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Abstract

The accurate prediction of building indoor overheating risk is critical in order to mitigate its possible consequences on
occupant health and wellbeing. The Chartered Institution of Building Services Engineers issued Technical Memorandum
59 (TM59) with the aim of achieving consistency in the modelling processes followed for the prediction of overheating
risk in new dwellings. However, as each tool’s prediction may depend on its inherent assumptions, an inter-model
comparison procedure was used to assess whether the choice of building performance simulation tool influences
the overheating assessment. The predictions of two popular tools, IES VE and EnergyPlus, were compared for nine
variations of a naturally ventilated, purpose built, London flat archetype, modelled under the default algorithm options.
EnergyPlus predicted a high overheating risk according to TM59 criteria in seven out of the nine model variants, contrary
to the low risk of all the IES VE variants. Analysis of heat transfer processes revealed that wind-driven ventilation and
surface convection algorithms were the main sources of the observed discrepancies. The choice of simulation tool
could thus influence the overheating risk assessment in flats while the observed discrepancies in the simulation of air
and heat transfer could have implications on other modelling applications.

Practical applications Technical Memorandum 59 issued by the Chartered Institution of Building Services Engineers
may be widely adopted within the industry to assist the prediction of overheating risk in new dwellings. This work
suggests that the choice of building performance simulation tool can greatly influence the predicted overheating risk.
Furthermore, the differences identified in the modelling of heat transfer processes could also impact other modelling
applications. Following these results, the need for detailed empirical validation studies of naturally ventilated homes has
been highlighted.
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Introduction and vulnerable (disabled or with long-term illnesses) most at
risk #,

To tackle these and other potential effects of climate
change, international agreements aimed at reducing global
carbon emissions have been negotiated'o. Since 2008, the
UK has pledged to reduce its CO5 emissions by 80%
below the 1990 baseline by 2050!". As the domestic sector
has been responsible for a significant portion of the UK’s
energy use ', there has been a significant drive to reduce its
carbon emissions through measures such as the increase of
building thermal insulation and airtightness'*'4. However,
strategies that focus on winter thermal comfort rather than
whole-year building performance may inevitably lead to the

Concerns over the accurate prediction and mitigation of
indoor overheating in domestic buildings have recently
intensified ', mainly due to the unprecedented rate of global
temperature increase associated with anthropogenic climate
change’. As the external environment is an important
driver of indoor conditions, an increase in the average and
maximum ambient temperatures would translate to higher
overheating risk in UK homes?, with potentially adverse
effects on the occupants’ health and wellbeing*, especially
during periods of extreme heat episodes. Over the 10-
day period of the catastrophic 2003 heatwave, an excess
of more than 2,000 deaths were recorded in England and
Wales’. During the same period, an increase of 74% in
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deaths in homes and 91% in care homes was estimated,
with the domestic sector accounting for approximately 50%
of the 15,000 excess deaths associated with the heatwave
in France®. A meta-analysis estimated that currently 30%
of the world’s population is experiencing extreme levels of
heat, a figure that may rise to 70% by 2100 if no action is
taken to tackle climate change’. This would place the elderly
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unintended consequence of potentially increasing summer
indoor overheating risk 1. Therefore, efforts must be made
to ensure that the low-energy newly built and refurbished
homes will provide a thermally comfortable environment
over the whole year.

The current guidance to meeting the UK Building
Regulations recommends a steady-state modelling approach
for the assessment of overheating risk in dwellings ',
which has been proven to consistently under-predict
overheating®. To help ensure the design of healthy and
thermally comfortable indoor environments, the Chartered
Institution of Building Services Engineers (CIBSE) has
released Technical Memorandum 59 (TM59)'”. This guide
aims at providing a common procedure for modellers
and developers to quantify the overheating risk in new
dwellings through the use of any Building Performance
Simulation (BPS) tool that complies with the requirements
of CIBSE AMI11'"!'3, Such tools have dynamic thermal
simulation capabilities, which allow them to predict indoor
environmental conditions and other related parameters'.
However, comparative tests such as the Building Energy
Simulation Test (BESTEST) have revealed discrepancies in
the modelling output of such tools>*-22.

