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Abstract 29 

Countries committed to implementing the Convention on Biological Diversity’s 2011-2020 strategic 30 

plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly 31 

growing technology that has great potential to transform global biodiversity monitoring and 32 

contribute to the call for measuring Essential Biodiversity Variables. Recent advances in camera 33 

technology and methods enable researchers to estimate changes in abundance and distribution for 34 

entire communities of animals, and identify global drivers of biodiversity trends. We suggest that 35 

interconnected networks of remote cameras will soon monitor biodiversity at a global scale and guide 36 

conservation policy. This global network will require greater collaboration among camera studies and 37 

citizen scientists, including standardized metadata, shared protocols, and security measures to protect 38 

the records of sensitive species. With modest investment in infrastructure and continued innovation, 39 

we envision a global network of remote cameras that will provide real-time biodiversity data while 40 

connecting people with nature.  41 

In a nutshell: 42 

 Global biodiversity conservation needs a global standardized sensor system to monitor trends 43 

and drivers of biodiversity change to help achieve the needs of the Convention on Biological 44 

Diversity and the Intergovernmental Platform on Biodiversity and Ecosystem Services 45 

 The rapid growth of remote-camera technology has the potential to provide this sensor 46 

network to effectively monitor biodiversity at global scales, akin to the global meteorological 47 

sensor network 48 

 A growing number of case studies demonstrate the feasibility of large-scale camera networks 49 

to monitor biodiversity trends across 1000’s of km
2
 of diverse habitats, including tropical 50 

forests, alpine ecosystems, and beyond 51 

 Modest investment in infrastructure combined with on-going collaborative efforts to 52 

standardize metadata, field protocols, and databases could harness the incredible power of 53 

remote camera technology 54 

 Scientists alone need not bear the burden; there are many examples of viable ways to integrate 55 

the burgeoning interest of citizen scientists in remote camera monitoring56 
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Introduction 57 

Declining biodiversity is a reality of the Anthropocene, and society is lagging to meet international 58 

biodiversity targets (Butchart et al., 2010; Secretariat of the Convention on Biological Diversity, 59 

2014). From Carnivora to Coleoptera, biodiversity is declining across the globe due to human 60 

activities (Butchart et al. 2010). Rare species are becoming rarer, geographic ranges are constricting, 61 

and species are going extinct (Dirzo et al., 2014). Monitoring these changes to biodiversity is a 62 

global priority required by international treaties (Secretariat of the Convention on Biological 63 

Diversity, 2014) and coordinated by international networks like the Group on Earth Observations 64 

Biodiversity Observation Network (GEO BON; earthobservations.org/geobon.shtml) which has made 65 

a global call for the measurement of Essential Biodiversity Variables (EBVs; Pereira et al., 2013). 66 

With growing concern and funding for maintaining the health of our planet (Tittensor et al., 2014), 67 

real-time biodiversity monitoring is key to identifying and addressing large-scale ecological threats.  68 

The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) was created in 69 

2012 with the unambiguous goal of strengthening the interface between science and policy to 70 

improve biodiversity conservation outcomes, emulating the successful issue-specific policy focus of 71 

the Intergovernmental Panel on Climate Change (IPCC; Mooney and Tallis, 2014). An important 72 

distinction between IPBES and the IPCC, however, is that the latter has a global network of 73 

standardized weather sensors to track changes and inform predictions about future climate. 74 

Conversely, biodiversity data are typically collected to serve local objectives, and may not be 75 

suitably standardized to provide effective measures of global change. An international biodiversity 76 

network remains a major gap, and filling this gap is imperative to improve our understanding of 77 

ecological patterns and processes at adequate spatial scales, and to quantify how human activities 78 

affect them (Schmeller et al., 2015). 79 

http://www.earthobservations.org/geobon.shtml)
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To meet global challenges in monitoring and conserving biodiversity, we need to evaluate 80 

changes in species composition, distribution, abundance, and response to anthropogenic impacts 81 

