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A B S T R A C T

Objective: Generalized tonic-clonic seizures are accompanied by cardiovascular and respiratory sequelae that
threaten survival. The frequency of these seizures is a major risk factor for sudden unexpected death in epilepsy
(SUDEP), a leading cause of untimely death in epilepsy. The circumstances accompanying such fatal events
suggest a cardiovascular or respiratory failure induced by unknown neural processes rather than an inherent
cardiac or lung deficiency. Certain cortical regions, especially the insular, cingulate, and orbitofrontal cortices,
are key structures that integrate sensory input and influence diencephalic and brainstem regions regulating
blood pressure, cardiac rhythm, and respiration; output from those cortical regions compromised by epilepsy-
associated injury may lead to cardiorespiratory dysregulation. The aim here was to assess changes in cortical
integrity, reflected as cortical thickness, relative to healthy controls. Cortical alterations in areas that influence
cardiorespiratory action could contribute to SUDEP mechanisms.
Methods: High-resolution T1-weighted images were collected with a 3.0-Tesla MRI scanner from 53 patients
with generalized tonic-clonic seizures (Mean age ± SD: 37.1 ± 12.6 years, 22 male) at Case Western Reserve
University, University College London, and the University of California at Los Angeles. Control data included 530
healthy individuals (37.1 ± 12.6 years; 220 male) from UCLA and two open access databases (OASIS and IXI).
Cortical thickness group differences were assessed at all non-cerebellar brain surface locations (P < 0.05 cor-
rected).
Results: Increased cortical thickness appeared in post-central gyri, insula, and subgenual, anterior, posterior, and
isthmus cingulate cortices. Post-central gyri increases were greater in females, while males showed more ex-
tensive cingulate increases. Frontal and temporal cortex, lateral orbitofrontal, frontal pole, and lateral parietal
and occipital cortices showed thinning. The extents of thickness changes were sex- and hemisphere-dependent,
with only males exhibiting right–sided and posterior cingulate thickening, while females showed only left lateral
orbitofrontal thinning. Regional cortical thickness showed modest correlations with seizure frequency, but not
epilepsy duration.
Significance: Cortical thickening and thinning occur in patients with generalized tonic-clonic seizures, in car-
diovascular and somatosensory areas, with extent of changes sex- and hemisphere-dependent. The data show

https://doi.org/10.1016/j.nicl.2018.07.015
Received 15 March 2018; Received in revised form 27 June 2018; Accepted 15 July 2018

Abbreviations: ACC, anterior cingulate cortex; CWRU, Case Western Reserve University; GTCS, generalized tonic-clonic seizures; OASIS, Open Access Series of
Imaging Studies; PCC, posterior cingulate cortex; ROI, region of interest; SUDEP, sudden unexpected death in epilepsy; UCL, University College London; UCLA,
University of California Los Angeles.
⁎ Corresponding author at: Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095,

USA.
E-mail address: rharper@ucla.edu (R.M. Harper).

NeuroImage: Clinical 20 (2018) 205–215

Available online 18 July 2018
2213-1582/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195306202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2018.07.015
https://doi.org/10.1016/j.nicl.2018.07.015
mailto:rharper@ucla.edu
https://doi.org/10.1016/j.nicl.2018.07.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2018.07.015&domain=pdf


injury in key autonomic and respiratory cortical areas, which may contribute to dysfunctional cardiorespiratory
patterns during seizures, as well as to longer-term SUDEP risk.

1. Introduction

The mechanisms underlying sudden unexpected death in epilepsy
(SUDEP) remain obscure, despite recognition that SUDEP is among the
most common causes of death in people with epilepsy (Devinsky,
2011). Patients who experience frequent generalized tonic-clonic sei-
zures (GTCS) are at even higher risk for SUDEP (Harden et al., 2017).
Autonomic and respiratory disturbances typically accompany GTCS,
with extreme transient elevations and profound declines in blood
pressure and heart rate, together with induction of dangerous cardiac
arrhythmia. In addition, the severe extensor and flexor somatomotor
efforts accompanying tonic and clonic phases of the seizures often re-
sult in sustained apnea or apneusis (Fisher et al., 2014; Goldman, 2012;
Lederman, 2012). The potential for unrecoverable loss of perfusion
from prolonged hypotension or cardiac arrhythmia, or sustained hy-
poxia from extended cessation of airflow is significant during a GTCS
(Bateman et al., 2008).

