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Abstract
Objectives To describe the spectrum of movement disorders and cerebrospinal fluid (CSF) neurotransmitter profiles in paediatric
patients with POLG disease.
Methods We identified children with genetically confirmed POLG disease, in whom CSF neurotransmitter analysis had been
undertaken. Clinical data were collected retrospectively. CSF neurotransmitter levels were compared to both standardised age-
related reference ranges and to non-POLG patients presenting with status epilepticus.
Results Forty-one patients with POLG disease were identified. Almost 50% of the patients had documented evidence of a
movement disorder, including non-epileptic myoclonus, choreoathetosis and ataxia. CSF neurotransmitter analysis was under-
taken in 15 cases and abnormalities were seen in the majority (87%) of cases tested. In many patients, distinctive patterns were
evident, including raised neopterin, homovanillic acid and 5-hydroxyindoleacetic acid levels.
Conclusions Children with POLG mutations can manifest with a wide spectrum of abnormal movements, which are often
prominent features of the clinical syndrome. Underlying pathophysiology is probably multifactorial, and aberrant monoamine
metabolism is likely to play a role.

Introduction

Mitochondrial DNA (mtDNA) depletion syndromes
(MDDS) are caused by defects in mtDNA maintenance
due to mutations in nuclear genes which affect either mi-
tochondrial deoxyribonucleoside triphosphate supply or
components of the mtDNA replication machinery
(Rahman and Poulton 2009). DNA polymerase γ (pol γ)
is essential for mtDNA replication and repair. Loss-of-
function mutations of POLG, encoding the catalytic

subunit of pol γ, result in MDDS with evidence of re-
duced mtDNA content or abnormal mtDNA (multiple
mtDNA deletions or point mutations) in affected tissues
(Cohen and Naviaux 2010).

POLG-related disease is clinically heterogeneous. In
infancy and early childhood, Alpers syndrome (also re-
ferred to as Alpers–Huttenlocher syndrome) is the most
frequent clinical presentation (Cohen and Naviaux 2010).
However, there is a broad phenotypic spectrum, ranging
from infantile severe encephalopathy and liver failure to
later-onset external ophthalmoplegia, ataxia, myopathy
and axonal sensorimotor neuropathy. Epilepsy is a major
feature in most cases (Cohen and Naviaux 2010).
Movement disorders are commonly described (Morten et
al. 2007; Cohen and Naviaux 2010), with parkinsonism
most commonly reported in adult patients (Martikainen et
al. 2016). In this study, we aimed to describe the clinical
spectrum of movement disorders and cerebrospinal fluid
(CSF) neurotransmitter profiles in children with POLG
mutations.
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Methods

Patient ascertainment

Paediatric patients (16 years or younger) with confirmed
biallelic POLGmutations were retrospectively identified from
the Oxford Rare Mitochondrial Disease Service for Adults
and Children database, established in 2006. All cases identi-
fied between 2006 and 2013 were included in the study. Prior
to genetic confirmation, some patients had CSF neurotrans-
mitter analysis as part of routine diagnostic investigation.
These patients were identified from the UK CSF Neurotrans-
mitter Service database. Clinical information was ascertained
from (i) standardised proformas completed for diagnostic CSF
and genetic testing and (ii) patient hospital records, where
available (see supplementary data).

For comparative analysis, CSF neurotransmitter profiles of
non-POLG patients admitted to a single paediatric intensive
care unit (PICU) from August 1999 to November 2011 were
reviewed. All patients who had neurotransmitter analysis sec-
ondary to non-POLG-related status epilepticus were included
in the study.

POLG mutational analysis

POLG gene sequencing was performed as previously de-
scribed (Ashley et al. 2007).

CSF metabolite analysis

CSF was collected by lumbar puncture using standardised
protocols and neurotransmitters were measured by high-
performance liquid chromatography, as previously described
(Hyland et al. 1993; Aylett et al. 2013).

