applications, however, such as the

chemical reactors of our interest, it is necessary to simulate components with

di�erent molecular masses and therefore di�erent sound speeds. Speci�cally, we

require a component σ to have di�erent equations of state pσ = ρσRT
Mσ

= ρσc
2
s,σ

and the total pressure p =
∑
σ pσ. For such systems, we must be able to tune

the speeds of sound of the components while retaining a correct description of

the hydrodynamics.

With eventual applications to �ows in chemical reactors in mind, the purpose

of this paper is to demonstrate the feasibility of retaining correct hydrodynamics

while using a variable isothermal sound speed. The meso-scale LBM is known

to be excellently capable of simultaneously dealing with thermodynamic, hydro-
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dynamic and chemical phenomena and processes in a computationally e�cient

and elegant way. It is also known, however, that in non-isothermal �ows satis-

fying the constraints posed by the thermohydrodynamic equations requires the

extension of the LBM velocity set beyond the minimum number that is used

in the standard isothermal LBM [7�10]. Since in the LBM the speed of sound

is proportional to temperature, it is clear from these studies that also under

isothermal conditions tuning the speed of sound, while not necessarily spatially

or temporally variant, requires the use of lattices with additional velocities to

retain correct hydrodynamics.

In this paper, we �rst show we must both modify the equilibrium distibution

and use an extended velocity to allow a variable speed of sound. For our present

purpose, simulations of a single component system are su�cient to demonstrate

the ability to vary a component's speed of sound, while, compared to multi-

component systems, such single-component simulations allow a more transpar-

ent analytical treatment (Chapman-Enskog), easier numerical implementation,

and test cases with simpler boundary conditions compared to multi-component

systems. Nonetheless, our eventual purpose is to exploit the combination of a

tunable speed of sound, a modi�ed equilibrium distribution and an extended

velocity set for the purpose of simulating convective transport and mixing in

both stirred and continuous-�ow chemical reactors with multiple components.

This application of the present work will be the topic of a future paper. Com-

pressibility artifacts and acoustics topics are explicitly outside the scope of the

present paper as they are irrelevant to the chemical reactors of interest and we

consider only �ows with low Mach numbers.

In general, to vary the speed of sound in isothermal LBMs, we can choose

between two types of lattice implementations which may be denoted as o�-

lattice and on-lattice propagation schemes, respectively. Alternative methods

have also been investigated, e.g. it was shown by Buick & Cosgrove [11] that

a variable speed of sound may be introduced through a modi�ed body force.

However, within the scope of this work we will limit the discussion solely to

lattice implementations.

For non-�owing systems, McCracken & Abraham [12] exploited both o�-

lattice and on-lattice schemes for simulating di�usive mass transfer in binary
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mixtures with varying molecular masses. O�-lattice schemes represent a mul-

tiple lattice approach where components, depending on their relative weights,

travel only fractions of the lattice spacing in a lattice time step [12�14]. An

o�-lattice scheme was used by Arcidiacono et al. [13] to describe the behav-

ior of several chemical species when simulating the oxidation of methane in a

channel with catalytic walls. While physically sound, o�-lattice schemes require

computationally expensive interpolation steps and also complicate the boundary

conditions required in many engineering applications.

Compared to o�-lattice schemes, on-lattice schemes are more attractive since

they require little modi�cation in standard numerical codes and preserve the

local nature of LBMs. The idea behind on-lattice propagation schemes is to

manipulate the equilibrium moments in such a way as to properly recover the

required hydrodynamic equations in the macroscopic limit.

Applied to standard velocity lattices, however, on-lattice schemes, as de-

scribed in the literature [3, 5, 12, 15�19] su�er from an inherent �aw as they do

introduce unphysical error terms into the Navier-Stokes equation (see Section

II B and AppendixA). These error terms are the result of the limited number

of velocities available in standard LBM lattices and render the scheme less ac-

curate when applied to systems involving �uid �ow. It can be shown that in

1D the error terms associated with varying the sound speed on standard LBM

lattices take the form of a viscous stress and can be mitigated by rescaling the

viscosity [3]. This, however, is not possible in higher dimensions, where a hy-

drodynamically correct modi�cation of the sound speed requires a lattice with

additional velocities.

Many of the above-cited researchers sticking to the standard velocity lattice

were interested in acoustics and compressibility e�ects. For example, Alexander

et al. [15] implemented �uid compressibility e�ects by modifying the equilib-

rium distribution without extending the velocity lattice. In spite of the resulting

incorrect formulation of the hydrodynamics they used this approach while re-

laxing the low-Mach number restriction of the conventional LBM; this allowed

them to simulate shock-wave formation through the viscous Burgers equation

by using the LBM framework. As said, acoustics and compressible �ows are

beyond the scope of this paper.
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To resolve the issue of the unphysical error terms in the Navier-Stokes equa-

tion, more velocity directions must be added to the LBM lattice. We refer to

these lattices, with an extended velocity set, as �extended velocity lattices�. To

the best of our knowledge, only a few researchers used an extended velocity

lattice with the view to tune the isothermal speed of sound in LBM [7, 20].

Qian [7] proposed extended velocity sets along with modi�ed equilibrium distri-

butions for simulating 1D, 2D and 3D thermohydrodynamic cases - which can

be simpli�ed for isothermal conditions. In their paper on multiphase systems,

Chai and Zhao [20] proposed a multiple-relaxation-time scheme to allow for the

use of di�erent speeds of sound for di�erent components of di�erent molecu-

lar mass. This e�ectively introduced a modi�ed equilibrium distribution on a

D2Q13 lattice, however this was done without further derivation or analysis.

However, a general and systematic theoretical treatment and evaluation of the

accuracy and applicability of a variable-speed-of-sound approach for isothermal

single-phase �ows has not yet been reported.

In the present paper, we will therefore �rst set the scene by showing once

more that modifying the equilibrium distribution on a standard D1Q3 or D2Q9

lattice does not allow tuning of the speed of sound and that resolving this prob-

lem requires extending the velocity lattice, i.e. to D1Q5 or D2Q13. We will

then introduce equilibrium distribution functions on these extended lattices in

the BGK collision framework. While several early papers on (multi-component)

LBM, such as [17], already mention the importance of a `proper choice' of the

equilibrium distribution in order to change the sound speed, most studies were

conducted on standard velocity lattices and do not recover correct hydrodynam-

ics.

We will investigate the accuracy of this novel approach for two canonical

isothermal single-phase single-component �ows and will �nd just marginal er-

rors in the velocity and density �elds. The novelty of our work is that we

provide a systematic theoretical treatment, including a derivation that proves

the necessity of using extended velocity lattices to extend the isothermal LBM

sound speed and an evaluation of the accuracy and range of applicability of this

approach. Furthermore, compared to Qian's as well as Chai and Zhao's pa-

pers, we use a di�erent equilibrium distribution, and our validation focuses on
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�ow �eld predictions while their validation focused on viscosities, (self-)di�usion

coe�cients and phase separation.