The brain mechanisms responsible for maintaining blood pressure
and preserving left and right balance of sympathetic and para-
sympathetic output to avoid fatal arrhythmia from asymmetric outflow
do not solely rest in the brainstem. Insular, cingulate, and frontal cor-
tices exert significant influences on other limbic and hypothalamic
structures that, in turn, project to brainstem structures comprising the
final common output pathways for autonomic outflow (Craig, 2003;
Hurley et al., 1991; Loewy, 1982; Terreberry and Neafsey, 1987;
Verberne and Owens, 1998; Westerhaus and Loewy, 2001). These
cortical structures also influence respiratory patterning, either through
blood pressure and breathing interactions (James et al., 2013; Ohtake
and Jennings, 1992; Trelease et al., 1985), or through direct projections
to brainstem respiratory nuclei (Moga et al., 1990; Terreberry and
Neafsey, 1987). If the cortical and diencephalic structures mediating
autonomic and breathing control are injured, as they are in other dis-
eases such as heart failure and obstructive sleep apnea (Fatouleh et al.,
2014; Harper et al., 2012; Kumar et al., 2011; Kumar et al., 2015;
Macey et al., 2008; Ogren et al., 2014; Park et al., 2016; Woo et al.,
2009), the consequences for regulation of sympathetic outflow and
respiratory patterning can be severe.

Significant alterations occur in functional connectivity between
brain structures in patients with GTCS (Blumenfeld et al., 2009;
Elshahabi et al., 2015; Ji et al., 2014; Song et al., 2011), presumably
arising from loss of volume in neural structures (Huang et al., 2011), or
fiber injury (Kori et al., 2013). The findings suggest a potential for in-
volvement of insular and cingulate cortex regions, both of which
mediate autonomic, and especially cardiovascular patterning
(Kimmerly et al., 2005; Oppenheimer, 2001; Oppenheimer et al., 1991).
The insular cortices exert lateralized autonomic influences (principally
sympathetic influences on the right side, parasympathetic on the left)
(Oppenheimer et al., 1992), and the cingulate cortex serves major blood
pressure and respiratory regulatory roles (Devinsky et al., 1995;
Frysinger and Harper, 1986). In addition, frontal cortex regions which
typically play inhibitory roles for motor regulation (Chase and McGinty,
1969, 1970; Knauss et al., 1968; Sauerland et al., 1967) are affected in
patients with GTCS (Huang et al., 2011), a concern considering the
potential effects on the respiratory somatic musculature.

The concern for autonomic and respiratory dysregulation in GTCS is
enhanced by findings that risk for SUDEP, a common cause of death in
people with epilepsy, accounting for 7.5–17% of deaths in individuals
with the condition (Terra et al., 2013), and over half of deaths in pa-
tients with intractable epilepsy (Devinsky, 2011; Tolstykh and Cavazos,
2013), is especially increased in patients who experience frequent GTCS

(Hesdorffer et al., 2011).
The objective of this study was to determine whether cortical re-

gions serving autonomic regulation of cardiovascular action and so-
matomotor influences on breathing are altered in patients with GTCS,
with the long-term goal of relating the changes to pathological auto-
nomic and breathing patterns that may lead to a compromised status,
including SUDEP. A number of analytic techniques are available to
assess different aspects of cortical injury; we chose quantification of
cortical thickness, an objective measure that can be systematically
evaluated by a standard software package, FreeSurfer, which has been
well-validated in assessments of injury in other disease conditions (Dale
et al., 1999; Fischl et al., 1999; Fischl et al., 2004; Macey et al., 2012b),
and has shown good reliability across various scanners (Han et al.,
2006). Because females exhibit distinct patterns of functional changes
and structural injury in other conditions of hypoxia and extreme blood
pressure changes (Macey et al., 2012a), and because males and females
normally show different cortical thicknesses in disparate regions, we
also considered GTCS changes by sex. In addition, since selected cor-
tical areas, e.g., insula, show lateralized influences on autonomic action
(Oppenheimer et al., 1992; Oppenheimer et al., 1996), partitioning of
cortical thickness changes by left or right hemisphere was also required.

