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ABSTRACT 

Grid cells in the hippocampal formation fire when the animal visits nodes of a trian-

gular grid covering its environment. Their activity may represent the animal’s spatial 

location for use in memory and navigation. I used simulations to investigate grid 

cells’ encoding of self-location, showing that some properties of in-vivo firing pat-

terns are adaptive for fidelity.  In a related project, I found evidence suggesting me-

dial entorhinal cortex cells may participate in non-local representations of remem-

bered, planned or imagined routes, foreshadowing more recent work. 

First, I simulated firing patterns in modular grid cell systems with different parame-

ters (e.g. grid scales, orientations), and assessed how well they encode self-location 

under different conditions (e.g. spatial uncertainty, environment size). I demon-

strated that grid cell system parameters affect precision (within the smallest grid 

scale) and accuracy (including mis-localisation to the wrong repeating unit of a grid) 

differently. 

I showed that grid scale expansion partially mitigates the effect of spatial uncertainty 

on accuracy, supporting the hypothesis that the temporary expansion experimen-

tally observed in rats exploring novel environments may be an adaptive response to 

uncertainty. 

In an environment with anisotropic spatial information, I showed that aligning the 

grid-patterns with the axis in which more information is available improves perfor-

mance, matching collaborators’ findings that grid-patterns in humans virtually navi-

gating such environments are aligned that way. 

I showed how self-localisation error in larger environments is influenced by the re-

lation between the modules’ scales. In the presence of spatial uncertainty, absolute 
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predictions of capacity break down, and accuracy varies sharply and irregularly with 

the ratio between modules’ scales. This, and the observed biological variability of 

the ratio, make some theoretical predictions of optimised values for the ratio im-

plausible. 

In sum, I have demonstrated how biologically-inspired simulations can help inter-

pret grid cell firing patterns and explore the adaptiveness of neural coding schemes. 
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IMPACT STATEMENT 

Animal brains must encode and use information representing not just individual 

sensory experiences, but generalised, high-level concepts. An example is spatial in-

formation: an animal can navigate familiar environments with reference to inter-

nally-held information that maps an environment’s features and tracks its own loca-

tion. Categories of cell discovered in the brain, whose activity patterns correlate with 

aspects of the animal’s position, are believed to underpin this “cognitive map”. By 

studying these cells we can see how the brain encodes and processes information 

about high-level concepts while correlating them to measurable real-world quanti-

ties (an animal’s location or direction). 

Grid cells are one such cell type. A grid cell fires at a series of locations at the corners 

of a repeating pattern of equilateral triangles tiling the environment. Each grid cell 

has a different pattern, so as an ensemble, the set of grid cells in a brain could en-

code location finely over a large environment. An animal’s particular set of grid-pat-

terns therefore determines how it could encode information about space. 

This project developed a biologically-inspired computational model that can simu-

late differently configured grid cell ensembles, and test how accurately and precisely 

they can encode an animal’s location under different conditions – in particular, how 

well they perform with different degrees of uncertainty in the information available 

for the animal to work out its location. 

Using this model, I tested hypotheses based on experimental observations of ani-

mals’ grid cell systems. I showed that the grid cell system can flexibly adapt some 

aspects of its configuration to optimise encoding in different conditions caused by 

uncertainty. I also showed that optimising other aspects of its configuration is im-

plausible given the irregularities constraining real biological systems. 



8 

 

This advanced our understanding of how the grid cell system encodes information 

about space, and this modelling framework could be applied to many more ques-

tions in this area. Given recent research demonstrating that grid cells can also en-

code “maps” of non-spatial concepts, and because principles discovered in this brain 

area may potentially be generalizable to others, it could help us understand how the 

brain encodes a wider range of high-level concepts, in particular given uncertain in-

formation about the world, and how it can adapt its coding schemes to changing 

conditions. 

Though this was basic research, understanding in this area could inform other ap-

plications. Understanding how animals encode and process information to map and 

navigate environments could be used in developing autonomous robots able to do 

the same. Brain tissue changes in Alzheimer’s disease first arise in the part of the 

brain where grid cells are found, and the signals of grid cell orientation were recently 

found to be weaker in young adults at genetic risk of AD. Understanding cognitive 

functions associated with this area could contribute to diagnosis and monitoring the 

progress of the disease, and to therapies compensating for cognitive symptoms. 

The project generated one published open access journal article and one preprint 

manuscript published on bioRxiv. This manuscript and a further article are currently 

being prepared for submission to journals. 
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1. INTRODUCTION 

1.1. Preamble 

In order to support the advanced behaviours exhibited by many animals, their 

brains must mediate deeply complex relationships between stimuli and responses. 

This requires representing and storing information about high-level concepts de-

rived from multiple strands of sensory information, and manipulating this infor-

mation for learning, memory, planning and imagination. 

The study of spatial cognition is an important potential avenue to developing our as-

yet rudimentary understanding of this, since the high-level concepts that must be 

represented and processed in the brain nevertheless correspond to easily, reliably 

and quantitatively measurable variables in the world. With the discovery of cells 

whose activity reflects information about an animal’s location, it became possible to 

conduct a whole field of experiments in which cell- and circuit-level activity can be 

compared to real-world correlates. Exploration of this area might be the most ac-

cessible way in to understanding potentially more general principles about how the 

brain encodes and processes high-level information. 

In the major part of this work, I report investigations which aimed to use computa-

tional approaches to develop our understanding of precisely how the configuration 

of the entorhinal grid cell ensemble – part of the neural system believed to mediate 

spatial cognition – can determine the quality of self-location representations, and to 

investigate to what degree that configuration may or may not be adapted to opti-

mise performance in particular environmental conditions. I also report a related in-

vestigation into the possible role of this same ensemble in supporting “non-local” 

representations of location, which are implicated in processes of learning, memory, 

planning and imagination. 
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1.2. Establishing the cognitive map: place & head direction cells 

The theory that, at least in the rat, spatial problems can be solved with reference to 

internal allocentric representations of environments dates to Tolman (1948), who 

coined the term “cognitive map”. This cognitivist view superseded behaviourist the-

ories holding that routes through environments were merely series of simplistic 

stimulus-response or action-outcome associations (an account of the experiments 

and theories of the behaviourists and cognitivists can be found in Dudchenko, 2010). 

But it was not until over 2 decades later that the neuronal basis of this map began 

to be uncovered. Place cells – pyramidal cells with spatially restricted firing (O’Keefe 

& Dostrovsky, 1971) – were discovered in the rat hippocampus. These cells typically 

had a unique single restricted spatial firing field (Figure 1.1A), which was relatively 

stable across time and across visits, and relatively invariant to variables other than 

spatial location, leading O'Keefe & Nadel (1978) to identify these cells and this struc-

ture with the cognitive map. Wilson & McNaughton (1993) confirmed that place cell 

activity could be an ensemble code for location, by recording from multiple rat place 

cells simultaneously and decoding this data to accurately predict the location of the 

subjects. 

Subsequently head direction cells, which fire when the rat faces in a particular direc-

tion (Figure 1.1B), have been found in a number of areas: in particular within the 

classic Papez circuit (Ranck Jr, 1984; Taube et al., 1990; Chen et al., 1994; Stackman 

& Taube, 1998; Sargolini et al., 2006) but also in a number of other areas (overview 

in Taube, 2007). 

Animals are capable of performing “vector navigation” – travelling directly from a 

current location to a goal location, including via previously unexplored short-cuts 
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(Lashley, 1929; Tolman, 1948; Morris, 1981). Place and head direction cell firing sig-

nal the animal’s current location and heading. But these signals are not enough to 

complete a cognitive map. This requires the ability to learn the spatial relations be-

tween locations, and to use this knowledge to calculate vectors in order to navigate 

through the environment. Some cognitive map models devised before the discovery 

of grid cells relied on the plasticity of connections between place cells to encode 

such spatial relations (e.g. Muller et al.'s [1991] hippocampal “cognitive graph”). This 

meant that before an animal could navigate efficiently over distances longer than 

the diameter of the largest place fields (Bush et al., 2015), it would have to conduct 

relatively meticulous exploration of each new environment in order to learn all the 

associations between adjacent place fields – a somewhat implausible requirement. 

1.3. Grid cells as a potential spatial metric 

The discovery and subsequent investigation of grid cells in the rat medial entorhinal 

cortex (mEC) (Hafting et al., 2005) suggests possible answers to this issue. A grid cell 

exhibits stable, spatially localised activity rather like a place cell, but in multiple place 

Figure 1.1 – Firing patterns of place and head direction cells 

(A) Firing rate map of a CA1 place cell. Colour indicates firing rate at each location, from 

blue (low firing rate) to red (high firing rate). (B) Directional plot of firing rates of a tha-

lamic head direction cell. Reproduced from Knierim et al. (1995) with permission from 

Society for Neuroscience. 

B A 
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fields repeating in a regular triangular grid (Figure 1.2A-B). This grid regularly 

measures out horizontal space with apparently unlimited extent. 

Since their discovery, grid cells have also been identified in the mEC of bats (Yartsev 

et al., 2011) and humans (Doeller et al., 2010; Jacobs et al., 2013), as well as  pre- and 

para-subiculum and plausibly human medial prefrontal cortex (Boccara et al., 2010; 

Doeller et al., 2010; Constantinescu et al., 2016). In rats, they are present in all prin-

cipal cell layers of mEC (II, III, V and VI) but they are most densely present in layer II, 

while many in the deeper layers are conjunctive cells – their firing is determined 

spatially by a grid-pattern, but also by head direction (Sargolini et al., 2006). 

mEC grid cells are organised into discrete modules, within each of which cells display 

coherent spatial activity patterns with similar grid scale (distance between grid 

nodes), orientation and distortions but different offsets (Figure 1.2B-C). The grid 

scale common to each module increases in discrete steps. Though smaller scales 

dominate at the dorsal end of the mEC dorso-ventral axis, the modules are overlap-

ping and interspersed (Figure 1.2D; Barry et al., 2007; Stensola et al., 2012; Yoon et 

al., 2013).  

Between different cells in one module whose grid-patterns are offset from one an-

other, all locations in the environment fall within the firing fields of some cells in 

each module. The firing of one grid cell, or one module of grid cells sharing one grid 

scale, cannot uniquely define position as their pattern periodically repeats. How-

ever, by combining information from multiple modules of grid cells with different 

grid-pattern scales, the ensemble can, at least in theory, uniquely encode locations 

over a larger distance (Figure 1.2E). 

Moreover, as will be discussed in more detail later, the identities of the subpopula-

tion of grid cells active at a particular location can, in theory, code that location’s 
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position vector similarly to a residue number system (Fiete et al., 2008). That is, a 

system of grid cells could signal, not merely that an animal is at a unique identifiable 

place, but the relative spatial location of that place within an environment (Barry & 

Bush, 2012) – presumably (if the grid-pattern is automatically generated across pre-

viously unexplored terrain) without the need for the exhaustive prior exploration 

required in many theories pre-dating the discovery of grid cells (see above). Various 

researchers have begun to speculate on trajectory-planning algorithms involving 

grid cells, which could perform vector navigation over much larger distances than 

B 
 

C 
 

D 
 

A 
 

E 
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approaches using place cells alone (Kubie et al., 2009; Erdem & Hasselmo, 2012; 

Kubie & Fenton, 2012; Bush et al., 2015). 

1.4. Neural representations of boundary location 

Border cells in the rat medial entorhinal cortex fire directly adjacent to some or all 

of the boundaries of enclosures (Savelli et al., 2008; Solstad et al., 2008), and subicu-

lar “boundary vector cells” (BVCs) respond more specifically to the presence of a 

boundary at a particular distance and allocentric direction from the animal. The dis-

tance is variable: while some BVCs’ firing fields are directly adjacent to a boundary, 

others are further away (Figure 1.3; Barry et al. 2006; Lever et al. 2009; Stewart et 

al. 2014). Subicular “boundary-off” cells – with firing fields that appear to be the in-

verse of short-range BVCs – are also found (Stewart et al., 2014). 

Figure 1.2 – Grid cell patterns 

(A) Spikes from individual cells and the animal’s position are simultaneously recorded 

(left) in order to map the locations at which spikes occur (right; black line indicates the 

animal’s path; blue squares indicate its location at each spike. (B) This data is used to 

create a rate map modelling the cell’s firing pattern (by calculating firing rate according 

to time spent within location bins, and smoothing), scaling from red for high firing rates 

to blue for low rates (left). Parameters of the grid-pattern are indicated (right). (C) Grid-

patterns of different cells in the same module share similar scale and orientation but are 

offset from one another. Spike locations of three different cells in the same environment 

are indicated in red, blue and green (left), and the centres of their firing fields compared 

(right). (D) Grid cells are grouped in modules, with grid scale increasing in discrete steps 

along the dorso-ventral axis of the mEC. (E) Position information from 3 grid modules 

with different scales are indicated in green, blue and dark red. In isolation, none can 

uniquely identify a location. By comparing all 3, the ambiguity can be resolved to identify 

the location, highlighted by the black arrow. (A), (B) and (D) reproduced from (Bush et al., 

2015) under a CC BY 4.0 licence; (C) from (Hafting et al., 2005) with permission from 

Springer Nature. 
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BVCs’ similar responses to both drop-off boundaries (like cliff edges) and wall 

boundaries implies that they code for boundaries – impediments to movement – 

regardless of their specific sensory properties (Lever et al., 2009; Stewart et al., 

2014).  

Figure 1.3 – Boundary vector cell firing fields 

(A) The modelled receptive field of a BVC. (B) The responses of a BVC modelled in different 

shaped environments, including the firing field duplication resulting from the insertion of 

a barrier. (C) The responses of putative BVCs recorded from rat dorsal subiculum (top 

row), along with inferred receptive fields (bottom row). Note that longer vectors can result 

in firing in areas not directly adjacent to the boundary that is eliciting the response. 

Adapted from (Lever et al., 2009) with permission from Society for Neuroscience. 

C 
 

B 
 

A 
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1.5. Connectivity in the hippocampal formation 

The main sites where these various types of spatially-tuned cells have been identi-

fied are in the hippocampal formation, a group of brain areas in the medial temporal 

lobe. Following Amaral and Lavenex (2006), which gives a much fuller account of its 

anatomy, I include within this the hippocampus (narrowly defined as the CA fields 

CA1, CA2 and CA3) and associated structures: dentate gyrus, subiculum, presubicu-

lum, parasubiculum and entorhinal cortex. 

The hippocampal formation is strikingly defined by the serial and parallel connec-

tions between its component brain areas, which are organised in a processing loop 

around which information flows mainly, though not exclusively, in one direction. 

Historically, particular emphasis was placed on the idea of a “trisynaptic circuit”: in-

formation would enter the hippocampal formation at the entorhinal cortex, which 

projected to the dentate gyrus. The dentate gyrus projected to CA3, which in turn 

projected to CA1. CA1 was believed to generate the main output of the hippocam-

pus, directed to subcortical areas (Andersen et al., 1971; Amaral & Lavenex, 2006). 

We now know that CA1 has strong projections to the subiculum and entorhinal cor-

tex and that these two areas are in fact the main sources of outgoing projections 

from the hippocampal formation, targeting subcortical and neocortical areas re-

spectively. This has led to a reduction of emphasis on the trisynaptic circuit in favour 

of a model emphasising a loop in which both serial and parallel connections are 

significant (Amaral & Lavenex, 2006). The most significant known connections are 

illustrated in Figure 1.4. 

The implication of this loop is that place cells in CA1 and CA3, and grid cells in the 

medial entorhinal cortex (as well as head direction, border and boundary vector cells 

across various parts of the hippocampal formation), would all be in a position to 
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influence one another’s activity, however directly or indirectly – the relationships be-

tween their different spatial representations will be discussed later. 

Since grid cells are the main focus of this work, here I will examine more closely the 

main site where they are found, the entorhinal cortex. 

The entorhinal cortex can be broadly subdivided into lateral and medial areas (lEC 

and mEC) – grid cells can be found in the mEC. The structure of the EC is laminar, 

Figure 1.4 – Connections in the hippocampal formation 

(A) Major hippocampal formation connections. Entorhinal cortex neurons project to the 

dentate gyrus, CA3, CA1 and subiculum via the perforant and alveolar pathways. Mossy 

fibres originate in the dentate gyrus and project to CA3, which in turn gives rise to the 

Schaffer collaterals that project to CA1. CA1 cells project to the subiculum, and both CA1 

and subiculum cells project to the entorhinal cortex, closing the loop. (B) Schematic of 

hippocampal formation areas and their inter-connections with additional detail of more 

minor connections including those of the pre- and parasubiculum (“Pre” and “Para”). Note 

the parallel connectivity – for instance, information from the entorhinal cortex reaches 

CA3 both directly and via the dentate gyrus – and that the main outputs from the ento-

rhinal cortex to the rest of the hippocampal formation arise in its superficial layers (II and 

III) but the loop returns to the entorhinal cortex primarily in its deep layers (V and VI). 

Double-ended arrows indicate substantial recurrent connections within an area. Repro-

duced from Amaral & Lavenex (2006) by permission of Oxford University Press, USA. 

A B 
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with numerals I to VI labelling the sequence of layers from “superficial” to “deep”. II, 

III, V and VI are the principal cellular layers, while I and IV are cell-poor. Grid cells 

predominate in layer II but can be found in all four principal cellular layers – in the 

deeper layers, many display conjunctive grid × head direction tuning (Sargolini et al., 

2006). 

The EC deep layers receive the main inputs from the hippocampal formation (from 

subiculum and CA1) and send projections in turn to the EC superficial layers. The 

perforant pathway, which projects to the dentate gyrus, CA fields and subiculum, 

mainly arises from the superficial layers II and III, though there is a smaller compo-

nent from layers V and VI (Witter et al., 2000). These connections close the loop dis-

cussed above. Conversely, the neocortex’s major connections with the EC mainly 

come from neocortical areas to the EC superficial layers, and from the EC deep lay-

ers out to the neocortex (Figure 1.4). 

1.6. Anchoring the components of the spatial code to each 

other and the environment 

How are spatial signals maintained, updated and anchored to the environment? Ev-

idence demonstrates that animals use a combination of environmental cues and 

self-motion inputs. Self-motion inputs allow a representation to be maintained dur-

ing locomotion without constant reference to cues, or even in their absence: path 

integration. However, errors in path integration will accumulate over time, leading 

to an increasing divergence between representation and reality, so it is necessary, 

at least periodically, to reset the representation using environmental cues in order 

to keep it anchored to the environment. 
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1.6.1. Boundary vector cells may mediate environmental cue input to place cells 

The existence of BVCs had been hypothesised before their discovery, in a model that 

proposed inputs with boundary vector receptive fields as substantially determining 

the location of place cells (Hartley et al., 2000). This was a potential mechanism for 

anchoring place cell activity to environmental geometry. 

O’Keefe & Burgess (1996) had examined the firing fields of place cells across multiple 

different environmental geometries. They found that place fields could be modelled 

as the thresholded sum of multiple inputs, each reflecting a tuning curve based on 

the distance to a boundary in a particular allocentric direction. The BVC model pro-

posed the existence of BVCs to account for these inputs (Hartley et al., 2000; Barry 

et al., 2006). The BVC model accurately predicted the appearance of additional place 

fields after the introduction of an extra boundary within an environment; predicted 

human subjects’ search attempts after stretching or squashing of a familiar virtual 

reality environment; and by inferring the putative BVC inputs to a place cell based 

on its firing field in one environment, could predict its firing field in a new one. A 

model in which BVCs are randomly connected as inputs to place cells could account 

for various statistical properties of place cell populations. Elaborating the BVC model 

with a learning rule could also account for changes in place fields over time (Barry 

et al., 2006). 

Subicular BVCs matching these predictions were found and characterised some 

years later (Barry et al., 2006; Lever et al., 2009). This discovery thus supported the 

theory that place cell firing fields are substantially determined by sensory input 

about environmental geometry. However, this cannot be the sole factor, because an 

acknowledged limitation is that this input cannot account for the remapping of place 

cell fields in response to non-geometric changes to the environment such as colour 
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(Bostock et al., 1991) since BVCs’ receptive fields remain stable through such 

changes (Lever et al., 2009).  

1.6.2. Orientation of spatial representations and the head direction system 

To generate a head direction signal, vestibular input is required, while landmarks 

and motor/proprioceptive systems update the signal (reviewed by Taube 2007). Sig-

nificant visual landmarks can strongly control the preferred direction of a head di-

rection cell (Taube et al., 1990; Goodridge et al., 1998), and odour cues can influence 

it at least to a limited degree (Goodridge et al., 1998). The preferred direction will 

shift to follow visual cues, and in at least some examples, rotation follows cues even 

if they are moved in sight of the animal, albeit falling slightly short (Taube et al., 

1990). This demonstrates how key landmarks can reset the system, largely overrid-

ing path integration. Removing cues, blindfolding the animal or turning off the lights 

does not abolish or change the signal, but the cell’s preferred direction drifts over 

time, presumably reflecting the accumulating errors in path integration. Simultane-

ously recorded cells’ preferred directions drift together, and are shifted by cues to-

gether, implying that they are networked together and behave as an ensemble, at 

least within each brain area where they are found. 

Most place cell fields persist in darkness, but without landmarks their spatial firing 

fields become coarser and less reliable (Markus et al., 1994). According to the BVC 

model, a key correcting input would be the proximity of boundaries, mediated via 

BVCs. Place fields appear to be anchored within rotationally symmetrical environ-

ments by the same cues as, and rotate coherently with, head direction cells (Muller 

& Kubie, 1987; Knierim et al., 1995). It is assumed (Stewart et al., 2014) that head 

direction cells orient boundary vector cells’ receptive fields, so it is possible that BVCs 

in turn mediate the place fields' coherence with the head direction system. Grid-
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patterns, too, rotate coherently with each other and with directional cells co-local-

ised in medial entorhinal cortex (Sargolini et al., 2006). 

1.6.3. Grid cells, path integration and anchoring to boundaries 

Upon their discovery, it was proposed, and became widely accepted, that translation 

of the grid cell representation was driven substantially by self-motion inputs (Hafting 

et al., 2005), although there remained disagreement over the precise mechanism by 

which this is achieved (Fuhs & Touretzky, 2006; McNaughton et al., 2006; Burgess et 

al., 2007). They were thought to form a “path integration” input into place cells, which 

had been predicted by O'Keefe & Nadel (1978). The unique subpopulation of grid 

cells firing at a particular location in an environment was thought to determine and 

drive the firing field of a particular place cell. 

O’Keefe & Burgess (2005) added to this model by suggesting that place cells, gaining 

associations with particular environmental landmarks, most specifically boundaries, 

might deliver feedback to their determining grid cells, in order to correct drift result-

ing from accumulated path integration errors. 

More recently, the hierarchical model of the relationship between place cells and 

grid cells has been challenged. Place cell firing patterns have been shown to appear 

in rat pups before grid cell firing patterns and to persist in their absence (Langston 

et al., 2010; Wills et al., 2010; Koenig et al., 2011). In fact, hippocampal inactivation 

gradually and selectively extinguishes the grid-pattern (Bonnevie et al., 2013) and 

inverse models have even been suggested in which place cells are the primary input 

providing the basic building block of grid cells (Kropff & Treves, 2008; Krupic et al., 

2014). However, in subsequent recent work the authors of the latter proposal 

showed that altering an environment’s geometry can distort grid and place cell firing 

patterns differently, showing that their interactions must be more complex (Krupic 



27 

 

et al., 2018). In addition, while place cell firing may persist in the absence of grid cell 

activity, altering the firing patterns of grid cells does influence those of place cells 

(Mallory et al., 2018). 