The remainder of this paper comprises of the following sections: Section II

reviews the need for extended velocity lattices when changing the sound speed

in isothermal LBMs. It also presents the newly proposed on-lattice propagation

scheme using a modi�ed equilibrium distribution. Then, the improved accuracy

of our scheme is assessed with the help of two canonical cases of �uid �ow; in

Section III, we compare numerical simulations with the analytical solution for

the case of a viscously damped standing pressure wave, while in Section IV we

do the same for the Taylor-Green vortex.

2. An alternative on-lattice propagation scheme

2.1. Conventional theory

The kinetic LBM equation which governs the evolution of a mass distribution

function fi is given by:

fi (xα + ei,α4t, t+4t)− fi (xα, t)

4t = Ωi (xα, t) (1)

where i runs over the number of velocity directions ei,α, see Fig. 1. Greek

indices are used to denote spatial directions; the Einstein summation convention

is implied for repeated Greek indices. The left-hand side of Eq. 1 represents the

propagation of particles from lattice site xα at lattice time t to xα + ei,α4t at
lattice time t+4t whereas the right-hand side represents the collision of particles
at lattice site xα at lattice time t. For conventional lattices, fi propagates to

nearest neighbours in 1D and to the nearest and next nearest neighbours in

2D, while for extended lattices, it also propagates to more extended sets of

neighbours, see Fig. 1.

The collision operator, Ωi, follows a conventional BGK relaxation process

[21]:

Ωi (xα, t) = −fi (xα, t)− fi,eq(xα,t)
τ

(2)

which models a simple relaxation, with relaxation time τ , of the distribution

function towards an equilibrium distribution function, fi,eq. In conventional
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Figure 1: The lattice velocity set for D1Q3 (left) and D2Q9 (right) conventional lattices (solid
lines) and D1Q5 (left) and D2Q13 (right) extended velocity lattice (dashed lines)

LBMs, this equilibrium distribution function is an expansion of the Maxwell-

Boltzmann distribution up to second-order terms in the Mach number:

fi,eq = wiρ

[
1 +

ei,αuα
c2s

+
1

2

(
ei,αei,β − c2sδαβ

)
uαuβ

c4s

]
(3)

where wi and cs are the quadrature weights corresponding to a particular

velocity direction and the lattice speed of sound respectively. From the math-

ematical treatment of Eq. 1, it is known that the weights and velocity vectors

have to satisfy a speci�c set of symmetry conditions [22, 23], namely:

∑
i

wi = 1
∑
i

wiei,α = 0
∑
i

wiei,αei,β = c2sδαβ (4)

where the second moment of the weights is used to de�ne the lattice speed

of sound, which, as a function of the chosen lattice, is a constant. The values of

wi, ei,α and cs for the lattices used in this research are found in Table 1.

The equilibrium distribution function in Eq. 3 is uniquely de�ned by the

macroscopic density ρ and velocity uα which by de�nition are determined by

the zeroth and �rst moments, respectively, of the distribution functions, fi:

ρ =
∑
i

fi ρuα =
∑
i

ei,αfi (5)

Furthermore, the choice of the above form of Eq. 3 ensures also that:

ρ =
∑
i

fi,eq ρuα =
∑
i

ei,αfi,eq (6)

which along with the second and third moments [6]:
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lattice weights, wi velocity, ei ss, cs

direction i 1 2→3 4→5 1 2→3 4→5

D1Q3 2
3

1
6

- 0 cos
(
π
2
(i− 1)

)
- 1√

3

D1Q5 1
2

1
6

1
12

0 cos
(
π
2
(i− 1)

)
2 cos

(
π
2
(i− 1)

)
1

(a) one-dimensional lattices

lattice weights, wi velocity, ~ei ss, cs

direction i 1 2→4 5→8 9→13 1 2→4 5→8 9→13

D2Q9 4
9

1
9

1
36

-

[
0
0

] [
cos

(
π
2
(i− 1)

)
sin

(
π
2
(i− 1)

)] √
2

[
cos

(
π
2
(i− 1) + π

4

)
sin

(
π
2
(i− 1)

) ]
- 1√

3

D2Q13 3
8

1
12

1
16

1
96

[
0
0

] [
cos

(
π
2
(i− 1)

)
sin

(
π
2
(i− 1)

)] √
2

[
cos

(
π
2
(i− 1) + π

4

)
sin

(
π
2
(i− 1) + π

4

)] 2

[
cos

(
π
2
(i− 1)

)
sin

(
π
2
(i− 1)

)] 1√
2

(b) two-dimensional lattices

Table 1: Quadrature weights, lattice velocity vectors and speed of sound (ss) for 1D and 2D
lattices.

∑
i

ei,αei,βfi,eq = ρc2sδαβ + ρuαuβ (7)

∑
i

ei,αei,βei,γfi,eq = ρc2s (uαδβγ + uβδαγ + uγδαβ) (8)

are required to resolve the proper macroscopic behaviour in the incompress-

ible limit [5, 12].

Using Eqs. 6-8 in a multiscale analysis (see AppendixA), the macroscopic

equations which are modeled by Eq. 1 are the continuity equation and Navier-

Stokes equations [4�6]:

∂tρ+ ∂αρuα = 0

∂tρuα + ∂βπαβ = 0 (9)

where the momentum �ux tensor, παβ , is de�ned as:

παβ = ρuαuβ + pδαβ − σαβ (10)

Here, we identify the viscous stress tensor σαβ :

σαβ = ρν (∂βuα + ∂αuβ) (11)

The stress tensor σα,β in Eq. 11 also contains a spurious error term of

O(u3) (not shown here), which originates from the second-order Mach number
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expansion of the equilibrium distribution in Eq. 3 and e�ectively makes this

scheme spatially 2nd order accurate. It must be noted that this spurious term

can in principle be mitigated on extended velocity lattices by employing an

O
(
Ma3

)
expansion of the equilibrium distribibution [24], which extends the

range of Mach numbers that can be simulated. In this work however we do not

follow such an approach. Instead we propose to deal with di�erent sound speeds

by modifying Eq. 3, while retaining its basic polynomial form. Consequently

the proposed method is restricted to small Mach numbers, which is suited for

our �eld of application dealing with incompressible �ows.

The pressure in Eq. 10 and the viscosity in Eq. 11 are found to depend on

the speed of sound cs:

p = ρc2s ν = c2s4t
(
τ

4t −
1

2

)
(12)

This models a �uid �ow with an ideal gas equation of state which convention-

ally has a proportionality constant inversely proportional to the square root of

the molecular mass. In this model, as the speed of sound is a lattice-dependent

constant and we are considering an isothermal �ow, this implies that the molec-

ular mass may not be varied. As it is our aim to allow the varying of the

molecular mass, we need a model which is able to tune the speed of sound to

our speci�cation.