2. Materials and methods

2.1. Participants

We assessed cortical thickness changes in patients with GTCS using
high-resolution T1-weighted MRI scans, collected from 53 GTCS pa-
tients (mean age ± SD:37.1 ± 12.6 years, 22 male) scanned at UCLA,
CWRU, and UCL. The studies were approved by institutional review
boards at each institution, and those documents are preserved at CWRU
and at the individual institutions. Written, informed consent was ob-
tained from each subject. Clinical variables, such as type of epilepsy and
GTCS frequency, were obtained using the Center for SUDEP Research
Multi-Modality Epilepsy Data Capture and Integration System
(MEDCIS) database (Zhang et al., 2014; Zhang et al., 2015). We com-
pared the patient group with a population set of 530 control subjects
(37.1 ± 12.6 years, 220 male). The controls were selected to have 10
control subjects matched to each GTCS subject on the basis of age and
gender. Data from 36 control subjects were collected at UCLA under
similar informed consent procedures, and these local control scans were
supplemented by data from Hammersmith Hospital of London's open-
access IXI dataset http://www.brain-development.org (n=322)
(Ericsson et al., 2008; Heckemann et al., 2003), and the OASIS patient
database http://www.oasis-brains.org/ (n=172) (Herrick et al., 2016;
Marcus et al., 2007), which has approval for public sharing of the
images (Marcus et al., 2007).

2.2. Magnetic resonance imaging

High-resolution three-dimensional anatomical brain scans were
obtained from GTCS subjects and controls at UCLA, CWRU, and UCL
with 3.0-Tesla MRI scanners. In addition, OASIS and IXI control images,
collected with both 1.5- and 3.0-Tesla scanners, were used (Ericsson
et al., 2008; Herrick et al., 2016; Marcus et al., 2007); no systematic
differences in FreeSurfer measures between images collected at dif-
ferent magnetic field strengths have been found (Han et al., 2006;
McCarthy et al., 2015; Reuter et al., 2012).
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2.3. Data processing

Prior to importing to FreeSurfer 5.3, all T1-weighted images were
manually rigid-body shifted to overlap the Montreal Neurological
Institute template (as included with SPM12). All images were resliced
into a common space and voxel size (0.9× 0.9×0.9mm) to ensure
consistent processing within FreeSurfer. These resliced images were
imported into FreeSurfer and processed with the standard protocol
(Dale et al., 1999; Fischl et al., 2004). This protocol includes skull
stripping and segmentation of gray and white matter tissue types; these
steps were manually checked and corrections performed if needed, as
per standard FreeSurfer procedures. Images were normalized to
common space and smoothed (10mm kernel) in preparation for sta-
tistical analysis. First, a regional analysis was performed. Second, re-
gions-of-interest were selected based on examination of the regional
analysis. Using the standard FreeSurfer atlas (Desikan et al., 2006), the
average cortical thickness within each ROI was extracted for each
subject.

2.4. Statistical analysis

FreeSurfer includes an implementation of a general linear model
that allows for a variety of statistical tests. Group characteristics of
cortical thickness, laterality of changes, and age- and sex- thickness
correlations were performed (p < 0.05, false discovery rate correction
for multiple comparisons). Whole brain values were calculated for each
subject, and then averaged to obtain mean global cortical volume and
overall cortical thickness. In the regional analysis, group differences
were assessed using the “qdec” graphical user interface tool. The mean
thickness for each selected ROI was compared between groups. ROI
mean thickness values were analyzed using two-sample, two-tailed t-
tests assuming unequal variances. Additionally, correlations between
ROI mean thickness, scaled for total intracranial volume (TIV), and
GTCS frequency or epilepsy duration were assessed.

3. Results

3.1. Demographics & global cortical changes

Subject characteristics are shown in Table 1. Mean ages did not
differ significantly between GTCS and Control groups, and the pro-
portion of males vs females in each group was the same (GTCS: 22/53
male, Control: 220/530 male). For each hemisphere, total cortical vo-
lume and average cortical thickness were calculated. Left and right total
cortical volumes were similar in GTCS patients and controls, while
mean cortical thickness in the right hemisphere was 1.6% thinner in the
GTCS group (Right GTCS thickness mean ± SE: 2.42 ± 0.016, Con-
trol: 2.46 ± 0.006, two-sample t-test p=0.03).

3.2. Characteristics of epilepsy

The majority of patients (34/53) had more than three GTCS in the
past year, while eight had between one and three GTCS, and nine had
no GTCS in the past year. For patients with well-documented seizure
frequency data, the mean number of GTCS per year was similar in fe-
male and male patient groups (15 and 17 per year, respectively), al-
though GTCS frequency in females of this study was less likely to be
well-documented. Twenty-five patients had epilepsy durations of<
15 years, 18 had durations of 15–29 years, and 10 of the 53 GTCS pa-
tients had epilepsy durations of 30 or more years. Females and males
had similar mean durations of epilepsy (mean ± std. dev; females:
15.9 ± 12.3 years, males: 17.7 ± 11.5 years, p < 0.62).
Approximately half of patients had presumed temporal lobe onset with
secondary generalization (Table 2).