Results

Case ascertainment (supplementary data)

In total, 41 paediatric patients with POLG mutations were
identified. Twenty of these patients had a documented non-
epileptic movement disorder (Tables 1 and 2) and were further
studied. The clinical details of eight patients have been pub-
lished previously (Morten et al. 2007; McCoy et al. 2011;
Allen et al. 2014; Rajakulendran et al. 2016; Hikmat et al.
2017).

Genetics

All 20 patients with a movement disorder had biallelic POLG
mutations. Of these, 18/20 harboured homozygous/compound
heterozygous missense mutations and two cases were

compound heterozygotes for missense and nonsense muta-
tions (Table 1).

Age at clinical presentation

The age at neurological presentation ranged from 8 months to
16 years, with 17/20 patients presenting before 24 months of
age (median age 13 months).

Clinical features at presentation

Information regarding early clinical features was available for
all 20 patients. Encephalopathy and/or status epilepticus was
the most common mode of presentation (17/20 cases). Where
CSF neurotransmitter analysis had also been performed, 11/15
patients presented either with status epilepticus or epilepsia
partialis continua (EPC), preceded by an intercurrent infection
in 2/15 cases. The remaining 4/15 patients (D1, D3, D14 and
D15) presented initially with a movement disorder, although
all eventually developed status epilepticus/EPC in the ensuing
weeks or months. Data regarding administered antiepileptic
drugs (AEDs) were limited or absent in most cases (Table 1).

Movement disorder

Detailed information regarding movement disorder semiology
was available for 15/20 patients. Of these, 11/15 had also
undergone CSF neurotransmitter analysis, whereas 4/15 had
no such available data. Non-epileptic myoclonus (12/15
cases), chorea and/or athetosis (7/15), and ataxia (5/15) were
described most commonly, but tremor (3/15) and dystonia (3/
15) were also reported (Table 1).

Magnetic resonance brain imaging

Many patients had structural abnormalities on brain magnetic
resonance imaging (MRI), with bilateral symmetrical thalamic
changes evident in 5/14 (Table 1).

CSF analysis

Lumbar puncture was undertaken in 15/20 cases. For most of
these patients, CSF neurotransmitter analysis was performed
soon (0–4 weeks) after initial neurological presentation. No
patient had been administered levodopa prior to CSF sam-
pling. Thirteen of these 15 patients had CSF neurotransmitter
abnormalities (Tables 1 and 2). Raised homovanillic acid
( HVA ) w a s s e e n i n 7 / 1 5 a n d a b n o r m a l 5 -
hydroxyindoleacetic acid (5-HIAA) in 8/15 cases (7/15 had
high 5-HIAA, 1/15 low 5-HIAA). In fact, 6/15 cases had
abnormalities of both HVA and 5-HIAA. Of note, none of
the patients were on dopaminergic therapy (including inotro-
pic support) at the time of CSF sampling. Pterin profiles were
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also frequently abnormal with high neopterin levels in 7/14
patients. 5-Methyltetrahydrofolate levels (5-MTHF), mea-
sured in 14 patients, were low in 2/14 cases. 3-O-
methyldopa (3-OMD) levels were mildly elevated in 4/8
cases, but not as high as those seen in aromatic L-amino acid
decarboxylase (AADC) deficiency (Table 2). Finally, CSF
protein and lactate levels were also frequently elevated, where
information was available (Table 2); CSF white cell counts
were only available in 2/15 patients (D5 and D7) and normal
for both cases (data not shown).