(Pereira et al., 2013). Technological, financial and organizational constraints restrict most monitoring 82 

initiatives to one or a few species of concern over relatively small areas, thereby incorporating only a 83 

small selection of ecological processes. The result is a mismatch between the global scale of 84 

conservation needs and the localized availability of ecological data (Fraser et al., 2012). Data on 85 

ecological communities across multiple scales are needed to fully understand and anticipate 86 

anthropogenic effects, establish baselines, identify mechanisms of species decline, and formulate 87 

effective mitigation actions (Hampton et al., 2013). Remote sensing offers a promising means to 88 

integrate local in situ biodiversity data with globally-available environmental data to test hypotheses 89 

about the effects of changing environments on biodiversity (Turner, 2014).  90 

Autonomously triggered cameras (also known as remote cameras, or camera traps) are effective 91 

at sampling communities of medium and large sized birds and mammals, and we suggest that they 92 

can help biodiversity monitoring initiatives expand to the necessary scales and meet these global 93 

challenges. With recent advances in camera technology, reduction in cost, and increased interest in 94 

wildlife images as an outreach and education tool, the use of remote cameras has grown 95 

exponentially for the past 10-15 years, doubling every 2.9 years (Burton et al., 2015). Figure 1 96 

scratches the surface of the magnitude of current camera trapping efforts, demonstrating the broad 97 

geographic distribution, taxonomic diversity, and breadth of conservation issues addressed with 98 

remote cameras. In this haphazard sample of global camera studies (only those conducted by 99 

coauthors of this paper) there are on average 78 cameras deployed per study, totaling over 8,000 100 

camera sites (WebTable 1). We estimate that this represents, at most, 5% of current global efforts and 101 

Burton et al.’s (2015) 10-year review included 20,000 camera locations — meaning that tens of 102 

thousands of cameras are already deployed across the planet. 103 
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Despite this increase and the concomitant accumulation of remote camera data, coordination of 104 

multiple camera studies rarely occurs, and resultant datasets can be fragmented, unstandardized, and 105 

difficult to integrate for broader biodiversity assessment and conservation (Meek et al., 2014). 106 

However, we draw attention here to a growing number of examples that illustrate regional, 107 

coordinated applications, and thereby demonstrate the truly global potential of remote cameras as a 108 

standardized monitoring platform for terrestrial vertebrate biodiversity. The current emergence of 109 

remote cameras and its coordination may, to some extent, mirror the coordination efforts of the 110 

world’s earliest meteorological network in the late 19
th

 and early 20
th

 centuries. Progressing from 111 

disparate hand-calculated local forecasts early on, to using new computers emerging after World War 112 

II to provide medium-range forecasts, weather and climate forecasting data are now consolidated 113 

globally by the World Meteorological Organization that combines data from ~20,000 weather 114 

stations, including many satellite sensor networks (Smith and Roulston, 2002).  115 

The complexity of ecosystem responses to human stressors, and the multiple spatial and temporal 116 

scales at which ecological processes affect biological conservation require substantial amounts of 117 

data to be collected, stored, and processed (Kelling et al., 2009). Ecology is rapidly becoming larger 118 

scale in its collaborative networks, data intensification, and application (Peters et al., 2008; 119 

Reichman et al., 2011). Here, we review the current state of remote camera use in ecology and 120 

conservation and provide a vision for expanding from individual, localized camera studies to 121 

coordinated regional and global camera networks. Surmountable gaps remain in our ability to 122 

effectively use these data to measure change to regional and global biodiversity. Extant regional 123 

networks have worked through many of these challenges, which we review in part, and we suggest 124 

strategies for overcoming other real and perceived barriers to further growth. We conclude with 125 

recommendations on how to translate remote-camera science into effective tools for management and 126 

conservation. 127 
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Current applications of remote cameras to biodiversity conservation 128 