3.3. Regional cortical thickness differences

3.3.1. Combined sexes
The frontal cortex, temporal pole, and lateral parietal and occipital

cortices showed cortical thinning (Fig. 1). T values are expressed in a
colored scale, with thinning represented in cool (blue) colors, and
thickening in warm (red-yellow) colors.

The combined-sex values for thinning frontal cortex in the GTCS
group included the left and right superior frontal, rostral and caudal
middle frontal, frontal pole, temporal pole, and medial orbitofrontal
areas. The lateral orbitofrontal significantly thinned, but only on the
left side (Fig. 1A & C, blue areas, Table 3). Increased cortical thickness

Table 1
Subject characteristics.

GTCS (N=53) Mean ± SD Control (N=530)

Mean ± SD Range Range P value

Age (years) 37.1 ± 12.6 16.5–63.5 37.1 ± 12.6 18.5–63.9 < 0.98
Sex 22 Male, 31 Female 220 Male, 310 Female = 1.00

Cortical volume (cm3)
Left 219.9 ± 25.4 165.4–274.2 226.6 ± 27.7 149.3–31.4 < 0.077
Right 224.0 ± 25.1 170.6–27.1 227.7 ± 27.4 152.6–31.8 < 0.319

Mean ± SE Range Mean ± SE Range P value

Thickness (mm)
Left 2.42 ± 0.017 2.13–2.72 2.45 ± 0.005 2.14–2.75 < 0.071
Right 2.42 ± 0.016 2.16–2.70 2.46 ± 0.006 2.14–2.77 < 0.031*

Two-sample, two-tailed t-tests assuming unequal variances. (*) indicates significant p-value.

Table 2
Characteristics of Epilepsy.

Region of Seizure Onset Females Males Mean #GTCS/yr

Temporal Lobe
Left 6 8 5.8
Right 3 2 26
Bitemporal 2 2 18.5
Unspecified 1 0 <1
Focal 0 4 16.5
Multifocal 1 1 40

Frontal
Left 1 1 9.5
Right 3 1 36.4

Frontotemporal
Left 0 1 4.5
Right 1 0 > 100

Temporo-occipital
Right 0 1 12
Generalized 8 1 14.7
Unknown 5 0 9.4
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appeared bilaterally in the left and right paracentral lobule, and the left
postcentral gyrus. Bilateral thickening along the medial aspect (Fig. 1B)
was observed in the right and left rostral anterior cingulate and cuneus,
and right-sided thickening emerged in the mid-posterior cingulate, as
well as in the parahippocampal, fusiform, and lingual areas (Fig. 1,
Table 4). Both left and right insulae thickened, as did the adjacent
transverse temporal areas.

3.3.2. Separated by sex
The magnitude of increase in cortical thickness was lateralized, i.e.,

more marked in one hemisphere over the other, with the extent of
change dependent on sex (Fig. 2, Table 4). Males showed bilateral
thinning of the lateral orbitofrontal cortex, but females had significant
thinning only on the left (Table 5). In the postcentral gyrus, females
showed bilateral thickening (Fig. 2A & C, Table 5), but males showed
only insignificant trends of thickening on the left, and no difference on
the right. Males showed significant thickening in the posterior cingulate
(bilaterally) and right isthmus (Fig. 2F & H, Table 5), but females
showed no differences in thickness on the right or left. No differences
appeared in the caudal anterior (i.e., mid) cingulate with either sex or
combined sexes. Taken separately by sex, both males and females had

significant thickening on the right-side insula, but insignificant changes
on the left; however, combining the sexes, significant thickening also
appeared on the left. A similar pattern was found in the cuneus. Both
sexes showed bilateral thickening of the rostral anterior cortex. These
findings are displayed in Fig. 2, with statistical values in Table 5.