2.2. The modi�ed equilibrium distribution

The aim is to �nd a model which allows a tunable speed of sound. As the

macroscopic equations in Eq. 9 are de�ned in terms of the equilibrium moments

Eqs. 6-8 we require new de�nitions of these moments to allow a variable speed

of sound. We begin by proposing a new form for the equilibrium distribution:

f̃i,eq = wiρ

[
Ai +Bi

ei,αuα
c2s

+
1

2

(
ei,αei,β − c2sδαβ

)
uαuβ

c4s

]
(13)

where the velocity direction-dependent coe�cients Ai and Bi are introduced

as degrees of freedom in order to satisfy the equilibrium moments. Clearly, the

conventional equilibrium distribution in Eq. 3 is recovered when Ai = Bi = 1.

It must be noted that a proper derivation of such an equilibrium distribution

should be done through a Hermite expansion [24]. However the present ap-

proach, which is in line with other references [5, 12, 16, 17, 25], provides a
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straightforward and easily implementable method of varying the speed of sound

once Ai and Bi are determined..

In order to have a variable speed of sound, we keep the zeroth and �rst

equilibrium moments the same as in Eq. 6 but modify the second and third

equilibrium moments in Eqs. 7 & 8 to read:

∑
i

ei,αei,β f̃i,eq = ρc2s,eδαβ + ρuαuβ (14)

∑
i

ei,αei,βei,γ f̃i,eq = ρc2s,e (uαδβγ + uβδαγ + uγδαβ) (15)

where an e�ective speed of sound, cs,e, is introduced which is the lattice

speed of sound scaled with a parameter γ:

γ =
c2s,e
c2s

(16)

Note that the model reverts to the conventional model when γ = 1.

With these rede�ned equilibrium moments the viscous stress tensor becomes:

σαβ = ρνe (∂βuα + ∂αuβ) (17)

with a rede�ned pressure and viscosity:

p = ρc2s,e νe = c2s,e4t
(
τ

4t −
1

2

)
(18)

Comparing to Eq. 12, the pressure and viscosity have been rede�ned in

terms of the e�ective speed of sound, cs,e.

Satisfying the equilibrium moment relations in Eqs. 7 & 8 by using Eq. 13

requires a number of degrees of freedom in the equilibrium distribution functions

in 1D, 2D or 3D, respectively. The standard lattices D1Q3, D2Q9, D3Q15,

D3Q19 and D3Q27 do not contain enough degrees of freedom for this purpose.

These lattices only facilitate correct equilibrium moments when cs,e = cs, or

γ = 1, while for other values of the sound speed the moments can not be

simultaneously satis�ed. Therefore these standard lattices do not allow for a

tunable sound speed by modifying only the equilibrium distribution function.

Notwithstanding this �nding is not novel [23], several authors [5, 12] did tune

the sound speed on standard lattices by satisfying moments up to rank two only

10



(Eqs. 6 & 7) while keeping the third moment (Eq. 15) at γ = 1. A multi-

scale analysis (Appendix A), however, shows that introducing a tunable speed

of sound and satisfying the equilibrium moments up to just rank two results in

an error term in the viscous stress σα,β of the Navier-Stokes equations:

σαβ = ρνe [∂αuβ + ∂βuα] + εαβ (19)

where the error term takes the form:

εαβ = (1− γ) ν [∂γ (ρuγ) δαβ + ∂α (ρuβ) + ∂β (ρuα)] (20)

where ν is the viscosity based on the lattice speed of sound. Eq. 20 shows

that these terms are identically zero for two cases: (a) when the sum of all these

velocity gradients is zero � a condition excluding virtually all �ow conditions;

(b) when cs,e = cs, i.e. γ = 1. It is further noted that in the limit of small

density perturbations (Ma� 1) the leading order contribution to the error term

reads:

εαβ = (1− γ)ρν (∂γuγδαβ + ∂αuβ + ∂βuα)

In 1D, this equation reduces to a viscous stress:

εαβ = 3 (1− γ) ρν∂xux

which shows that for Ma� 1, the error term can be mitigated by a rescaling

of the viscosity [3]:

νeff = νe +
3

2
(1− γ) ν

However, for higher dimensional problems, the error term cannot be miti-

gated in this way, resulting in non-physical hydrodynamic behaviour.

In conclusion, to model the correct macroscopic behaviour, one needs to sat-

isfy equilibrium moments up to rank three using Eq. 13. The standard lattices

can facilitate this only when the speed of sound equals cs. For sound speeds

other than cs however, the standard lattices are not su�cient and one needs

to extend the number of velocity directions to properly satisfy the equilibrium

moments up to rank three.
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2.3. Evaluation of the coe�cients

The requirement of Eqs. 6-8 on the coe�cients in Eq. 13 results in a system

of equations for the coe�cients Ai:

∑
i

wiAi = 1
∑
i

wiei,αei,βAi = c2s,eδαβ (21)

∑
i

wiei,αAi =
∑
i

wiei,αei,βei,γAi = 0 (22)

and the coe�cients Bi:

∑
i

wiei,αei,βBi = c2sδαβ (23)

∑
i

wiei,αei,βei,γei,δBi = c2sc
2
s,e4αβγδ (24)

∑
i

wiei,αBi =
∑
i

wiei,αei,βei,γBi = 0 (25)

where 4αβγδ = δαβδγδ + δαγδβδ + δαδδβγ .

In this system of equations, Eqs. 22 & 25 imply all odd moments of the co-

e�cients to be identically zero which indicates that the odd-moment equations

are linearly dependent. A further simpli�cation is made by assuming the coe�-

cients are subject to symmetry conditions where coe�cients for lattice directions

i with equal lattice velocity magnitudes |~ei| are equivalent. As an example in

D1Q3, |~e2| = |~e3|, therefore A2 = A3 = A2→3 and B2 = B3 = B2→3 where

A2→3 and B2→3 is simply notation for the combination of coe�cient A2 and

A3 and B2 and B3; in D1Q5, the velocity set is extended to include directions

where |~e4| = |~e5| and there A4 = A5 = A4→5 and B4 = B5 = B4→5. This

is easily extended to multiple dimensions. The assumption of these symmetry

conditions on the coe�cients automatically satis�es the odd moments and the

anti-symmetric parts of the second moments of these coe�cients. In addition,

B1 can be set to zero since the system of equations for coe�cients Bi is only

de�ned in terms of moments larger than the zeroth moment. A result of this is

that for single-speed lattices, i.e. D1Q3 or D2Q9, a variable speed of sound is

not possible as there are insu�cient coe�cients (see AppendixB.1). Instead, a

multi-speed lattice, i.e. D1Q5 or D2Q13, must be used (see AppendixB.2).