Bush, Barry and Burgess (2014) argue that rather than place cell firing fields being 

determined by grid cells, they are determined by environmental sensory inputs (in-

cluding boundary vector cells) and can be thought of as forming a separate, but 

complementary and interacting, representation alongside a path integration-deter-

mined grid cell representation. This is consistent with the looping hippocampal for-

mation circuit described earlier that should allow two-way interaction between en-

torhinal grid cells and CA1 (and CA3) place cells. Note that this interacting, rather 

than hierarchical, model would still allow for correction of grid cell representations 

by BVCs, either via place cells or directly. 

Subsequently, Hardcastle, Ganguli and Giocomo (2015) showed that error in the grid 

cell representation accumulates specifically relative to time and distance travelled 

since the last approach to or near a boundary. As might be expected, encounters 

with boundaries reduce the error in the represented location most strongly in the 

direction perpendicular to the boundary. Boundary-related cells, either directly or 

via place cells, would be likely candidates to mediate this relationship. 

1.6.3.1. Environmental geometry influences grid-patterns 

In a familiar square environment, the axis of the grid-pattern closest to parallel with 

one of the walls tends to be at an angle of around 7.5° (Figure 1.5A) (Krupic et al., 

2015; Stensola et al., 2015). This has been replicated in humans – in a visual search 

task with a bounded search space, the orientation of grid cell firing patterns (in-

ferred from the hexadirectional modulation of entorhinal fMRI responses) is at 7.5 

to the boundaries of a square space, and with a rectangular space the grid-pattern 
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orientation is anchored to the orientation of the space and follows it through rota-

tions (Julian et al., 2018). It is not yet clear why this should be (though there are hy-

potheses; see below) but it demonstrates that environmental geometry not only sta-

bilises the grid-pattern but influences its orientation too.  

Stensola et al. (2015) attribute the 7.5° wall alignment of the grid-pattern to a shear 

transformation that also makes the grid-pattern more elliptical (Figure 1.5B), and 

that occurs over time with increasing environmental familiarity. In a larger environ-

ment they found discontinuity, with the distortion most apparent in the corners 

Figure 1.5 – Grid-patterns are oriented to, and shaped by, boundaries 

(A) Firing rate map (top) and spatial auto-correlogram (bottom) for a grid cell in a 

1.5m×1.5m square arena. White dotted lines indicate grid axes. Purple overlaid lines in-

dicate angle of axis to boundary. (B) Mean spatial auto-correlogram of the firing rate 

maps for all the grid cells recorded in a module, calculated separately for each of the 3×3 

subdivisions in a larger, 2.2m×2.2m square arena. Grid axes in orange. The ellipticity of 

the pattern (black, with white line indicating ellipse semi-major axis) demonstrates the 

shear transformation of the grids. Distortions are greater in the corners of the arena. 

Adapted from Stensola et al. (2015)  with permission from Springer Nature. 

~7.5° 

 

A B 
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compared to the centre of the open field. They refer to Krupic et al.'s (2014) model, 

in which grid-patterns are produced by a distance-related interaction between 

place-cell-like firing fields and a repulsive force on grid firing fields exerted by 

boundaries, mediated by boundary cells. They also point out that the 7.5° alignment 

minimises symmetry between the environment and the grid-pattern, which might 

serve to disambiguate grid cell firing patterns at geometrically equivalent locations. 

This and other recent evidence of grid-pattern distortion from experiments in rats 

has also called into question the idea that grid-patterns form a completely invariant 

spatial code.  Grid-patterns are temporarily stretched and contracted by defor-

mations of the geometry of a familiar environment (Barry et al., 2007) and grid scale 

expands in novel environments (Barry, Ginzberg, et al., 2012). Grid-patterns frag-

ment into discontinuous, discrete submaps across connected but walled compart-

ments (Derdikman et al., 2009), though over time with increased experience the pat-

terns do align into a continuous grid spanning multiple compartments (Carpenter et 

al., 2015). The grid-pattern is heterogeneous in a trapezoid enclosure, with distor-

tion occurring toward the narrower end that appeared to be persistent, not transi-

ent (Krupic et al., 2015). Making local changes to environmental geometry by moving 

the angle of one wall of an enclosure distorts the grid-pattern, with individual grid 

fields shifting by distances inversely proportional to their distance from the moving 

wall. In this latter experiment, simultaneously recorded grid cells’ patterns tended 

to distort coherently both within and between modules, so that in principle read-out 

systems could compensate – however, the authors admit that it is perhaps more 

likely that the result is distorted spatial perception. This question, which can be 

asked of all distortions of the grid-pattern, will be discussed more fully in a later 

section (Chapter 1.9.1). 



30 

 

1.7. Grid cells also organise representations in non-spatial 

domains 

In recent years, the firing patterns of grid cells have also been found to encode con-

tinuous variables other than the animal’s position in space. 

First, entorhinal cells in monkeys performing a visual task were observed to fire in 

grid-like patterns that mapped the animal’s gaze in the visual field, analogously to 

how grid cells have been observed to map self-location in a two-dimensional envi-

ronment (Killian et al., 2012). This finding has since been replicated in humans via 

the detection of hexadirectionally modulated BOLD signals in entorhinal cortex 

(Julian et al., 2018; Nau et al., 2018). 

In a more dramatic departure from the context of their original discovery, grid cells 

also appear to encode at least some non-spatial variables. It is common to hear spa-

tial metaphors used to talk about things defined by quantitative variables or param-

eters, with spatial dimensions standing in for the range of the variable(s) and a “pa-

rameter space” reflecting the possible set of combinations of values. This is often 

explicitly visualised in the form of graphs where the ranges of each of the variables 

are drawn out spatially along different dimensions, as the axes. Evidence arising in 

recent years indicates a connection between such verbal/graphical metaphors and 

the way that parameter spaces are actually represented in the brain. Grid cells ap-

pear to encode some non-spatial conceptual knowledge in the same way that they 

encode location in local space! 

Human subjects performed a task involving visual stimuli that varied in two contin-

uous parameter dimensions – cartoon pictures of birds with variable neck and leg 

lengths. “Navigating” the conceptual “bird space” with trajectories in different “direc-

tions” resulted in a hexadirectionally-modulated fMRI signal in the entorhinal cortex 
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and the ventromedial prefrontal cortex – the same brain areas in which similar sig-

nals can be detected in virtually-navigating humans (Constantinescu et al., 2016). 

Entorhinal and hippocampal activity has even been shown to reflect a map-like 

structure for knowledge about discrete (rather than continuous), non-spatial rela-

tionships between stimuli (Garvert et al., 2017). Such findings are not limited to hu-

mans either: in rats performing a task that required them to change the frequency 

of a sound stimulus along a continuous scale, mEC cells were recorded firing in mul-

tiple fields at different “locations” along the scale (Aronov et al., 2017). 

These findings open up the possibility that the grid cell system may be a more flexi-

ble tool with which the brain can represent and manipulate one- and multi-dimen-

sional conceptual knowledge in a general way across different domains. Thus, by 

studying the ways that grid cells encode information, we may be uncovering not just 

a component of the basis of spatial cognition, but a component of the fundamentals 

of cognition as a general, flexible ability of the brain. 

1.8. Grid code precision, ambiguity and capacity 

1.8.1. Accuracy and precision: aspects of grid code fidelity 

In the science of measurement, we can characterise two components of fidelity in a 

system measuring and representing information about the world. Accuracy refers to 

the closeness between a measurement and the true value, while precision refers to 

the similarity between repeated measurements of the same true value (Joint 

Committee for Guides in Metrology, 2012). 

In the context of representing location by grid cell activity, one can imagine two types 

of error. I will borrow the above terms from metrology to describe them, but note 

that for the purposes of this thesis, their meaning is related by analogy but slightly 

different (since we are considering the values indicated by individual measurements 
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rather than the population of measurements resulting from repeated representa-

tions of the same true value). 

Errors of precision would be small relative to the scale of a single unit of the repeat-

ing grid-pattern, clustering close to the true value, and would be determined by the 

level of noise in neural firing, the shape and size of fields, and the density of cover-

age of grids offset from one another within a module. These may also be understood 

as relating to the resolution of the representation. 

Errors of accuracy, or “ambiguity errors” as I will also refer to them, would result from 

the ambiguity or failure of a code based on periodic patterns. These errors would 

be larger, nonlocal errors, corresponding to the distances between locations where 

the set of phases across the modules is similar enough to be indistinguishable 

(Figure 1.6), or resulting from noise perturbing the phase signal in a subset of the 

modules that causes the modular arithmetic code to indicate a very different loca-

tion (see below) (Fiete et al., 2008; Sreenivasan & Fiete, 2011). 

1.8.2. Grid code capacity and the configuration of grid scales 

As described previously (Figure 1.2), information from multiple grid modules with 

different scales can be combined to resolve the intrinsic ambiguity of each module’s 

periodic pattern. In this model, location is represented by a modular arithmetic (MA) 

code, or residue number system (RNS). This is a system in which a quantity is repre-

sented by the set of remainders left after division by each of a set of fixed values, or 

moduli – here, the moduli are the grid scales and the remainder is the phase of each 

module (Fiete et al., 2008). 

However, while such a system can represent locations over a range greater than any 

one of the modules, there remains a finite limit on the locations that can be uniquely 

encoded in this way: the spatial capacity of the grid code. The capacity of an RNS is 
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the lowest common multiple of the moduli and Fiete et al. (2008) showed how this 

would be the maximum range of an idealised grid cell system considered with inte-

ger grid scales and distances. At two locations separated by this distance, the phases 

of the grid modules will take the same values (Figure 1.6). The encoding system es-

sentially runs out of labels (or at least runs out of valid labels – see below). 

In an RNS a coprime set of moduli – having no common factors greater than 1 – 

maximises the range, as the LCM of a coprime set of integers is equal to their prod-

uct. So in an idealised system, a coprime set of grid scales would maximise capacity. 

Such a system would be able to represent distinct locations uniquely across a range 

many times larger than the largest grid scale and capacity would scale combinatori-

ally with the number of grid modules (Fiete et al., 2008). 

More realistically, given noise in the system, finite resolution of read-out systems, 

and grid scales being not idealised integers but real values, to which concepts of 

Figure 1.6 – A modular arithmetic grid code’s capacity depends on the similarity of 

module phases at different locations 

In the approach proposed by (Fiete et al., 2008), the idealised spatial capacity of a grid cell 

system is the lowest common multiple of the set of scales present. At two points sepa-

rated by this distance, the phases of the grid modules will take the same values. Thus, in 

this example two 1D sinusoid grid-patterns with scales of 10 units (solid orange line) and 

16 units (dotted blue line) have the same phases at the origin and 80 units from the origin. 

However in a more realistic scenario, affected by limited resolution for encoding and 

read-out, and noise, the capacity to uniquely identify locations is reached when the envi-

ronment is large enough to encompass locations where the values taken by the phases 

are sufficiently similar that the signals cannot be reliably distinguished. In this example, 

the phases at approximately 31 and 49 units away are very similar to those at the origin. 
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coprimeness and LCM do not strictly apply, the capacity is instead reached when the 

environment is large enough to encompass locations at which the sets of grid mod-

ule phases are so similar they cannot be reliably distinguished. Nevertheless, with 

grid scales in the right ranges the capacity can still scale combinatorially (Fiete et al., 

2008). 

The MA code is susceptible to errors. A small error in the phase represented by a 

single module can result in a disproportionally large change in the position repre-

sented by the population. However, the large capacity of such a system might facili-

tate a form of error correction. Such erroneous decoded locations might easily be 

identified by comparison to knowledge of recent locations or the extent of the cur-

rent environment or of the animal’s usual behavioural range (Fiete et al., 2008; 

Sreenivasan & Fiete, 2011). Stemmler et al. (2015) also point out that if the scales are 

not an integer coprime set, certain labels (combinations of phases) do not corre-

spond to valid locations – if error resulted in such a signal, it might also be easily 

identified. A read-out system could thus reject these different types of identified er-

rors in favour of plausible alternatives. 

The research groups of Andreas Herz and Vijay Balasubramanian have taken a dif-

ferent approach (Mathis et al., 2012; Stemmler et al., 2015; Wei et al., 2015). Rather 

than this MA code, they model the grid cell system as providing a “nested” represen-

tation limited in capacity to the largest grid scale present. Herz et al., and others, 

argue that error correction mechanisms like those discussed above are nontrivial, 

and read-out from an MA code would be profoundly disrupted by changes in regu-

larity or scale of grid-patterns (Mathis et al., 2012; Carpenter & Barry, 2016), which 

have been observed experimentally (Barry et al., 2007; Barry, Ginzberg, et al., 2012; 

Stensola et al., 2012, 2015; Krupic et al., 2015). Wei et al. (2015) cite estimates that a 

rat’s home range is as small as ~(10 m)2 (Davis et al., 1948), and it is quite plausible 
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that grid cells exist with scales around this size, plausibly less than the largest grid 

scales (Brun et al., 2008)  – though this is disputed, as discussed below. 

On the basis of a nested representation and using a hypothetical model to read out 

navigation vectors from the grid cell system via population vectors (which performs 

as well as an ideal observer), Stemmler et al. (2015) predicted that a ratio of ~1.5 

between the scales of successive modules is ideal. On the other hand, using an ap-

proach that aimed to minimise the number of grid cells needed for the system to 

achieve a biologically useful resolution, Wei et al. (2015) predicted a geometric se-

quence of grid scales with a ratio of either √e (~1.65) or ~1.44 (depending on the 

read-out mechanism). 

However, a recent response defended the MA code hypothesis over the nested code 

(Vágó & Ujfalussy, 2018). These authors argue that a nested code is much less robust 

to error or knockout of an intermediate module, and to insufficient input from one 

module. And they argue, contrary to Wei et al., that the distances typically travelled 

by rats are actually substantially larger than the largest detected grid scales. Fiete et 

al. (2008) suggested the same, citing research estimating behavioural foraging 

ranges, of 0.1 – 1 km per linear dimension (Recht, 1988; Russell et al., 2005). This 

evidence is more recent than Davis et al. (1948), and includes observations of rats in 

more natural and open environments than the urban areas in that study. 

These authors’ analysis concluded that given a small number of modules, while the 

scale ratio between modules does strongly affect the spatial capacity of the popula-

tion, the relationship between scale ratio and capacity is extremely irregular and 

discontinuous. Since even a small deviation in scale can result in a dramatic change 

in capacity and because observed grid scales are known to be variable (Barry, 

Ginzberg, et al., 2012; Stensola et al., 2012; Krupic et al., 2015), this implies optimi-

sation is biologically implausible. Further, in systems with more modules and with 
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neuronal noise accounted for, capacity varies much less with module scales, even 

when module scales are selected at random. This would make optimisation mar-

ginal or unnecessary in any case (Vágó & Ujfalussy, 2018). 

1.9. Are grid code parameters optimised? 

The fidelity with which the brain can represent information about self-location (like 

information about any aspect of the environment) is necessarily limited. Maximising 

it is key to optimal decision-making. The parameters of the grid code – the pattern’s 

orientation; the number of cells in each module and the distribution of their offsets; 

the scale (spacing between fields) of each module’s pattern; the relation between 

different modules’ scales; the number of modules; the profile of the fields (shape, 

symmetry, width); distortions; and discontinuities – whether varying or unvarying 

across time and different situations, must affect the fidelity with which the system 

can represent information. It is therefore reasonable to speculate that these param-

eters, and any variation in them in response to environmental conditions, would be 

subject to evolutionary pressures. For instance, as discussed in the previous section, 

various theoretical work has attempted to work out what particular sequence of 

scales for the grid cell modules would maximise resolution or capacity (Fiete et al., 

2008; Sreenivasan & Fiete, 2011; Mathis et al., 2012; Stemmler et al., 2015; Wei et al., 

2015; Vágó & Ujfalussy, 2018). 

1.9.1. Optimisation and varying parameters 

Where parameters are observed to vary within an animal over time or between con-

texts, this raises the additional question of how the varying code is read out by 

downstream systems. Initial discussion of the role of grid cells generally proceeded 

from the premise that their regular firing patterns were invariant over time and 

across different environments, and considered this invariance key to their role as a 
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spatial metric. This implies that the grid-pattern distortions, discontinuities and var-

iability over time that have subsequently been observed would have a negative im-

pact on the fidelity of self-location representations. If downstream read-out systems 

do not account for changes and irregularities in the relation of grid cell activity to 

self-location (i.e. grid cell firing patterns), the estimates of location that they derive 

from the grid cells’ activity will be wrong and spatial perception will be distorted. 

However, it has been shown that as long as distortions are common to all grid cells 

within a module, the code can still act as a universal metric (Stemmler et al., 2015) – 

though note that with limited knowledge of how downstream systems actually “read 

out” information from grid cell activity, we cannot say with confidence how far this 

theoretical possibility is borne out by biological systems, and what types and mag-

nitudes of distortion are tolerable to real downstream systems. Nevertheless, it is 

conceivable that downstream systems account for some or all of these discontinui-

ties and variability, and perform read-out correctly. In this case, we might ask 

whether said variability is in fact an adaptive, fidelity-optimising response to partic-

ular conditions – this question forms the basis of much of this thesis. 

For instance, after finding that when an animal is placed in a novel environment, grid 

scales start out larger, and progressively contract with increasing experience of the 

environment until they reach a stable baseline size, Barry, Ginzberg, et al. (2012) 

hypothesised that this might be an adaptive response, maximising the fidelity of self-

location representations under conditions of spatial uncertainty. In Chapter 4, I will 

describe an investigation to test this hypothesis. 
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1.10. Non-local activity of place cells 

Since the initial characterisation of place cells as firing within a specific place field, a 

variety of phenomena have been discovered in which place cells appear to fire out-

side those ordinary fields. Here, I term this activity “non-local” firing – and its specu-

lated role in coding representations of remembered or imagined locations and 

routes “non-local representation”. 

1.10.1. Sharp-wave ripples and place cell replay in sleep 

During eating, grooming, drinking, quiet sitting and slow-wave sleep (SWS), the “large 

amplitude irregular activity” (LIA) pattern dominates the hippocampal EEG. LIA is 

more random than the 6-12Hz theta rhythm dominant during translational move-

ment, with a flatter power spectrum, increased power at sub-theta frequencies and 

transient (50-100ms) sharp-wave ripples (SWRs) of high frequency (~200Hz) activity. 

Before grid cells were discovered, SWRs were also detected in entorhinal cortex 5-

30ms after those in CA1 (Chrobak & Buzsáki 1996). 

O'Keefe & Nadel (1978) described LIA and SWRs, noting that place cells would fire 

together at some SWRs, but argued it was unlikely that much information was con-

veyed in such events and characterised LIA as little more than the absence of theta. 

However, Buzsáki (1989) pointed out that synchronised pyramidal cell activity during 

SWRs could plausibly promote long-term potentiation (LTP) and proposed a role in 

memory consolidation. The position that LIA and SWRs have an active functional role 

has since been strengthened by two decades of research on the associated place 

cell activity. Wilson & McNaughton (1994) showed that place cells coactive during 

behaviour because of their overlapping place fields fired together more during sleep 

afterwards than sleep before, and that these correlations were significantly higher 

during SWRs. These experience-dependent changes were taken to reflect learning, 

and it was suggested that SWRs are involved in “replay” of this learned information 
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about past experiences to drive systems-level consolidation (from the hippocampus 

to the neocortex). 

Skaggs & McNaughton (1996), Louie & Wilson (2001) and Lee & Wilson (2002) rein-

forced the evidence that these events represented replay of past experience by 

showing that temporal order information was preserved – the sequence in which 

place cells fired during behaviour was accurately reproduced during SWRs in subse-

quent SWS (slow-wave sleep), but compressed in time approximately 20-fold, and at 

a real-time speed during REM (rapid eye movement) sleep. Skaggs & McNaughton 

(1996) hypothesised that LTP had strengthened the synapses from preceding to suc-

ceeding place cells, and in support of the consolidation hypothesis Lee & Wilson 

(2002) pointed out that the precise ordering and short timescale of replay lent itself 

to LTP induction. 

Monitoring the activity of a place cell during sleep, and delivering a rewarding stim-

ulation to the medial forebrain bundle whenever it fired, causes a rat to dispropor-

tionately visit and remain in the location of that cell’s place field upon waking (de 

Lavilléon et al., 2015). By inducing an association that influences spatial behaviour, 

this provides powerful evidence that place cell activation during sleep genuinely 

does relate to spatial representation (and that place cells play an active role in spatial 

behaviour). 

1.10.2. SWR-associated place cell replay during waking states 

Firing of place cells outside their place fields is not limited to sleep. Kudrimoti et al. 

(1999) found similar events to those described in SWS, during SWRs in rats kept sit-

ting quietly but awake. More recently, non-local firing even during the same behav-

ioural session has been identified. Foster & Wilson (2006) trained rats to run back 
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and forth along a linear track for rewards at the ends, and described, while the ani-

mals paused at each end, SWR-associated reverse sequential replay of recently active 

place cells. Foster and Wilson contrasted this phenomenon with forward replay in 

sleep and speculated that it was involved in reinforcement learning of sequential 

actions, by allowing propagation of value information from the final reinforcement 

backwards. Csicsvari et al. (2007) replicated reverse replay in SWRs apparently oc-

curring, not at rest, but during exploration in an open field, even alongside contin-

ued place-specific firing. Diba & Buzsáki (2007) demonstrated SWR-associated for-

ward play during immobility before a journey on a linear track, as well as replicating  

the finding of reverse replay at the end. Davidson et al. (2009) found extended for-

ward as well as reverse replay associated with SWRs during open-field exploration. 

The trajectories represented were not limited to beginning or ending at the rat’s 

present location. 

It was initially thought that the reactivation of stored sequences from other contexts 

was limited to sleep, and awake replay would be limited to sequences representing 

locations and routes within the current environment. However, this was subse-

quently disproven by the detection of awake replay in one environment of se-

quences stored from experience in another environment, indicating that the hippo-

campus reviews past experiences constantly, not just during rest (Karlsson & Frank, 

2009). 

1.10.3. SWR-associated non-local place cell firing supports learning 

Evidence supports a role in learning and memory for these phenomena. In a spatial 

learning task, the number of SWRs occurring at reward locations during exploration, 

and the proportion of subsequent SWRs in sleep during which goal locations were 

represented, both correlate with later performance (Dupret et al., 2010). 
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Beyond simply observing correlation, performance on spatial learning tasks can be 

degraded by using triggered electrical stimulation to suppress SWRs during sleep 

immediately after training (Girardeau et al., 2009; Ego-Stengel & Wilson, 2010). 

The precise role of these events in learning and memory processes is still being ex-

plored. Wilson & McNaughton (1994) were the first to propose that replay facilitates 

systems consolidation, “writing” engrams from the hippocampus into neocortical 

memory. However, it remains possible that it may merely be stabilising the newly-

formed engram within the hippocampus: this question is discussed further in 

(Ólafsdóttir et al., 2018). 

1.10.4. Forward-directed theta sequences during waking behaviour 

By decoding the ensemble place cell code to determine the sequences of locations 

seemingly represented through time, Johnson & Redish (2007) were able to recon-

struct the paths in a T-maze described by rapid sequential place cell activations both 

at the maze junction, and when a cue indicated that the rat had entered the wrong 

arm. The represented point began at the rat’s actual location and swept ahead. 

When the rewarded arm varied and was cued each time, it went down each arm of 

the maze in turn. However, when the rewarded arm was kept constant, forward 

sweeps down the unrewarded arm decreased with increasing experience, as did 

time spent at the choice point. These forward sweeps apparently occurred inde-

pendently of SWRs, during the theta rhythm state (though this study’s approach to 

SWR identification has been criticised by Carr et al. 2011), resulting in the term “theta 

sequences”. 