In order to determine whether the observed CSF neurotrans-
mitter profiles in POLG patients were disease-specific, we un-
dertook comparative analysis with non-POLG patients who had
a similar disease presentation.We identified 1754 paediatric CSF
neurotransmitter profiles undertaken between 1999 and 2011 in
a single centre. Sixty of 1754 patients underwent CSF analysis
during admission to the PICU, of which 15 were for investiga-
tion of status epilepticus (Table 2, patients P1–P15). None of
these 15 cases were diagnosed with mutations in POLG, al-
though POLG mutations were clinically suspected and subse-
quently excluded in P6, P7 and P15. A definitive diagnosis was
achieved in 6/15 patients (P8–P13). Three of 15 patients (P13–
P15) had a suspected or proven mitochondrial disorder, with
CSF showing high neopterin levels in 2/3. Additionally, 3/15
patients (P1, P4 and P8) had a suspected or proven central ner-
vous system (CNS) infection, with elevated neopterin in all three
cases. Overall, CSF neopterin was elevated in 6/11 cases, where
data were available. Two of 15 patients had a raised CSF HVA,
one of whomwas on dopaminergic therapy, whilst 4/15 had low
HVA levels. 5-HIAA levels were abnormal in 5/14 cases (low in
4/14, high in 1/14). CSF 5-MTHF levels, undertaken in 9/15
patients, were low in one patient (P8) (Table 2). Age-specific
(Hyland et al. 1993) CSF HVA and 5-HIAA levels were signif-
icantly higher in POLG patients when compared to non-POLG
patients (p = 0.001 and p = 0.01, respectively), whereas
neopterin levels were similarly elevated in both cohorts (p =
0.68) (Fig. 1).

Discussion

We report the movement disorder semiology and neurotransmit-
ter profiles in children with biallelic POLG mutations. POLG
disease has previously been associated with a wide range of
movement disorders. In adults and adolescents, ataxia, dystonia,
chorea and myoclonus have been described but, overall, parkin-
sonism seems to be the most commonly encountered motor
phenotype (Hinnell et al. 2012; Martikainen et al. 2016). In
childhood, choreoathetosis, myoclonus and parkinsonian fea-
tures have been reported (Morten et al. 2007; Cohen and
Naviaux 2010). In our cohort, hyperkinetic motor phenotypes
were documented in 20/41 cases, most commonly non-epileptic
subcortical myoclonus and choreoathetosis. Ataxia was alsoT
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frequently reported. Notably, abnormal movements sometimes
preceded the onset of seizures or status epilepticus (5/20 cases),
suggesting that POLG disease should be included in the differ-
ential diagnosis for children initially presenting with abnormal
hyperkinetic movements, particularly if associated with neuro
developmental delay, regression or epilepsy.

We observe that, where CSF neurotransmitter analysis was
undertaken, the majority of POLG mutation-positive patients
had evidence of abnormal CSF pterin and/or monoamine me-
tabolites. Of these, many (11/15) had an initial presentation of
status epilepticus and the majority (12/15) had neurotransmit-
ter analysis performed during a period of increased seizure
burden, often whilst in the PICU. Notably, children who pre-
sented with a movement disorder in the absence of seizures
(patients D1, D3 and D14) had fewer neurotransmitter abnor-
malities than the POLG status epilepticus group (Table 2).

CSF HVA and/or 5-HIAA elevation was evident in 8/15
POLG patients. In fact, CSF monoamine levels were signifi-
cantly higher in our POLG cohort when compared to those
with non-POLG status epilepticus (Fig. 1, Table 2). Similar
patterns of HVA and 5-HIAA elevation have been reported
previously in a patient with POLG disease (Hasselmann et al.
2010). Importantly, normal HVA:5-HIAA ratios of 1.6–3.4
(normal range 1.0–4.0) (Ng et al. 2015) in all POLG patients
discriminate these profiles from other primary neurotransmit-
ter disorders, such as dopamine transporter deficiency syn-
drome (DTDS), where the HVA:5-HIAA ratios are commonly
above 5 (Ng et al. 2015). High levels of HVA and 5-HIAA
have also been reported in patients with mtDNA deletions
(Pineda et al. 2006). Other mitochondrial diseases are, how-
ever, more commonly associated with low HVA and 5-HIAA
levels (García-Cazorla et al. 2007; Garcia-Cazorla et al.
2008a), although not as low as in primary neurotransmitter
disorders (such as tyrosine hydroxylase or aromatic L-amino
acid decarboxylase deficiency), where much lower CSF levels
are usually reported (Ng et al. 2015).