12



The above simpli�cations result in a underspeci�ed system of equations re-

quiring additional relation in terms of the coe�cients. Following the approach

in the literature [5, 12], these relations are chosen in the form Ai = rAj 6=i and

Bi = rBj 6=i where r is a degree of freedom used to tune the speed of sound.

Depending on the dimensionality of the problem, there may be di�erent sets of

relations which close the system of equations and yield proper solutions. In this

case, we chose a set which yields the simplest and most physically sound set of

solutions; it di�ers from the sets chosen by Chai and Zhao [20] and Qian [7].

As shown in AppendixB.2, our choice leads to the following expressions for

the coe�cients Ai and Bi for D1Q5:

A1 =
16r2 + 7r + 4

12r2 + 12r + 3
A2→3 =

8r + 1

(2r + 1)
2

B1 = 0 B2→3 =
3

2r + 1

A4→5 = rA2→3 B4→5 = rB2→3 (26)

with a speed of sound, cs,e, de�ned through γ:

γ =
c2s,e
c2s

=
1

3

8r + 1

2r + 1
(27)

and for D2Q13:

A1 =
2γ

3

[
4 + 8r − 3r2

2 + 3r + r2

]
A2→5 =

12

6 + 7r − r3

B1 = 0 B2→5 =
6− 4r

3− r B6→9 = γ

A6→9 = rA2→5 A10→13 = rA6→9 B10→13 = rB6→9 (28)

with a speed of sound de�ned through the ratio γ:

γ =
c2s,e
c2s

=
2

3− r (29)

In Table 2, tabulated values of the coe�cients Ai and Bi are found as func-

tion of the values of γ and r used in Section 3 & 4.

As can be seen, all coe�cients Ai = Bi = γ = 1 for r = 1 which corresponds

to the conventional case as is expected.
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γ r A1 A2→3 A4→5 B2→3 B4→5

0.8 0.4375 0.96 1.28 0.56 1.6 0.7
1 1 1 1 1 1 1

1.2 3.25 1.16 0.48 1.56 0.4 1.3

(a) D1Q5

γ r A1 A2→5 A6→9 A10→13 B2→5 B6→9 B10→13

0.8 0.5 1.07 1.28 0.64 0.32 1.6 0.8 0.4
1 1 1 1 1 1 1 1 1

1.2 1.33 0.84 0.92 1.23 1.65 0.4 1.2 1.6

(b) D2Q13

Table 2: Tabulated values of coe�cients Ai and Bi for use with a modi�ed equilibrium
distribution.

2.4. Numerical stability

Although we did not carry out a formal stability analysis, we do note that

for the equilibrium distribution to retain a positive value, it is required that r

must be a positive value, i.e. r > 0. This is clearly shown in Fig. 2 where

the magnitude of the equilibrium distribution is evaluated as function of r for

the D1Q5 lattice. A similar analysis can be performed for D2Q13. It follows

that the theoretical limits of γ for the D1Q5 lattice is 1
3 < γ < 4

3 while for the

D2Q13 lattice is 0 < γ < 2
3 . The implication is that for the D1Q5 lattice only a

factor two di�erence in speeds of sound may be achieved. For the D2Q13 lattice,

this is less strict as the speed of sound can be brought to almost zero. However,

numerical stability may become an issue as changing γ implies varying the Mach

number which should be kept small to be consistent with the low Mach number

expansion of the equilibrium distribution in Eq. 13.

We have studied the range of stability of the method by conducting simula-

tions with very small Mach numbers, i.e. Ma =
umag
cs,e
� 1, in both one and two

dimensions. The test cases are described in the next section. By systematically

varying the sound speed in these test cases, we found that simulations are stable

in the ranges of approximately 0.7 < γ < 1.25 for D1Q5 and 0.5 < γ < 1.2 for

D2Q13. Since the test cases are all restricted to small Ma, these stability limits

do not have any relation whatsoever with the low Mach number approximation

which is about ignoring the O(u3) and higher terms in the equilibrium moments

(see Eq. 15) of the equilibrium distribution Eq. 13.

We are aware that the D1Q5 and D2Q13 lattices used in this work are known
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Figure 2: A stability analysis of the modi�ed dimensionless equilibrium distribution f̃i,eq =
fi,eq
wiρ
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equilibrium distribution to remain positive.
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to be unstable outside of a narrow viscosity range due to entropy considerations

[26�28]. However, it was found that these lattices are completely Galilean in-

variant and more accurate than conventional lattices [28, 29]. Despite these

instability concerns, the D2Q13 lattice has recently been used in work related

to incompressible �ow of the Rayleigh-Taylor instability using a modi�ed equi-

librium distribution [30]. Considering the above, we view these lattices suitable

for the work presented here if we relax the entropy requirement and limit our

work to within this viscosity range.

2.5. Avoiding loss of precision for low Ma �ows

It was shown by Skordos [31], that for low Mach number �ows, signi�cant loss

of precision can be observed. This is due to the limited representation of �oating-

point numbers for certain arithmetic operations in the LBM implementation,

speci�cally on the equilibrium distribution. If the density varies around a mean

value ρ0 with an amplitude ρ0∆ ∼Ma2 according to:

ρ = ρ0 (1 + ∆) (30)

where ∆ is the grid cell size, then the higher order Ma terms in the equilibrium

distribution:

fi,eq = wiρ [1 +O (Ma)] ≈ wiρ0 [1 +O (Ma)] (31)

become insigni�cant leading to loss of precision on the density.

To improve the precision, Skordos [31] proposed to decompose the distribu-

tion function into a 'rest' equilibrium contribution f0
i,eq = fi,eq (ρ0, 0) = wiρ0

and a perturbative contribution δfi :

fi = f0
i,eq + δfi (32)

The new LBM equation then becomes:

δf ′i − δfi
∆t

= −δfi − δfi,eq
τ

(33)

which governs the evolution of the perturbation functions rather than the

full distribution functions. Taking moments of the decomposed distributions

one �nds that: ∑
i

δfi = δρ
∑
i

~eiδfi = ρ~u (34)
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The perturbation equilibrium distribution is now given by:

δfi,eq = fi,eq − f0
i,eq = wi [ρ0∆ + ρO (Ma)] (35)

which only comprises higher order terms in Ma thus leading to an increased

numerical precision. This decomposition is implemented for the Taylor-Green

vortex discussed further on the paper where Ma decreases exponentially as the

number of lattice nodes is increased.

3. Validation for a standing wave

The simplest benchmark case for the validation of the implementation of the

variable speed of sound is that of a 1D isothermal standing pressure wave which

is very gradually damped due to a very low viscosity [32]. The simulation is done

for a periodic domain with a sinusoidal density function as initial condition:

ρ (x, 0) = ρ0 +4ρ sin (kx) (36)

with ρ0 the average density, 4ρ the amplitude of the wave and k = 2π
n the

wave number based on the wave length n.