As TM59 does not suggest a specific BPS tool, it is
important to determine the implications of the possible
differences on the predicted overheating risk. These may be
quantified through structured inter-model comparison where
the outputs of various BPS tools are compared under the
modelling of the same building design®’. Although such
comparisons have been performed in the past®*>’, no study
to date has focused on the prediction of overheating risk
using the TMS59 criteria. Therefore, this work may determine
whether a modeller’s choice of tool could significantly
influence the overheating risk assessment.

The above discussion has motivated this research with
the aim to identify and quantify the gap of overheating
risk prediction in flat typologies, as they have been shown
to be especially prone to overheating risk’®?’, due to the
choice of BPS tool within the TM59 assessment. The two
commonly used and widely validated**~*> BPS tools used
were: EnergyPlus 8.7 and IES VE 2016.°%% Specifically, the
aims of this study are threefold:

1. to discover whether statistically significant differences
in overheating risk prediction of flat typologies exist
between the two BPS tools under examination.

2. to investigate which algorithmic differences are
responsible for any observed discrepancies in the
prediction of overheating risk, and

3. to discuss the possible implications of the results on
research, the construction industry and policy.

Given the recent release of CIBSE TMS59, this work
may initiate an early discussion regarding some of the
assessment’s uncertainties and identify appropriate actions
prior to its widespread adoption.

Literature Review

High external ambient temperatures have long been
associated with mortality and morbidity*®. However, the
modifying effect of the indoor environment on heat-related
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health effects is less well understood, with only a few
epidemiological studies focusing on the impact of housing
quality and indoor temperature on the risk of heat-related
morbidity and mortality*. As people spend the majority of
their time indoors, a comfortable and healthy environment
is critical to human health and wellbeing®’. Therefore, it
is essential to identify and quantify factors contributing to
indoor thermal discomfort.

Indoor Overheating Drivers

Research into overheating in homes has focused on under-
standing the drivers behind the high indoor temperatures
with previous modelling studies being generally in good
agreement. Higher thermal mass was found to lead to more
stable temperatures and a decrease of overheating risk*’.
The dwelling’s floor level was shown to be a key driver of
overheating risk, with the likelihood of heat-related death
increasing by 50% for the tallest buildings compared to the
average in height buildings in London?®. Similarly, a build-
ing’s orientation has been demonstrated as a determining
factor for overheating*!. For dwellings experiencing similar
external weather environment and occupant operation, high
indoor temperatures were also correlated with internally
positioned wall and floor insulation*’. Controlled natural
ventilation, especially night cooling, and external shading
have been proven to be effective interventions to combat
overheating *3#.

TM59 Methodology

The issue of TMS59 was motivated by the call of the
Zero Carbon Hub® for consistent guidance on domestic
overheating risk assessment. It acknowledges that thermal
comfort is subjective but aims to provide a standard that
precludes the worst levels of overheating in UK dwellings .
Internal load schedules, including heat gains associated
with people, appliances and pipework, window and door
operation were specified for modelling in BPS tools, along
with two comfort criteria used to provide a pass/fail result'”.
During its development, the method was mainly tested on
flats due to their high overheating risk potential, but should
also be applicable to other typologies !”.

CIBSE’s new methodology predicts a high risk of
overheating for naturally ventilated buildings if any one of
the two following exceedance criteria fail '’

1. The percentage of occupied hours where AT = Ty, —
T'naz 18 greater or equal to 1 °C during the period May
to September, inclusive, should not exceed 3%.

2. Bedroom operative temperature should not exceed
26 °C for more than 1% of the assumed sleeping hours
(22:00-07:00) annually (equivalent to 32 hours).

Operative temperature (75,,) is the weighted average of the
room’s radiant (7}.,4) and air temperature (7,;,). Under the
assumption of low air flow speeds, it is reasonable to assume
that™®:

1
Top = i(Tair + Trad)a (1)

Timaz 18 the estimated maximum acceptable temperature
according to the adaptive thermal comfort model ***’:

Tinaw = 0.33 X Ty + 21.8°C, )
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where T, is the exponentially weighted running mean of
outdoor ambient temperature. For a series of days, 7., can

be approximated using *:

Trm = (1 - O4)7—‘011—1 + aTrm—h (3)

where « is a constant commonly taken as 0.8 while
Toq—1 and T, are the daily mean and running mean
temperatures, respectively, of the day previous to the day of
interest (T,q).