Given the pressing need for biodiversity monitoring, an increasing number of remote camera studies 129 

are now focusing on multiple species (Figure 1). Studies now extend beyond the nuts and bolts 130 

mensuration of biodiversity components (abundance, distribution, species richness) to applications 131 

that address underlying causes of biodiversity change. For example, remote cameras are an ideal tool 132 

to measure the effectiveness of highway crossing structures to improve multi-species landscape 133 

connectivity (Barrueto et al., 2014), test corridor models (McShea et al., 2015), and evaluate the 134 

effects of forest fragmentation on tropical species diversity and dominance (Ahumada et al., 2011). 135 

Camera surveys can also highlight how different life-history stages respond differently to 136 

disturbances; for example, cameras have identified key habitats linked to higher female grizzly bear 137 

reproductive success (Fisher et al., 2014). Remote cameras are also increasingly used to address 138 

complex ecological interactions between animal behavior and climate change. For example, cameras 139 

were used to assess the impacts of climate change and trophic interactions on elk (Brodie et al., 140 

2014), to measure plant phenology and climate (Morisette et al., 2008), and to determine how large-141 

mammal food webs respond to forest fragmentation (Brodie et al., 2015). Furthermore, cameras can 142 

measure the success of conservation actions (Dajun et al., 2006), including protected area 143 

effectiveness (Burton et al., 2011), such that cameras are highlighted as tools to monitor local or 144 

regional biodiversity (Tobler et al., 2015). For example, a camera-specific diversity metric, the 145 

Wildlife Picture Index (WPI; O'Brien et al., 2010), has been used to measure trends in large-mammal 146 

communities of Mongolia (Townsend et al., 2014), Costa Rica (Ahumada et al., 2013) and most 147 

recently, on a entire network of forested tropical protected areas (Beaudrot et al., 2016).  148 

Remote camera projects usually target ground-dwelling vertebrates (mostly mammals), 149 

although there are examples focused on arboreal mammals (Gregory et al., 2014), and “phenocams” 150 

are an emerging  technology for monitoring phenology, snow cover, and disturbance events (Brown 151 
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et al., 2016). Species commonly documented in remote camera surveys represent a critically 152 

important group for biodiversity maintenance, including large carnivores and herbivores (Ripple et 153 

al., 2014, 2015). Even small changes in vertebrate community composition can have large cascading 154 

effects throughout lower trophic levels in food webs, including rates of primary productivity and 155 

decomposition (Hooper et al., 2012). Early detection and mitigation of population declines may be 156 

crucial to conservation. Moreover, actively engaging decision makers and citizen scientists in 157 

conservation is enhanced by photographs of these charismatic mega-fauna, which can act as effective 158 

conservation surrogates for large-scale conservation across taxa (Di Minin and Moilanen, 2014). 159 

Many applications of camera data have yet to be fully exploited. Cameras are key to fill 160 

knowledge gaps in mammal distributions. For example, Moriarty et al., (2009), used cameras to 161 

document the first evidence of wolverine expansion in California. Cameras can potentially assess 162 

range changes due to climate change. Cameras could also provide a skin coat database to assess the 163 

origins of poached animals, similar to contemporary genetic analogues (Mondol et al., 2014), but 164 

with the additional benefit of providing spatiotemporal data to help locate poachers.  165 

As with museum specimens, the core data collected by remote cameras are spatiotemporally 166 

referenced ‘voucher’ specimens documenting the occurrence of a species in situ. The Smithsonian 167 

Institution has started archiving remote camera data similar to museum collections (McShea et al. 168 

2015; eMammal, emammal.org) and the Global Biodiversity Information Facility (GBIF; 169 

www.gbif.org) provides international open-access infrastructure to collect such data on all species, 170 

including remote camera data. The digital specimen is a non-invasive documentation of an animal in 171 

situ, in its habitat, with associated spatiotemporal data on behavior, temporal activity, heterospecifics, 172 

and environmental covariates. 173 

The public interest in remote camera imagery continues to grow, with coffee-table books now 174 

featuring remote camera photography (Kays, 2016). A frequent ancillary goal of remote camera 175 

http://emammal.org/
http://www.gbif.org/
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projects is the production of imagery for use in science communication and building support for 176 

biodiversity conservation. Many studies have harnessed the keen interest of citizen scientists to help 177 

maintain cameras (e.g., replacing batteries, memory cards; Barrueto et al., 2014; McShea et al. 2015), 178 

and to classify camera images (see below). Thus remote cameras significantly contribute to the first 179 

goal of the Aichi biodiversity target of the Convention on Biological Diversity (CBD)’s 2011-2020 180 