Compressed forward sweeps of represented location like this might be explained as 

epiphenomenal: a simple result of a tendency of individual place cells to precess 

their firing through phases of the theta cycle: firing later in the theta cycle as the 
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animal enters the field, and progressively earlier as it moves through the field. Such 

“phase precession” was first observed in place cells (O’Keefe & Recce, 1993) and was 

subsequently detected in grid cells (Hafting et al., 2008). However, it is possible to 

shuffle spike phase data in such a way as to dissociate the occurrence of theta se-

quences from phase precession (Foster & Wilson, 2007). Wikenheiser & Redish 

(2015) argue that these sequences are more than just the sum of individual cells’ 

phase precession: that spikes are more precisely and richly patterned and coordi-

nated than would be expected from phase precession alone, and that theta se-

quences play an active role in information processing, potentially in planning and 

decision-making. 

More recent evidence strengthens the hypothesis that events of this type genuinely 

do replay a role in planning and/or selecting prospective routes. Activation of path 

sequences never previously experienced has been observed (Gupta et al., 2010). On 

a trial-by-trial basis in a spatial alternation task, SWRs were monitored in the imme-

diate run-up to the choice point, and correct selections were preceded by more fre-

quent non-local co-activations of place cells associated with locations on each of the 

possible route (Singer et al., 2013).  

In another study, rats were shown a reward being placed in a visible but unvisited 

location. A rest period in another location followed before the animal was later al-

lowed access to the location. During this period, place cell sequences corresponding 

to the prospective route to the reward were activated, but not sequences to an un-

rewarded but otherwise equivalent location. In this case, sequences leading both to 

and from the goal were activated, both forwards and in reverse, and these events 

correlated with periods of higher power in the frequency spectrum corresponding 

to SWRs (Ólafsdóttir et al., 2015). 
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The task-dependence of the specific content of non-local activity provides particu-

larly suggestive evidence for a role in navigational planning and decision-making. In 

rats navigating in an open arena, non-local place cell activity tended to project in the 

direction the animal was about to travel when they were travelling to a specific hid-

den goal, but not when foraging randomly (Pfeiffer & Foster, 2013). In a decision 

task, non-local activity detected immediately around arrival and departure from a 

choice point was more focussed on the current location, and projected forward tra-

jectories. Such activity correlated with correct choices. But during longer rest at the 

choice point, trajectories distributed around the environment were represented 

(Ólafsdóttir et al., 2017). 

In what could be interpreted as representing a deliberative process, preliminary un-

published work by Frank and colleagues appears to show non-local place cell activity 

during a decision-making task concurrently representing two alternative routes in 

alternating theta cycles*. 

There is also evidence that normal SWRs are necessary for correct spatial decision-

making: disruption of SWRs by electrical stimulation during an alternation task de-

creased performance (Jadhav et al., 2012). 

1.10.5. Replay, declarative memory and imagination 

The ability to preserve temporal order in encodings of past experiences, as in place 

cell replay, is obviously a prerequisite for episodic memory, and some researchers 

have suggested that spatial memory is the very foundation of episodic memory 

(O’Keefe & Nadel 1978). Johnson & Redish (2007) conceptualised declarative 

                                                   

* Reported in a seminar at UCL by Loren Frank, Dec 2017, which was the subject of a UCL 

website news report (Cashin-Garbutt, 2017) 
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memory use as “the use of learned information outside the place or context of its 

initial presentation,” suggesting that non-local firing of otherwise spatially specific 

cells might correspond to “the use of declarative-like memory in rats.” Since to be 

useful to inform future behaviour, memories have to be both created and then re-

activated, roles for non-local activity of spatial cells in both consolidation and plan-

ning are consistent with a general involvement in declarative-like memory. 

Knierim (2009) drew a tantalising speculative link between representation of non-

local trajectories in the rat hippocampal formation and the apparently impaired abil-

ity of hippocampal amnesiacs to imagine spatially coherent novel experiences 

(Hassabis et al., 2007). Byrne et al. (2007) proposed a model in which internally si-

mulated movement signals to the hippocampus could drive mental exploration. 

Subsequently, fMRI has revealed the same grid-like activity in the human entorhinal 

cortex during both virtual and imagined navigation (Horner et al., 2016), as well as 

while imagining facing in different directions without movement (Bellmund et al., 

2016) – the latter is detectable because the fMRI approach is believed to reflect spe-

cifically the activity of conjunctive grid × head direction cells (discussed in more de-

tail in Chapter 6.4.1). 

The investigation of non-local spatial representations in the hippocampal formation 

could thus shed light on the physiological basis of complex cognitive processes such 

as declarative memory formation, consolidation and recall, navigational planning, 

decision-making, and potentially even imagination. 
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2. THE ROLE OF GRID CELLS IN NON-LOCAL 

SPATIAL REPRESENTATION 

This project sought to explore whether non-local representations – replay or for-

ward sweeps – also occur in grid cells, and if so to characterise them and their rela-

tionship to such representations in place cells. As discussed above, examining the 

relationship between mEC grid cell and hippocampal place cell activity during non-

local representation events might have yielded insights into the neural basis of ad-

vanced cognitive processes. This research stream was set aside after the first part 

of my PhD in order to pursue a more productive project. 

2.1. Methods 

2.1.1. Data collection 

The data used were collected by Hafting et al. (2008) via extracellular recordings of 

layer II dorsocaudal medial entorhinal cortex grid cells in rats. These data are pub-

licly available†. Full methods are in their report (Hafting et al., 2008) and will be sum-

marised here. 

Animals were implanted with microdrives connected to tetrodes and recorded while 

running back and forth on a 320cm linear track. Food was available at the turning 

points and the position of the animal was simultaneously recorded by tracking an 

LED attached to the headstage at 50Hz. The position record was later smoothed by 

                                                   

† The data were originally accessed in 2011 via http://www.ntnu.no/cbm/gridcell but, as of 23 

March 2018, are instead to be found at https://doi.org/10.11582/2017.00020. They have 

been made available for use under a CC BY 4.0 licence. 
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Hafting et al. with a moving mean filter. Triggered spikes were stored at 48 kHz dur-

ing recordings, and sorted offline using graphical cluster-cutting software (TINT; Neil 

Burgess & Axona Ltd.). 

I downloaded this processed data and performed further analysis in MATLAB 7 

(MathWorks). Only sessions including spikes recorded from at least 4 units in layer 

II were used: 6 sessions qualified, of durations 5-20 minutes with 4-8 units simulta-

neously recorded in each. Tracked position data in the axis perpendicular to the 

track was discarded, leaving a one dimensional record of the rat’s position along the 

track length. Smoothed rate maps were created for each unit by grouping spikes by 

location of occurrence into 2cm-long bins, normalising spike rate by the total time 

spent in each bin location, and smoothing using a 5-bin-long boxcar filter. Only 

spikes which occurred when the animal was moving at least 5 cm.s-1 were used to 

construct ratemaps (Figure 2.1). The animal’s speed and direction of movement in 

the track axis dimension was calculated by comparison of position at successive 

time-points. 

2.1.2. Spiking events 

Spiking events were identified as candidates for further analysis, using a definition 

adapted from Dragoi and Tonegawa (2011). Spiking events were defined as epochs 

separated by at least 50ms, during which spikes occurred at less than 50ms inter-

vals. Spiking events had to include spikes from at least 4 units (Figure 2.2A). To en-

sure that real-time local representations of the rat’s movement along the track were 

not mistakenly interpreted as candidate non-local representations, spiking events 

lasting longer than 500ms were excluded, as were events during which the rat’s 

mean speed equalled or exceeded 5cm.s-1. This speed threshold was selected in or-

der to separate the data used to characterise events from that used to construct 

ratemaps. 
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A timeline of each active unit’s spiking activity, analogous to a spatial ratemap, was 

created for each event by binning spikes in 2ms intervals, and smoothing using a 

Gaussian filter (standard deviation 5 bins) (Figure 2.2B). 

2.1.3. Comparison of event temporal structure to spatial map structure 

A cross-correlation procedure was used to compare the ratemaps of all cells to one 

another and the timelines of all cells within an event to one another, thus character-

ising the overall structure of the spatial representation of the track and the temporal 

activity during each event. All possible pairings of active units were compared using 

unbiased cross-correlation (MATLAB xcorr function) and the absolute lag/distance to 

the nearest peak in the cross-correlogram from zero (whether left or right/before or 

after) was calculated. Only peaks in the cross-correlation which fell within the upper 

Figure 2.1 – Firing rate maps of layer II mEC neurons along the track 

Smoothed, one dimensional rate maps showed multi-peak spatially restricted firing on 

the track. (Examples shown are from session LT-16030611. Cells are t1c1, t2c2, t4c2). 
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two-thirds of the range of values within that cross-correlation were considered 

(Figure 2.2C-E). 

Each spiking event’s temporal structure was compared to the spatial structure of the 

recorded units’ activity on the track. For the cell pairs active in the event, the absolute 

cross-correlation lags in the event were compared to the absolute cross-correlation 

Figure 2.2 – Timeline and cross-correlation of a spiking event 

Spike rasters (A) and smoothed firing rate timelines (B) illustrate the sequence of spikes 

recorded from 5 units participating in a spiking event. Pairs of cells (C and D) are cross-

correlated (E). The suprathreshold peak nearest to zero lag is selected and its absolute 

lag taken as a measure of the temporal proximity of the two cells’ firing. (Event 21, de-

tected approx. 286s into session LT-16030611. Unit IDs as indicated in legend. Horizontal 

dashed lines in E indicate maximum, minimum and threshold. Threshold includes upper 

two-thirds of range. Red lines in E indicate peak identification and lag measurement.) 

A 

B 

C D 

E 
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distances on the map using one-tailed Spearman’s rank correlation – it was decided 

a priori to test specifically whether cells that fired close together in space, also fired 

close together within an event. 

An event was defined as significantly structurally correlated to the spatial ratemaps 

if this Spearman’s rank test returned a significant (p<0.05) result. The proportion of 

events that were correlated was itself tested for significance using a one-tailed bino-

mial test, with the null hypothesis that 5% or less of events would pass the signifi-

cance threshold (i.e. the number of significantly correlated events was compared to 

the binomial distribution expected by chance given that a randomly ordered event 

would have a 5% chance of passing the significance threshold).  

2.2. Results 

Analysis of Hafting et al.’s publicly available data indicated that layer II cells in medial 

entorhinal cortex that fired close together during locomotion on a linear track also 

fired close together in time during spiking events detected during periods of immo-

bility. This suggests that, indeed, these cells could be participating in non-local rep-

resentations of imagined or remembered routes. 

2.2.1. The temporal structure of layer II mEC unit firing during spiking events is 

similar to the spatial structure of those units’ activity on the track 

51 qualifying spiking events were detected in the 6 recording sessions. Their dura-

tions ranged from 13 to 352 ms (mean = 101 ms) and they included 4 to 42 spikes 

(mean = 11) recorded from 4 to 6 individual units (mean = 4.3). Of these 51 events, 

9 showed significant (p<0.05) structural correlation to the spatial distribution of unit 

activity on the track – that is, cells that fired close together spatially also fired close 

together in time during events (Figure 2.3). This was more than would be expected 

purely by chance (Binomial test; p = 8.78×10-4 for 9 or more significant events out of 
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51 if each had a 5% chance of being a false positive). Thus, the spatial structure of 

cell activity during locomotion was recapitulated in spiking events during relative 

immobility, in the sense that the ranked temporal proximity of cells firing during 

potential replay events correlated with the ranked spatial proximity of their firing 

fields. 

2.3. Discussion 

2.3.1. Temporal organisation of grid cell activity during relative immobility 

reflects spatial proximity of cell firing fields characterised during locomotion 

This analysis of electrophysiological recordings indicates that layer II dorsocaudal 

mEC grid cells that show spatial firing close to one another during locomotion on a 

linear track, also fire in close temporal proximity during clustered spiking events 

Spearman’s Rank correlation significance 
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Figure 2.3 – Significance of individual events’ similarities to spatial activity structure 

During a large proportion of detected spiking events (9/51), cells whose spatial firing fields 

were near each other also fired close together in time (p<0.05 indicated in lighter grey; 1-

tailed Spearman’s Rank Correlation). 
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during relative immobility on the same track. This is a preliminary indicator that cells 

in this area may participate in non-local representations of remembered, planned 

or imagined routes. Hippocampal place cells are well-known to participate in such 

events, which have been shown to reflect the temporal firing sequences observed 

during actual navigation, and have been observed during slow-wave sleep (Skaggs 

& McNaughton, 1996; Lee & Wilson, 2002), REM sleep (Louie & Wilson, 2001), pauses 

between locomotion (Foster & Wilson, 2006), during active navigation (Csicsvari et 

al., 2007) and at maze choice points (Johnson & Redish, 2007), in many but not all 

cases associated with short-wave SWRs. 

2.3.2. Limitations 

It remains unclear whether cells are actually firing in the same sequence that their 

fields appear on the track. In fact, it is challenging to design an algorithm to assess 

this, since unlike most place cells, grid cells have multiple fields. Therefore, 

representation of a route may well include repeated activations of a particular cell 

at different parts of the spike sequence, and since grid cells will not necessarily share 

equal scale or be perfectly regular, the pattern will not necessarily be entirely cyclic 

even for one-directional travel on a straight track. An extension to the above method 

could assess the relative lags between activations of different cell pairs at the closest 

next peak in a cross-correlation. That is, compare how long after cell A, cells B, C, D… 

first tend to fire, and cells A, C, D after cell B, etc. However, even that approach could 

only capture the most proximal following activity, and does not consider the full 

repetitive pattern that characterises a grid cell. 

Attempting to actually decode ensemble cell activity to indicate the represented 

location might be the best route, but would likely require simultaneous recordings 

of a much larger number of cells (including cells with multiple grid scales, to avoid 

the the intrinsic to periodic firing patterns). It is also difficult to decode a 
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representation which may very well “play” at a different, but unknown, speed from 

the “real-time” representations on which a decoding algorithm must be based, since 

the expected absolute firing rates of cells corresponding to represented locations is 

unpredictable. A Bayesian approach could constrain reconstruction by relating each 

decoded position to the previous decoded position, but would employ circular logic 

by assuming the continuous route representation whose existence it is supposed to 

test! 

The search for replay events could be further constrained in terms of the direction 

of play – looking specifically for either backwards or forwards play of trajectories. 

However, as place cells show both forward and backward replay when the rat is 

waiting at the end of the track, it is not clear which should be expected. Trettel & 

Colgin (2014) were able to present preliminary evidence of grid cell replay by exam-

ining REM sleep (as opposed to waking behavioural data as I did) and constraining 

their search using the premise that grid cell replay might follow place cell replay in 

that condition – i.e. it would run forwards in real-time (Louie & Wilson, 2001). Below, 

I will discuss more complete evidence published more recently. 

Additionally, a search could be limited only to events coinciding with SWRs. However 

it was not possible to reliably identify SWRs in the dataset I was using, because the 

EEG recording had no reference, making it impossible to distinguish SWRs from the 

very similar artefacts produced by jaw muscle activity. 

A further point for consideration is the aforementioned question of distinguishing 

between “forward sweeps” of cells firing in sequence and straightforward local 

phase precession during movement (see Introduction). Looking for coordination or 

task-dependent variation of the phenomenon, as well as detecting non-local se-

quences during stationary rest, would be important for this question. Alternatively, 

excluding all such events and focussing a search on events occurring outside periods 
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of theta state or during SWRs would be possible with appropriate local field potential 

recordings, as mentioned above. 

2.3.3. Training and preparation for experimental investigation was in progress 

when the project was cut short 

Experimental investigation of the non-local grid cell activity was also planned, in 

three experimental situations: on a one-dimensional track if analysis of the Mosers’ 

public dataset was not deemed conclusive; on a T-maze based on the experiments 

of Johnson & Redish (2007) so as to look for planning-related activity at the choice 

point; and in an open 2-dimensional arena, where I hoped to detect unconstrained 

advance route-planning before travel to a hidden previously learned reward loca-

tion, and/or replay upon reaching the reward. 

While conducting the computational analysis described above, in parallel I trained 

in the surgical and electrophysiological techniques this would require. I conducted 

hippocampal electrode implants in two male Lister Hooded rats (an intermediate 

training step, short of the complex mEC surgery), and successfully identified and 

recorded a number of place cells (an example is shown in Figure 2.4). 

I also began piloting behavioural training to inform final experimental design. I used 

a square arena with start boxes outside each of the 4 corners, and wells below the 

surface in which food rewards could be placed. Wells and rewards were concealed 

by a layer of sand. One well was baited at a time for a set of trials. I began training 

rats on a trial protocol in which they were placed in a pseudorandomly selected start 

box, a visual cue was then revealed to indicate which corner they were at, and after 

a set period during which I speculated it might be possible to detect non-local activity 

corresponding to route-planning, the door was opened and the animal was ex-

pected to learn to navigate to the baited well and dig to collect the reward. 
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2.3.4. Outlook 

While performing the above computational and experimental project, personal 

communications with Josef Csicsivari’s group in 2012 indicated that the presence or 

absence of sequential replay events in entorhinal cortex remained ambiguous, even 

A B 

C 11.3 Hz 

Figure 2.4 – Place cell tetrode recording by the author 

Tetrode recordings were taken from a right hippocampal implant in a male Lister hooded 

rat as it foraged for scattered food in a 1m square environment. Clusters of spikes from 

separate units were manually identified by their differing amplitudes on separate elec-

trodes within a tetrode, as well as temporal properties. (A) The TINT (Neil Burgess & Axona 

Ltd.) interface: on the left are the compared amplitudes on pairs of electrodes of each 

spike recorded. Different colours indicate manually identified spike clusters. Right of this 

are the overlaid traces of all spikes from unit t3c5 (tetrode 3, cell 5) as recorded on each 

of the four electrodes, and on the far right are the averages of all these traces. Note the 

characteristic spike shape of a pyramidal cell, most clearly visible on the third electrode. 

(B) The locations of the spikes from unit t3c5 (light blue) overlaid on the tracked path of 

the rat (black line). (C) A rate-map constructed from this data: note the spatially restricted 

firing typical of a place cell (Peak firing specified on figure. The range from 0 Hz to peak 

firing is divided into bands of 20% indicated by colour, hot colours indicating higher firing 

rate.) 
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with access to larger numbers of recordings of entorhinal neuronal firing and local 

field potential. Thus, to overcome the limitations in the conclusions I could draw 

from the Moser’s public dataset would probably require gathering more grid cell 

data than present in the Moser or Csicsivari datasets, specifically simultaneous 

recordings from multiple modules.  Together with my supervisor, we decided that 

this course of action would likely be both time consuming and over-ambitious. 

Accordingly, we decided to halt this project, and to take a purely computational 

approach, given the risks and slow progress associated with continued experimental 

approaches. 

At the time, I considered that a promising alternative approach might target 

simultaneous recordings from the hippocampus and entorhinal cortex of dually 

implanted rats. This approach would be even more technically challenging, but 

would enable identification of non-local representations in place cells (based on the 

existing characterisation of these events) so as to specifically examine grid cell activ-

ity at the same time, to detect whether grid cells show the same non-local represen-

tations at the same time (and to characterise the relationship, or absence thereof, 

between the hippocampal and entorhinal processes). 

Indeed, this has since been done by other researchers, and consistent with my pre-

liminary findings, replay has been observed in grid cells. Simultaneous recordings in 

CA1 and mEC deep layers (the main entorhinal recipients of hippocampal inputs) 

showed grid cells replaying coherently with place cells, the location encoded by the 

former exhibiting an average delay of 11ms delay relative to the latter (Ólafsdóttir 

et al., 2016). Conversely, grid cells in superficial mEC have been recorded replaying 

independently of place cells, more during performance of a task than during rest 

(O’Neill et al., 2017). This suggests a tentative model in which hippocampal-initiated 

replay, transmitted to the mEC deep layers, is involved in memory consolidation, 
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while independent replay in mEC superficial layers may be more relevant to plan-

ning navigation. Indeed, comparing activity during periods of immobility inter-

spersed throughout performance of a spatial decision task revealed that in the for-

mer, place cells and mEC deep layer grid cells replay together and represent more 

remote locations, but while the animal was engaged in the task, replay is more as-

sociated with the task and the hippocampus and mEC exhibited less coherence 

(Ólafsdóttir et al., 2017). However, note that this distinction is contested, with one 

group arguing that the detection of coordinated grid and place cell replay may have 

been spurious and could be excluded by assessment with more rigorous criteria 

(Trimper et al., 2017) – in turn, the original authors have criticised the methodology 

of this response (Caswell Barry, personal communication, March 2018).  
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3. A MODEL TO ASSESS GRID CODE FIDELITY 

UNDER SPATIAL UNCERTAINTY 

I built upon an existing model in order to investigate grid cell systems’ performance 

in various new conditions. This existing model simulates a modularly-organised en-

semble of grid cells firing in response to a position signal, decodes their firing to 

estimate position, and allows investigators to assess the performance of the system 

by comparing these estimates to the original ‘true’ position. My development of this 

model incorporated varying degrees of uncertainty into the position signal, allowing 

exploration of a range of new questions. The work reported in this chapter was pub-

lished as part of this article: Towse, B. W. et al., (2014) ‘Optimal configurations of 

spatial scale for grid cell firing under noise and uncertainty’, Philosophical transac-

tions of the Royal Society B, 369(1635). 

3.1. Description of the one-dimensional model 

3.1.1. Grid cell firing patterns 

Spiking activity of a population of grid cells, organised into L discrete modules by 

spatial period size, was modelled in a one-dimensional environment using MATLAB 

v7 (MathWorks). The spike output of a grid cell, j, within a particular module, i, was 

modelled, following (Mathis et al., 2012), as a Poisson process with rate modulated 

by position on an open interval, x ε (0, xmax), according to a periodic Gaussian tuning 

curve αi, j (x): 

𝛼𝑖,𝑗(𝑥) = 𝑓𝑚𝑎𝑥𝑒
− 

(− 
𝑟𝜆𝑖

2
 + 𝑚𝑜𝑑(

𝑟𝜆𝑖
2

 + 𝑥 − 𝜑𝑗,   𝑟𝜆𝑖))

2

2𝜎𝑖
2

 
3.1 
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where fmax is the maximum firing rate (which is constant across the population), λi 

the baseline spatial period defining the module, r the multiplier applied to that spa-

tial period to control grid scale expansion, φj the spatial phase offset, σi the tuning 

width of the grid fields, and mod (a, b) represents the modulo function. 

Within each module with a shared scale λi, tuning curves were created for M equi-

distant spatial phases 𝜑𝑗 =  
(𝛽𝑖+𝑗)𝜆𝑖

𝑀
 where 0 ≤ j < M and 𝛽𝑖 is a random additional 

offset on the interval (0, 1), common to all tuning curves within a module but differ-

ent between modules. This was added in order to prevent biases that might result 

D 

C 

B 

A 

Figure 3.1 – Tuning curves of modelled grid cells 

Example tuning curves generated using equation 3.1 are displayed on a 1m track. The grid-

patterns are not expanded, i.e. r = 1. 

(A) Grid scale 25 cm (λ = 25 cm), with 0 cm offset (φ = 0 cm) 

(B) λ = 25 cm, φ = 12.5 cm 

(C) λ = 68.6 cm, φ = 17.15 cm 

(D) λ = 68.6 cm, φ = 51.45 cm 
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from the alignment of tuning curves across modules. Thus a total of L × M = N neu-

rons were simulated. 

3.1.2. Determining module scales 

3 systems for determining relative module scales were used: geometric, co-prime, 

and random. In a geometric system, a set of modules was created by specifying a 

spatial period multiplier, p, a smallest scale (r × λ1), and a total number of modules 

L. The spatial period of each module was determined as 𝑟𝜆𝑖 = 𝑟𝜆1 𝑝𝑖−1 where 0 ≤ i ≤ 

L. In a co-prime system, a set of modules were created with scales in the ratios of 

prime numbers 2 : 3 : 5 : … (e.g. 𝜆3 =
5

2
𝜆1). Finally, random systems were constructed 

to compare to the geometric system with p=1.4 as follows: 1000 systems were cre-

ated by taking the smallest and largest grid scales occurring in the geometric system 

and selecting a further L-2 scales from a uniform distribution ranging between these 

scales. Hence yielding L scales with upper and lower scales matched to the p=1.4 

system. 

