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Abstract—Since machine learning models have been applied
to neuroimaging data, researchers have drawn conclusions from
the derived weight maps. In particular, weight maps of classifiers
between two conditions are often described as a proxy for the
underlying signal differences between the conditions. Recent
studies have however suggested that such weight maps could
not reliably recover the source of the neural signals and even
led to false positives (FP). In this work, we used semi-simulated
data from ElectroCorticoGraphy (ECoG) to investigate how the
signal-to-noise ratio and sparsity of the neural signal affect the
similarity between signal and weights. We show that not all cases
produce FP and that it is unlikely for FP features to have a high
weight in most cases.

Index Terms—Model weights; Interpretation; Electrocorticog-
raphy; SVM; Multiple Kernel Learning

I. INTRODUCTION

Linear machine learning models can be seen as providing
two outputs: predictions and weight maps. The latter shows the
relative contribution of the individual features to the model
and has been heavily used in the neuroimaging community
to infer conclusions about brain structure/function. There has
however been a recent debate on whether weight maps can
provide information about the neural signals leading to a
significant classification/regression model [1]–[3]. The authors
of [1] indeed suggest that weight maps provide a poor recovery
of the input neural signal and lead to false positives. They
further demonstrate that the amplitude of the weight does not
reflect the amplitude of the signal difference in a feature.
However, their examples are specific cases with low signal-
to-noise ratio (SNR). Here, we investigate the recovery of two
widespread techniques, namely SVM [4] and sparse MKL [5]
when varying the SNR, as well as the distribution of simulated
neural signals.

II. MATERIAL

A. Original data

The data was recorded from intracranial electrodes im-
planted in a patient with pharmaco-resistant epilepsy. This
study was approved by the Stanford IRB and the patient
gave written consent to participate in the study. 64 electrodes
were implanted and signal was recorded using a Tucker
Davis system (sampling rate: 1536Hz, Fig.1A). The signal
was acquired during a 5-minute wakefulness rest period, with
eyes closed. Electrodes displaying pathological activity were
discarded from further analysis.

B. Simulated design

A fake experimental design was simulated: 2 conditions, ‘A’
and ‘B’, presented at random every 1.9 seconds. The stimuli
are further assumed to last for 1 second. This yielded 146
stimuli, 73 for each category.

C. Pre-processing

Signal pre-processing was performed with specific ECoG
routines1 using Matlab2 and SPM123. First, the data was
converted to SPM format and downsampled to 1kHz. The
continuous signal was filtered for line noise and harmonics
(stop-band: 57-63Hz, 117-123Hz, 177-183Hz) and an auto-
matic quality assessment identified ‘noisy’ or ‘spiky’ channels
based on their variance and number of ‘jumps’ (i.e. signal
derivative> 100µV ), leaving 38 ‘good’ channels (pc). The
data was re-referenced to the average of all good channels
before being epoched in the [−400, 1400]ms window around
‘onset’ (as defined in II-B) and baseline corrected using the
[−400, 0]ms window. Epochs displaying flat segments of more
than 4ms or ‘jumps’ larger than 100µV were discarded from
further analysis. The signal was then decomposed using a 5-
wavelets decomposition in the 70 to 170Hz frequency band
(step: 10Hz, avoiding 120Hz) to estimate High Frequency
Broadband (HFB) power. The time-frequency signal was z-
scored based on the pooled baselines of all events in the
[−300, 0]ms window before onset to avoid edge effects. The
signal in the [−200, 1200]ms window was finally smoothed
using a 50ms Gaussian window. Epochs displaying z-scores
larger than 8 were discarded, leaving 60 trials for condition
‘A’ and 56 for ‘B’. Further analysis focused on the [0, 1000]ms
window after ‘onset’. This pre-processing procedure is stan-
dard in stimulus-based ECoG studies (e.g. [6], see Fig.1B for
example signals).

D. Simulation of signals

All modifications of data structure were performed on the
pre-processed data to avoid an effect of the pre-processing on
the obtained results. To simulate neural signal, a rectangular
window was added to all epochs of condition A in the
[0, 1000]ms after onset. For realistic purposes, this window

1github/LBCN/Preprocessing_Pipeline
2www.mathworks.com
3www.fil.ion.ucl.ac.uk/spm
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Fig. 1. Data: A Spatial sampling on the considered subject. White circles represent channels assessed as ‘good’ (pc = 38). B Example of ECoG stimulus-
based signals, in z-score, when the same subject is viewing images of human faces (pink), buildings (blue) or animals (orange). Pre-processing is similar
to II-C. The estimated SNR for human faces is 5.0567, with an average amplitude of 0.5298 in the [0, 1000]ms window. C Input sparsity pattern for each
combination of sparsity and SNRin. For each SNRin, a Sin proportion of channels were ‘turned on’, from 5% to 100%, as represented by the color bar.
D For each ‘on’ channel, a smoothed rectangular is added to condition A trials to obtain the desired SNRin (=4 in this example).

was smoothed by a 200ms Gaussian window. Our approach
allowed to vary two aspects of the ‘input’ neural signal:
the Signal-to-Noise Ratio (SNR) and the Sparsity (S, see
Fig.1C,D).