Strategic Plan: “Address the underlying causes of biodiversity loss by mainstreaming biodiversity 181 

across government and society” (Secretariat of the Convention on Biological Diversity, 2014).  182 

Future vision: moving from local to global scales 183 

Global policy frameworks, like the CBD and IPBES, require equally ambitious and large-scale 184 

monitoring tools to ensure progress toward meeting their goals. To meet this need, ecological 185 

monitoring networks are striving to match the capacity of global weather monitoring through 186 

deploying ecological sensors, building data infrastructures, and refining statistical models for 187 

prediction (Keller et al., 2008). The first step towards an equivalent standardized global network for 188 

biodiversity is to link current in situ data streams with global-scale data, for example, satellite-based 189 

remote sensing (Turner, 2014; Figure 2). Linking together and expanding current local remote 190 

camera projects into nationally or internationally coordinated efforts, permits continental and global-191 

scale questions to be asked from locally point-sampled data (Figure 2). This scaling up from local to 192 

global requires not only the usual fuel of human endeavors—time and money—but also innovation 193 

and cooperation. Obstacles to the formation of a truly global remote camera network are common to 194 

many forms of large-scale monitoring; these include standardization of field protocols and metadata, 195 

coordination among regional and international partners, and long-term funding for field and data 196 

management (Lindenmayer and Likens, 2009). But with the number of existing networks growing as 197 

reported below, the barriers to a truly global biodiversity network are falling away. By pulling from 198 
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100+ years of combined remote camera experience among the authors, we supply some lessons in 199 

overcoming these obstacles when starting regional-scale camera networks. 200 

Getting on the same page: increasing sample size and standardizing protocols 201 

Often, a perceived (or real) impediment to starting an individual camera study is the initial cost 202 

associated with camera purchase. Improvements in camera technology continues to reduce their cost 203 

(as low as $100 US) giving this technology a low cost per unit of sampled area and per species. 204 

Further, with proper protocols, relatively inexpensive local wildlife guides, park rangers, anti-205 

poaching patrollers or volunteer citizen scientists can be trained to service cameras, further reducing 206 

costs per sample, and thus facilitating larger sample sizes. For example, the eMammal project enlists 207 

more than 400 volunteers to run cameras in over 2000 locations across six US states (McShea et al., 208 

2015), and the Snapshot Wisconsin project makes effective use of citizen scientists to maintain 209 

cameras across the state (www.snapshotwisconsin.org). Financial and logistical barriers for running 210 

cameras at large scales, therefore, are becoming smaller and smaller.  211 

Experimental design should be dictated by research objectives (Figure 3; Meek et al. 2014). Once 212 

a design is chosen, metadata reporting is critical for compiling image data for larger-scale analyses 213 

(Meek et al. 2014, Burton et al. 2015). For example, project metadata should include camera model 214 

and settings, number of cameras sites, length of deployment, sampling design and protocol, and site 215 

metadata including GPS location, vegetative community, and environmental conditions (Meek et al. 216 

2014). The Tropical Ecology Assessment and Monitoring Network (TEAM; www.teamnetwork.org/) 217 

is the world’s largest remote camera network with 17 large camera arrays (~60 sampling points 218 

each), distributed across 15 countries (WebTable 1). Each site follows an identical standardized 219 

protocol to collect data on multiple vertebrate species, ensuring coordinated collection of metadata, 220 

and other projects could follow this cohesive example. Similarly, Parks Canada provides an 221 

archetypal example of how local networks can scale up in spatial extent. With cameras emerging as a 222 

http://www.snapshotwisconsin.org/
http://www.teamnetwork.org/
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new tool to monitor biodiversity in the early 2000s, individual national parks began experimenting 223 