3.1.3. Modelling spatial uncertainty 

Gaussian noise εi was generated separately for each module and added to the actual 

position, x, to yield a noisy position estimate x + εi (in 2D independent noise was 

added in both x and y dimensions: x + εx,j, y + εy,j). The degree of uncertainty was 

varied by modifying the standard deviation of εi. All cells within a module therefore 

received the same noisy position input, but cells in different modules received dif-

ferent input (the rationale for this is discussed in section 3.2.2). Thus, cell firing rate 

was now modulated according to αi, j (x + εi). 

3.1.4. Decoding 

The signal extracted from the grid cell system was the number of spikes, k, gener-

ated by each neuron during a finite read-out period, T – i.e. a population response K 
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= (k1, …, kN). We assume the decoding cannot take the added noise into account in 

any way, so that given a position x the probability of observing the response K in 

time T, following (Mathis et al., 2012), is taken to be: 

𝑃(𝑲|𝑥) =  ∏ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘𝑖, 𝑇𝛼𝑖(𝑥)) =  ∏
(𝑇×𝛼𝑖,𝑗(𝑥) )

𝑘

𝑘!
× 𝑒−𝑇𝛼𝑖,𝑗(𝑥) 

From the population response K, we can decode position as the maximum likelihood 

estimate of x, that is x̂(K). Given the initial assumption that all values of x within the 

environment are uniformly likely, 

𝑥(𝑲) = max
𝑥∈[0,𝑥𝑚𝑎𝑥]

𝑃(𝑥|𝑲) = max
𝑥∈[0,𝑥𝑚𝑎𝑥]

𝑃(𝑲|𝑥) 

Thus x̂(K) may be closely approximated by calculating P(K|x) for a sufficiently finely 

spaced uniform sample of x values on the interval [0, xmax], and selecting the value 

of x which yields the greatest P(K|x). I used a spatial bin size of Δx = 0.5 cm. Where 

two or more values of x yielded the same maximal P(K|x) (i.e. decoding was ambig-

uous), one was randomly selected. 

3.1.5. Measuring error 

The mean maximum likelihood estimate square error, or MMLE, assesses the 

accuracy of decoding possible with a particular grid system, based on the square 

error of position decoding. Exact MMLE is defined (Salinas & Abbott, 1994; Bethge 

et al., 2002) as: 

𝜒2 = 𝔼((𝑥 − 𝑥)2) = ∑ ∫ (𝑥 − 𝑥(𝑲))
2

 𝑃(𝑲|𝑥)𝑝(𝑥)dx
1

0𝐾∈ℕ𝑁  

where 𝔼(𝑏) is the expected value of a random variable b. MMLE values for each set 

of grid cell network parameters were estimated using the Monte Carlo method. For 

each iteration c, a sample position xc was selected, and with the introduction of noise 

3.2 

3.3 

 

3.4 
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ε to the modelled grid cells, a population spike response Kc was generated, then de-

coded to yield x̂(Kc). With a large number of iterations MMLE can be approximated 

(Mathis et al., 2012). 1000 iterations were performed per experiment (i.e. 1 ≤ c ≤ 

1000): 

𝜒2 ≈
1

1000
∑ (𝑥𝑐 − 𝑥(𝑲𝑐))

21000
𝑐=1  

For a given set of parameters in a geometric or coprime grid system 10 experiments 

of 1000 iterations each were performed, to calculate 10 independent estimates of 

MMLE, unless specified. MMLE figures are therefore reported as the mean of the 10 

independent estimates ± standard error of the mean (N.B. this applies in chapters 3 

and 4, while later investigations used a different approach).  For the random grid 

scales, a single 1000 iteration experiment was performed for each of the 1000 

generated systems. 

3.1.6. Comparison of decoding performance to chance levels 

For the purposes of comparison, chance performance levels were calculated for 

each track size (i.e. corresponding to a uniform distribution of decoded locations). 

For a one-dimensional environment, this was 𝑑
2

6⁄ . 

3.1.7. Parameters 

In all simulations in this chapter, and subsequently except where otherwise 

indicated, the following parameters were used, following Mathis et al. (2012): 

• Read-out time period, T = 0.1s. This is the approximate length of a theta cycle. 

• Maximum grid cell firing rate fmax = 10Hz. The peak firing rates recorded from 

individual cells vary, and 10Hz is a representative value consistent with ex-

perimental findings (Hafting et al., 2005). 

3.5 
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• Smallest baseline spatial period, λ1 = 25cm. This is consistent with 

experimental findings (Barry et al., 2007). Additionally, with grid periods 

smaller than approximately this distance, at top speed a rat would cross 

more than one unit of the grid-pattern during a single theta cycle, making it 

difficult to see how useful information could be read out from such grid cells 

(Mathis et al., 2012). 

• Total number of modules, L = 8. Recordings from dorsal to 

intermediate/ventral rat mEC have so far detected 5 or 6 modules, leading to 

estimates that there may be 5-10 modules in total (Brun et al., 2008; Stensola 

et al., 2012).  

• Tuning width of grid-pattern bumps, 𝜎𝑖 =  𝑟𝜆𝑖   
3

20√log𝑒 100
 . This is consistent 

with experimental findings (Brun et al., 2008). 

• The number of equidistant phase offsets represented within a module of grid 

cells, M = 20 or M = 100, thus the total number of cells, N = L × M = 160 or 800. 

Note that this is much smaller than the estimated 6.6 × 104 cells in layer II of 

the rat mEC (Mulders et al., 1997). 

3.2. Aspects of the model 

3.2.1. Cell spiking 

Mathis et al.’s model modelled the output of each cell as a Poisson process, taking 

the spike count from each cell within a theta cycle time window. I have retained this. 

Poisson processes are widely used to approximate neuron firing. The fine firing pat-

tern of a grid cell is more complex than this due to phase precession (O’Keefe & 

Recce, 1993; Hafting et al., 2008), but the overall spike count is generally close to 

Poisson (Kluger et al., 2010). Examining the additional information that could be 

read out from phase precession was beyond the scope of my investigation. 
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I also retain Mathis et al.’s read-out time period for spike count, set at 100ms. This 

is the average period of the theta oscillation, which is thought to coordinate hippo-

campal processing and segment it into chunks (Buzsáki, 2002). 

3.2.2. Uncertainty 

The spatial firing patterns of grid cells within a single module appear to be coherent, 

consistent with attractor dynamics playing a role (Fyhn et al., 2007; Yoon et al., 2013), 

while there is a greater degree of independence between modules (Stensola et al., 

2012). This independence implies that beyond intrinsic neuronal noise, different 

modules could signal slightly different values given the reality of noisy inputs from 

multiple cues and sensory modalities. Therefore, uncertainty is modelled by provid-

ing slightly different inputs to each of the grid system modules. The different inputs 

are determined by randomly selecting from a Gaussian distribution around the ac-

tual value, enabling variation of the degree of uncertainty by varying the standard 

deviation of this distribution. 

3.2.3. Decoding 

In order to assess how faithfully the grid cell system represents the input location, it 

is necessary to decode their output. “Optimal” decoding refers to methods that, by 

some measure, extract as much information as possible from a neural signal to re-

construct the encoded stimulus, and there are two broad categories. 

In Bayesian inference, a “loss function” describes the expected cost to the organism 

of estimating xestimate when the true stimulus value is xactual, and a function is found 

that minimises the average result of the loss function across possible outcomes. 

Maximum a posteriori (MAP) inference simply selects the estimate xestimate at the maxi-

mum of p[xactual|K], the probability density of that actual stimulus value given the 

observed output (K, the spike count vector). When all the possible stimulus values 
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are a priori considered uniformly equal, this becomes equivalent to selecting xestimate 

at the maximum of p[K|xactual]. This special case of MAP inference is called maximum 

likelihood inference (Dayan & Abbott, 2001). 

Choosing a reasonable loss function for use in Bayesian inference would require 

making many weakly-justified assumptions about the organism’s behaviour, so I rule 

this out. This model considers the independent encoding and decoding of a set of 

discrete independent inputs, so assuming uniform prior probability is a reasonable 

starting point for investigation of the system. Therefore, like Mathis et al., I use max-

imum likelihood inference. In Chapter 7, I will discuss further the possibility of using 

different approaches to decoding. 

3.2.4. Mean square error as a measure of performance 

Mathis et al. use mean square error (MSE) as a measure of the fidelity of grid coding. 

MSE is a common, if somewhat arbitrary, measure for the performance of estima-

tors, as it comprises both an estimator’s variance (assessing precision) and its 

squared bias (assessing accuracy) (SAS Institute, 2009). 

3.3. Results 

I used this model to explore some factors determining the performance of the grid 

cell code. For this initial exploration of the code’s basic properties, the component 

of the model simulating spatial uncertainty was not used (i.e. the standard deviation 

for this was set to zero). 

First, I examined decoding error in grid cell systems with geometric ratios between 

adjacent grid module scales that ranged from 1.1 to 2.0, including factors √2 (1.41) 

and √3 (1.73), simulated in a 1m-long 1D environment (the simulations for square 

root ratios were run by Caswell Barry). Figure 3.2A shows that decoding error is very 
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low overall (squared error generally being less than 1 cm2), with an improvement in 

encoding accuracy for 100 cells per module compared with 20 cells per module – 

presumably because Poisson firing noise is averaged across a larger cell population. 

In addition, there is a moderate effect of the geometric ratio on encoding accuracy, 

such that the smaller ratios, which have more small-scale grids, are more accurate. 

The performance of the system with ratio 2 and 20 cells per module is particularly 

poor, with a high variance indicating the presence of two types of error, reflecting 

failures of precision and accuracy respectively. 

The presence of two types of error is illustrated by Figure 3.2B, where the frequency 

of large amplitude errors (defined here as instances of decoding with squared error 

greater than 10 cm2) generated by systems with different geometric ratios is quan-

tified. These errors are larger than would be expected if they were owing to impre-

cision in the smallest grid scale, and therefore presumably reflect errors of accuracy: 

large errors caused by ambiguity in the periodic code or by modular coding trans-

lating small perturbations in one or some modules’ phase signal into a very different 

position signal (as discussed in Section 1.8.1). Figure 3.2B shows that these “ambi-

guity errors” begin to appear in grid systems with 20 cells per module as the ratio 

approaches 2. Although these occur very infrequently (in less than 0.5% of decoding 

trials), the errors are large and contribute disproportionately to the mean squared 

error. For example, in the 1.9 ratio system with 20 cells per module, 0.31% of trials 

produced large errors and these have a mean square size of 38.1 cm2, whereas the 

remaining trials have a mean squared error of 0.75 cm2. In the grid systems with 100 

cells per module, no ambiguity errors occurred in any of the trials. Figure 

3.2C replots the data from Figure 3.2A with the large errors removed – as expected, 

the performance of systems with 20 cells per module and larger geometric ratios 

(1.7 and greater) is improved, and variability reduced. 
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The presence of ambiguity errors in grid systems with 20 cells per module is clearer 

in 18 m linear environments (Figure 3.2D). The mean squared decoding error is 

dominated by the infrequent but very large decoding ambiguity errors, which also 

cause large variance. Note the decoding accuracy allowed by geometric ratio 2, and 

to a lesser extent √2, is particularly poor. The former exceeds the limits of the y-axis 

(mean squared decoding error 8979 and 2687 cm2, respectively). The proportion of 

trials showing decoding ambiguity errors is shown in Figure 3.2E. These errors occur 

for all grid systems with 20 cells per module and their amplitudes are increased rel-

ative to the 1 m track (because the 18 m track provides greater scope for larger er-

rors). Taking the 1.9 scale ratio, again these errors account for 0.32% of the trials, 
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but their mean square size was 2500 cm2, while the size of the errors in the remain-

ing trials was effectively unchanged at 0.76 cm2. The geometric ratio 2 coding 

scheme in particular suffers from a large number of decoding ambiguity errors on 

0.86% of trials, indicating the inefficacy of integer scale ratios. The geometric ratio 

√2 scheme also exhibits a disproportionate number of ambiguity errors when com-

pared with the similarly scaled 1.4 and 1.5 schemes—this appears to reflect the fact 

that under the √2 scheme alternate grid modules follow a geometric progression 

with ratio 2. Again the grid system with 100 cells per module does not generate am-

biguity errors. Decoding error for the same grid systems is shown without the infre-

quent, but very large, decoding ambiguity errors in Figure 3.2F. As with Figure 3.2G, 

this shows that the remaining (precision) errors increase with increasing scale ratio, 

as would be expected from the concomitant increases in the breadths of tuning of 

the grid firing fields in all but the smallest scale module. 

Figure 3.2 – Decoding error in systems with different grid scale configurations 

(A-C) Simulations in 1 m environment. (A) Mean squared decoding error (MSE) for geomet-

ric grid systems with ratios 1.1–2.0, including √2 and √3 (blue diamonds). Errors for co-

prime system (labelled “coP”) shown on right of axis. Systems have 20 (black dashed line) 

and 100 grid cells per module (red solid line). Error bars indicate SEM of 10 simulations 

each consisting of 1000 decodings of locations from grid cell activity. (B) Frequency of large 

(> 10 cm2) errors. (C) MSE (as in A) with large errors excluded. (D–G) Simulations in 18 m 

environment (again, blue diamonds indicate ratios √2 and √3). (D) MSE for geometric sys-

tems (points for ratios √2 and 2.0 are off the scale). (E) Frequency of large errors. (F) MSE 

with large errors excluded. (G) Decoding errors for 1000 grid systems with random scales 

matched to a ratio 1.4 geometric system (100 cells per module; a single 1000-iteration 

experiment per system). 5th and 95th percentile of the random population shown as grey 

dashed lines. Matched geometric system lies at the 15.4th percentile (solid red line). (H) 

Module scales in the best and worst performing random systems. (I) MSE for a ratio 1.4 

geometric system (100 cells per module) in 1D environments 0.5–500m. 
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The performance of configurations of grid modules with a co-prime sequence of 

scales (i.e. a 2 : 3 : 5 : 7 : 11 : 13 : 17 : 19 ratio of scales, starting from 25 cm and 

ending at 237.5 cm) is similar to a geometric series with ratio approximately 1.5 

(range 25–427 cm) for both the 1 and 18 m environments, and in systems with 20 

and 100 cells per module (see the rightmost points in Figure 3.2A-F). It performs 

slightly worse than the ratio 1.4 geometric series, whose overall range (25–264 cm) 

is best matched to it. Thus, there seems to be no specific advantage for a co-prime 

series of grid scales over a geometric series in these conditions. Grid systems with 

geometric ratio 1, i.e. where all grids are 25 cm in scale, were also simulated, but the 

data are not shown because they give such large errors, being unable to disambig-

uate locations more than 25 cm apart (e.g. mean squared error with 20 cells per 

module on a 1 m track is 1669 cm2). 

Figure 3.2G examines the decoding error for grid systems with a random distribu-

tion of grid scales between 25 and 264 cm, for comparison with a geometric series 

with scale ratio 1.4 (which has the same range of scales and is investigated further 

below). (The simulations of these random grid systems were run by Caswell Barry.) 

The mean error in the geometric system lies at the 15.4th percentile of the distribu-

tion of random scales, showing that on average a geometric series performs some-

what better than a random series with a similar range of scales but that this ad-

vantage is slight and all systems exhibit only precision errors. The five randomly 

generated grid systems that gave the lowest decoding errors (rank first to fifth) as 

well as the five yielding the highest errors (rank 996th to 1000th) are shown in Figure 

3.2H. The best performing random systems include more small-scale grid modules 

than the poorly performing systems, which are dominated by larger scale grids, and 

so somewhat resemble the geometric series of scales. This reflects the fact that, on 

the 18 m track with 100 grids per module, ambiguity errors are unlikely to occur, 
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and so the maximum decoding accuracy is obtained by minimizing precision er-

rors—hence small grid scales are favoured. 

Figure 3.2I provides an indication of the actual capacity of the grid system and how 

this compares to the 18 m track used in the previous simulations. Specifically, de-

coding error of a ratio 1.4 geometric system with 100 grids per module is examined 

on tracks of increasing length. In all cases, the decoding errors are small, consisting 

mainly of precision errors even on the largest track (500 m), suggesting that the 

maximum range of this system is considerably larger than this value, as suggested 

by Fiete et al. (2008). 

These initial simulations demonstrated several points. The presence of two types of 

error is clearly shown: precision errors which are common but relatively small in 

magnitude and ambiguity errors which are infrequent but potentially very large. The 

small decoding errors resulting from precision errors are reduced further in grid 

systems with more small-scale grid modules and also in systems with more cells per 

module. Although ambiguity errors are infrequent, typically occurring in less than 

1% of iterations, their large size was shown to disproportionally degrade the sys-

tem's performance. Ambiguity errors were found to be more prevalent in systems 

with fewer cells per module (20 versus 100) as well as in the larger environment (18 

versus 1 m) where their magnitude was also increased. There was no specific ad-

vantage for the co-prime system over a similarly scaled geometric system. However, 

the geometric system following a ratio of 2 between modules performed poorly ow-

ing to a disproportionate number of ambiguity errors on the 18 m track, and to a 

lesser extent this was also true for the ratio √2 system. 
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3.4. Discussion 

3.4.1. Trade-offs between precision and accuracy 

This initial exploration demonstrated trade-offs between precision and accuracy in 

variously configured grid cell systems, encoding position without spatial uncertainty 

in one-dimensional environments. 

Localised precision errors reflect small errors in the decoded location, while larger 

ambiguity errors result from decoding location to the wrong part of the 

environment. There were two sources of noise in the system – the variable spatial 

uncertainty, and Poisson noise inherent in the cell spiking dynamics. In the absence 

of the former, the larger ambiguity errors are relatively rare. 

In fact, with enough cells included per module, ambiguity errors became completely 

absent: with information from more cells, Poisson noise in individual cells is unlikely 

to result in confusing the grid code labels for two different locations. This means the 

system can correctly disambiguate more states, enhancing both precision and 

range: the combinatorial power of the system was demonstrated by the low errors 

even in a 500m environment. Thus, as predicted by theoretical work (Fiete et al., 

2008), systems with incommensurate scales can unambiguously encode location in 

environments much larger than the largest grid scale. 

Increasing the number of cells per module decreased the size of precision errors as 

well as ambiguity errors, because the impact of the Poisson noise can be averaged 

out across a larger number of cells, and the larger population gives a better 

approximation to the idealised population vector for a given position. 

In the absence of ambiguity errors, grid codes with smaller scales (whether 

geometrically progressing scales with a smaller ratio, or random systems which 
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happened to have more small scales) experienced smaller precision errors: they can 

represent space more finely. 

Unlike precision errors, where ambiguity errors do occur they scale with the size of 

the environment relative to the grid scales. In even a moderately-sized environment, 

therefore, ambiguity can introduce significant errors orders of magnitude larger 

than the precision errors. With 20 cells per module in an 18m environment, the slight 

reduction in precision errors conferred by smaller geometric scaling ratios is 

overridden by the ambiguity errors. For ratios between 1.1 and 1.9 there is no simple 

relationship apparent between ratio and errors. 

No particular advantage for a coprime sequence of scales was observed compared 

to similar geometric schemes. As discussed in the Introduction, the particular 

theoretical advantage of the coprime scheme in maximising the LCM of the scales is 

specific to an idealised model – once realistic noise is introduced, ambiguity errors 

can occur in environments smaller than the LCM but large enough to encompass 

locations at which the sets of grid module phases are too similar to be reliably dis-

tinguished. 

3.4.1. Nested grid codes fail in larger environments 

Geometric systems with scaling ratios of 1 and 2 perform particularly poorly. With a 

“nested” grid code (one with an integer module scale), all combinatorial power is lost 

and it becomes impossible to distinguish locations further apart than the largest 

grid scale. This was to be expected and follows simply from first principles discussed 

in the Introduction. The lowest common multiple and thus the theoretical maximum 

capacity of a nested set of scales is, of course, equal to the largest scale. To a lesser 

extent, systems with factor √2 suffer from a similar problem as alternate modules 

are nested. 
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Noteworthy was the fact that a nested system (with scaling factor 2) began to show 

very large failures even before the environment exceeded the scale of its largest 

grid. This is likely because the system lacks redundancy. If there is an error in the 

output of the largest module, the output of the other modules, which are smaller 

than the environment, cannot help to disambiguate. This corroborates the lack of 

robustness in nested codes that was predicted. 

However, it was clear at this point that more in-depth exploration of different scale 

configurations, including at the limits of the systems’ ranges, might shed more light. 

Such an investigation was conducted later and is reported in Chapter 5. 
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4. GRID-PATTERN SCALE EXPANSION IS 

ADAPTIVE FOR CODING IN CONDITIONS OF 

SPATIAL UNCERTAINTY 

4.1. Background 

When an animal is placed in a novel environment, grid scales have been observed 

to start out larger, and progressively contract with increasing experience of the en-

vironment until they reach a stable scale similar to that measurable beforehand in 

an already-familiar environment (Barry, Ginzberg, et al., 2012). This was a surprising 

finding, as spatial representations would be expected to remain stable in order to 

facilitate navigation and learning about features of the environment (for instance, 

associating a particular landmark with a consistent location). A shifting representa-

tion would require downstream and associated systems and connections to adapt 

over time if confusion is to be avoided. 

Barry et al. hypothesised that grid expansion in a novel environment may be under-

stood more generally as a response to spatial uncertainty, proposing that expansion 

may be a compensatory mechanism. Here, I used the model I developed, in 

simulations of one- and, by adapting the model, two-dimensional environments, to 

test this hypothesis. 

The work reported in this chapter was published as part of this article: Towse, B. W. 

et al., (2014) ‘Optimal configurations of spatial scale for grid cell firing under noise 

and uncertainty’, Philosophical transactions of the Royal Society B, 369(1635). 
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4.2. Methods 

4.2.1. Extension of the model for two-dimensional environments 

The model described in Chapter 3 was extended to simulate behaviour in two-

dimensional environments for part of this investigation. Here, I explain how the 1D 

version of the model was adapted for 2D simulations. 

4.2.1.1. Grid cell firing patterns 

Two-dimensional template tuning curves for each grid scale (and expansion thereof) 

were generated with locations of grid nodes specified as a regular triangular grid 

with scale rλi and expected firing rate at each location determined by a Gaussian 

distribution centred on the nearest node: 

𝛼𝑖,𝑗(𝑥, 𝑦) = 𝑓𝑚𝑎𝑥 𝑒
− 

𝑑2

2𝜎𝑖
2
 

where d is the distance from (x, y) to the nearest grid node.  

Within each module, M = 195 offset tuning curves (yielding a total of 8 × 195 = 1560 

cells in the system) were distributed in a 13 × 15 rectangular grid via translations of 

this original tuning curve, as well as adding a random translation common to all grids 

in the module. Finally, in a given experiment, all grid tuning curves in all modules 

were rotated to a common, randomly selected orientation with respect to the envi-

ronment. All these transformations were fit to the array of sampled locations using 

cubic interpolation. 

4.2.1.2. Modelling spatial uncertainty 

In the two-dimensional simulation, independent noise was added in both x-and y-

dimensions: x + ɛx,i, y + ɛy,i. Where position signals altered with noise fell outside the 

4.1 
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environment, they were corrected to the closest location at the edge of the environ-

ment before being input to the grid cells. 