The first criterion is based on the European standard BS
EN 15251% and stems from the adaptive principle*’ that
people react in ways which tend to restore their comfort. This
is captured through the term 7'.,,,, which accounts for actions
taken by occupants (such as the modifications of clothing
level) to adapt to a change in temperature *>*’. The field data
underpinning this equation were collected in 26 European
offices, under the EU Project Smart controls and Thermal
Comfort (SCATS) project*>’, The applicability of a thermal
comfort model derived from office based data in the domestic
context may be questioned, while it has been suggested that
factors other than temperature could also influence the level
of comfort and tolerance to the thermal environment®'. The
second criterion was derived from research on sleep quality
discussed by CIBSE in Guide A*.

CIBSE acknowledges that TM59 is based on a number
of assumptions'’. One such assumption is the static
temperature threshold used for window operation. This
simplifies the modelling process of occupant behaviour,
which has been characterised as one of the greatest
uncertainties in building simulations>>°3. A number of
other factors besides air temperature have been identified
to influence window operation*. In addition, it has been
demonstrated that people perceive indoor temperatures and
act to change their thermal comfort differently®>. Two
other implicit assumptions that fundamentally relate to the
binary nature of the assessment and are not addressed in the
guidance document are that: (a) the uncertainty of BPS tools
and (b) the choice of BPS tool will not significantly alter the
prediction. The former may be answered through empirical
validation. The latter has motivated this work.

Methods

A schematic diagram of the inter-model approach is
presented in fig. 1. This method was chosen as it allows for
highly complex models to be directly compared”?. However,
it does not allow the modeller to identify which tool’s
prediction best reflects reality, something that may only be
performed through empirical validation?'.

Model Development and Comparison

In the Data Preparation stage, a Base Case (BC) model
based on a free-running, naturally ventilated, single aspect,
top-floor flat created by another work was selected (fig 2a)>°.
The base case was chosen to be representative of a typical
London flat, as they have been found to be particularly prone
to overheating?®?’, and the design of TM59 focused on flat
typologies'”. The thermal properties of the building’s fabric
and windows, selected to represent those of a new-build, are
summarised in table 1. Further to that:
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Figure 1. An illustration of the intermodel comparison
approach used to determine differences in the overheating risk
prediction between BPS tools.
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Figure 2. lllustrations of the base case (a), the model with
external shading (b) and the dual aspect model (c).
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e The Design Summer Year 1 CIBSE Weather File was
used, as specified in TM59'7°7, with the location
being the London Weather Centre.

e The internal gains for a two-person, double bedroom
flat with separate living room and kitchen were
modelled as recommended in TM59 7.

e Following TM59’s instructions, windows were set to
fully open when the internal air temperature exceeds
22°C, is lower than the external dry bulb temperature*
and the room is occupied (bedroom 00:00-24:00,
living room/kitchen 09:00-22:00) 7.

e Doors (except the entrance and bathroom doors) were
fully open between 08:00-23:00.

e Windows (and doors) were modelled as orifice
openings (holes) with a discharge coefficient of
0.62. This simpler modelling approach eliminated the
impact of their geometrical representation which could
induce further inconsistencies and whose problems
have already being discussed®®. Therefore, only the

*The requirement for the internal air temperature to be greater than the
external dry bulb temperature was not explicitly stated in TM59. However,
this an assumption that EnergyPlus automatically makes and IES VE was
adjusted to match its operation.
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differences in air flow equations may influence the
predicted indoor environment.

Although the window operation has been questioned
above, it was used as suggested by TM59 as it does not
interfere with this work’s aims.

In the Simulation stage, simulations for both BPS tools
were performed with the same warm-up period of 35 days,
using the same time-step of 10 minutes and a simulation
period of a year.