We assume that from the very beginning the amplitude of the wave is small

enough to satisfy the condition that 4ρ/ρ0 � 1. This allows for the lineariza-

tion of continuity equation and Navier-Stokes equations. In addition, the bulk

viscosity may be ignored under this restriction. Upon de�ning a perturbed den-

sity ρ = ρ0 + ρ′ and velocity u = u′, the solution to the resulting wave equation

is the real part (denoted by <) of the following density and velocity functions:

ρ (x, t) = ρ0 +4ρ sin (kx)< [exp (−ωkcs,et)]

u (x, t) = −cs,e
∆ρ

ρ0
cos (kx)< [ω exp (−ωkcs,et)] (37)

where ω = ωr + iωi is the dimensionless complex angular velocity with ωr

and ωi, its real and imaginary part, respectively given by:

ωr =
kνe
cs,e

ωi = ±
√

1−
(
kνe
cs,e

)2

(38)

The parameter which characterizes the amount of decay is the real part of

the angular velocity, ωr, which may be regarded as a Knudsen number [23] or as
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a type of reciprocal Reynolds number and in either way is the non-dimensional

quantity that characterizes the �ow. For the above derivations, it was assumed

that ωr � 1, such that viscous e�ects remain small. This assumption on ωr is

also required for ωi to remain real.

A standing wave is simulated in a periodic domain of n = 256 lattice nodes

with ωr = 10−2, reference density ρ0 = 1 and the amplitude 4ρ = 10−3 for

di�erent values of γ. Initialization was done with the help of the equilibrium

distribution of Eq. 13 and by using the density and velocity �elds of Eq. 37

at time t = 0. Although initializing with the equilibrium distribution might

introduce initialization errors for initially transient �ows via the viscous stress

tensor of Eq. 17 [23, 33], our assumption of a low density amplitude, ∆ρ
ρ0
� 1,

leads to negligibly small gradients in the velocity �eld and therefore to negligibly

small initialization errors. Since ωr is �xed and cs,e changes as function of γ,

the viscosity νe must also change to simulate the same system for D1Q3 and

D1Q5. This is done by varying the relaxation time τ according to Eq. 12:

τ =
1

2
+

νe
c2s,e

=
1

2
+

ωr
kcs,e

(39)

The wave is allowed to oscillate until the dimensionless time kcs,et = 50;

for this period, the time-dependent amplitude of the density and velocity as

a function of the time is compared to the analytical solutions. For a properly

scaled system at a �xed value of ωr and over the same dimensionless time period,

the solutions for both D1Q3 and D1Q5 and the analytical solutions should

collapse onto the same curves. In Figure 3, it is shown that, for γ = 1, the

numerical solution for both the D1Q3 and D1Q5 lattice exactly coincides with

the analytical solution. Figures 4 and 5 show that for γ 6= 1, the D1Q3 lattice

starts deviating from the analytical curve towards the end of the simulation

whereas the D1Q5 lattice is seen to keep following the analytical solution even

for long times. Although one could argue that the simulations for γ 6= 1 in the

D1Q3 are redundant because they are known to be de�cient, they do show the

impact of this de�ciency and help illustrating the positive e�ect of switching to

D1Q5 with the view of dealing with γ 6= 1.

The �gures show that, as time progresses, the D1Q3 scheme results in in-

creasing deviations from the analytically calculated amplitude whenever γ 6= 1
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Figure 3: The dimensionless amplitude of the density (top) and velocity magnitude (bottom)
for the standing wave at x = n

4
with gridsize n = 256 as a function of non-dimensional time

(up to kcs,et = 50). The amplitudes for γ = 1 for the D1Q3 and D1Q5 lattices are compared
to the analytical solution and are shown to coincide exactly as is to be expected for γ = 1.
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Figure 4: The dimensionless amplitude of the density
(
ρ̃ = ρ−ρ0

∆ρ

)
for the standing wave at

x = n
4
with gridsize n = 256 as a function of non-dimensional time (up to kcs,et = 50) for

the D1Q3 (top) and D1Q5 (bottom) lattices, respectively, for di�erent values of γ. As time
progresses, the implementation for the D1Q3 lattice (top) starts deviating from the analytical
curve, whereas for the D1Q5 lattice (bottom) it does not.
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Figure 5: The dimensionless amplitude of the velocity
(
ũ = u

cs,e

ρ0
∆ρ

)
for the standing wave

at x = n
2
as a function of non-dimensional time (up to kcs,et = 50) for the D1Q3 (top) and

D1Q5 (bottom) schemes, respectively, for di�erent values of γ. Just like in Figure 4 for the
amplitude of the density, the implementation for the D1Q3 lattice (top) starts deviating from
the analytical curve as time progresses, whereas for the D1Q5 lattice (bottom) it does not.
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whereas the D1Q5 scheme more accurately predicts the peak density for the

same range of γ values. This becomes more apparent when at the end of each

simulation (at dimensionless time kcs,et = 50) we consider the relative global

error of the computed density and velocity �elds as de�ned by the L2-norm

[34, 35]:

ε =

√∑
i (φi − φi,ref )

2∑
i φ

2
i,ref

(40)

where φi is either the computed density or the computed velocity magnitude,

φi,ref is the reference density or velocity, while the summation is done over all

grid nodes.

Fig. 6 shows the relative global errors of the density and velocity �elds

plotted as a function of γ. The D1Q5 scheme results in relative global errors

which slightly increase with γ, while for the D1Q3 scheme the relative global

errors strongly increase as γ is moved away from γ = 1. The D1Q3 behaviour

is due to the above discussed inadequacy of the lattice for γ 6= 1; for the slight

increase of the relative global errors in the D1Q5 case we do not have a clear

explanation.

A grid convergence analysis in Fig. 7 for the D1Q3 scheme and Fig. 8

for the D1Q5 scheme shows a signi�cant improvement in convergence for the

D1Q5 scheme. For D1Q3, the density and velocity global errors remain more

or less constant for γ 6= 1, while for D1Q5 they are observed to have almost

second-order convergence irrespective of the value of γ. It is observed that the

relative global error of the velocity �eld is relatively large for coarse grids. For

coarse grids, we found the numerical solution slowly moving out of phase with

the analytical solution over time, resulting in relatively large deviations at the

point in time at which the two solutions are compared. Clearly, this improves

when re�ning the grid.

Our results in Fig. 7 deviate from data reported by Viggen [3] which show a

second-order convergence for the D1Q3 lattice while varying the speed of sound.