4.2.1.3. Decoding 

In two dimensions, the tuning curve only gives expected firing rates at the discrete 

sampled intervals, rather than being calculated as the continuously-varying result of 

an equation across the environment. Therefore, in the calculation of P(K|x), αi,j(x,y) is 

calculated by cubic interpolation from the tuning curve, which gives expected firing 

rates only at the sampled intervals. As all possible locations are considered inde-

pendently in the probability calculations, no further adaptation is required to trans-

fer from 1 to 2 dimensions. 

4.2.1.4. Measuring error 

Equation 3.5, used to estimate mean maximum likelihood estimate square error, 

was adapted for the 2D model: 

𝜒2 ≈
1

1000
∑ (𝑥𝑐 − 𝑥(𝑲𝑐))

2
1000

𝑐=1

+ (𝑦𝑐 − 𝑦̂(𝑲𝑐))
2
 

4.2.1.5. Comparison of decoding performance to chance levels 

For comparison to the performance of the grid cell systems, the performance of 

decoding via blind chance was calculated in square 2D environments as 𝑑
2

3⁄ . 

4.2.2. Model parameters 

I conducted this part of the investigation in a grid system configured in a geometric 

series of scales (the evidence in Chapter 3 indicates this performs as well as any 

other) with a ratio of 1.4. Such a scaling ratio is indicated (on average) by the work 

of Stensola et al. (2012), although note that a larger ratio would be required to pro-

duce a range comparable with the smallest and the largest grid scales that have 

4.2 
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been reported (i.e. 25–500 cm; Brun et al., 2008) with only eight modules, more con-

sistent with the average ratio of 1.7 found by Barry et al. (2007). I used 100 cells per 

module, because this minimizes the effect of decoding ambiguity errors arising from 

Poisson firing. 

For one-dimensional simulations, I used the larger 18m environment, in which the 

system has to navigate environments larger than the largest grid scale by exploiting 

the combinatorial power of the grid code. 

In the subsequent two-dimensional simulations, the environment size was re-

stricted to 1m2 due to the heavy computational burden of running the model in large 

2D environments. 

Note that the uniformity of grid-pattern orientations across modules is a simplifica-

tion – at least a minor one. The issue is discussed further in a later chapter (Section 

6.5.2). To summarise, grid-pattern orientation does vary between modules more 

than within them (Stensola et al., 2012), though the modules’ orientations do tend 

to cluster (Krupic et al., 2015) and clustering does appear to be stronger in square 

environments than unpolarised circular environments (Stensola et al., 2012; Krupic 

et al., 2015). In this work, I considered grid cell populations with uniformly oriented 

grid-patterns as a simplified starting point – a future extension could be to examine 

the effect of non-uniformity of orientations. 

4.3. Results 

Figure 4.1A shows the decoding error for the grid system, for two levels of uncer-

tainty, as a function of the grid scale expansion factor in the range 0.125–7. For both 

levels of uncertainty, small expansion factors lead to large decoding errors, reflect-

ing the occurrence of ambiguity errors caused by spatial uncertainty (as shown 
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above, in this grid system and environment Poisson firing alone does not cause am-

biguity errors, or at least does so only extremely rarely, owing to population coding). 

On the other hand, for larger expansion factors, the overall decoding error increases 

owing to decreasing precision. The scaling factor representing the optimal trade-off 

Figure 4.1 – Expansion of a grid system is an optimal response to spatial uncertainty 

(A) MSE in an 18 m 1D environment in grid systems subjected to varying expansion, under 

lower (σε = 2 cm; solid line) and higher uncertainty (σε = 6 cm; dashed line). For each level 

of uncertainty, there is an optimal expansion factor that minimizes decoding error (circled 

in red), and grid scale expansions smaller or larger than this will result in greater errors. 

(B) The mean optimal expansion factor is greater for higher levels of uncertainty; this 

relationship appears linear. (C) MSE for baseline (solid line) and optimally expanded 

(dashed line) grid systems, and for performance at chance (dotted line). Numerical labels 

in (C) indicate mean optimal expansion. 

(D-F) show simulations in a 2D 1m2 environment and are equivalent to (A-C) respectively. 

In (D), the uncertainty levels represented are σε = 0 cm (solid line), 2.5 cm (dashed line) 

and 5 cm (dotted line) 

Error bars are the SEM of 10 experiments per set of conditions, each experiment consist-

ing of 1000 decodes of random locations. 
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between these two factors depends on the level of uncertainty. In fact, the optimal 

expansion factor, which minimizes decoding error in this situation, increases linearly 

with the level of spatial uncertainty, as illustrated in Figure 4.1B. The differences in 

decoding error generated by the optimally expanded and initial (unexpanded) grid 

systems are shown in Figure 4.1C. 

A similar pattern of results is generated by the grid system in a two-dimensional, 1 

m2 environment (see Figure 4.1D-F, where expansion factors ranging from 0.125 to 

3.5 were assessed). Note that at low uncertainty (σε = 2.5 cm) the optimal grid ex-

pansion is 1.0 (i.e. comparable to ‘baseline’ scales measured empirically), and with 

an increase in uncertainty (to 5 cm) the optimal expansion is 1.9, which is of a similar 

order of magnitude to the expansion recorded empirically in exposure to a novel 

environment (Barry, Ginzberg, et al., 2012). 

At zero spatial uncertainty, the estimated optimal expansion factor is less than one 

and represents shrinkage of the grid firing pattern. In fact, the true optimum is likely 

to be even smaller than that observed here. This estimate was limited by the range 

examined, and expansion factors smaller than 0.125 were not examined. However, 

the fact that these shrunken grids can code location with so little error is further 

evidence of the power of grid systems to encode unique locations over ranges much 

larger than their scales. 

4.4. Discussion 

4.4.1. Grid expansion in novelty as a compensatory response to spatial 

uncertainty 

This investigation showed that increasing spatial uncertainty increases errors in the 

grid cell system’s representation of location, and that expansion of the grid scales 

can partially mitigate this deterioration of performance. This provides a plausible 
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context for the experimental finding that grid cell firing patterns expand in novel 

environments – where greater spatial uncertainty would be expected – and then 

gradually contract back with experience of that environment (Barry, Ginzberg, et al., 

2012). 

The effect of grid scale expansion can be understood in terms of precision and 

ambiguity errors. 

With low spatial uncertainty, ambiguity errors are less likely. Increasing grid scale 

increases the magnitudes of precision errors, and so smaller grid scales are 

favoured. Higher spatial uncertainty the increases incidence of ambiguity errors. 

Expanding the grid-patterns seems to mitigate for this for two reasons. 

First, increasing the scale of the grid-pattern reduces the size of the spatial 

uncertainty relative to the pattern. This would ensure that the noisy position 

estimates input to the grid cell modules more frequently remain close within the 

same unit of the repeating grid-pattern as the actual position. This should reduce 

the likelihood of decoding to an entirely different position. The optimal expansion 

appeared to approximately maintain the standard deviation of the uncertainty noise 

below 10% of the smallest grid scale. 

Second, expanding the grid cell pattern also increases the spatial range of the 

system, so that the limited environment occupies a smaller fraction of the overall 

capacity. Potentially confounding locations that correspond to similar firing patterns 

are thus more likely to be outside the boundaries of the environment. In this 

simulated system, decoding is only permitted to locations within the environment, 

so those candidate locations are effectively ruled out of consideration and ambiguity 

errors prevented. This is similar to the mechanisms of error correction in the grid 
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cell system proposed previously (Fiete et al., 2008; Sreenivasan & Fiete, 2011) and 

discussed in the Introduction. 

4.4.2. Alternative hypotheses 

This is not the only hypothesis seeking to contextualise grid expansion in response 

to novelty. A major alternative hypothesis  is that it promotes the ‘remapping’ of 

place cell firing, which also co-occurs with the expansion (Barry, Ginzberg, et al., 

2012). This would be consistent with models suggesting that remapping reflects a 

mismatch between path integration-based grid inputs and environmental sensory 

inputs to place cells (Burgess, 2008; Barry, Ginzberg, et al., 2012). Expanding grid-

patterns via a targeted viral knockout of mEC HCN1 channels in mice does make 

place cells’ fields more likely to shift location across days (Mallory et al., 2018). How-

ever, increased place field lability as a result of chronically expanded grid-patterns 

is not necessarily the same thing as acute, temporary expansion acting as a prompt 

for remapping. 

Another possible hypothesis is that expansion and contraction in novelty and famil-

iarity are associated with a need for different behavioural strategies. A priori, in a 

novel environment we might expect animals to travel longer distances to survey for 

resources and opportunities (food, potential mates, etc.), and once the animal had 

grown familiar with the locations of these, we might expect its range to contract only 

to areas of interest and travel to be minimised. However, the question of how loca-

tions are learned and stored in a consistently usable way for future behaviour when 

the representation is shifting, seems particularly troublesome in relation to this ex-

planation. 

A key question is whether grid scale varies in relation to other forms of spatial un-

certainty apart from novelty. If it does, this supports the hypothesis that grid scale 
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variation is driven by the need to minimise errors. Of course, the different hypothe-

ses are also not mutually exclusive, and the phenomenon might play multiple roles 

in the system, potentially including others not yet proposed.  

There is indeed some preliminary evidence for this. Grid scale was observed to ex-

pand in mice navigating a two-dimensional virtual environment, relative to a real 

arena. Greater spatial uncertainty would reasonably be expected in a VR environ-

ment, due to the multi-modality richness of real cues compared to simpler, visual-

only VR cues, and due to conflict between VR cues and uncontrolled real cues in the 

VR apparatus such as sounds, smells, the edges of the display screen and the run-

ning ball. Consistent with this, spatial information in grid and place cell firing pat-

terns was reduced in VR  (Chen et al., 2018). 

Experiments comparing grid scale in cue-rich and cue-poor real environments also 

suggest an interaction between cue-richness and grid scale. However, in those ex-

periments this relationship was confounded by multiple other interacting effects, so 

it is not yet possible to draw clear conclusions from this (Manson, 2017). 

Further experimental work, including real and/or virtual reality manipulations of 

cues to vary their reliability, could shed further light here. 

4.4.3. Neuromodulators may signal uncertainty and control grid scale changes 

Previous work has demonstrated that grid scale is influenced by the Ih 

(hyperpolarisation-activated cation) current, which is dependent on the HCN1 

(hyperpolarisation-activated cyclic nucleotide-gated 1) channel subunit and varies 

topographically from dorsal to ventral mEC, the same axis along which grid scale 

varies (Giocomo et al., 2007, 2011; Mallory et al., 2018). In vitro investigation 

demonstrates that this current in layer II mEC stellate cells may be modulated by 

cholinergic manipulations (Heys & Hasselmo, 2012). Thus, there is a physiological 



82 

 

mechanism by which acetylcholine release, known to be associated with novelty, 

could plausibly account for grid scale expansion in novel environments (Barry, Heys, 

et al., 2012). 

A more generalised model of how the brain signals and processes types of 

uncertainty proposes interacting roles for acetylcholine and noradrenaline (Yu & 

Dayan, 2005). This model distinguishes between expected uncertainty, due to 

known unreliability of predictive cues within a context, and unexpected uncertainty, 

when context itself changes. Acetylcholine is proposed to signal the former, and 

noradrenaline the latter. The relative levels of each are proposed to determine a 

subject’s Bayesian inferences in environments which are both noisy and changeable. 

When a subject encounters a novel environment, and must ascertain this and then 

learn about new cues (which may be unreliable), both types of uncertainty and both 

neuromodulators may be relevant. 

However, recent evidence challenges the proposal that novelty-related grid scale 

expansion is triggered via aceytlcholine signalling: modulating medial septal 

cholinergic activity in mice impacted on some aspects of mEC activity and induced 

behaviours usually seen in novel environments, but did not alter grid-patterns 

(Carpenter et al., 2017). This could mean that acetylcholine does not play a role in 

this mechanism, or that it is insufficient and other triggers are also required. Note 

also that novelty-related grid scale expansion was discovered in rats and has not yet 

been replicated in mice, so there could be other differences. 

Thus, closer examination of the role of noradrenaline – either as a necessary 

accompaniment to cholinergic signalling or an independent mechanism – could be 

fruitful. There is a speculative pathway by which noradrenaline might influence grid 

scale, by possibly causing cAMP upregulation, which is known to affect the Ih current 

in layer II mEC stellate cells (Heys & Hasselmo, 2012).  
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In general, further exploration of grid scale changes and neuromodulation in the 

context of this theoretical framework of uncertainty sources could be extremely 

interesting. Following the study by Carpenter et al., experiments would include 

further cholinergic and noradrenergic manipulations in combination with 

electrophysiological techniques in behaving animals. 
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5. SPATIAL CAPACITY OF GRID CELL CODING 

SCHEMES 

5.1. Background 

Chapter 1.8.2 discussed predictions from various theoretical approaches about the 

dependency of grid cell system’s spatial capacity on the configuration of the 

different modules’ grid-pattern scales. In Chapter 3 I reported that my first 

experiments with a biologically-inspired model allowed some testing of these 

predictions. In summary, systems with sufficient numbers of grid cells to 

compensate for their intrinsic noise, under conditions without spatial uncertainty, 

were indeed able to represent unique locations across distances much larger than 

the largest grid scale present in the system. Under such conditions and in the 

relatively small simulated environments used in most of the experiments, there was 

little difference in performance between different scale configurations, while when 

the number of cells was too low to compensate for intrinsic noise some variation in 

error magnitudes by scale configuration did arise but a monotonic or regular 

relationship was not apparent. 

Here I describe further experiments with the biologically-inspired model to explore 

this question in more depth. I will show that the distances between locations where 

different grid periods’ phases take the same, or very similar, values are related to 

the sizes of environments in which the grid code will suffer ambiguity errors, and 

thus to the spatial capacity of the grid cell system. Exploring the performance of 

different grid coding schemes, I will demonstrate that grid code capacity does 

depend on the arrangement of grid scales, but that the relationship is too sharply 

irregular for optimisation to be plausible in reality: corroborating (Vágó & Ujfalussy, 

2018) for systems with small numbers of grid modules, but disputing their claim that 

this dependence becomes irrelevant with larger numbers of grid modules. 
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5.2. Methods 

This investigation applied the 1- and 2D versions of the model described in Chapter 

3 and 4. Here I will set out the particular parameters used and additional analysis 

methods. 

5.2.1. Grid-pattern parameters 

Spiking activity of grid cell populations was modelled as described previously. In 

order to ensure that environments larger than the systems’ theoretical maximum 

capacities (the lowest common multiple of the set of scales in the system) were 

computationally tractable, the systems were limited to 4 discrete modules, each with 

195 cells having tuning curves offset from one another. Thus a total of 4 × 195 = 780 

neurons were simulated. 

In 2D simulations, every experiment was divided into 10 sets, in each of which a 

random orientation was selected to which all grid tuning curves in all modules were 

rotated. The tuning curves were calculated once and then rotated using cubic inter-

polation. 

Coprime and geometric scale configurations were explored. As before, the coprime 

configuration had scales in the ratios of prime numbers 2 : 3 : 5 : … (e.g. 𝜆3 =
5

2
𝜆1). In 

all models, the smallest spatial period, λ1 was set as 25cm. In the geometric systems, 

based on previous theoretical predictions and experimental evidence, ratios p = 1.4 

(Stensola et al., 2012), 1.5 (Stemmler et al., 2015) and 1.65 (Barry et al., 2007; Wei et 

al., 2015) were used for the first experiments, with finer variations in the ratio ex-

plored later. 
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5.2.2. Monte Carlo estimates of mean square error 

In 2D simulations N = 37500 iterations were performed for each experiment (3750 

for each set with a different, random orientation of the grid-pattern). In 1D simula-

tions, N = 37500 iterations were performed for each experiment in the first section 

of the investigation (Figure 5.1), while N = 300000 iterations were performed in all 

subsequent experiments (Figure 5.2 and Figure 5.3). 

Note that for this and the investigations reported in Chapter 6, mean square decod-

ing error was taken across all iterations performed for each set of conditions and 

parameters, and reported ± 95% confidence interval. This approach was a develop-

ment from the earlier reporting method – in which the total number of iterations 

was divided into 10 batches, and results reported as the mean of the resulting 10 

MSE estimates ± standard error of the mean – as that approach was unnecessarily 

arbitrary, especially for the very large number of iterations performed in these later 

experiments. 

5.2.3. Assessing “near miss” grid phase similarity 

For any given location x, the distance to the nearest point at which the phase of a 

grid cell module, i, is equal to its phase at x=0, which I will refer to as phase similarity 

per module, hi, is: 

ℎ𝑖(𝑥) =  
𝜆𝑖

2⁄ − |𝑚𝑜𝑑(𝑥,   𝜆𝑖) −
𝜆𝑖

2⁄  | 

The mean phase similarity, ĥ, at any location x therefore indicates how close the 

phases are to matching the phases they had at x=0: 

ℎ̂(𝑥) =
1

4
∑ ℎ𝑖

4
𝑖=1 =  

1

4
∑ (

𝜆𝑖
2⁄ − |𝑚𝑜𝑑(𝑥,   𝜆𝑖) −

𝜆𝑖
2⁄  |)4

𝑖=1  

5.1 

5.2 
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I sought to devise a measure that would encapsulate the hypothesised effect of grid 

module similarities on causing ambiguity errors. For example, very near misses (very 

small hi) contribute much more to the probability of an error than larger hi, which is 

not captured by taking the mean value over modules (Equation 5.2). The probability 

of an ambiguity error given the phase similarities hi in each module and the degree 

of spatial uncertainty (i.e. the standard deviation, σε, of the Gaussian noise in loca-

tional inputs to each module) can be estimated as the probability that the noise in 

grid phase exceeds the phase similarity in any of the modules. I made use of the 

Complementary Error Function erfc(x), to estimate this as:   

∏ 𝑒𝑟𝑓𝑐 (
ℎ𝑖(𝑥)

𝜎𝜀×√2
)4

𝑖=1 = ∏ 𝑒𝑟𝑓𝑐 (
𝜆𝑖

2⁄ −|𝑚𝑜𝑑(𝑥,   𝜆𝑖)−
𝜆𝑖

2⁄  |

𝜎𝜀×√2
)4

𝑖=1  

Second, from the premise that ambiguity errors are likely to occur across the dis-

tances between locations where the phases of all the grid modules are similar, it 

follows that the larger the environment than said distance, the more chances there 

are for ambiguity errors of that size to occur. So I scaled the measure at each loca-

tion by the difference between that x and the environment size, L. I sum these, ex-

cluding the locations that fall within 12.5 cm (half the smallest grid scale) of the ends 

of the environment, since errors this small are considered precision, not ambiguity 

errors (so the range of locations sampled in the environment is S: from 12.5cm to L-

12.5cm, at intervals of 0.5cm). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝ℎ𝑎𝑠𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑒𝑓𝑓𝑒𝑐𝑡 (𝐿) =

                                                          ∑ {[∏ 𝑒𝑟𝑓𝑐 (
𝜆𝑖

2⁄ −|𝑚𝑜𝑑(𝑥,   𝜆𝑖)−
𝜆𝑖

2⁄  |

𝜎𝜀×√2
)4

𝑖=1 ] × (𝐿 − 𝑥)}𝑥∈𝑆  

5.3 

 

5.4 
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Note that this measure was not intended to predict the actual magnitude of self-

localisation error, but merely the varying effect that phase similarity is hypothesised 

to contribute to the error. The prediction to be tested was, therefore, simply that 

this measure would positively correlate with mean square error. 

5.2.4. Statistical methods 

An ANOVA was used to assess the effects of uncertainty, grid code scheme, environ-

ment size and the prediction measure, on mean square decoding error (see Results; 

SPSS v. 24, IBM). Type III Sum of Squares was used in order to obtain the independ-

ent effect for each factor with the other factors controlled for. The assessment in-

cluded the main four grid-scale schemes considered – geometric schemes with ra-

tios 1.4, 1.5 and 1.65, and a coprime scheme – under uncertainty levels, σε, 1cm and 

2.5cm, and in a range of 1D environments increasing from 0.4m, in 0.2m increments, 

up to a maximum of either the lowest common multiple (LCM) of the scheme’s grid 

scales minus 12.5cm (this subtraction excludes simple precision error confusions 

with the LCM distance), or 27m, whichever was smaller for each grid scheme. 

5.3. Results 

5.3.1. Performance of grid cell systems in environments of increasing size de-

pends on the scale scheme 

I focussed my investigation on modular systems of grid cells with scales arranged in 

4 different ratios, each proposed by previous experimental or theoretical work: ge-

ometric series with ratios 1.4 (Stensola et al., 2012), 1.5 (Stemmler et al., 2015), and 

1.65 (Barry, Ginzberg, et al., 2012; Wei et al., 2015), and a coprime series (Fiete et al., 

2008). 

Examining simulated grid firing in 2D and 1D environments (Figure 5.1A-B) I found 

that, as shown previously, decoding errors increased with environment size in both 
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cases. However, the rate of increase varied greatly depending on the grid scale 

scheme, and exhibited tipping points at which the rate of increase rose sharply. 

Theoretical analyses of grid coding schemes indicate that the maximum possible 

capacity of an idealised system is the lowest common multiple (LCM) of the compo-

nent grid scales (Fiete et al., 2008). Thus, to validate this method, I first turned to a 

scenario where spatial uncertainty – modelled as independent noise in the location 

encoded by each module (see Methods) - was absent (Figure 5.1A-B). Large 2D en-

vironments are computationally burdensome to simulate, so investigating 1D envi-

ronments as well allowed exploration of a wider range of environment sizes and 

parameters. 

As expected, in most cases decoding errors remained relatively small until the envi-

ronment scale approached the LCM of the grid scales, after which performance rap-

idly deteriorated to chance levels (for geometric ratio 1.4, LCM = 85.75m; ratio 1.5, 

LCM = 6.75m; coprime scheme, LCM = 26.25m), since in environments larger than 

the scheme’s LCM, it is unable to unambiguously represent all locations. The excep-

tion to these observations was the ratio 1.65 geometric scheme, in which the LCM 

was considerably larger than the maximum environment scale tested and which re-

tained a low error rate for all scales tested (LCM = 8984.25m vs the 100m 1D envi-

ronment, Figure 5.1B).  

Next, I explored the impact of spatial uncertainty on the accuracy with which self-

location was represented in the grid cell system (Figure 5.1C-E). As expected, in-

creased spatial uncertainty degraded decoding accuracy such that, for high levels of 

uncertainty, performance was close to chance for all schemes and environment 

sizes (Figure 5.1E). Strikingly, for intermediate levels of uncertainty, the relationship 

between decoding performance and environment size differed markedly from the 

zero uncertainty condition. Instead of a single tipping point, corresponding to the 
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capacity of the grid system, performance deteriorated earlier and in stages, with 

multiple interim tipping points at which the rate of increase in decoding error ticked 

up.  

I hypothesised that these interim tipping points occurred when the environment 

reached sufficient size that it contains distinct locations with similar but not identical 
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grid representations – i.e. when the environment was large enough to encompass 

distances across which the phases of the grid modules come close to the same val-

ues (Figure 1.6). With a relatively small degree of uncertainty in the system, these 

near-misses would sometimes produce large decoding errors analogous to those 

seen when the absolute capacity (LCM) is exceeded.  