Subsequently, in the Results and Analysis stage, the
overheating risk was determined and compared between
the two tools. This process was repeated for eight further
model variations, created by varying the factors identified by
the literature as being influential to overheating risk. Their
properties are summarised in table 1. To assess the level of
agreement between BPS tools, the null hypothesis that the
mean percentage of exceedance hours' predicted for each
criterion across the model variations should be the same
between tools at a significance level of 5% was tested using
the two-tailed Welch t-test of unequal variances>’.

A summary of the algorithm options used along with a
brief description of their differences is displayed in table 2.
Both tools offer a degree of flexibility in their modelling
approach, especially EnergyPlus which offers a number of
algorithm options for most heat transfer processes. However,
the default algorithms were preferred in all cases as they
are expected to be the most popular options within the
modelling industry °°. Thus, any observed differences should
be representative of the typical levels of disagreement
that could be found by professional modellers. Further
information regarding the algorithms can be found in®'—%3.
From equations 1, 2 and 3 and, it may be deduced that
any differences in overheating risk observed will relate to
the indoor air, radiant and external dry-bulb temperature.
As both tools’ approach to predicting the indoor conditions
is based on a series of three heat balance equations&’“,
differences in the individual components of the balance
equations will be responsible for any discrepancies observed
in the indoor environment. The air heat balance, responsible
for T,;., was the only case where all of the outputs could
either be directly extracted from the tool or calculated
from other variables. Therefore, to explain differences in
T,.ir and the predicted overheating risk between tools, the
following components of the air heat balance equation were
compared: (i) Internal Convection, (ii) External Ventilation
(iii1), Interzone Airflow, (iv) External Infiltration and (v)
Internal Gains. The comparison was performed for the
discrete hourly time-steps that EnergyPlus predicted the
BC bedroom to overheat but IES VE did not and may be
summarised as:

AQi; = (QIFFVF) —(@F)), )
where for each BPS tool, Q; ; is the heat transferred during

the overheating hour ¢ by heat process j.

Results & Discussion

Following the methods described above, nine models were
constructed with the overheating risk predicted for each one.
A summary of these predictions is presented in fig. 3 and
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discussed in the following sub-section. Subsequently, the
observed differences are interpreted through an analysis of
algorithm differences between the two tools.

Inter-model Comparison
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Figure 3. Part (a) compares the predicted overheating risk for
Criterion 1 while part (b) compares the predicted overheating
risk for Criterion 2.

From a simple observation of the overheating assessment
presented in fig. 3, a greater number of overheating hours is
predicted by EnergyPlus in comparison to IES VE. Overall,
EnergyPlus predicts a high overheating risk in seven out of
the nine cases. A low risk of overheating is predicted only for
the ground floor and North-facing models, while the highest
risk was associated with the West-facing, East-facing and
base-case models. This is in accordance with existing studies
in the literature which suggest that height and orientation can
prove significant to the risk of overheating”®*!. The hours of
exceedance decreased significantly in relation to the base-
case for the models with external shading and heavyweight
construction while a marginal decrease of overheating hours
relating to Criterion 2 was also observed, being again
in agreement with the literature*”**. The addition of a
secondary window in the dual aspect model led to increased
solar gains, resulting in the doubling of the hours of
exceedance within the bedroom. However, the percentage
of sleeping hours (22:00-07:00) over which the operative
temperature exceeds 26 °C halved. This is likely due to the

TThe percentage of occupied hours that either criterion threshold is
exceeded.
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Table 1. A summary of the key characteristics of the nine models developed.

Code Description

BC Floor level: 11.2m, orientation: south facing, single aspect, top level flat. Lightweight construction: Timber
frame, external brick layer and internal plasterboard. U-values: Wall 0.17 W/ m?K, window 1.28 W / m?K,
floor 0.18 W/mQK, roof 0.13 W/m2K, Window Solar Heat Gain Coefficient - 0.5, Glazing Ratio - 0.3. Constant
infiltration rate based on an air permeability of 5.0 m*/(h m?). Continuous added air exchange of 131s~! for the
kitchen and 8 1s~! for the bathroom.

G Ground-Level flat, floor level: 0 m, flat of similar temperature above (adiabatic ceiling).