As a matter of fact, the model proposed by Viggen, though fundamentally

similar, is di�erent from the conventional D1Q3 model. The method proposed

by Viggen allows the speed of sound to be tuned by forcing constraints on the

equilibrium distribution function without the need of an extended velocity set

on a 1D lattice. Unfortunately, Viggen's method cannot be implemented for 2D
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Figure 6: The relative global error in the density and velocity for the D1Q3 vs D1Q5 lattices
for a damped standing wave as a function of γ for gridsize n = 256. The errors for the
D1Q5 implementation increase only slightly with γ but overall are lower than for the D1Q3
implementation except for γ = 1 when the errors are lower for D1Q3 than for D1Q5

and 3D �ows. We, however, exploit a modi�ed equilibrium distribution function

leading to the necessity of extended velocity sets such that we can vary the speed

of sound and easily extend this method to higher dimensions.

4. Validation for the Taylor-Green vortex

For a two-dimensional test case, we validated our D2Q13 scheme for the

Taylor-Green Vortex (TGV) which has been used before as a benchmark by

several authors, e.g. [14, 20, 36, 37]. While in many cases the interest in TGVs

is related to the transition to turbulence and the LBM simulations are therefore

carried out at higher Reynolds numbers, our focus is on a TGV under viscous
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conditions, i.e. at a very low Reynolds number. The initial condition of a TGV

in terms of density and velocity �elds is illustrated in Fig. 9 that demonstrates

the periodic character of the �ow. The TGV then decays due to viscosity. For

the transient behavior of this TGV, exact analytical expressions for the velocity

and pressure �elds obeying the classical incompressible Navier-Stokes equation

are available:

p (x, y, t)− p0 = 1
8ρu

2
0 [cos (2kx) + cos (2ky)] exp

(
−4k2νt

)
u (x, y, t) = − u0√

2
cos (kx) sin (ky) exp

(
−2k2νt

)
v (x, y, t) = − u0√

2
sin (kx) cos (ky) exp

(
−2k2νt

) (41)

where p0 and u0 are an arbitrary reference pressure and velocity magnitude

respectively and the wave number for a square domain of size n is given by

k = 2π/n.

Since Eq. 1 recovers the hydrodynamic equations in the low Mach number

limit, i.e. Ma ≡ u0

cs,e
� 1, the density �uctuates about a mean density ρ0

according to ρ = ρ0 +4ρ where 4ρρ0 ∼ Ma2. We made sure the Mach number

remains small by making sure u0 � cs,e. The LBM equation of state p = ρc2s,e,

results in the evolution of the density �eld is equivalent to that of the pressure

�eld:

ρ (x, y, t) = ρ0

[
1 +

1

8
Ma0

2 [cos (2ky) + cos (2kx)] exp
(
−4k2νet

)]
(42)

where Ma0 = u0

cs,e
is the initial Mach number.

The TGV was simulated in a periodic square domain with the initial condi-

tions:

ρ (x, y, 0) = ρ0

[
1 +

1

8
Ma2 [cos (2ky) + cos (2kx)]

]
u(x, y, 0) = − u0√

2
cos (kx) sin (ky)

v (x, y, 0) = − u0√
2

sin (kx) cos (ky) (43)

where the LBM parameters were set as ρ0 = 1 and τ = 1 for Re = 10−1.

The square domain is of length n∆x, where n is the number of grid points per

dimension in the range [128, 1024], and ∆x = 1 is the lattice spacing.
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Figure 9: Initial conditions of a Taylor-Green Vortex: density (left), velocity (right).

From the Reynolds number the velocity magnitude of the vortex, u0, is

calculated. The initialization was done in the same way as in the previous

case of the damped standing wave, i.e. with the equilibrium distribution of

Eq. 13, on the basis of identical arguments: the initial gradients in the velocity

�elds are relatively small. We did check whether including the non-equilibrium

populations in the initialization made a di�erence for the transient behaviour

of the TGV in our simulations: we found it did not.

The vortex was subsequently allowed to decay for one characteristic time

scale, i.e. k2νet = 1. Initially, simulations were carried out for the number of

lattice nodes equal to n of 16, 32, 64 and 128 and for values of γ between 0.8 and

1.2. It was found that for small n, the density �eld exhibited spurious density

oscillations (∼ 10%) superimposed on the exact solution in Eq. 42. We checked

whether these spurious oscillations were due to ignoring the non-equilibrium

distributions in the initialization step; extensive testing showed however that

this was not the case. Further tests using the equilibrium distribution reported

by Chai and Zhao [20] resulted in the same behaviour. It was found that these

spurious density oscillations disappear when using a �ner grid as noted by Chai

and Zhao.[20]

For both D2Q9 and D2Q13, the time-dependent amplitudes for density and

velocity magnitude as a function of the dimensionless time for n = 1024 are

compared mutually and with the analytical solution in Figs. 10 and 11.

On the basis of the analytical solution and a proper scaling, it is expected
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Figure 10: The dimensionless amplitude of the density as a function of the non-dimensional
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at a gridsize n = 1024. The dashed line is the analytical solution.
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that, for all values of γ within the stability limits, the decay curves collapse

onto a single curve. However, as was the case with the standing wave, the

time-dependent dimensionless amplitudes of the density and velocity on the

D2Q9 lattice di�er signi�cantly from the analytical solution over the range of

γ values applied and do not collapse onto a single curve (Fig. 10a and Fig.

11a). For the D2Q13 implementation, the curves do collapse (Fig. 10b and

Fig. 11b). Although even for n=1024 the e�ect on the relative global error in

the density �eld is limited (Fig. 12a), the relative global error in the velocity

�eld is signi�cantly reduced (again except for γ = 1) as shown in Fig. 12b.

Speci�cally, the relative error in the density is found to be several orders of

magnitude lower over the simulated range of γ values indicating a signi�cant

increase in accuracy when varying the speed of sound in a multi-speed D2Q13

lattice versus a single-speed D2Q9 lattice.

A similar analysis with respect to the e�ect of using di�erent speeds of

sound but now as a function of grid size, in the range from n = 128 to n =

1024, resulted in Figures 13 and 14. As seen in Figure 13, the very low relative

density errors for the usual D2Q9 exhibit third-order convergence for γ = 1

only and second-order convergence for γ 6= 1, while for D2Q13 convergence is

third-order irrespective of the value of γ. In Figure 14, the implementation for

D2Q9 shows the relative global error in the velocity �eld is relatively high and

does not decrease by re�ning the lattice for γ 6= 1, while for D2Q13 convergence

is second-order irrespective of the value of γ. Also these �gures demonstrate

the attractiveness of D2Q13 over D2Q9 for γ 6= 1.

5. Conclusion

This paper on varying the speed of sound in LBM simulations is prompted by

the observation in the LBM literature that methods for on-lattice propagation

with a modi�ed equilibrium distribution on a standard lattice are only adequate

for non-�owing systems. As soon as �ow is involved, such as in acoustics and

with �ow chemistry, numerical errors are introduced which severely limit the

accuracy of LBM simulations on standard lattices. These errors did not withhold

several authors from tuning the sound of speed on standard lattices for cases

involving �ow.
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Resolving the issue of tuning the velocity of sound for �ows, in which com-

ponents have a di�erent molecular mass, requires either o�-lattice propagation

methods or an on-lattice scheme on an extended velocity lattice. Opting for the

latter, we extended the velocity set to �ve, instead of three, for one-dimensional

�ows and to thirteen, rather than nine, for two dimensional hydrodynamics;

these extended velocity sets are referred to as D1Q5 and D2Q13, respectively.