5.3.2. Sharp increases in decoding errors relate to near-misses in grid phase sim-

ilarity 

To test the hypothesis that increases in decoding errors reflect near-misses in grid 

phase similarity, I incrementally increased the size of a test environment while ex-

amining how the performance of the grid coding system, subject to spatial uncer-

tainty, co-varied with grid phase. Specifically, I identified points where decoding er-

ror grew rapidly and assessed the similarity of phases in grid modules at locations 

separated by the distances encompassed by environments of these sizes. Observa-

tion of the several coding schemes (illustrative examples in Figure 5.2A-C) indicated 

that increases in the error rate tended to occur in environments slightly larger than 

Figure 5.1 – Performance of grid cell systems in environments of increasing size de-

pends on scale scheme 

Performance of different grid cell schemes in 1D and 2D environments of varying size is 

indicated by the mean square decoding error. Grid scale schemes are indicated as follows 

– geometric ratio 1.4, orange dotted line; geometric ratio 1.5, blue dashed line; geometric 

ratio 1.65, vermillion dash-dot line; coprime, bluish-green solid line. All schemes have 4 

modules, each with 195 cells. Black dotted line indicates chance performance. Vertical 

dashed grey lines indicates the lowest common multiples of the scales for the coprime 

(26.25m) and geometric ratios 1.5 (6.75m) and 1.4 (85.75m) schemes (geometric ratio 1.65 

not shown as the LCM = 8984.25m). Magnified axes on the right. (A) 2D environment with 

no spatial uncertainty (σε = 0). (B-E) 1D environments: (B) σε = 0cm; (C) σε = 1cm; (D) σε = 

2.5cm; (E) σε = 5cm. N = 37500 for each data point. Error bars omitted for clarity. 
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distances over which the grid phases took similar values – quantified using a phase 

similarity score (Equation 5.2). 

To better assess this effect, I derived a measure to predict the effect of phase simi-

larity and environment size on error rate (Equation 5.4) – for each environment size 

tested, I made predictions based on the cumulative effect of similarity score and 

environment size (Figure 5.2A-C and Methods). By design, the prediction value 

jumped substantially for distances across which the grid phases take similar values, 

which as noted, coincided with jumps in the measured decoding error. Indeed, com-

paring across a wide range of conditions, there was a clearly visible correlation be-

tween the predicted effect of phase similarity and the actual decoding error (Figure 

5.2D-E). This correlation was significant, independently of the effects of uncertainty 

level, grid code scheme, and environment size [ANOVA Type III Sum of Squares, 

F(1,851) = 926.697; p = 2.81×10-138] (see Methods), corroborating the hypothesis that 

“near-miss” grid module phase similarities contribute to deteriorating grid coding 

performance. 

5.3.3. Performance across fine variations in grid scheme geometric ratio 

Armed with this understanding, I next conducted a fine-grained examination of the 

performance of different geometric grid schemes with ratios from 1.3 to 1.8. 

I first examined the performance of different grid scheme ratios in small environ-

ments – from slightly smaller to slightly larger than the largest scales of these grid 

schemes (Figure 5.3A-C; Figure 5.4 plots the same results as Figure 5.3, but with 

the x-axes indicating the largest scale present in each scheme rather than the ratio 

between scales, as this seems to be an important factor).  

In the absence of spatial uncertainty, all schemes performed similarly in small envi-

ronments which were similar in size to the largest grid scales - exhibiting a trend in 
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favour of smaller ratios (Figure 5.3A). This is consistent with the work described in 

Chapter 3 showing that in situations where the main source of decoding error is 

small precision errors, schemes with lower ratios and hence smaller average grid 

scales allow for greater resolution to minimise these errors. When uncertainty is 

introduced, however, performance deteriorates for all schemes but most dramati-

cally for those with small ratios (Figure 5.3B-C). A large ratio, and therefore a largest 

grid scale that comfortably exceeds the environment size, minimises the occurrence 

of ambiguity errors. 

Larger ambiguity errors were not always absent under a zero-uncertainty regime. In 

larger environments, while performance for most schemes follows a similar smooth 

trend of low error, this is punctuated by large decoding errors – for example, ratio 

1.3 in the 10m environment and ratio 1.5 in 5 and 10m environments, as well as 

others. (Figure 5.3D). These schemes yield points with similar grid phases within 

environments of those sizes – or in the case of a ratio 1.5 scheme, precisely the same 

grid phases at the lowest common multiple of the set of grid scales: 6.75m (Figure 

5.5). These similarities are close enough that even without spatial uncertainty, the 

intrinsic Poisson noise in the modelled neurons is sufficient to prevent successful 

disambiguation. This conclusion is supported by the performance of schemes with 

the same ratios but 10 modules – the large decoding errors are eliminated since the 

larger set of scales does not come close to reaching similar phases over these dis-

tances. 

Having established these behaviours of the system, I examined some more realistic 

scenarios - performance under greater uncertainty and in larger environments. 

Consistent with the prediction put forward by Vágó & Ujfalussy (2018), in a grid sys-

tem with a small number of modules, decoding error in environments significantly 
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Figure 5.5 - Very similar module phases across short distances given by pathological 

geometric ratios 

The poor performance of 4-module schemes (left column) with these ratios in 10m and, 

for some, 5m environments (Figure 5.3D) can be explained by how, within these dis-

tances, they yield points with very similar grid phases. At these distances, the similarity 

score comes extremely close to zero (indicated by red circles; in the case of ratio 1.5, it 

reaches zero, since the lowest common multiple of the scales is 6.75m). Systems with ten 

modules (right column) do not come close the same phase values in this distance range, 

and correspondingly, decoding error is low (Figure 3E). Geometric ratios: (A) 1.3; (B) 1.41; 

(C) 1.415; (D) 1.5; (E) 1.63. 



101 

 

larger than the largest grid scale varied substantially with the geometric ratio be-

tween the modules – but this variation was non-monotonic, irregular, and sharply 

discontinuous over even small differences in ratio (Figure 5.3F). Ratios that per-

formed better than others in one size of environment were also seen to perform 

worse in others – for instance, a scheme with a ratio of 1.5 suffered less decoding 

error than other similar ratios in a 5m linear environment, but much worse than its 

neighbours in a 10m environment, which exceeds the LCM of the system. As the 

number of modules increased to 6, 8 and 10 (Figure 5.3G-I; this increases the size 

of the largest grid scale, the LCM and, all else being equal, the expected capacity) 

performance improved and smoothed out, as predicted by (Vágó & Ujfalussy, 2018) 

– a smoothly monotonic trend emerges, with smaller ratios giving slightly better per-

formance. However, if the degree of spatial uncertainty is increased and larger en-

vironments are examined, non-monotonic, irregular, sharply discontinuous varia-

tion re-emerges (Figure 5.3J). 

5.4. Discussion 

I simulated self-localisation by modular grid cell systems with different sequences 

of grid scales, in different sizes of environment, in order to investigate their spatial 

capacity. I showed an association between the points at which increasing environ-

ment sizes lead to sharply increasing decoding error in a particular grid cell system, 

and the distances over which the phases of its modules can take very similar values 

at more than one location within the environment. Equipped with this understand-

ing, I explored the self-localisation performance of different grid code schemes un-

der different amounts of spatial uncertainty. I found that when spatial uncertainty 

is moderate and the environment is large compared to the largest grid scale, self-

localisation performance varies sharply and irregularly with grid scheme ratio, mak-

ing optimisation of grid scheme ratio biologically implausible. 
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Thus, using a biologically plausible simulation I have tested and extended previous 

theoretical investigations. These results corroborate Vágó & Ujfalussy’s predictions 

for systems with a very small number of grid modules, but contradict their predic-

tion that this irregularity would smooth out with a larger number of modules (Vágó 

& Ujfalussy, 2018). 

5.4.1. Capacity as a question of incrementally degrading performance and toler-

able levels of error  

Fiete et al. showed theoretically that the capacity limit of a grid code would be the 

distance separating locations where the module phases were sufficiently similar as 

to produce indistinguishable signals (Fiete et al., 2008). This would in turn depend 

on the precision with which phase can be signalled and read out. These simulations 

in a biologically inspired model broadly corroborate this, while emphasising that 

when both the grid cells’ intrinsic noise, and a degree of independent spatial uncer-

tainty across modules, are brought into play, the system’s performance degrades 

incrementally with increasing environment size, as more sets of locations with simi-

lar grid phase signals are encompassed. 

“Capacity” therefore depends not only on the precision of the module phase signal 

and read-out, but what degree of error is tolerable. For instance, consider the per-

formance of the grid systems with 6 modules, in a 5m environment, with moderate 

spatial uncertainty (σε = 2.5cm). Across the set of ratios tested, decoding error was 

greater than in many other cases tested, with long-range ambiguity errors definitely 

occurring. Nevertheless, mean square error ranged no higher than 147.3 cm2 

(Figure 5.3G) – equivalent to root mean square 12.1 cm, similar to the length of a 

rat’s body without the tail and probably a tolerable degree of error. 

This may explain some of the discrepancies between my results and the predictions 

of other investigators. Previous theoretical approaches have sought the limit of a 
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spatial coding system’s capacity as the largest range over which it can encode loca-

tion without any ambiguity errors. That is, they take an “all or nothing” approach to 

performance. However, realistic biological systems may be expected to tolerate er-

rors with at least a limited frequency and magnitude, especially if in a trade-off for 

optimising other features. This is particularly plausible given the potential of the grid 

code to facilitate mechanisms in downstream read-out systems for identifying and 

correcting ambiguity errors (as discussed in the Introduction and below) (Fiete et al., 

2008; Sreenivasan & Fiete, 2011). Thus, rather than simply seeking the point at which 

ambiguity errors first appear, this approach assesses varying degrees of accuracy 

and precision in fallible coding systems. 

A limitation of this approach is that I am not yet in a position to propose realistic loss 

functions that would indicate the actual behavioural or fitness cost of errors with 

different frequencies and magnitudes and indicate a realistic limit for tolerable error 

– future investigations could perhaps examine this question. Behavioural studies, 

perhaps involving interventions using tools such as optogenetics to introduce erro-

neous signals to the grid cell system or its inputs, could shed more light. 

5.4.2. Optimisation of grid ratio is not plausible 

I aimed to examine whether a particular grid scale scheme would allow for optimal 

performance in large environments. I found different trends under different condi-

tions. With zero uncertainty, decoding error is very low in environments that are 

small relative to the largest grid scales, across the full set of geometric ratios tested. 

There is a smooth, slight trend for smaller errors when the geometric ratios between 

the grid scales are smaller. As shown in Chapter 3, when ambiguity errors are pre-

vented, a set of grid modules with smaller scales improves resolution – but the var-

iation is limited. In environments larger than the biggest grid scale, but still smaller 
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than the lowest common multiple of the scales, this low-error performance contin-

ues smoothly, interrupted only by what have been described as “pathological” ratios 

(Vágó & Ujfalussy, 2018). These are ratios that yield a set of grid scales with either a 

very small lowest common multiple (e.g. 1.5, or as shown in Chapter 3, √2), or points 

with very similar grid phase signals within the environment – sufficiently close that 

the intrinsic noise of the grid cells is enough to cause ambiguity errors. 

When a degree of uncertainty is introduced, error remains low in environments that 

are smaller than the largest grid scale or of a similar order of magnitude. In larger 

environments, however, decoding error is increased and much more variable as a 

function of the geometric ratio determining grid scales. As predicted by Vágó & 

Ujfalussy (2018), with a small number of modules the variation is sharply irregular 

and non-monotonic, with very small changes in ratio yielding dramatic changes in 

performance. When the number of modules is increased, performance smooths 

out, also as predicted by Vágó & Ujfalussy. However, this appears to be merely a 

result of the extra grid scales exceeding the environment size: when the environ-

ment is increased in size, the irregularity emerges again. 

Experimental observation has shown substantial variation in the ratio between 

module scales, across the range 1.1 to 1.8 (see Figure 5D in (Stensola et al., 2012)), 

with different investigations identifying averages of 1.42 (Stensola et al., 2012) and 

1.7 (Barry et al., 2007), the former value being based on more data. It is unclear how 

much of this variation is due to limitations in measurements and how much due to 

actual biological variation, and a geometric sequence may well remain a good ap-

proximation for the relationship between real grid scales. However, our simulations 

show that in a large-environment moderate-uncertainty regime, mean square de-

coding error can change by nearly two orders of magnitude with an absolute change 

of just 0.015 in geometric ratio (Figure 5.3G). It does not seem biologically plausible 
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that the parameters of the grid coding scheme could be set and maintained with 

this level of precision in reality. Additionally, a ratio that gives a peak in performance 

under one condition can give a trough in another. For instance, with 4 modules and 

uncertainty σε =2.5cm, a ratio of 1.5 performs better than similar ratios in a 5m 1D 

environment, but little better than chance in a 10m environment. 

This suggests that if the grid code is required to function under such regimes, it is 

unlikely that grid ratios are adaptively optimised in reality, despite the fact that it is 

possible to identify optimal ratios in theoretical work. Pressure for optimisation may 

therefore be more likely to act on other factors, such as the number of modules, the 

number of cells per module, or the distribution of cells between modules. 

If optima cannot be maintained, does this also suggest that the “pathological” ratios 

noted above, such as 1.5 or √2, which yield extremely poor spatial capacity, cannot 

be reliably avoided? If not, the possibility of combinatorial capacity for the grid code 

would, in practice, be ruled out. However, such a collapse in capacity requires that 

the relative scales of the whole series of grid modules present in an animal precisely 

land on the same pathological ratio. It seems likely that the same variability that 

precludes optimisation would also make such pathologically poor performance im-

probable. 

Speculatively, it is also conceivable that as the grid scale scheme develops in an an-

imal, if an arrangement yielding particularly poor performance did arise, a learning 

system could prompt a small change in any of the modules, which would be enough 

to shift the scheme out of the narrow trough in performance. It is possible to imag-

ine a mechanism capable of identifying pathological ratios for correction at the point 

in development when the grid-patterns are being established and prior to any ex-

tensive physical navigation testing the capacity limits of the system. It would merely 
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be necessary for the brain to probe its newly-developing grid cell system with a sim-

ulated movement signal that engages it in virtual navigation along a straight-line 

trajectory – much like the forward-play or replay discussed in the Introduction and 

Chapter 2 – and see how far it is possible to get before the system’s output is indis-

tinguishable from that at the beginning of the process. Theoretically this would be 

even detectable in infant animals since it would result in periodic repetitive firing of 

entorhinal cells in development, which could later be identified as grid cells (and 

retrospectively decoded) by their firing patterns once the animal is old enough to 

roam beyond the nest.  

5.4.3. Capacity and behavioural range 

As discussed in the Introduction, the field has seen debate about whether the grid 

code is likely in fact to represent spatial ranges larger than the largest grid scale 

present in the animal. Contributing to this disagreement, estimates of the natural 

range of rats have varied. At the lower end is the suggestion that a rat’s home range 

is as small as ~(10 m) 2 (Davis et al., 1948). The existence of grid cells with 10m peri-

ods is quite plausible: the smallest scales detected are less than 50cm, the largest 

scale detected thus far is 5m (Brun et al., 2008), and the total number of modules 

has been estimated at less than ten (Stensola et al., 2012). So this might render com-

binatorial capacity unnecessary for the grid code. However, this work was based in 

urban areas, and more recent work that has studied rat behaviour in more open, 

natural environments suggests much larger ranges of ~(0.1 – 1km) 2 (Recht, 1988; 

Russell et al., 2005). Grid scales reaching such sizes are possible but seem less plau-

sible. 

If the rat’s natural range substantially exceeds the scale of its largest grid-pattern, 

then either the code would need to attain combinatorial capacity, or it must not be 
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able to continuously represent the environment over its full roaming range. For in-

stance, it might use a splintered representation that does not continuously cover 

the range as a whole but remaps between different sub-regions of the range (Fyhn 

et al., 2007). If, as has been speculated, the grid code is necessary for planning nav-

igation along novel vectors (Kubie et al., 2009; Erdem & Hasselmo, 2012; Kubie & 

Fenton, 2012; Bush et al., 2015) the animal would have to rely on other strategies to 

navigate between these sub-regions, such as learning to associate specific sub-re-

gions with specific landmarks or features visible at a distance  and simply homing in 

on them, or only using familiar paths between sub-regions. 

It has been proposed that a grid code could maintain combinatorial capacity with 

error-correcting mechanisms made possible by the properties of the code. The na-

ture of ambiguity errors in this system is that small errors in the signal or read-out 

of a module’s phase can result in decoding to a distant location. It would be possible 

to easily identify such erroneous location estimates by comparing them to previous 

estimates of location immediately beforehand (introducing a Bayesian prior to the 

process of self-localisation; this could be facilitated by combining the grid system 

with a slow-moving representation of location, such as in the place cell system) or if 

the estimated location falls outside the known range of the environment (Fiete et 

al., 2008; Sreenivasan & Fiete, 2011). 

In the present model, location is encoded and decoded moment-by-moment, with-

out comparison to any previously-occupied locations, so if this type of error-correc-

tion does indeed occur, this work provides only a floor for the performance of the 

grid code and error could in fact be much smaller. This would suggest that the sys-

tem’s spatial capacity for self-localisation is indeed combinatorially large. Note, how-

ever, that these error correction mechanisms have been hypothesised in the context 
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of continuous self-localisation. If the grid code is also used for non-local representa-

tion and planning novel trajectories, the algorithm for this is not yet known, and it 

would need to be established whether such error correction mechanisms could ap-

ply to it too – otherwise the grid code might be able to produce a continuous repre-

sentation of self-location across a large range, yet be unable to plan navigation 

across comparable distances. 

Ultimately, resolving these questions will require experimentation in much larger 

environments than spatial cells have yet been recorded in, both to examine whether 

continuous grid-patterns extend across the full range, and whether animals are ca-

pable of planning novel trajectories for vector-based navigation across those same 

distances. 
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6. GRID-PATTERNS ORIENT ADAPTIVELY IN 

POLARISED ENVIRONMENTS 

6.1. Background 

Up to this point, my investigations have modelled spatial uncertainty as isotropic – 

the same in all directions, and the same in all parts of the environment. However, 

this is not the case in most real situations, in which both the environmental and 

idiothetic spatial information available to an animal varies by axis and location. For 

instance, when standing a short distance from a long, relatively flat and smooth wall, 

we can locate ourselves with much more confidence and precision in the axis per-

pendicular to the wall (e.g. “I am one arm’s length away from the wall” or “I have 

travelled only one footstep since I was one arm’s length away from the wall”) than 

parallel to it. Consistent with this, error in the grid cell representation has been ob-

served to accumulate relative to the time and distance travelled since the last visit 

to an environmental boundary, and specifically a visit to a boundary reduces error 

more in the axis perpendicular to the boundary (Hardcastle et al., 2015). 

In this section, I will describe an experiment in which I adapted the previously-de-

scribed grid cell model to test whether, when spatial uncertainty is instead modelled 

as anisotropic – greater in one axis and less in another – the particular orientation 

of the grid cell pattern relative to those axes affects the fidelity of grid code self-

location representations. I will also compare the results of this in silico experiment 

with in vivo observations on the same question made by collaborators. 

The work reported in this chapter was published as part of this article: Navarro 

Schroeder, T. et al. (2017) ‘Optimal decision making using grid cells under spatial 

uncertainty’, bioRxiv. doi: 10.1101/166306. 
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6.2. Application of the model  

6.2.1. Grid cell system and environment  

As in Chapter 4, a geometric sequence of grid scales with ratio 1.4 was 

used, beginning with 25cm as the smallest scale. Each module contained 195 grid 

cells offset from one another. In order to reduce the computational burden, the 

system was limited to four modules. In each experiment, the grid-patterns shared 

the same orientation across all the modules.  

A B 

Figure 6.1 – Modelling anisotropic uncertainty 

(A) An example of modelled anisotropic uncertainty. The animal’s true location is at the 

origin. Red shading indicates a two-dimensional probability density distribution, pro-

duced by combining two one-dimensional Gaussian distributions with different standard 

deviations in orthogonal axes, from which noisy position estimates (black crosses) are 

drawn independently and input to each of the grid cell system’s four modules. (B) The 

orientation of the axis of greater uncertainty was varied relative to the grid axes. In this 

example, the grid cell firing pattern is shown with a rate map (blue indicates low firing 

rate, yellow high); pink shading around the animal indicates the probability density distri-

bution from which noisy position estimates are drawn; the double-ended white arrow 

highlights the axis of greatest spatial uncertainty; and the dashed white lines highlight 

the axes of the grid-pattern are highlighted with dashed orange lines. The orientation of 

the grid-pattern relative to the axis of greatest uncertainty – i.e. the angle between this 

axis and the grid-pattern axis – can be seen. 
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The simulated environment was circular, with radius 50cm. The “true” position in 

every iteration was the centre of the environment. Gaussian noise was 

added independently to the position signal fed to each module as previously. To 

render this modelled uncertainty anisotropic, the standard deviation of the noise 

was varied independently in the environment’s Cartesian x and y axes, as illustrated 

in Figure 6.1A. 

6.2.2. Assessing grid system performance  

For each combination of levels of uncertainty in x and in y, I assessed the perfor-

mance of grid systems whose patterns were placed at orientations to these x-y axes 

from 0° to 30°, at intervals of 2.5° (Figure 6.1B; due to the six-fold rotational sym-

metry of the grid-pattern, 30° is the largest possible angle between any line and the 

closest of the pattern’s axes). For each case, 75,000 iterations of this procedure were 

performed, split into 5 blocks of 15,000 each. In each of these 5 blocks, the square 

grid across which the environment was sampled to produce tuning curves was set 

at a different orientation to the environment’s Cartesian axes, in order to control for 

any effect of uneven sampling (the orientations were 0° and 4 orientations randomly 

selected and then used across all conditions). The results of equivalent pairs of un-

certainty levels (e.g. standard deviation respectively in x & y of 0 & 5 cm, and 5 & 0 

cm) were then combined to total 2 × 5 × 15,000 = 150,000 iterations. MSE is reported 

in this and subsequent investigations as the mean square across the full 

complement of iterations ± 95% confidence interval (note this is the same practice 

as used in Chapter 5, in which the change from the experiments in Chapters 3 and 

4 was explained). 
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6.3. Results 

Consistent with earlier experiments and as expected, decoding errors were very 

small in the absence of spatial uncertainty, while increasing levels of uncertainty re-

sulted in significantly degraded decoding performance (Figure 6.2B). 

Alongside that, this experiment demonstrated a dramatic effect on performance of 

the orientation of the grid-pattern relative to the distribution of uncertainty. Mean 

square decoding error was minimised by orienting the grid-pattern so that its axes 

are maximally misaligned from the axis of greatest spatial uncertainty. Due to the 

six-fold rotational symmetry of the pattern, this means the pattern axes nearest the 

axis of greatest uncertainty will be 30° away, and the other pattern axis will be 

aligned with the axis of least uncertainty (Figure 6.2).  

With the most anisotropic conditions tested (σε set to 0cm and 5cm in the two axes), 

this 30° orientation resulted in a 40% decrease in mean square decoding error rela-

tive to the opposite case of 0° (Figure 6.2A). As anisotropy becomes less extreme, 

the effect can still be seen but becomes less pronounced, and disappears as the 

uncertainty in the two axes approaches equality (Figure 6.2B). 

Control experiments confirmed that the effect remained consistent as other param-

eters of the grid cell system – grid scale, grid cell firing rate, number of grid cell mod-

ules – varied (Figure 6.3).  

6.4. Comparative human fMRI experiments  

In order to test the prediction from this modelling, I and my lab colleagues set up a 

collaboration with Christian Doeller and Tobias Navarro Schröder (based at the 

Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Neth-

erlands) who conducted and analysed human fMRI experiments. These experiments   
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Figure 6.2 – Error in self-localisation under anisotropic uncertainty is minimised by 

orienting the grid-pattern axes away from the axis of greatest uncertainty 

The performance of grid cell systems in environments where spatial uncertainty is aniso-

tropic depends on the orientation of the grid cell pattern to the direction of that anisot-

ropy. Uncertainty s.d. (σε) indicates the standard deviation of spatial uncertainty in two 

orthogonal axes, and grid orientation indicates the angle between the minimal angular 

offset of a grid axis from the axis of greater uncertainty. (A) With the most extreme ani-

sotropy tested, a 30° orientation reduced MSE 40% compared to a 0° orientation. (B) As 

anisotropy becomes less extreme, the effect becomes less pronounced. Error bars indi-

cate 95% confidence interval (n=150,000). 