M Mid-level flat, floor level: 5.6 m, flats of similar temperature above and below (adiabatic ceiling and floor).

w West-facing flat.

N North-facing flat.

E East-facing flat.

HW  Heavyweight construction with the same U-values as for BC: Concrete blocks, external brick layer, internal dense
plaster and carpet.

SH Shading: Overhang external shading, length of 2.2 m and width of 0.5 m over windows (fig. 2b).

DA Dual aspect model with a second window included in the bedroom (fig. 2c).

Table 2. A summary of the simulation options used in the modelling process. h. refers to the convection coefficient. * identifies the
processes that are part of the air heat balance equation. Internal gains are not an algorithm option, but for EnergyPlus the
occupant’s radiant fraction can be altered while for IES VE it cannot.

Process EnergyPlus IES VE Difference
Conduction Conduction Transfer Finite Differences  Discretisation method
Function with Hopscotch
discretisation
External Convection DOE-2 McAdams Empirical h. depends on surface roughness, wind
velocity and surface temperature for
EnergyPlus. The h. depends only on
wind velocity for IES VE.
External Longwave Default Blackbody CEC based model Different equations
Internal Longwave Hottel’s ”Script F” CIBSE Mean Radiant  Different equations which relate to T}.q4
model
Solar Distribution Full Exterior Default (Fixed) Beam radiation incident only on the

External Infiltration* Ideal Loads Air Sys-

Air Exchange - Infil-

floor of EnergyPlus. Beam radiation
distributed on surfaces according to
angular characteristics for IES VE.

Different Equations

tem - Outdoor Air tration
Supply
External Ventilation* &  Airflow Network MacroFlo Differences in the estimation of wind
Interzone Airflow* pressure coefficients & turbulence.
Internal Convection* TARP CIBSE Fixed h. depends on surface orientation and
temperature for EnergyPlus. h. = 3.0
for IES VE.
Internal Gains* Default (Adjustable) Default (Fixed) Radiant fraction for people.

increased levels of ventilative cooling associated with cross-
ventilation that allowed for the sufficient dissipation of heat
accumulated during the day.

The models constructed in IES VE predicted a low risk
of overheating in all nine cases. This was a result of the
temperatures in IES VE models being consistently lower
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than in EnergyPlus, with a mean temperature difference of
0.6 °C. The overheating levels were also less sensitive to
perturbations of the physical model. As indoor temperatures
are lower, they are not in near proximity to the overheating
thresholds assessed. Changes in the gains or losses resulting
from the alteration of the physical model may not cause a
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Table 3. Summary of the statistical results (p-values and
confidence intervals) which examined the null hypothesis of
similar mean percentage of exceedance hours between tools.

Room Criterion  P-value 95% CI [%]
Bedroom 1 0.02 0.144-1.34
Living Room 1 0.0004 1.05-2.68
Kitchen 1 0.0007 1.21-3.32
Bedroom 2 0.00005 0.373-0.743

sufficient increase in temperature to impact the overheating
assessment. Notably, the trends in predicted exceedance
hours between the models slightly vary between the tools.
Using Criterion 1, the bedroom’s predicted percentage of
overheating hours decreased from 1.3% for the base case
(top-floor flat) to 0.8% for the mid-level flat according to
EnergyPlus. For IES VE, the same metric increased from
0.2% for the base case to 0.5% for the mid-level flat.

The above comparisons have revealed statistically
significant differences in the predictions of overheating risk
between the BPS tools, as demonstrated by table 3. For a
significance level of 5%, there is enough evidence to reject
the null hypothesis, suggesting that the mean percentage of
exceedance hours predicted by each BPS tool differ for a
95% confidence level. For Criterion 1, the smallest difference
is observed for the bedroom, with a p-value of 0.02 and the
lower end of the confidence interval (CI) of 0.144%. For the
same criterion, the differences increase for the living room
and kitchen. For Criterion 2, the p-value was 0.00005 while
the CI ranged between 0.373% and 0.743%. The following
sections aim at investigating the factors responsible for the
observed differences in greater depth.