• SNR: the amplitude of the signal in the rectangular
window was computed based on a desired SNR on each
channel:

XA,eff = XA + SNRin × std(XB)

Where XA,eff represents the amplitude of the effective
simulated signal for condition A trials, XA, the amplitude
of the raw signal for trials A, SNRin, a fixed number
representing the desired SNR and XB , the average trace
of B trials (i.e. our ‘noise’). SNRin was varied from
1 to 8 by steps of 0.5. These numbers were chosen to
obtain both non-significant and significant discrimination
between the ‘A’ and ‘B’ trials. In real ECoG datasets,
the distribution of estimated SNR varies from -4 to 10
(estimated from comparing viewing images of human
faces to viewing images of body parts from multiple
species, in 8 subjects).

• S: the number of channels on which the SNR was
modified varied from 2 to 38 (over 38), by a step of
2 (i.e. from 5.6% to 100%, with a step of 5.6%). The
sparsity of the model is defined here as the number of
channels on which a simulated signal is added, over the
total number of channels,:

Sin =
|Iin|
p

With Iin, the set of features with a non-zero input and
p the number of features (38 × 1001). This definition
corresponds to that of [7]. Real ECoG datasets are often

quite sparse, with typically only a few channels being
selective for a certain condition (e.g. S = 2 to 20%,
observations from 16 datasets, proportion of channels
selective for human faces).

The simulated signal is added on channels, using a con-
tiguous (and long) time window. This choice reflects our
observations of ECoG signals and the obtained traces resemble
signals from stimulus-based experiments. The order of the
channels on which the signal was added was assigned in a
pseudo-random fashion. This means that the simulated signal
is added independently of the channel spatial position and
the only spatial smoothness of the signals derive from the
correlated ‘noise’ structure present in the resting-state data.

We hence obtain two stages of input data: the simulated
neural input (smoothed rectangular window or 0, Xin) and
the ‘effective’ input data (simulated data plus correlated noise,
Xeff ). We are then interested in recovering the time series of
the difference between ‘A’ and ‘B’ trials for the input ‘neural’
signals, which here corresponds to Xin (as there is no input
for ‘B’) . This difference signal was also averaged over time
points for each channel, to obtain channel level estimations
(Xin).

The data set and Matlab function to generate the simulated
signals are available open-source4.

III. METHODS

A. Modelling

1) Univariate testing: A univariate permutation test as-
sessed the significance of the difference between ‘A’ and ‘B’
epochs. On each channel, it computed the average across time
in each trial (XA−B,c =

∑pT

t=1XA−B,c, pT being the number

4https://github.com/JessicaSchrouff/Simulated_ECoG

https://github.com/JessicaSchrouff/Simulated_ECoG


of time samples, i.e. 1001) and tested whether the median
difference between the 2 conditions was larger than when the
conditions were permuted. 5,000 permutations were estimated
on each channel. The obtained p-values were corrected for
multiple comparisons (FDR correction for the number of
channels). The test returns which channels display a significant
difference in z-score across the 2 conditions.

2) Machine learning: All machine learning modeling was
performed in PRoNTo version 3 [8], [9]. For each channel,
a linear kernel was built by selecting the [0, 1000]ms time
window after onset. Two machines were considered in this ex-
ample: a SVM [4] and a sparse MKL [5] grouping the features
by channel. The kernels were added and then mean centered
before SVM classification. Kernels were mean centered and
normalized for MKL modelling. The classification between ‘A’
and ‘B’ trials was based on a 10-fold cross-validation scheme
(leave-epochs-per-class-out). The soft-margin hyper-parameter
of the machine was optimized (grid search: C=0.01, 0.1, 1, 10,
100, 1000) using a nested 5-fold cross-validation. For machine
learning based models, the balanced accuracy, averaged across
folds, assessed model performance. In addition, 500 permuta-
tions assessed the significance of this performance for SVM
models (uncorrected p < 0.01). For each model, a weight
map was derived (one weight per feature, i.e. time point on
each channel). In addition, the contribution per kernel (i.e.
per channel, Wc) was returned by the MKL model. To obtain
a ‘channel-wise’ contribution for the SVM model, channel
averages were computed based on [10]:

Wc =

∑pT

t=1 |wc,t|
pT

Based on the channel contributions (either SVM or MKL),
an ‘Expected Ranking’ (ER) was defined [10], with channels
ranked in descending order based on their Wc for each fold
and the result being averaged across folds (and rounded). The
highest possible rank is pc while channels with no contribution
to the model have a rank of 0.

B. Recovery metrics

1) Univariate: The performance and recovery of the uni-
variate test are implicitly related. We estimated the True Posi-
tive rate (TP) as the proportion of channels that were assessed
as significant when ‘neural signal’ was added. Similarly, the
False Positive rate (FP) computed the number of channels
assessed as significant while no neural signal was added.