Overall, 7/12 POLG patients presenting acutely with sei-
zures or intercurrent infections had high neopterin levels, with
levels up to 12 times above the upper limit of the normal refer-
ence range (Hyland et al. 1993). Similar neopterin elevation
was seen in 6/11 cases of the non-POLG status epilepticus
cohort. BH2 and BH4 were also frequently raised in both co-
horts, often in tandem with high neopterin levels. High
neopterin levels are considered a biochemical marker of inflam-
mation within the CNS and frequently encountered in conditions
associated with an exaggerated or aberrant immune response,
such as CNS infections, multiple sclerosis and Aicardi–
Goutières syndrome (Dale et al. 2009). In keeping with CSF
inflammation, CSF protein and/or lactate levels were also high
in 9/15 cases, as per previous reports (Cohen andNaviaux 2010).
Similar high neopterin levels have previously been reported in a
case of POLG disease (Hasselmann et al. 2010). The underlying
basis of raised pterin levels inPOLG patients is currently unclear,
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but it may be related to an immune-mediated response associated
with intercurrent infection, frequent seizures at the time of CSF
sampling or the underlying disease itself.

Two of 14 patients had low CSF 5-MTHF levels, being mod-
erately reduced in one patient (D6) and more markedly reduced
in another (D13). Cerebral folate deficiency is reported in several
types of mitochondrial disease (Pineda et al. 2006; Garcia-
Cazorla et al. 2008b), including POLG mutations (Hasselmann
et al. 2010; Rajakulendran et al. 2016), ranging from mild defi-
ciency to more severe forms that can mimic primary folate dis-
orders, such as those due FOLR1 mutations (Cario et al. 2009).
The mechanisms underpinning cerebral folate deficiency might
include choroid plexus dysfunction, inefficient ATP-dependent
transport of folate from blood into the CSF, oxidative stress
(Aylett et al. 2013; Rahman 2015) or the presence of blocking-
type folate receptor autoantibodies (Hasselmann et al. 2010).
Folinic acid treatment sometimes leads to clinical and radiolog-
ical improvement (Pineda et al. 2006), suggesting a putative link
between low CSF 5-MTHF levels and observed phenotypes in
these patients (Rahman 2015).

Overall, there seems to be no CSF biomarker that is uni-
versally abnormal in POLG patients, at least at disease onset,
when CSF is most likely to be obtained; even CSF protein and
lactate levels were normal in a few cases (Table 2). However,
our results suggest that CSF neurotransmitter analysis might
be a helpful tool to herald the possibility of POLG disease in
affected patients.

Our study has a number of limitations. Given the retrospec-
tive nature of our work, patients were identified as having
POLGmutations as part of clinical care and not in the context
of a genetic epidemiology study, which may lead to selection

bias. However, case identification took place in a nationally
commissioned centre performing POLG diagnostic testing;
hence, our results are likely to be representative of the paedi-
atric POLG mutation-positive population. Additionally, there
was no standardised approach to motor phenotype character-
isation while, in some cases, there was insufficient data re-
garding concurrent AEDs administered, CSF biochemistry,
movement disorder semiology and distribution. Furthermore,
it is unclear whether the absence of movement disorders in 21/
41 patients is a true representation or due to under-recognition
and/or under-reporting. Regarding CSF biomarkers, we have
not examined the neurotransmitter profiles in POLG patients
who do not manifest abnormal involuntary movements, and,
thus, more studies in this area are warranted. Finally, it is
conceivable that whole genome sequencing analysis could
help to elucidate the role of additional genetic factors contrib-
uting to phenotypic variability in our patient cohort. Overall,
despite the above caveats, our findings certainly highlight that
POLG disease can be associated with both movement disor-
ders and aberrant CSF neurotransmitter profiles.