B 

A 
Uncertainty s.d., σε, in each axis 

5 & 0 cm 
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A B 

C D 

Figure 6.3 – The dependency of self-localisation fidelity on grid orientation is stable 

within reasonable sets of grid cell system parameters 

Performance is consistently best when the grid axes are aligned away from the axis of 

least spatial uncertainty, across variations in the parameters of the grid cell system. Error 

bars indicate 95% confidence interval, n = 150,000 unless otherwise specified. (A) Grid 

period scaling factor reduced to 1.2. (B) Grid period scaling factor increased to 1.65. (C) 

Grid cell maximum firing rate reduced to 2Hz. (In order to compensate for increased ef-

fects of noise in this system, the number of cells per module was quadrupled. Due to the 

high computational intensity of this simulation n = 75,000.) (D) Number of modules in-

creased to 8, with scales continuing to increase geometrically. 
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are reported more completely in our joint publication (Navarro Schroeder et al., 

2017): since these experiments were not carried out by me, here I will simply sum-

marise the approach and main findings in order to inform comparison with my re-

sults. 

6.4.1. Background 

The particular collective properties of grid cells’ firing patterns permit the unusual 

opportunity to infer details of cell firing patterns from the bulk activity of a large 

population of cells, measured indirectly via an fMRI BOLD signal, as shown by the 

original experiment that provided evidence for grid cells in the human brain (Doeller 

et al., 2010).  

Since the offsets of the grid cells in a module appear to tile space evenly, the bulk 

activity of a population of pure grid cells would not be expected to vary in a macro-

scopically detectable way. However, a macroscopic signal can be predicted based on 

two facts: first, many grid cells are conjunctive – that is, their activity at the nodes of 

a grid-pattern is modulated by head direction – and second, the preferred directions 

of these conjunctive cells tend to align with the axes of the grid-pattern. Thus, a pop-

ulation of conjunctive grid cells whose grid-patterns share the same orientation 

would be expected to show greater overall activity when running direction is parallel 

to grid axes, than when running direction is misaligned from the grid axes. And in-

deed, these experimenters were able to show that the BOLD signal in the entorhinal 

cortex of virtually navigating humans varied by running direction with six-fold rota-

tional symmetry (this effect is commonly referred to as "hexadirectional modula-

tion" of the BOLD signal). Additionally, they showed that running speed modulated 

both the firing of rat conjunctive grid cells and this fMRI signal in humans. 
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6.4.2. Methods 

Our collaborators applied this fMRI approach to determine the orientation of grid 

cell patterns in human subjects without the need for direct electrophysiological re-

cordings of individual cells. Human subjects performed a navigation task in virtual 

environments where the spatial information available for self-localisation in one axis 

was greater than in the other, orthogonal axis, while brain activity was monitored 

using fMRI. 

6.4.2.1. Environments 

Experiments were conducted with two virtual arenas. Both were circular and 

featured extra-maze cues that polarised the arena along one axis crossing the 

centre. In the first environment, the reference axis was implicit, created by 

configural cues – 12 triangles surrounded the arena, upright on one half and 

inverted on the other, so that the points at which the configuration of the triangles 

switched formed the reference axis. In the second, there were only two extra-maze 

cues on opposite sides of the arena, creating a more explicit, non-configural 

reference axis between them (Figure 6.4). 

Since the cues were out of reach of the subject, the main source of information for 

self-localisation during navigation was parallax – the change in the direction of a 

stationary cue from the point of view of a moving observer. In environments like 

these, where the main cues are beyond the arena and out of reach, the angular 

movement of cues from the point of view of the subject is greater when moving 

perpendicular to the reference axis. Thus these environments had an axis of greater 

spatial information and an axis of greater spatial uncertainty, with which the 

predictions of my model could be tested. 
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6.4.2.2. Task 

In both arenas, subjects performed an object-location memory task at the start of 

which they were shown, and navigated to, locations associated with a number of 

everyday objects (6 in the first environment, 4 in the second). They then proceeded 

with trials each with a “replace” phase and a “feedback” phase. In the “replace” phase 

they were cued with an image of one of the objects, randomly selected, and had to 

navigate to the associated location before pressing a button when they believed 

they were in the right place. In the “feedback” phase the same object then appeared 

in the correct location and they would navigate to it and collect it. 

Figure 6.4 – The virtual arenas used in the fMRI experiments 

The environments used in the first (left) and second (right) experiments, from a first-

person view (top) and from above (bottom). The reference axes are indicated with red 

dashed lines on the lower images, and the perpendicular axes indicated in blue. 
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6.4.3. Results 

In each experiment, hexadirectional modulation of the fMRI signal was detected in 

the right entorhinal cortex, indicating the presence of grid-cell-like activity. The in-

ferred orientations of the subjects’ grid-patterns were clustered: misaligned from 

the reference axis – the axis of greater spatial uncertainty – and aligned with the 

perpendicular axis, as predicted by my modelling results. 

More specifically, in both experiments the inferred grid-pattern orientations clus-

tered across subjects close to 30 from the reference axis. The effect was significant 

in both experiment 1 (N=26, circular V test for deviation from homogeneity perpen-

dicular to the polarisation axis: V=6.68, p=0.032) and experiment 2 (N=24, circular V 

test: V = 5.95, p=0.043) (Figure 6.5). 

6.4.4. Do hexadirectional BOLD signals genuinely indicate grid-pattern axes? 

Preliminary experimental findings provide evidence supporting the inference of 

grid-pattern axes from the axes of BOLD modulation (Tobias Navarro Schröder, per-

sonal communication, March 2018). Magnetoencephalographic (MEG) recordings 

were made in human participants performing the same task in the arena from ex-

periment 1. This revealed a hexadirectional modulation in a high-frequency band 

(60Hz – 120Hz) similar to the modulation of the BOLD signal, clustered on the same 

axes. Next, grid cell patterns were recorded by direct entorhinal electrophysiological 

recording in rats simultaneously with local field potential (LFP) recording. There was 

a hexadirectional modulation of LFP in the same frequency band as the MEG signal 

in humans, and the axes of this modulation matched the axes of the grid-patterns 

of the entorhinal cells. Thus, measuring brain oscillation modulation has allowed us 

to match grid-pattern axes to the axes of the BOLD signal modulation. 
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Figure 6.5 – Human grid-patterns in a polarised environment align away from the axis 

of greater spatial uncertainty 

Inferred orientation of subjects’ grid-patterns from experiments 1 (top) and 2 (bottom). 

On the left, grid-pattern orientations in 60-space are indicated by light blue dots and 

clustering is demonstrated by the dark blue histogram. The mean orientations are 

indicated by the light blue lines (34 and 32 respectively). On the right, this is shown in 

360-space, illustrating that the grid-pattern tends to align orthogonal to the axis of 

greater spatial uncertainty. 

Experiment 2 

Experiment 1 
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6.5. Discussion 

Using a biologically-inspired computational model, I have demonstrated that when 

spatial uncertainty is greater in one of a 2D environment’s Cartesian axes than the 

other, errors in a grid cell system’s self-location representation can be substantially 

mitigated by orienting the grid-pattern axes so that they are maximally misaligned 

(i.e. two of the three axes at 30, one at 90) from the environmental axis of greatest 

spatial uncertainty. My collaborators have tested this prediction and shown that in 

a polarised virtual environment where the availability of spatial information is ani-

sotropic, the orientations of human subjects’ grid-patterns, inferred via fMRI signal, 

indeed tend to misalign with the axis of greater spatial uncertainty. 

6.5.1. Adoption of an adaptive orientation by the grid cell pattern in polarised 

environments 

When an animal is introduced to a new environment, the firing patterns of its grid 

fields adopt a new orientation and phase relative to the environment – they do this 

coherently as an ensemble (Fyhn et al., 2007). This investigation shows that when 

this happens in an environment with polarised, anisotropic spatial information, the 

grid cell system must be able to orient adaptively relative to this polarisation – i.e. in 

a way that maximises the fidelity with which it is able to represent self-location. This 

raises some questions. 

First, when does this happen? When an animal enters a new environment, grid cell 

patterns are established immediately (Hafting et al., 2005). At what point is the adap-

tive orientation set? The human study reported here did not assess for changes in 

orientation within a session, so this is a matter for future investigation. It might be 

set with the initial establishment of the grid-pattern. This would imply that the ani-

mal enters an environment with pre-existing knowledge about how environmental 
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features determine an optimal grid-pattern orientation and can evaluate the envi-

ronment against this knowledge very rapidly. We might ask whether this knowledge 

is learned through an animal’s life by experience of different environments, or if it is 

part of an innate, Kantian mental framework (Kant, 1787; Palmer & Lynch, 2010) 

embedded into the system by developmental processes independent of direct ex-

perience. And we might ask by what mechanisms the brain so rapidly assesses the 

polarisation of the environment in light of this knowledge, selects and imposes an 

orientation on the grid-patterns. 

Alternatively, it might be the case that the very initial orientation of the grid-pattern 

upon entering a novel environment is more arbitrary, and only subsequently shifts 

to an adaptive configuration – much as other aspects of grid-pattern configuration 

shift with experience of an environment, including the contraction of initially-ex-

panded grids (Barry, Ginzberg, et al., 2012) and homogenisation of initially frag-

mented grid-patterns in connected compartments (Carpenter et al., 2015). In this 

case we might ask whether the adaptive orientation is selected via some sort of ex-

perience-based, trial-and-error process, by assessment of the features of the envi-

ronment, or some combination of the two – and then how this process is translated 

into shifting the orientation of the grid-pattern accordingly. In addition, if the grid-

pattern orientation does change with experience, does this produce mismatches 

with the other components of the spatial representation and with learned associa-

tions between particular locations and behaviourally relevant features of the envi-

ronment, how is this resolved, and until any process of resolution is complete, does 

it manifest in error-prone behaviour? 

Second, what is the relation between the orientation of grid-patterns and the an-

choring of head direction cells to the environment? At least within each brain area 

where they have been studied, head direction cells act as an ensemble – that is, 
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when an animal is moved between environments, the same relative angles between 

their preferred directions are maintained even as the orientation of the whole sys-

tem anchors afresh to cues in the new environment, prompting the theory that en-

sembles of head direction cells are connected together in continuous ring attractor 

networks (Skaggs et al., 1994). It is as-yet unproven whether the head direction cells 

and the grid-pattern orientations across brain areas are also anchored together as 

an ensemble in this way, though in the entorhinal cortex deep layers, conjunctive 

cells spanning a continuum between “pure” grid-pattern tuning and “pure” head di-

rection tuning do appear to maintain the same relative orientations as an ensemble 

(Sargolini et al., 2006). Thus the role of head direction cells in the adoption of adap-

tive grid-pattern orientation remains an open question. Simultaneous electrophysi-

ological recording of grid and head direction cells while animals are introduced to 

novel, polarised environments could shed light on this issue. 

6.5.2. Do all grid-patterns in an animal’s entorhinal cortex share the same orien-

tation? 

In my in silico experiments, grid-pattern orientation was uniform both within and 

between modules. Is this assumption realistic? 

In humans at least, the fact that the predicted hexadirectional modulation of the 

entorhinal fMRI signal has been detectable in this and multiple previous studies 

(Doeller et al., 2010; Kunz et al., 2015; Bellmund et al., 2016; Horner et al., 2016) 

suggests either that grid orientation is uniform, or least that one orientation pre-

dominates. 

By comparison, a survey capturing the grid-patterns of large numbers of cells within 

individual animals revealed that variation in grid-pattern orientation between mod-

ules exceeded the variation within modules (Stensola et al., 2012). Another study 

showed that while pairs of simultaneously recorded modules tended to have similar 
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orientations (within 5°), a subset showed greater differences. These relative orien-

tations remained stable as animals were transferred between environments (Krupic 

et al., 2015). 

Three explanations for this apparent discrepancy are possible. 

First, it is possible that there is no real discrepancy: humans’ grid cell modules show 

a similar clustered distribution of orientations as those of rats, and the hexadirec-

tional BOLD signal merely reflects a dominant, but not uniform, orientation. Non-

invasive imaging techniques, even with finer spatial resolution, might be insufficient 

to shed light on this question, if human grid cell modules are as interspersed and 

overlapping as those of rats. Direct electrophysiological recordings from human grid 

cells across multiple modules could provide answers, but would be difficult to obtain 

in the numbers needed. 

Second, humans and rats may simply differ, with human grid modules exhibiting 

more uniformity in orientation than those of rats. 

Third, it is conceivable that grid modules’ relative orientations can be varied adap-

tively, permitting them to align in certain circumstances (for instance, where this 

would maximise coding fidelity) – perhaps variation between grid modules is advan-

tageous in some other circumstances. 

To test the third hypothesis, further investigation of rats’ grid module orientations 

in strongly polarised environments is warranted to explore whether inter-module 

variation in orientation disappears in such environments. There is preliminary evi-

dence of this already. Comparison of the orientations of 62 modules across 41 rats 

reveals greater clustering in square environments than unpolarised circular envi-

ronments (Krupic et al., 2015). Stensola et al. (2015) also observed strong clustering 
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of grid cell module orientations in a square environment. However, simultaneous 

recordings of multiple modules within the same animal, compared across different 

types of environment, would provide more conclusive evidence. Further investiga-

tion could also compare the results of such experiments to the results of modelling 

grid cell systems with uniform versus varying grid orientations in different environ-

ments, to assess how any observed variability or clustering affects fidelity. 

Speculatively, the observable strength of the hexadirectional modulation of the 

BOLD signal in human entorhinal cortex could be determined by the degree of uni-

formity of the modules’ orientations. If humans virtually navigating an unpolarised 

environment show a weaker modulation than in a polarised environment, that also 

would bolster this hypothesis. 

If the third hypothesis is indeed correct, a further possibility arises. If adaptively ori-

enting grid-patterns requires experience of many different environments in order 

to learn the relationships between environmental features and ideal orientations, it 

is possible that the adult human participants in the fMRI experiments have acquired 

that experience, while laboratory animals with comparatively limited experience of 

a small number of relatively small, simple environments are less likely to have done 

so. This is reflective of a limitation common to almost all studies of rodent spatially-

tuned cells – the subjects are reared in environments that are unenriched compared 

to life in the wild, and experimental arenas are smaller and cue-poor compared to 

their natural habitats. Many questions in the field will not be conclusively resolved 

until these experimental limitations are overcome. 

6.5.3. Grid-pattern orientation and boundaries 

As discussed in the Introduction, in a familiar square environment the axis of the 

grid-pattern closest to parallel with one of the boundaries tends to be at an angle of 
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around 7.5°, attributed to a shear transformation that also makes the grid-pattern 

more elliptical (Krupic et al., 2015; Stensola et al., 2015; Julian et al., 2018), and (as 

would be expected) travelling close to a wall reduces grid cell self-location error 

more in the axis perpendicular to the wall (Hardcastle et al., 2015). Whether this 

orientation and distortion of the grid-pattern is adaptive given the anisotropy in spa-

tial uncertainty near to boundaries is an obvious question that could extend the in-

vestigation reported here. 

However, without further empirical information, experiments to explore this ques-

tion would require making modelling assumptions that would be substantial 

enough to make the model very arbitrary. In particular, simulating spatial uncer-

tainty becomes problematic. 

First, a function would have to be specified to set how spatial uncertainty would vary 

with proximity to a boundary. This would entail an assumption about whether dis-

tance to boundary is related linearly to spatial uncertainty or by some more complex 

function. But the question is more complex still. So far in my investigations, even 

when the distribution from which erroneous inputs to the grid cell modules were 

drawn was anisotropic, the distribution in each axis was still described by a symmet-

rical Gaussian along any linear section. It would be reasonable, however, to assume 

that the effect of a boundary in reducing spatial uncertainty would not be symmet-

rical. Rather, when close to a boundary, the information available to an animal might 

curtail the probability distribution of possible locations more on the side of the ani-

mal facing toward the wall than the side facing away from it, with the function reach-

ing zero at or before the wall – after all, the animal must at least know it is not inside 

the wall! (Figure 6.6) If so, modelling would have to make assumptions not only 

about the degree of anisotropy in the spatial uncertainty, but the asymmetry too. 
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On the other hand, one could continue to model spatial uncertainty with symmetric 

Gaussian functions. However, in this case another question arises in the application 

of the model developed in this work: erroneous locations drawn to input to the grid 

cell modules from such distributions will, when close to a boundary, frequently fall 

outside the environment. In the experiments above, such inputs were either left as-

is (i.e. the signal fed to the grid cell module indicated a position beyond the bound-

ary) or corrected to the closest location at the edge of the environment before being 

fed to the grid cells. Another possible solution would be simply to draw replacement 

location from the distribution until one within the environment was obtained. 

Making decisions on these issues in the construction of the model would require  

more detailed knowledge concerning what information derived from sensory infor-

mation about boundaries reaches the grid cells and what processing (potentially in-

cluding error detection) it has undergone upstream of the grid cells. Without such 

information, assumptions would be very arbitrary. 

wall 

Figure 6.6 – Spatial uncertainty close to a boundary 

When close to a boundary, it seems reasonable to speculate that the reduction of spatial 

uncertainty by the information available would be not only anisotropic but asymmetrical. 

This cartoon shows an example of a probability distribution (red curve and shading) re-

flecting how a rat might assess its possible locations close to a wall – on the side closer to 

the wall, the function drops to zero at or before the boundary, since the animal can at 

least be confident about which side of the wall it is on. 
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In the previous investigations, these factors did not have a major impact, since only 

in a few cases was the simulated location close enough to a boundary them it to be 

relevant. However, here, it is precisely the locations close to the boundaries that are 

of interest. Therefore, experimental work to establish a stronger basis for modelling 

assumptions will be needed before this approach would likely be able to conclu-

sively resolve this question. 
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7. FURTHER DISCUSSION 

This project aimed to investigate how the grid cell system encodes representations 

of location, and in particular how the configuration of the grid cell ensemble’s firing 

patterns under different conditions contributes to the fidelity of the representation. 

In Chapter 3, I introduced a biologically-inspired modelling framework which could 

be used to test the representational fidelity of differently-configured grid cell 

systems and applied it to establish the separate contributions of errors of precision 

and of accuracy. In Chapter 4, I used the framework to test and confirm the 

prediction that the expansion of rodents’ grid-pattern scale observed in novel 

environments (Barry, Ginzberg, et al., 2012) would mitigate the reduction of fidelity 

caused by spatial uncertainty. In Chapter 5 I applied it to investigate the relationship 

between a grid cell system’s complement of grid-pattern scales and its capacity to 

represent location across large environments. In Chapter 6 I used it to predict how 

the orientation of grid-patterns could optimise encoding in an environment with 

anisotropic spatial uncertainty, and reported experiments by my collaborators 

indicating that humans virtually navigating such an environment exhibit the 

predicted optimal grid-pattern orientation. In addition, in Chapter 2 I reported a 

related project in which preliminary computational analyses indicate that when a rat 

pauses during locomotion, its grid cells may recapitulate activity they exhibited 

during movement – foreshadowing more recent work by other investigators 

illustrating replay in grid cell ensembles. 

In this section I will briefly review each of these parts of the investigation and the 

outstanding areas for further investigation and consideration that they raise, before 

discussing the project as a whole. 
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7.1. Grid cells’ activity at rest recapitulates the organisation of 

their activity during movement 

Extensive work since the 1990s has revealed place cells participating in non-local 

representations: replaying sequences reflecting previously-travelled paths, and 

playing sequences that appear to reflect not-yet travelled paths. Roles in learning, 

memory, planning and imagination have been proposed for these phenomena. By 

analysing simultaneous electrophysiological recordings of mEC grid cells in rats 

running back and forth on a linear track, I demonstrated in Chapter 2 that cells 

whose spatial firing fields observed during locomotion were close together, also 

fired in close proximity during clustered spiking events in periods of relative 

immobility on the same track. 

This was a preliminary indication that grid cells exhibit replay analogous to that 

found in place cells. I noted the difficulty of devising a test for the presence of the 

complex sequences in which multi-field cells would be expected to fire during an 

imagined trajectory without making a lot of assumptions about the features of the 

events being searched for, and argued that one thing needed would be 

simultaneous recordings of larger numbers of cells, ideally in concert with 

recordings of place cells and/or SWRs. 

Replay in grid cells was subsequently observed by other researchers  in experiments 

that my findings foreshadowed. Their findings indicate that grid cells in the mEC 

deep layers replay at rest in coordination with hippocampal place cells, while mEC 

superficial layer grid cells replay during task performance independently of place 

cells, suggesting a model in which hippocampal-initiated replay, transmitted to the 

mEC deep layers, is involved in memory consolidation, while independent replay in 

mEC superficial layers may be more relevant to planning navigation (Ólafsdóttir et 

al., 2016, 2017; O’Neill et al., 2017). This model, and the claim that deep layer grid 
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cell replay is coordinated with hippocampal place cell replay, are contested (Trimper 

et al., 2017), indicating a need for further work. 

Of note here is the progressive development of probes allowing simultaneous 

electrophysiological recording of increasing numbers of cells (Csicsvari et al., 2003; 

Jun et al., 2017; Chung et al., 2018), and the development of chronic fluorescence 

microscopy techniques that allow activity to be visualised across large cell 

ensembles in rodents navigating virtual reality environments (Dombeck et al., 2010; 

Heys et al., 2014) or even freely moving in real environments (Ghosh et al., 2011), 

with temporal resolution sufficient to detect hippocampal replay (Malvache et al., 

2016). These techniques promise to enable much fuller understanding of non-local 

spatial representations as phenomena involving coordinated activity across large 

ensembles of cells.  

Also relevant are the refinements and extensions of animal virtual reality 

techniques, leading to the recent demonstration of place, grid and head direction 

cell recordings in animals freely navigating a 2D virtual environment rather than the 

constrained linear tracks so far common in VR studies (Chen et al., 2018), along with 

the aforementioned techniques for cell-level functional imaging in freely-moving 

animals. The studies demonstrating grid cell replay so far have been limited to 

behaviour in very constrained environments – linear tracks and T-maze tasks. 

Investigators might seek evidence of grid cell participation in 2D navigational 

planning in VR or the real world, using tasks such as variants of the Morris water 

maze, the Morris group’s “event arena” for what-where paired associate learning 

(Day et al., 2003) or the O’Keefe group’s Honeycomb maze (Wood et al., 2018). 

Thus, the field is open for a wide range of possible experiments assessing the role 

of mEC grid cells in equivalents of all the different types and contexts of non-local 

place cell firing reviewed in the Introduction. 
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7.2. A modelling framework for assessing the adaptiveness of 

grid cell code configurations 

The various parameters defining the repeating triangular firing pattern of a grid cell, 

and the assembly of cells with different such patterns in modules in the mEC, allows 

for many different configurations that affect how location is encoded by the grid cell 

system. I have built on an existing modelling framework (Mathis et al., 2012) to 

develop a framework in which the fidelity of position coding with different 

configurations can be assessed under different conditions, and applied it to a 

number of questions. 

7.2.1. Trade-offs between precision and accuracy 

In Chapter 3, I demonstrated the role of two different types of error: those of 

precision, which are small relative to the grid-pattern scale, clustered close to the 

true location, and those of accuracy/ambiguity, which are larger, resulting in 

decoding to entirely the wrong part of the environment. 

I showed that in the absence of spatial uncertainty and when a grid cell system 

included a sufficient number of cells to compensate for each others’ intrinsic 

noisiness, the probability of ambiguity errors became negligible and grid codes with 

smaller scales (whether geometrically progressing scales with a smaller ratio, or 

random sets of grid scales which happened to have more small scales) experienced 

smaller precision errors, since they could represent space more finely. 