Heat Transfer Comparison

Key weather parameters such as wind speed, wind direction,
dry bulb temperature and external solar irradiance onto the
South-facing wall were compared and found to be in good
agreement (R > 0.997,R? > 0.994 ). Consequently, it is
highly unlikely that the predicted differences are a result of
each tool’s interpretation of the weather file.

To determine the reasons for the differences in zone
air temperature, a comparison of the air heat balance’s
components was performed as described in the previous
section. The results are presented in fig. 4, with key
descriptive statistics summarised in table 4.

Two patterns may be seen in fig. 4a, suggesting that
the importance of certain components depends on the
state of the model. For approximately half of the hours
the external ventilation rate is zero in both BPS tools,
due to the windows being closed, leading to a perfect
agreement. Over this period, surface convection and inter-
zone airflow are the most important factors for the observed
differences. In the case that significant discrepancies in
external ventilation are recorded, the differences in surface
convection increase in magnitude. A possible explanation
could be that ventilative cooling leads to a lower zone
air temperature, which subsequently forms a stronger
temperature gradient for convective heat transfer. This
exacerbates the already existing deviations in the modelling
of surface convection. Overall, surface convection and
external ventilation dominate the differences with absolute
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mean values of 47.4 W and 39.9W respectively. External
infiltration had the smallest contribution, followed closely
by internal gains. Given that internal temperatures were
consistently higher for EnergyPlus, a difference in external
infiltration was expected. A further breakdown of the internal
gains revealed that the default way by which each BPS tool
assigns the convective to radiative ratio of occupancy related
gains was responsible for the observed differences.

A slightly different picture is observed in the comparison
of heat transfer differences when EnergyPlus predicts a
failure of Criterion 2 and IES VE does not (fig. 4b).
For 13 out of the 21 occurrences, surface convection is
responsible for more than 66% of the total heat rate
difference, dominating with an absolute mean value of 85 W.

The investigation of volumetric flow rate within the
bedroom of the base-case model in fig. 5a (with key statistics
in table 5) revealed fluctuations between minima and maxima
until 10:00 for IES VE. This is a result of the window
being modelled as continually alternating between an open
and closed state due to the internal temperature being very
close to the threshold of 22°C. Similar modelling takes
place for EnergyPlus as well, but is not clearly seen here’.
The frequent overnight window operation is unrealistic and
the predicted overheating risk could be different if windows
were modelled as being closed overnight, an assumption
which may be true for about one in five occupants *>.

While windows are modelled as closed (14:30-19:30),
the door flow rate between the two BPS tools are in
close agreement, with IES VE predicting a mean influx of
76.11s71, close to EnergyPlus’s mean value of 81.21s7!.
This indicates a similar modelling of the temperature-
dependent stack effect, the only air flow mechanism available
at this point, while the slightly higher flow rate of EnergyPlus
is associated with its higher indoor temperatures.

When windows are modelled as open for both tools
(10:30-13:30), the mean window influx predicted by IES
VE was 2311s™! compared to 1301s™! predicted by
EnergyPlus. The relative agreement between tools on
stack-driven airflow discussed before suggests that wind-
driven ventilation may be responsible for the significant
discrepancies observed. This was further supported by the
near linear relation displayed between the wind speed and
the volumetric flow rate predicted by IES VE, but not
by EnergyPlus (fig. 5a). To explore this hypothesis, the
weather file was altered on the specific day by setting the
wind velocity to zero with the results shown in fig 5b.
Window influx between the two BPS tools now appears to
be in significantly closer agreement, with mean percentage
difference of 11% compared to 56% recorded before. The
greater volumetric flow rate predicted by IES VE, led to a
greater ventilative cooling which is visible as the difference
in external ventilation heat transfer in fig. 4a. By looking
at the equations relating to natural ventilation of either
tool, it is hypothesised that the observed discrepancies in

TEnergyPlus’ Airflow Network module runs independently of the simulation
timestep and operates the window at a higher frequency based on
extrapolated temperature between timesteps. The printed result in fig. Sa
is the average over each time step and hence the very high frequency of
window operation is not visible.
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Figure 4. Bar charts displaying the differences between air heat balance components of the two tools for selected hours. The
differences were estimated during hours that overheating was predicted by EnergyPlus but not IES VE, by subtracting the
EnergyPlus heat transfer component from the IES VE component. External Infiltration refers to the heat transfer related to constant
supply of outdoor air while External Ventilation is the heat transfer associated with air flow through the windows. Part 4a presents
these differences for the 37 discrete hours that differences were determined for Criterion 1, while part 4b is the equivalent
comparison for 21 occurrences for Criterion 2.