with cameras for park-wide monitoring. With increased deployment came increased coordination and 224 

collaboration. Now, ten years later, 7 national parks covering ~23,000 km
2
 are using standardized 225 

methods to systematically distribute 350 cameras for year-round multi-species monitoring (Steenweg 226 

et al., 2016); the list of similarly coordinated networks grows (WebTable 1). Continuing towards 227 

agreement on collecting matching metadata across camera studies is needed for global integration of 228 

camera networks. Standards for metadata descriptions for camera studies are now available (Meek et 229 

al. 2014; www.wildlifeinsights.org). 230 

Statistical analyses and scaling up image classification 231 

The first step in turning pictures into data is classifying the images, which can be labor intensive. 232 

With proper management, large volumes of photographic data can be rapidly catalogued using 233 

standard software, up to 1000 images per hour with minimally-trained technicians or volunteers 234 

(Meek et al., 2014). eMammal capitalizes on its network of volunteers to help with this process and 235 

has classified over 2.6 million images (McShea et al., 2015). The TEAM network uses specialized 236 

software (Wild.ID), now available to any remote camera project, to classify images and provides a 237 

project management framework for remote camera projects to keep track of sampling periods, 238 

personnel, and even individual pieces of equipment (Fegraus et al., 2011; 239 

https://github.com/ConservationInternational/Wild.ID/archive/master.zip). Further efficiencies come 240 

with crowdsourcing image analysis, often with double classification techniques to reduce error; 241 

examples including: www.chimpandsee.org, www.chicagowildlifewatch.org, and 242 

www.snapshotwisconsin.org. One of the best-known projects is Snapshot Serengeti 243 

(www.snapshotserengeti.org), which counts 28,000 registered online volunteers and 10.8 million 244 

classified pictures from their park-wide camera project (Swanson et al., 2015). Software to allow 245 

researchers to crowd source image processing is also freely available via www.zooniverse.org/lab.  246 

http://www.wildlifeinsights.org/
https://github.com/ConservationInternational/Wild.ID/archive/master.zip
http://www.chimpandsee.org/
http://www.chicagowildlifewatch.org/
http://www.snapshotwisconsin.org/
http://www.snapshotserengeti.org/
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Now there is a growing number of statistical approaches available to estimate abundance, 247 

distribution (occupancy), or species diversity from camera data (Figure 3). A major milestone in the 248 

development and application of camera data was the use of capture-recapture methodology to 249 

estimate density and other demographic parameters of tigers (Karanth 1995). This advancement 250 

contributed to the rapid and widespread adoption of remote cameras in population studies of species 251 

with uniquely-identifiable individuals and has fueled the growth of spatially explicit capture-252 

recapture methods (Royle et al. 2014). For all camera data, one key challenge is accounting for 253 

occasions when species were present but not detected at a sampling site (Royle and Dorazio, 2008). 254 

One approach applied to camera data is to discretize the continuous sample to mimic a repeated site 255 

visit framework of abundance or occupancy estimation (Figure 3), though other methods using 256 

continuous detection probabilities can be more appropriate (Guillera-Arroita et al., 2011). Using raw 257 

detection rates as a measure of abundance is generally not recommended because it confounds true 258 

absence and undetected presence, ignoring detection issues (Sollmann et al., 2013). Nonetheless, use 259 

of these uncorrected relative abundance indices continues (Burton et al., 2015), perhaps because 260 

more sophisticated approaches require the collection of ancillary movement data to estimate animal 261 

density (e.g. Random Encounter Model; Rowcliffe et al., 2008) or the use of complicated hierarchical 262 

models. Hierarchical models are ideal for camera data analyses because they model biological and 263 

imperfect observation processes that lead to observed data, nested within a model of the ecological 264 

process of interest (e.g. how abundance changes over space; Figure 3). Hierarchical models have 265 

been used to scale up regional estimates of species occupancy and relative abundance to large-scale 266 

assessments of factors affecting species richness (Tobler et al. 2015, Sutherland et al., 2016). These 267 

models are now becoming more available with the release of recent books (e.g. Kery and Royle, 268 