When the number of cells in the system was low enough for accuracy errors to arise, 

unlike precision errors their magnitude of course scales with the size of the 

environment. Thus in an environment significantly larger than the smallest grid-

pattern scale, they can become orders of magnitude larger than the precision errors. 

This form of error was, as expected, rife in configurations whose modules had 
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commensurate grid-pattern scales (i.e. with a geometric ratio of 2, or to a lesser 

extent √2 since in this scheme alternate scales are commensurate) since, even when 

intrinsic noise is eliminated, such a “nested” code cannot uniquely represent 

locations across distances greater than its largest scale. 

7.2.2. Grid scale expansion mitigates error when spatial uncertainty increases 

Experimental observations in rats have shown that grid cells’ firing patterns expand 

in scale when placed in a novel environment, and gradually contract back to their 

previous scale with experience of the environment (Barry, Ginzberg, et al., 2012). In 

Chapter 4, I applied my modelling framework to test the hypothesis that this might 

be an adaptation to improve fidelity of coding in conditions of spatial uncertainty. 

By testing grid cell systems with different degrees of scale expansion under varying 

levels of spatial uncertainty, I showed that such uncertainty increases errors in self-

location representations, and expansion of the grid scale can partially mitigate this 

effect. For each level of uncertainty, a particular optimal degree of expansion was 

identifiable, and the relationship between the two appeared linear. This did not rule 

out other hypotheses about the effect of expansion in novel environments and I 

noted that they were not mutually exclusive. 

The clear next step in this line of investigation will be experimental work asking 

whether grid scale expands in response to other causes of spatial uncertainty, such 

as a lack of cues or unreliable landmarks. I noted preliminary evidence that it does 

– grid scale expands in a 2D VR environment compared to reality (Chen et al., 2018) 

– and a potential effect of cue richness which was obscured by multiple interacting 

effects of novelty (Manson, 2017). Further investigation is clearly warranted, and 

could take advantage of the virtual reality techniques that would now enable precise 

manipulation of cue richness and reliability in a 2D environment. 
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There is a clear candidate mechanism for grid scale expansion. Grid scale is 

influenced by the Ih current dependent on HCN1 channels (Giocomo et al., 2011; 

Mallory et al., 2018). Cholinergic manipulations modulate this current in layer II mEC 

stellate cells, and acetylcholine release is known to be associated with novelty. 

Alternatively, cAMP upregulation also modulates this current in the same cells, and 

cAMP might in turn be modulated by another neuromodulator noradrenaline (Barry, 

Heys, et al., 2012; Heys & Hasselmo, 2012). 

A more generalised model proposes acetylcholine as a signal for expected 

uncertainty (due to known unreliability of cues) and noradrenaline as a signal for 

unexpected uncertainty (due e.g. to a new context) (Yu & Dayan, 2005). I noted that 

both types of uncertainty, and thus both neuromodulators, may be relevant in a 

novel environment. Possible experiments to tease out the effects of these 

neuromodulators on grid cell coding could compare behaviour (perhaps learning of 

a spatial task) in novel environments, and in familiar environments with varying cue 

reliability, with and without acute mEC-localised infusions of competitive 

antagonists blocking the effects of acetylcholine or noradrenaline on grid scale. 

7.2.3. A complicated relationship between grid scale configuration and spatial 

capacity 

The field has seen various contributions debating the relationship between the 

configuration of grid-pattern scales across the modules present in an animal, and 

the capacity of the grid cell system to uniquely encode locations across large 

environments. I investigated this question in Chapter 5. 

Fiete and colleagues have shown that in an idealised system, a modular arithmetic 

(MA) code can represent locations up to the lowest common multiple (LCM) of the 

grid scales – this would make a coprime sequences of scales optimal. They argue 

that a more realistic system, in which capacity is reached when the environment is 
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large enough to encompass locations at which the sets of grid module phases are 

so similar they cannot be reliably distinguished, could still have a capacity many 

times greater than the largest scale (Fiete et al., 2008). 

On the other hand, the research groups of Andreas Herz and Vijay Balasubramanian 

model the grid cell system as providing a “nested” representation limited in capacity 

to the largest grid scale present (Mathis et al., 2012; Stemmler et al., 2015; Wei et al., 

2015). Using different approaches, they predict geometric sequences of grid scales, 

defined by ratios of ~1.5 (Stemmler et al., 2015) or – depending on the read-out 

mechanism – either √e (~1.65) or ~1.44 (Wei et al., 2015). 

Finally, a recent contribution defending the MA code hypothesis  (Vágó & Ujfalussy, 

2018) predicted that with a very small number of grid cell modules, the relationship 

between scale ratio and capacity is sharply irregular so that even very small devia-

tions in scale can result in dramatic changes in capacity. This would make optimisa-

tion of the ratio biologically implausible given the experimentally observed variation 

in scales (Barry, Ginzberg, et al., 2012; Stensola et al., 2012; Krupic et al., 2015). And 

in systems with more modules, the influence of ratio on capacity becomes weak, 

making optimisation marginal or unnecessary. 

I applied my modelling framework to investigate this problem. Like Fiete and col-

leagues, I showed that capacity failures relate to points where the environment is 

large enough to encompass distances across which the set of grid module phases 

signalling location are not reliably distinguished. However, unlike previous studies, 

my approach emphasised that error in the system increases incrementally with in-

creasing environment size, as more sets of locations with similar grid phase signals 

are encompassed. On the premise that biological systems may be expected to tol-

erate some degree of errors, I have rejected the “all or nothing” approach of previ-

ous investigators who have taken capacity to be the largest range over which the 
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system can encode location without any ambiguity errors, in favour of assessing var-

ying degrees of accuracy and precision in fallible coding systems. 

With this approach I corroborated the prediction by Vágó & Ujfalussy (2018) relating 

to systems with small numbers of grid cell modules. In such systems, the variation 

of error with ratio was sharply irregular and non-monotonic. However, my investi-

gation challenged their prediction that the relationship becomes weak in systems 

with larger numbers of modules – in environments large enough for the increased 

capacity of such systems to be tested, the same sharp irregularity was observed. 

This disagreement may be due to the aforementioned differing approach to the 

question of capacity. However, we agree that optimisation of the ratio between grid 

scales to maximise capacity is unlikely. 

My approach here does prompt the question – what magnitude and frequency of 

error is tolerable? Here, an arbitrary measure (mean square error) is used, and no 

threshold is specified – both of these things would be needed to actually estimate 

the specific capacities of different configurations. Determining these would require 

a more in-depth knowledge of the downstream read-out systems and the behav-

ioural requirements of the animal. 

While corroborating analyses that capacity could in theory far outstrip the largest 

grid scale, my investigation did not resolve the question of whether it does so bio-

logically. The tolerable level of error may be low enough, and the degree of noise 

and uncertainty high enough, that the capacity is indeed constrained to roughly the 

largest grid scale present. 

However, as I have discussed, part of this debate relates to estimates of rats’ natural 

behavioural range. Advocates of the “nested code” hypothesis have relied upon an 

old study based in urban areas which estimated a home range as small as ~(10 m)2 
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(Davis et al., 1948). More recent research including more open environments has 

suggested ranges of (100m)2 to (1km)2 (Recht, 1988; Russell et al., 2005), which could 

much less plausibly be covered by a single grid-pattern period. I have argued that 

there is a need in the field to try to characterise grid cell activity in rats navigating 

larger, natural-sized environments. Key questions would include: is the grid cell rep-

resentation continuous across environments of this size or splintered into “neigh-

bourhoods” (indeed – is the characteristic pattern observed in laboratory animals 

raised in stereotyped, limited environments even the same in natural or naturalistic 

environments, or in animals raised in such environments?), and connected to that, 

is the animal capable of planning novel trajectories for vector navigation (presumed 

to rely on a continuous grid cell system representation) across such distances? 

7.2.4. Grid-patterns orient adaptively in polarised environments 

In Chapter 6, I used the framework to show that when spatial uncertainty is mod-

elled as anisotropic, error can be substantially reduced by orienting the grid-pattern 

axes so that they are maximally misaligned from the environmental axis of greater 

uncertainty. I then reported experiments conducted by my collaborators, which took 

advantage of the ability to infer grid-pattern orientation in human from fMRI data to 

confirm that subjects’ grid-patterns do indeed exhibit such an orientation. I explored 

a number of questions raised by this finding, which I will briefly review here. 

First, how rapidly is this adaptive orientation adopted – immediately upon entering 

the environment or after a period of time spent in the environment? If the former, 

what features of the environment are used to make the necessary assessment, and 

are these criteria learned or a “hard-coded” product of development?  And if the 

latter, again on what features of the environment is the decision based, or is it a 

trial-and-error process, and what are the consequences of this shifting representa-

tion for mismatches with other components of the spatial code? With enough data, 
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it should be possible to test whether grid cell fields shift during the initial minutes of 

experience in an environment in a way that reflects rotation of the pattern. The re-

lation of this process to head direction cells and their anchoring to a novel environ-

ment is also open to investigation, which would be aided by simultaneous record-

ings of both cell types. 

My experiments made the assumption that grid-pattern orientation was uniform 

between modules, not just within them. I discussed evidence of a limited degree of 

variation in orientation across modules (Stensola et al., 2012; Krupic et al., 2015), 

while the reproducibility of the hexadirectional modulation of the mEC fMRI signal 

in humans (Doeller et al., 2010; Kunz et al., 2015; Bellmund et al., 2016; Horner et 

al., 2016) suggests either uniformity or at least the predominance of one orientation. 

I discussed possible explanations: that humans’ grid cell modules show the same 

variation but the predominance of a single orientation is sufficient to produce the 

observable hexadirectional modulation; or that rats and humans differ; or that the 

relative orientations of grid modules’ patterns might be adaptively variable for dif-

ferent situations with different coding demands (much like grid scale appears to be 

adaptively variable for the different demands of familiar and novel environments). I 

assessed preliminary evidence in favour of the last of these hypotheses (Krupic et 

al., 2015; Stensola et al., 2015). I also speculated that adaptive flexibility in the orien-

tation of grid-patterns could be the result of extensive life-time experience of diverse 

and rich environments, and thus might be more limited or absent in most laboratory 

animals. Future experiments could include modelling different combinations of grid-

pattern orientations across modules; assessing grid-pattern orientation in rats in 

environments with strongly polarised spatial information; assessing the strength of 

the signature hexadirectional modulation in human entorhinal cortex while navi-

gating polarised vs unpolarised environments, and as mentioned in the previous 

section, experiments in rats exposed to richer, natural or naturalistic environments. 
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Finally, I also discussed the possibility of investigating whether the observed 7.5° 

orientation of grid-patterns to boundary in square enclosures (Krupic et al., 2015; 

Stensola et al., 2015; Julian et al., 2018) is an adaptive response to the anisotropic 

spatial information received when an animal moves close to a boundary. I argued 

that to apply the modelling framework set out here would require an array of as-

sumptions that would have a strong impact on results but for which empirical evi-

dence is lacking. 

7.2.5. Some aspects of the grid cell code configuration appear to be adaptive to 

the changing demands of the environment 

In sum, I have established a biologically inspired modelling framework and used it 

to show that experimentally observed variation in some aspects of the grid code 

configuration – namely scale expansion and pattern orientation – appear to be adap-

tive for maximising the fidelity of self-location representations under particular con-

ditions – the uncertainty of novel environments, and the anisotropic information 

available in polarised environments, respectively. In the case of the former, at least 

one hypothesised candidate mechanism for this adaptation exists, while the latter 

finding raises open questions about mechanism. I have also used the modelling 

framework to contribute to the debate around the spatial capacity of differently con-

figured grid cell systems, emphasising that capacity limits should be considered in 

terms of tolerable degrees of error and the incremental deterioration of fidelity in 

environments of increasing size, and showing that the sharply irregular, discontinu-

ous dependence of that fidelity on grid scale ratios in large environments makes 

optimisation of the ratio for capacity implausible. 

Thus, certain features of the grid cell system appear to possess some surprising 

adaptive flexibility. However, not everything is easily optimised. My findings point to 

a wide array of possible further in vivo experiments, and the modelling framework 
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set out could be developed to address a range of other questions, some of which 

will be discussed later in this chapter. 

7.2.6. Evolution and Panglossian pitfalls 

The substantial majority of this investigation has focussed on asking whether certain 

features of the grid cell code configuration are adaptive, or adaptively flexible, for 

high-fidelity representation of self-location. In those cases where I have found evi-

dence that such features are indeed adaptive, it might be tempting to conclude that 

I have uncovered an evolutionary cause – to reason that these features therefore 

arose due to selection pressures to maximise coding fidelity in the relevant types of 

environment. Indeed, the quality of spatial representations and thus of the behav-

ioural choices they inform is of clear importance to an animal’s ability to survive to 

reproduce. 

However, Gould & Lewontin (1979) rightly warned against the construction of spec-

ulative “just-so” stories that conflate evidence for the current utility of a trait, consid-

ered in isolation from the organism as a whole, with evidence for the cause of its 

origin. It is important to remember that an adaptive trait may have arisen as a by-

product of other evolutionary pressures or developmental constraints. More evi-

dence than simply the suitability of a trait for a particular purpose is required to 

reliably infer its evolutionary history. In the case of the grid cell code, two particular 

areas of investigation could yield somewhat stronger evidence with which to test 

such hypotheses. 

The first is comparative studies of the grid cell system in different animals with dif-

ferent behavioural needs. If different configurations, or different capacities for flex-

ibility of configuration, are present in different clades, then a history of the develop-

ment of those configurations can be hypothesised. 
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The second is further exploration of the dual role of the grid cell system in encoding 

spatial and non-spatial information (discussed in the Introduction). The discovery 

and initial exploration of the grid cell system was in the spatial context, with non-

spatial roles being discovered comparatively recently. However, this alone does not 

mean that the spatial role is necessarily primary, either historically or functionally – 

that is the subject of some discussion (debated in Lisman et al., 2017). The particular 

origin of the grid cell system would have imposed particular pressures, selecting for 

certain traits and features and (due to the complex developmental processes of bi-

ological systems) these could have substantially constrained the possible subse-

quent evolutionary changes if the system was later applied to different contexts. 

7.3. Limitations and opportunities for this modelling framework 

As a model, the framework presented here for investigation of the grid cell system 

is necessarily simplified. Below, I will discuss the simplifications and limitations of 

the model, as well as possible extensions to it. 

7.3.1. Measuring coding fidelity 

As discussed in Chapter 3, following Mathis et al. (2012), I used mean square error 

as a measure of the fidelity of the grid cell system’s coding. This is a common meas-

ure but an arbitrary one, and other measures would give differing weights to large 

vs small errors (e.g. mean absolute error would be less strongly affected by infre-

quent large values). In the context of exploring the adaptiveness of grid cell system 

configurations, the measure used would ideally reflect more detailed knowledge 

about the behavioural needs of the animal and the impact of different frequencies 

and magnitudes of error than is currently available. However, experiments compar-

ing which configurations minimise different measurements could be used to draw 

conclusions about configurations would better serve different behavioural needs. 
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7.3.2. Idealised decoding 

Again following Mathis et al. (2012), the models used here included an optimal de-

coding method: this term refers to methods that, by some measure, extract the max-

imum information possible from a signal to infer the stimulus value. The particular 

method used was maximum-likelihood (ML) inference. This is not unreasonable: it 

has been shown that at least one biologically plausible read-out mechanism could 

come close to this level of performance (Stemmler et al., 2015). However, not only 

are biological systems still imperfect and subject to noise, it would also be wrong to 

make the Panglossian assumption that the actual read-out systems present in the 

animal are necessarily as good as the best plausible ones we can imagine. 

Three categories of elaboration on the framework I have built could be fruitful: 

7.3.2.1. Bayesian inference: an alternative optimal decoding method 

As discussed in Chapter 3, Bayesian inference is an alternative form of optimal 

decoding, in which a “loss function” describes the expected cost to the organism of 

estimating xestimate when the true stimulus value is xactual, and a function is found that 

minimises the average result of the loss function across possible outcomes (Dayan 

& Abbott, 2001). As argued in that chapter, and similarly to the issues discussed im-

mediately above relating to the selection of an error measurement, this was not 

used because without more detailed knowledge of the behavioural needs of the an-

imal, selecting a loss function would mean including an additional layer of weakly-

justified assumptions to the model. However, it would become a possible option 

with more experimentally-obtained knowledge. 

7.3.2.2. Decoding a path rather than individual locations 

In the model set out here, a large number of locations are randomly selected, en-

coded and decoded independently of one another. In reality, an animal continuously 
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assessing its location as it navigates an environment would be able to use recent 

estimates to constrain new estimates, on the basis that it can only travel at limited 

speeds and cannot teleport. Thus, a decoded output of the grid cell ensemble could 

be compared with recent self-location estimates, and ruled out as erroneous if too 

distant. This is facilitated by the fact that with a modular arithmetic code, a small 

change in the grid-pattern phase read from one module can result in a large change 

in the location represented by the ensemble. This facility for error correction in the 

grid cell code has been proposed previously (Fiete et al., 2008; Sreenivasan & Fiete, 

2011). It could be implemented by reference to a slower-changing representation of 

position, potentially the hippocampal place cells (Sreenivasan & Fiete, 2011), or by 

calculating the vector displacement between successive position estimates in the 

same ways as theoretically proposed for vector navigation (Kubie et al., 2009; Bush 

et al., 2015). 

A straightforward development of the modelling framework presented in this pro-

ject could be made in order to model this hypothesised feature of the biological 

system. Rather than individual independently-generated random locations, the in-

put to the model would be positions on a continuous path through the environment 

– potentially actual paths recorded experimentally. A simple amendment to the ML 

inference decoding mechanism would then use this information – the probability 

density function from which the model estimates the location is simply multiplied 

by a Gaussian distribution centred on the previous location estimate, which plays 

the role of a Bayesian prior (not to be confused with Bayesian inference decoding, 

explained above). Such a decoding mechanism has been used in previous models 

(Brown et al., 1998). 
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7.3.2.3. Biologically inspired read-out mechanisms 

Finally, rather than an abstractly mathematical decoding algorithm, this model of 

grid cell activity could be connected to similarly biologically inspired models of 

downstream systems – or upstream systems, or indeed, systems that are both, since 

the hippocampal formation circuitry includes various loops. Studying how 

differently-configured grid cell systems interact with other spatially-tuned cells, and 

comparing the results to simultaneous recordings of these cell types in vivo, could 

provide evidence supporting or ruling out different hypothetical configurations of 

the system. 

Combined models like this could also be used to investigate what grid-pattern 

distortions are realistically possible without disrupting downstream read-out. As 

mentioned previously, as long as distortions are common to all grid cells within a 

module, the code can still act as a universal metric in theory (Stemmler et al., 2015) 

but we do not yet know how far this theoretical possibility is borne out in biological 

reality. The capacity of different hypothesised read-out mechanisms to account for 

distortions with minimal error could be compared in silico. Evidence of distortions 

such as shear or warping of the repeating pattern has already been reviewed. A 

further distortion that could be investigated is the observed heterogeneity of firing 

rates between spatial fields within individual cells’ grid-patterns (Ismakov et al., 

2017). A number of hypotheses have been put forward concerning the local 

information that is thus overlaid on top of the regular grid code. First, it could be 

merely epiphenomenal, a result of uneven feedback from place cells. Second, it 

might originate from this but have been co-opted to serve a purpose like 

contributing to pattern separation. Third, the relationship might be the other way 

around, with grid cell heterogeneity helping to drive the specificity of place cells. 

Finally, the relationship might be less hierarchical, with an important role for 

information exchange in both directions. A combined model including both grid and 
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place cells could explore these hypothesised interactions and the implications for 

the fidelity of the representation in each. 

7.3.3. Non-uniform allocation of grid cells to modules 

Thus far, each modelled module in the grid cell system has contained the same 

number of cells. However, observations suggest that there may be fewer cells in 

larger-scale modules (Stensola et al., 2012) – though this could be due to difficulty 

identifying them in environments of limited size. A grid cell modelling approach in 

which self-location was decoded dynamically (using the spike information available 

not just at each step in a path, but from recent steps too) predicted that an efficient 

allocation of grid cells would result in a geometric trend of decreasing cell numbers 

for modules with increasing grid-pattern scale (Mosheiff et al., 2017). This makes 

sense, as the signal from a larger-scale module would change less for a particular 

displacement in space. This predicted allocation of cells to modules could be tested 

in the modelling framework I have presented and fidelity compared to that with 

uniform allocation. 

7.3.4. Multi-dimensional stimuli 

In Chapter 4, I demonstrated that extending the model from one- to two-

dimensional space was simple. In fact, though the simulations would be 

computationally burdensome, given sufficient resources it can be extended just as 

straightforwardly to any number of dimensions. 

Exploration of the activity of spatial cells during three-dimensional navigation in 

flying animals (bats), as well as terrestrially-bound ones, is advancing (reviewed by 

Jeffery et al., 2015). This could allow observations of the configuration of grid cell 

firing patterns in 3D space to be modelled and assessed in terms of their 
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implications for the fidelity of self-location representations, in the same way as the 

different experiments in this project did. 

7.4. Non-spatial mapping and grid cell code configuration 

Recent evidence has indicated that grid cells also encode “maps” of non-spatial 

stimuli in rodents and humans (Constantinescu et al., 2016; Aronov et al., 2017; 

Garvert et al., 2017). It would be worthwhile to investigate whether the predictions 

made from the modelling experiments reported here hold true for non-spatial 

representations too. For instance, does the grid-pattern expand in scale when 

introduced to a new stimulus parameter space, and do they orient in a particular 

way when more information is available in one dimension than another? 

As mentioned above, extending this modelling framework to any number of 

dimensions is procedurally trivial (albeit computationally burdensome), so it would 

be applicable even if the grid cell system is discovered to be capable of encoding 

non-spatial stimulus maps in more than two or three dimensions. 

7.5. Conclusion 

Spatial cognition has long been recognised as a key area of investigation for 

behavioural neuroscience. It offers the opportunity of studying, at cell- and circuit-

levels, representations of abstract concepts which must be derived from advanced 

processing of sensory information across multiple modalities, but which can 

nevertheless be correlated to real world stimuli that can be easily, reliably and 

quantitatively measured. Thus the study of spatial cognition may be an accessible 

avenue to potentially generalisable principles about how the brain represents and 

processes complex, composite information for behaviour. This has become even 

more true with two discoveries: first, non-local activity of spatially-tuned cells, which 
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might play roles in learning, memory, planning and imagination; and second, the 

participation of grid cells in mapping non-spatial information. 

This project aimed to examine how the particular configuration of the grid cell 

ensemble determines how, and with what fidelity, this information is represented, 

and how different configurations may be adaptive for fidelity given different 

environmental conditions. I have presented a flexible, biologically inspired 

modelling framework that permits study of such questions especially in relation to 

degrees of uncertainty in the spatial information available to an animal, and I have 

used it to both test and make hypotheses about experimentally measurable aspects 

of the grid cell system configuration. 

By comparing predictions derived from simulations to experimental findings in 

rodents and humans, I have shown that the configuration of the grid cell code 

appears to be flexible in ways that improve the fidelity of coding in at least two 

different circumstances: novel environments and environments in which spatial 

information is polarised and anisotropic. I have also developed an argument that 

the spatial capacity of the code needs to be considered from the perspective of what 

degree of error is tolerable given the behavioural needs of the animal, and 

confirmed that optimisation of the ratio between grid scales (which has been the 

subject of various theoretical proposals by other researchers) is not biologically 

plausible, providing a warning against theoretical approaches that risk inculcating 

an assumption of optimality in biological systems. Finally, I have proposed a wide 

range of avenues for future investigation that are raised by my findings and by the 

development of this modelling framework.  
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