Table 4. Summary of the key descriptive statistics of the heat flow differences displayed in fig. 4.

Criterion 1 Criterion 2
Process Mean (W) SD (W) Max (W) Min (W) Mean (W) SD (W) Max (W) Min (W)
External Infiltration 6.00 2.06 8.73 2.81 1.78 0.92 3.24 0.359
External Ventilation 39.9 43.1 126 0.00 26.0 29.5 99.8 -36.5
Interzone Airflow 16.6 18.6 22.8 -38.7 8.17 15.0 0.00 -53.5
Total Surf. Conv. 47.4 25.6 -10.5 -90.0 85.0 35.5 -22.9 -139
Total Internal Gains 13.3 3.88 27.3 11.0 17.2 5.89 27.1 13.1

Table 5. Summary of the mean flow rates presented in fig. 5 for the normal and altered weather file over two time periods:
Windows open (10:30-12:00) and closed (14:30-19:30).

Door Influx Window Influx
Wind Windows E+(Is~Y) IESVE(s™ ') % Dif. E+ (s~ 1) IESVE(s!) % Dif.
Normal Open 33.6 38.2 13 130 231 56
Normal Closed 81.2 76.1 -6.5 0.00 0.00 0.0
Zero Open 334 51.3 42 133 118 11
Zero Closed 81.8 66.1 -21 0.00 0.00 0

the modelling of wind-driven ventilation are the result of differences in wind-pressure coefficient options and the
modelling of wind turbulence between the two tools %012,
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Figure 5. Line graphs of the predicted volumetric flow rate for the bedroom door and window in either BPS tool on the 15th of July.
Part 5a is the comparison with the suggested weather file. In part 5b the wind velocity was set to zero.

To understand the significant differences of surface
convection shown in fig. 4, a comparison of the individual
components that influence this mechanism was performed
(figure 6). The driving factor for the differences appears to
be the higher surface temperature predicted by EnergyPlus,
as visualised in fig. 6¢. The subsequently greater temperature
gradient displayed in 6d is able to overcome the lower
convective heat coefficient (fig. 6b) and result in an overall
greater convective heat flow demonstrated in fig. 6a. A
further exploration into the reasons behind EnergyPlus’
higher surface temperature could not be performed due to a
lack of detailed output by IES VE and the incompatibility
of output between tools. Similarly, a clear quantitative
comparison of other mechanisms suspected to differ and
discussed in table 2 could not be achieved.

Limitations

The most significant limitation of the present study was
the inability to empirically validate either tool. Therefore,
it is impossible to determine which tool is more accurate.
In the light of the observed discrepancies, it will be
important to empirically validate the two tools to determine
their predictive ability in the context of indoor overheating
prediction. Contrary to the typical validation experiments
that have been performed in the past, natural ventilation
should be one of the key variables being tested ***.

Another critical limitation was the restricted number of
outputs, mainly from IES VE, that would provide an insight
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in the different approaches of modelling heat mechanisms.
An important example was the lack of outputs relating
to longwave radiation exchange between surfaces, which
directly influences the room’s radiant temperature and
overheating risk ®.

A final limitation was the focus on a single typology
modelled at the same location and with the same weather
file. Quantifying the level of discrepancies across multiple
typologies, locations and weather files could provide a more
complete picture of the differences that may arise from
the choice of BPS tool. However, as the archetype model
used in this study represents the typology that has been
identified to be especially prone to overheating risk %%,
the key question of whether the choice of BPS tool could
influence the assessment’s predictions has been answered for
the most vulnerable case.