2016), open source software (e.g. Fiske and Chandler, 2015; White and Burnham, 1999) and active 269 
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web forums for quick and friendly help (e.g. groups.google.com/forum/#!forum/unmarked and 270 

groups.google.com/forum/?hl=en#!forum/hmecology). 271 

One challenge with camera data is communicating how the distribution and abundance of 272 

multiple species change across numerous regions, over time. One proposed solution is the wildlife 273 

picture index (WPI; Figure 3; O'Brien et al., 2010) a conceptually simple metric developed by 274 

TEAM that summarizes the average proportional change in occupancy among species. Mechanisms 275 

of change in WPI can be examined at multiple scales of interest to understand scale-specific causes 276 

of decline. WPI is one of the indicators for CBD’s Target 12 (preventing species extinctions), 277 

fulfilling a critical need in tropical terrestrial biodiversity trend monitoring, but many logical 278 

improvements in methodology are possible. For example, it is now possible to jointly model species 279 

richness across study areas to share detection information (Sutherland et al., 2016) and some 280 

diversity studies with cameras account for species that were never detected during the entire study 281 

(Rovero et al. 2014). WPI is based on occupancy estimation from detection/non-detection data, but 282 

recent work has estimated abundance from such data (Chandler and Royle, 2013) and thus, may 283 

provide an avenue for moving beyond detection-corrected species richness to more sophisticated 284 

abundance-based diversity measures (Chao et al., 2014). 285 

Dealing with data: management, storage, sharing and access 286 

A final challenge to scaling up remote camera data collection is improving data storage and 287 

management, especially given the large storage requirements for images. Regional or global 288 

biodiversity databases are needed that are tailored to camera data in an easy-to-use, accessible and 289 

open-source format. Database platforms are already developed that host and facilitate the 290 

management of large quantities of other types of shared ecological data. MOVEBANK 291 

(www.movebank.org), for example, archives the ever-growing amount of animal movement data 292 

(Kays et al., 2015). A promising platform for camera data management, based upon the experience of 293 

https://groups.google.com/forum/#!forum/unmarked
http://groups.google.com/forum/?hl=en#!forum/hmecology
http://www.movebank.org/
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eMammal, the TEAM network, Smithsonian Institution, Wildlife Conservation Society and the North 294 

Carolina Museum of Natural History, is the federated Wildlife Insights project (wildlifeinsights.org). 295 

This latter database was developed to streamline data management and integrate camera data with 296 

other in situ data streams such as forest carbon, gaseous flux, and other environmental monitoring 297 

(McShea et al. 2015). This integration will allow scientists to better connect patterns in biodiversity 298 

change with the ultimate causes of declines in biodiversity. If camera data descriptions begin to 299 

follow biodiversity information standards for multimedia data (e.g. proposed by Meek et al. 2014; 300 

Wildlife Insights) these data could make an important contribution to wider global networks of 301 

biodiversity databanks such as GBIF, IUCN’s Red list, and Map of Life (https://mol.org/). 302 

A final consideration when combining data from globally disparate studies is addressing 303 

intellectual property rights and privacy needs. Individual studies may be reluctant to contribute data 304 

without such reassurances. For example, for privacy reasons, Parks Canada will never release image 305 

data until it is certain it contains no images of any visitors to the parks. Similarly, some studies may 306 

not want to release geographical locations of particular endangered species for fear of increasing 307 

poaching; or researchers may want to maintain publishing rights to their data. MOVEBANK has a 308 

tested model, offering several user-controlled levels of data security to collaborators wishing to store 309 

data on the server. These options range from completely open access to completely invisible, where 310 

the user controls who can see, use, access, or request collaboration on data contributed to the 311 

database. Such flexibility provides a means to meet every user’s intellectual property rights and 312 

privacy needs, while still striving towards an open data philosophy. 313 

Conclusions 314 

There is a pressing need for increased coordination of remote camera surveys to achieve effective 315 