2) Machine learning: To assess the recovery of the machine
learning models, we compared the obtained weight maps with
the simulated difference signal. To this end, we estimated the
cosine distance between W and Xin, at the feature level,
and then at the channel level (i.e. Wc and Xin). Finally, we
estimated the TP and FP rates for each model as:

TP =
|ER > thresh|

Sin × pc

FP =
|ER > thresh|

thresh

Where the threshold thresh corresponds to (1) the ranking
pc − (Sin × pc), which is the lowest ranking that can be
expected if all channels ∈ Xin > 0 were ranked correctly
at the top of the ranking, and (2) pc - 10, an arbitrary number
that is often selected in publications (i.e. looking at the Top
10). Both metrics vary between 0 and 1. FP = 1 means that
all channels without ‘neural input’ had a higher ranking than
the defined threshold (which varies in case (1)).

IV. RESULTS

A. Performance

The performance of the SVM and MKL models are dis-
played in Fig.2. Even for low SNR, both models are sig-
nificant when the signal is distributed across a minimum of
features (non-significant models are displayed in white). SVM
performs perfectly in 38% of the cases while MKL performs
perfectly in 50% of the cases. In addition, MKL outperforms
SVM (> +5% accuracy) in 20% of the cases.

B. Recovery

1) Univariate: In only 5 cases, the test cannot identify any
significant result (shown in white). Its TP rate is then quite low
for low SNR values. In 60% of the cases, the test correctly
identifies all TP (Fig.2A). For high SNR (SNRin > 4), false
positives are detected, which suggests that FDR correction is
not strict enough in those cases.

2) Machine learning: The average cosine distance between
the weight maps and input difference signal (at the feature
and channel levels) are presented in Table I5. They show
an overall good similarity between SVM weights and the
difference signal for high SNR and distributed patterns. For
MKL, there is a maximum overlap and similarity area between
MKL weights and the input signal, covering high SNR and
low S, as expected from the algorithms’ priors. Interestingly,
the average similarity between weights and ‘neural’ difference
signal increases when considering channel level signals (Xin)
and model contributions (Wc).

TABLE I
COSINE DISTANCE BETWEEN WEIGHT MAPS AND THE INPUT NEURAL

DIFFERENCE SIGNAL (Xin), AT THE FEATURE (W ) AND CHANNEL (W c)
LEVEL.

SVM MKL
Signal W Wc W Wc

Xin 0.6594 0.8415 0.5796 0.7163

Fig.2 displays the TP and FP proportions when using the
ER threshold and the FP when looking at the Top 10. We
first notice that MKL displays less FP than SVM. In both
techniques though, it is unlikely to find FP with high rankings
(here arbitrarily chosen as Top 10), especially for high SNR
and distributed signals.

5The patterns are not presented in this publication due to space constrains



Fig. 2. A Univariate TP (top) and FP (bottom) rates, color-coded for each SNR-S combination. Black means all TP were correctly identified in the TP plot.
White in the FP plot means no FP. B SVM results: Performance (in %, black means perfect performance while white means no significant results), TP rate,
FP rate computed based on a varying ER threshold and FP rate in Top 10. Note that for S = 100%, all channels are ’positive’, so FP is undefined. C MKL
results.

V. DISCUSSION

In this work, we investigate how SNR and sparsity affect the
recovery of linear machine learning models. Our results show
that for low SNR (1 or 1.5), univariate test recovery is poor
while machine learning model performance, although low, can
be significant. For higher SNR, all methods perform well,
with MKL performing better than SVM in 20% of the cases.
This confirms previous results suggesting that meaningful
grouping (here on the channels) improves performance [11],
[12]. In addition, the similarity between weight maps and input
difference signal is higher at the channel level than at the
feature level (even when summarizing weights a posteriori),
suggesting that grouping also improves recovery. All models
led to false positives, suggesting that univariate tests are
not immune to FP. This is an important conclusion as the
univariate contrast is often referred to as the ‘ground truth’
and used for model optimization e.g. based on weight stability
[3]. Regarding the machine learning models, FP are present for
both machines, but only in cases of low SNR. They completely
disappear in high SNR cases, and MKL seems more robust to
them than SVM. In most cases, it is unlikely to encounter false
positives that have a high contribution.

Overall, our results show that linear machine learning
weights can, in some cases, be trusted as proxy for neural
signal difference between experimental conditions. Identifying
which SNR-S case a specific classification/regression problem
represents is however not straightforward. It seems that multi-
ple measures would be useful, including univariate testing and
model performance from both distributed and sparse models.

As this work is based on semi-simulated data, many arbi-
trary choices had to be made and not all parameters have been
varied (e.g. spatial correlation structure between channels). We

however believe that the obtained simulated signals resem-
ble true ECoG stimulus-based responses, on average across
time points. As other modalities (fMRI, PET) are expected
to display a higher spatial smoothness, performing similar
simulations with other types of data would be interesting.
Similarly, investigating more machine learning models would
provide further insight on the influence of prior assumptions
on model recovery.
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