Implications

Within the industry, the exact prescription of certain physical
inputs included within TMS59 along with the specified
threshold criteria allows for a consistent method of assessing
indoor overheating risk in residential buildings. However,
as demonstrated above, the choice of BPS tool can impact
the predicted level of overheating risk in London flats. As
both tools examined in this work have been thoroughly
tested !, a strong argument that supports a single tool may
only be formed through the thorough empirical validation
of its algorithms for a wide range of dwelling typologies,
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Figure 6. Plot 6a is a comparison of the convective heat transfer from the east-facing bedroom wall to the zone air. Plot 6b
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as suggested by .
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climatic settings and occupancy scenarios. Until such work
is performed, a question arises on why modellers put
their trust on their tool of choice. Multiple reasons may
come to mind, such as ease of use, familiarity or cost. A
possible cause of concern may be that modellers choose
their tool based on their ability to easily pass any required
assessments. Furthermore, provided the great number of
algorithm options found within each tool, the degree of
manipulation that this choice may allow can be questioned ®.
With the occupant’s health in mind, it may be advisable
to choose a tool that predicts the worst-case scenario for
the intended assessment. For example, as EnergyPlus also
predicted higher temperatures in the winter, IES VE may
provide the worst case scenario for a free-running building
during the heating season. However, further comparative
work is required for each assessment before concluding to
such a decision. Overall, the industry can benefit from the
use of TM59 as a standardised method of assessing the effect
of interventions on reducing the overheating risk.

For the academic field, a need for more detailed empirical
validation work and improvement of the available BPS
tools is apparent. Research is required to identify and
quantify the uncertainties that may accompany the predicted
overheating risk. In addition, reconsidering the approach of
predicting overheating risk may also be beneficial. Existing
empirical validation studies which do not account for natural
ventilation identified differences of 1-2 °C3%*%%_ This level
of uncertainty is sufficiently high as to alter an overheating
risk level from low to high, impairing the prediction’s
accuracy.

From a policy perspective, although this work identified a
significant level of uncertainty in the overheating assessment
methods suggested by TM59, BPS-based assessment may
still be considered better than the current approach described
in Appendix P of SAP'®. The use of a steady-state
approach with mean input values by Appendix P prevents it
from investigating future weather predictions with extended
periods of high temperatures. Beyond prediction, policy may
pursue the enforcement of interventions whose effectiveness
has already been established, such as external shading**.
The building regulations may impose such measures on new
dwellings most at risk, such as top-floor or West-facing flats.
With the projected increase in external temperatures due to
ongoing climate change, this action may prove critical if we
are to prevent the uptake of air-conditioning, which could
significantly increase the energy demand and associated
building carbon emissions.

Conclusions

This work aimed to quantify and understand the differences
in the overheating risk prediction between two commonly
used building performance simulation tools, EnergyPlus
8.7 and IES VE 2016. This was achieved through an
inter-model comparison of nine variations of a naturally
ventilated, London flat archetype, following the overheating
risk assessment described in the Technical Memorandum 59.
The default algorithm options were selected in either tool to
represent what is expected to be the most popular choices
within the modelling community. Significant differences
were recorded between predictions, with the EnergyPlus
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models recording a high overheating risk in seven out of the
nine cases, while IES VE predicted a low overheating risk for
all models. Within each tool, the factors expected to influence
the risk of overheating such as height, orientation or shading
agreed to a satisfactory level with the literature.

This work also set out to identify which heat mechanisms
are responsible for the discrepancies in overheating risk for
the base-case model. A dominant factor was determined
to be the modelling approach of natural ventilation, with
IES VE predicting in certain cases double the volumetric
flow rate compared to EnergyPlus. In particular, wind-
driven ventilation and the effect of turbulence appear to be
driving the observed differences in the modelling of natural
ventilation. Another factor that dominated the predicted
differences was the internal surface convection which
resulted from the higher surface temperatures predicted
by EnergyPlus. Although specific parameters that could
be contributing to these higher surface temperatures were
examined, a definite conclusion could not be drawn due to
the lack of all the required outputs and black-box nature of
IES VE.

The precise magnitude of differences in overheating
cannot be generalised to other models or tools. However, this
work presents evidence that the choice of BPS tool could
influence the assessment for London flats which are expected
to be highly susceptible to overheating risk. Following these
results, a number of implications have been identified and
discussed.
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