global biodiversity monitoring. The non-invasive nature of remote cameras and their decreasing costs 316 

continues to hasten their adoption at every scale. Using concrete examples, we have demonstrated 317 

https://mol.org/
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how barriers to camera servicing, data classification, storage and management have been overcome to 318 

achieve synthesized coordinated regional networks. We suggest these efforts can be scaled up to 319 

create a global network of remote cameras that would provide a unique picture of our planet to 320 

complement other remote biodiversity sensing methods critical to documenting and mitigating the 321 

current biodiversity crisis. 322 

Given these advancements in remote camera science, we have three recommendations for 323 

further integration of camera data into biodiversity monitoring. First, we reiterate the need for 324 

standardizing metadata collection and data storage. Agreeing to a global industry standard will 325 

greatly facilitate the usefulness of the plethora of data being collected (Meek et al., 2014). Second, 326 

greater support is required to provide a global infrastructure to improve collaborations among 327 

existing projects and increase local buy-in for new camera projects that can be more explicitly linked 328 

to regional and global camera networks. To do so, it would be important to tap into extant 329 

collaborative networks to facilitate regional collaboration (e.g. TEAM, eMammal, Parks Canada). 330 

With broad cross-institutional support, tremendous opportunities could be gained when capitalizing 331 

on this framework for global biodiversity monitoring. Lastly, institutions like GEO BON and GBIF 332 

could benefit from increasing their rate of adoption of camera data as one of the most standardizable 333 

and expandable data types for biodiversity monitoring, as they can contribute to the generation of 334 

Essential Biodiversity Variables (Pereira et al., 2013) for terrestrial vertebrates and complement other 335 

indices like the Living Planet Index (livingplanetindex.org). The public appeal of remote camera 336 

images and citizen-scientist participation will continue to scale-up biodiversity monitoring and excite 337 

public support to ultimately help make successes in global conservation possible. 338 
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Figure 1. Snapshot of recent global remote camera studies. All study area locations where authors 509 

have used cameras to ask large-scale ecological questions are located on map (on average, 78 510 

cameras at each point; range 11-600), providing a glimpse of the ubiquity and diversity of current 511 

efforts around the world to collect ecological data using remote cameras. Cameras studies used in 512 

eMammal and TEAM projects are included. (A) grizzly bear (Ursus arctos) (B) tragopan  (Tragopan 513 

blythii) (C) wolverine (Gulo gulo) (D) mule deer (Odocoileus hemionus) (E) coyote (Canis latrans) 514 

(F) giant anteater (Myrmecophaga tridactyla) (G) African bush elephant (Loxodonta africana) (H) 515 

clouded leopard (Neofelis nebulosa). See WebTable 1 for more details of each study included on 516 

map. 517 

 518 

Figure 2. How scaling up data collected from local in situ camera sites to higher levels of 519 

organization results in changes in the interpretation of the data, the ecological and conservation 520 

questions that can be asked, and the explanatory covariates required to answer these questions. The 521 

spatial scale of interest determines the meaning of data collected, availability of analyses, and the 522 

needed explanatory variables, therefore, guiding the application of camera data. The smallest scale is 523 

the local in situ camera site that can be combined with other point data such as carbon metrics. Next, 524 

cameras are often deployed relative to an idealized camera trap grid. These grids can be coordinated 525 

across a network such as the Canadian mountain parks network, which have the potential to be 526 

integrated across the globe with ever-increasing satellite data. 527 

 528 

Figure 3. Common groups of statistical analyses performed on camera data. Data collected from the 529 

same local camera grid can be easily analyzed to answer many different types of questions including 530 

temporal and spatial behaviour patterns (subfigure modifed from Rowcliffe et al., 2014); spatially 531 

explicit abundance (Gopalaswamy et al., 2012; reproduced by permission of John Wiley and Sons); 532 

occupancy (Ahumada et al., 2013); and species richness (Ahumada et al., 2011; reproduced by 533 

permission of the Royal Society).  534 