This was shown by means of a systematic theoretical treatment, including a

derivation to arrive at D1Q5 and D2Q13.

We have shown that the option of allowing for a tunable speed of sound in

reactive �ows requires modi�cation of the standard equilibrium function along

with the use of an extended velocity set and that only then a correct descrip-

tion of the hydrodynamics is retained; this is in contrast to LBM simulations

on standard velocity lattices. A simpli�ed stability analysis showed that the

stability range for this model yielded a maximum factor of four di�erence in

speed of sound. Subsequently, we carried out a systematic evaluation of the

accuracy and range of applicability of this approach and found only marginal

errors in the velocity and density �elds for two canonical types of isothermal

single-phase single-component �ow. Thus we have shown that this implemen-

tation enables the speed of sound to be varied independently of the grid while

the correct hydrodynamics is retained. Our simulations were found to be stable

for variations in the speed of sound in the order of two.

The method for variable speeds of sound was veri�ed and validated for simple

well-documented benchmark �ows, viz. in 1D for a viscously damped standing

pressure wave and in 2D for a viscously damped Taylor-Green Vortex. The re-

sults for both cases show that for varying speeds of sound, the proposed method

outperforms methods on standard velocity lattices: the relative global errors in

density and velocity �elds are signi�cantly reduced and show second-order con-

vergence for the velocity �eld on extended velocity lattices. Because of our

eventual interest in chemically reactive �ows and due to the failure of many

LBM schemes to retain the correct hydrodynamics, the focus was on the con-

vergence of the velocity �eld. At the same time, the convergence of the density

�eld in the proposed method was shown to be comparable to that obtained on

a standard lattice and at least second-order accurate.
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The method can be easily incorporated in existing LBM numerical codes by

changing the equilibrium distribution. If required, the speed of sound can be

varied by a factor of four compared to the original grid speed of sound without

introducing large errors in the velocity �eld compared to the standard lattice.

Compared to LBM simulations on a standard lattice, the method is approxi-

mately one-third more computationally intensive due to the use of an extended

velocity lattice. The performance of the method is estimated to be at least

equivalent to that of o�-lattice propagation schemes, however with the added

bene�ts of limited code modi�cation (to accommodate the use of a modi�ed

equilibrium function) and of conservation of the local nature of the LBM frame-

work allowing for easy parallelization.

In future research, this implementation allows for certain classes of problems

such as transport of species with varying molecular masses, in particular in

reacting �ows which will be the topic of a future paper.
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literature [4, 5], Eq. 1 is expanded to second-order using a multi-variate Taylor

expansion:

Dfi +
1

2
D2fi4t ≈ Ωi (A.1)

where D = ∂t+ei,α∂α is the material derivative. Expanding the distribution

functions and derivatives:

fi = fi,eq + εfi,1 + ε2fi,2

∂t = ε∂t,1 + ε2∂t,2 ∂α = ε∂α,1 (A.2)

the material derivative and collision operator may similarly be expanded:

Ωi = εΩi,1 + ε2Ωi,2

D = εD1 + ε2D2 (A.3)

where Ωi,k = − fi,kτ , D1 = ∂t,1 + ei,α∂α,1 and D2 = ∂t,2. Substituting the

expansions into Eq. A.1 and gathering all terms of order ε and ε2 respectively

yields:

D1fi,eq ≈ Ωi,1

D2fi,eq −D1

[
4t
(
τ

4t −
1

2

)
Ωi,1

]
≈ Ωi,2 (A.4)

To reconstruct the macroscopic hydrodynamic equations from these relations

requires the speci�cation of the moments of the equilibrium function, i.e. Eq.

6-8. Taking the zeroth moments of the relations:

∂t,1ρ+ ∂α,1ρuα = 0

∂t,2ρ = 0 (A.5)

results in the continuity equation in the macroscopic limit:

∂tρ+ ∂αρuα = 0 (A.6)
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Taking the �rst moments:

∂t,1ρuα + ∂β,1παβ,eq = 0

∂t,2ρuα + ∂β,1παβ,1 = 0 (A.7)

results in the Navier-Stokes equations:

∂tρuα + ∂βπαβ = 0 (A.8)

where παβ = παβ,eq+παβ,1 is the momentum �ux tensor with the equilibrium

and non-equilibrium contributions given respectively:

παβ,eq =
∑
i

ei,αei,βfi,eq (A.9)

παβ,1 = −4t
(
τ

4t −
1

2

)∑
i

ei,αei,βΩi,1 (A.10)

The equilibrium contribution is directly determined from the requirement

of the second moment on the equilibrium distribution in Eq. 7. The non-

equilibrium contribution is dependent on the relaxation time τ and is determined

by interaction between particles through the collision process.

Substituting the result for Ωi,1 from Eq. A.4 yields:

π̂αβ,1 =
∑
i

ei,αei,βD1fi,eq (A.11)

= ∂t,1παβ,eq + ∂γ,1
∑
i

ei,αei,βei,γfi,eq

where we de�ne π̂αβ,1 ≡ παβ,1

−4t( τ
4t− 1

2 )
to simplify subsequent calculations.

The right-hand side of Eq. A.11 shows that in order to proceed it is required

to specify also the third moment of the equilibrium distribution. While not

speci�cally stated in [5, 12], it follows from Eq. 3 that:

∑
i

ei,αei,βei,γfi,eq = ρc2s (uαδβγ + uβδαγ + uγδαβ) (A.12)

It should be noted that Eq. A.12 is in terms of the lattice speed of sound,

cs, rather than the e�ective speed of sound cs,e. Substituting the third moment

into the non-equilibrium momentum �ux tensor yields:
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π̂αβ,1 = ∂t,1
(
ρc2s,eδαβ + ρuαuβ

)
+ ∂γ,1

(
ρc2suγ

)
δαβ

+ ∂α,1
(
ρc2suβ

)
+ ∂β,1

(
ρc2suα

)
= ∂t,1

(
ρc2s,eδαβ

)
+ ∂γ,1

(
ρc2suγ

)
δαβ (A.13)

+ ∂t,1 (ρuαuβ) + ∂α,1
(
ρc2suβ

)
+ ∂β,1

(
ρc2suα

)
resulting �nally in:

π̂αβ,1 = ∂t,1
(
ρc2s,eδαβ

)
+ ∂γ,1

(
ρc2suγ

)
δαβ

+ ∂α,1
(
ρc2suβ

)
− uβ∂α,1

(
ρc2s,e

)
+ ∂β,1

(
ρc2suα

)
− uα∂β,1

(
ρc2s,e

)
(A.14)

which can be rewritten as:

π̂αβ,1 = ρc2s,e [∂α,1uβ + ∂β,1uα] + ε̂αβ (A.15)

At this point in Eq. A.14, the top line should be identically zero due to

the result of Eq. A.5. Furthermore, the last two lines should simplify to Eq.