The pathophysiology of movement disorders in POLG dis-
ease is likely multifactorial. Firstly, previous studies have
shown progressive striatonigral degeneration inPOLG patients,
especially with increasing age (Tzoulis et al. 2016). The early
stages of this neurodegenerative process may lead to the abnor-
mal motor phenotypes seen in our cohort. Additionally, the
energy-depleted state of POLG disease could render the brain
susceptible to acute focal injury triggered by epileptic seizures.
The high neopterin levels documented in both POLG patients
and controls suggest an acute process common to both groups
that may potentially be linked to seizures. However, the high

Fig. 1 Cerebrospinal fluid (CSF) neurotransmitter abnormalities in the
POLG and non-POLG cohorts. Age-specific homovanillic acid (HVA),
5-hydroxyindoleacetic acid (5-HIAA) and neopterin z-scores in patients
with POLG disease (red dots) and non-POLG-related status epilepticus
(blue squares) were calculated according to age-related reference ranges
(Hyland et al. 1993). Patients on dopaminergic therapy at the time of CSF
sample acquisition (patient P8, Table 2) were excluded from this analysis.
The mean values are depicted as horizontal black lines. POLG HVA z-
score mean = 1.99 ± 0.56, non-POLGHVA z-score mean = − 0.82 ± 0.46,
p = 0.001; POLG 5-HIAA z-score mean = 2.45 ± 0.66, non-POLG 5-
HIAA z-score mean = 0.01 ± 0.58, p = 0.01; POLG neopterin z-score

mean = 8.71 ± 4.47, non-POLG neopterin z-score mean = 11.23 ± 3.75,
p = 0.68. z-Score p-values were calculated using the unpaired t-test.
*** = statistically significant (p = 0.001), ** = statistically significant
(p = 0.01), ns = not statistically significant (p = 0.68). # = Values from
patient P6, who presented with drug-resistant status epilepticus at
5 months of life. Lumbar puncture was performed at 8 months, during
an intensive care unit (ICU) admission to manage seizures. POLG
mutations and mitochondrial encephalomyopathy, lactic acidosis and
stroke-like episodes (MELAS) caused by the common mitochondrial
DNA (mtDNA) mutation m.3243A>G were genetically excluded
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HVA and HIAA levels indicate specific involvement of dopa-
minergic and serotoninergic systems in the POLG patients but
not the controls, and this may underpin the movement abnor-
malities. Further studies are now warranted in order to investi-
gate whether these high levels are attributed to either increased
production of serotonin and dopamine or accelerated mono-
amine degradation. The raised 3-OMD levels seen in some
patients may be indicative of increased L-dopa synthesis. It is
also clear that substantia nigra dopaminergic neurons are more
vulnerable to defects of mtDNA maintenance than other
mtDNA abnormalities (Tzoulis et al. 2016). Therefore, process-
es other than simple energy depletion or complex 1 deficiency
probably underlie their susceptibility. For instance, substantia
nigra dopaminergic neurons are specifically vulnerable to de-
fects in mitophagy (a type of mitochondrial quality control)
(Narendra et al. 2010), with genetic defects in POLG and
Parkin, a key mitophagy protein, exerting synergistic effects
in these cells (Pickrell et al. 2015).

In conclusion, hyperkinetic movement disorders are fre-
quently encountered in children with POLG mutations, and
may even be the presenting neurological feature, preceding
the onset of seizures. Analysis of further cases may allow us
to determine the diagnostic utility and biological relevance of
observed CSF profiles (raised neopterin/HVA/5-HIAA/3-
OMD) in a larger cohort of POLG patients. The mechanisms
underpinning movement disorders in POLG disease are not
fully understood; however, our report indicates that aberrant
dopamine and serotonin metabolism may play a role.
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