11 to recover the appropriate stress tensor. Unfortunately, this is not the case

as in general cs,e 6= cs and as a result an error term, ε̂αβ ≡ εαβ

−4t( τ
4t− 1

2 )
, is

introduced:

ε̂αβ = (1− γ) c2s [∂γ,1 (ρuγ) δαβ + ∂α,1 (ρuβ) + ∂β,1 (ρuα)] (A.16)

where γ = c2s,e/c
2
s. It is easily seen that this term is only identically zero

when there are no velocity gradients or when γ = 1, i.e. cs,e = cs.

To alleviate this issue, the third moment of the equilibrium distribution must

likewise be de�ned in terms of the e�ective speed of sound:

∑
i

ei,αei,βei,γfi,eq = ρc2s,e (uαδβγ + uβδαγ + uγδαβ) (A.17)

In that case, the result for the non-equilibrium contribution to the momen-

tum �ux tensor is:

π̂αβ,1 = −ρc2s,e [∂α,1uβ + ∂β,1uα] (A.18)
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This is equivalent to the stress tensor as de�ned in equation 11 with e�ective

viscosity:

νe = c2s,e4t
(
τ

4t −
1

2

)
(A.19)

which now also depends on the e�ective speed of sound.

AppendixB. Determining the coe�cients of the modi�ed equilibrium

AppendixB.1. The de�ciency of single-speed lattices

For the single-speed D1Q3 lattice, the resulting sets of equations for coe�-

cient Ai and Bi are:

2

3
A1 +

1

3
A2→3 = 1 A2→3 = γ (B.1)

B2→3 = 1 B2→3 = γ (B.2)

The coe�cients A2→3 = A2 = A3 and B2→3 = B2 = B3 have been combined

due to the symmetry of the lattice and the assumed symmetry of the coe�cients.

The solution to the equations for coe�cient Bi requires B2→3 = γ = 1 which

indicates that on a single-speed lattice the speed of sound cannot be tuned

without adapting the grid.

The single-speed D2Q9 lattice results in two systems of equations for coe�-

cients Ai:

4

9
A1 +

4

9
A2→5 +

1

9
A6→9 = 1

2

3
A2→5 +

1

3
A6→9 = γ (B.3)

and coe�cients Bi:

2

3
B2→5 +

1

3
B6→9 = 1

2B2→5 +B6→9 = 3γ

B6→9 = γ (B.4)
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As with the 1D case, the coe�cients have been combined such that A2→5 =

A2 = A3 = A4 = A5 and B2→5 = B2 = B3 = B4 = B5, etc. Following the

analogy of the single-speed D1Q3 lattice in the 1D implementation, the solution

to equations of coe�cients Bi are B2→5 = B6→9 = γ = 1. Again a single-speed

D2Q9 lattice results in the inability to accurately modify the speed of sound.

For both single-speed lattices, values of γ 6= 1 do not satisfy the equations

in AppendixA, and we must introduce additional velocity directions as used in

multi-speed lattices.

AppendixB.2. Improvement using multi-speed lattices

For the multi-speed D1Q5 lattice, the resulting sets of equations for coe�-

cient Ai are:

1

2
A1 +

1

3
A2→3 +

1

6
A4→5 = 1

1

3
A2→3 +

2

3
A4→5 = γ (B.5)

and for coe�cients Bi are:

1

3
B2→3 +

2

3
B4→5 = 1

1

3
B2→3 +

8

3
B4→5 = 3γ (B.6)

The set of equations form a linearly independent system of four equations for

a total of six unknowns (e.g. A1, A2→3, A4→5, B2→3, B4→5 and cs,e) requiring

two additional relations. By setting the relation B4→5 = rB2→3, solutions for

B2→3, B4→5 and cs,e are readily found. Finally, for coe�cients Ai, the relation

A4→5 = rA2→3 is chosen from which follows coe�cients A1, A2→3 and A4→5.

Note that any permutation of arbitrary relations between the coe�cients for Ai

and Bi will lead to a solution for the coe�cients. The solution to the set of

equations is:

A1 =
16r2 + 7r + 4

12r2 + 12r + 3
A2→3 =

8r + 1

(2r + 1)
2

B1 = 0 B2→3 =
3

2r + 1

A4→5 = rA2→3 B4→5 = rB2→3 (B.7)
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with a speed of sound, cs,e, de�ned through the ratio γ:

γ =
c2s,e
c2s

=
1

3

8r + 1

2r + 1
(B.8)

All coe�cients Ai = Bi = γ = 1 when r = 1 corresponding to the conven-

tional case as expected.

Contrary to the single-speed lattice, the multi-speed lattice allows the mod-

i�cation of the speed of sound at the cost of a more computationally expensive

scheme.

For the multi-speed D2Q13 lattice, the resulting sets of equations for coe�-

cient Ai are:

3

8
A1 +

1

3
A2→5 +

1

4
A6→9 +

1

24
A10→13 = 1

1

3
A2→5 +

1

2
A6→9 +

1

6
A10→13 = γ (B.9)

and for coe�cients Bi are:

1

3
B2→5 +

1

2
B6→9 +

1

6
B10→13 = 1

2

3
B2→5 +B6→9 +

4

3
B10→13 = 3γ

B6→9 = γ (B.10)

Analogous to the 1D case, the set of equations form a linearly independent

system of �ve equations for a total of eight unknowns (e.g. A1, A2→5, A6→9,

A10→13, B2→5, B6→9, B10→13 and cs,e) requiring three additional relations.

By setting the relation B10→13 = rB6→9, solutions for B2→3, B4→5 and cs,e

are readily found. For the coe�cients Ai, the relations A6→9 = rA2→5 and

A10→13 = rA6→9 are chosen from which follow the coe�cients A1, A2→3 and

A4→5. Note that any permutation of arbitrary relations between the coe�cients

for Ai and Bi will lead to a solution for the coe�cients. The solution to the set

of equations is:
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A1 =
2γ

3

[
4 + 8r − 3r2

2 + 3r + r2

]
A2→5 =

12

6 + 7r − r3

B1 = 0 B2→5 =
6− 4r

3− r B6→9 = γ

A6→9 = rA2→5 A10→13 = rA6→9 B10→13 = rB6→9 (B.11)

with a speed of sound de�ned through the ratio γ:

γ =
c2s,e
c2s

=
2

3− r (B.12)

Again, all coe�cients Ai = Bi = γ = 1 when r = 1 corresponding to the

conventional case as expected.
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