3.3.3. Regional cortical thickness correlations
ROIs exhibiting significant thinning or thickening (Tables 3 & 4),

were subjected to further correlation analysis. There were no significant
correlations between mean ROI thickness (TIV-scaled) and duration of
epilepsy (n=53). The strongest correlation was observed in the left
medial orbitofrontal cortex, where r=0.17. For all other ROIs,
│r│ < 0.14. Initial analyses showed only weak correlations between
GTCS frequency and mean cortical thickness. However, when patients
were divided into moderate-high (3–15 GTCS/yr, n=16, 7F, mean
age ± std. dev:32.6 ± 13.0 years, mean duration: 18.9 ± 14.8 years)
and very high (18–78 GTCS/yr, n=14, 6F, mean age ± std.
dev:38.1 ± 11.9 years, mean duration: 16.0 ± 9.7 years) frequency
groups, strong correlations were found. In the moderate-high group, all
ROIs examined showed positive correlations with GTCS frequency
(r=0.18–0.71, mean r=0.50). The strongest correlation (r=0.72)
was found in the left insula, but strong positive correlations were also
observed in regions of cortical thinning (right caudal midfrontal cortex:
r=0.67). The very high frequency group showed opposite trends, with
all but the frontal pole showing negative correlations with frequency
(r=−0.03–0.52, mean r=−0.22). The right caudal midfrontal
cortex, which had one of the strongest positive correlations in the
moderate-high group, had one of the strongest negative correlations
(r=−0.51) in the very high frequency group.

Fig. 1. Regions of significant group difference overlaid on “pial” views (A & B:
showing topical view of sulci and gyri) and “inflated” views (C & D: sulci ex-
panded and gyri flattened) for combined male and female cortical thickness
data of left and right lateral (A & C) and medial (B & D) brain views of cortical
thickness differences in 53 GTCS patients vs 530 age- and gender-matched
controls, using sex as a covariate. t-statistic thresholds set using FDR (Rate:
p=0.05) Blue scale represents thinning, red-yellow scales indicate cortical
thickening in GTCS patients over controls. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Table 3
Regions of Cortical Thinning.

Areas of cortical thinning: cortical thickness (mm)

GTCS (N=53) Control (N=530)

Mean ± SD Mean ± SD P value

Lateral orbitofrontal
Left 2.53 ± 0.157 2.65 ± 0.164 <0.001*
Right 2.55 ± 0.168 2.58 ± 0.210 <0.22^

Medial orbitofrontal
Left 2.33 ± 0.156 2.40 ± 0.183 <0.002*^
Right 2.32 ± 0.181 2.38 ± 0.212 <0.03*

Frontal pole
Left 2.46 ± 0.410 2.81 ± 0.295 <0.001*
Right 2.44 ± 0.418 2.80 ± 0.278 <0.001*

Superior frontal
Left 2.62 ± 0.176 2.75 ± 0.155 <0.001*
Right 2.57 ± 0.179 2.77 ± 0.169 <0.001*

Rostral Middle frontal
Left 2.25 ± 0.139 2.35 ± 0.141 <0.001*
Right 2.19 ± 0.145 2.34 ± 0.151 <0.001*

Caudal middle frontal
Left 2.45 ± 0.161 2.54 ± 0.161 <0.001*
Right 2.44 ± 0.154 2.54 ± 0.180 <0.001*

Precentral gyrus
Left 2.50 ± 0.162 2.48 ± 0.186 <0.48
Right 2.46 ± 0.149 2.47 ± 0.194 <0.84

Mean cortical thickness values of frontal lobe ROIs in combined male and fe-
male group from 53 GTCS patients vs 530 age- and gender-matched controls.
Two-sample, two-tailed t-tests assuming unequal variances. (*) indicates sig-
nificant p-value. (^) indicates significant GTCS sex-related differences relative to
controls; see Table 5 for details.

J.A. Ogren et al. NeuroImage: Clinical 20 (2018) 205–215

208



4. Discussion

4.1. Overview

Cortical thickness differs in multiple areas in GTCS patients relative
to a large number of age- and gender-matched controls. Moreover, the
extent of thickening or thinning of cortical sites varies by sex and by
brain hemisphere. Changes in thickness of the cingulate and insular
cortices were of special interest for their established roles in autonomic
and respiratory regulation and the concern of those regulatory issues in
SUDEP. Other cortical regions, especially the frontal and temporal
cortices, showed tissue thickness declines, and additional sensorimotor
areas, particularly the pre- and post- central gyri, showed increased
thickness, as did posterior areas, including the medial occipital cortex.
Cortical thinning was greater in males in frontal cortex; cortical
thickening was more marked in post-central gyri of females. The right
anterior cingulate thickening was more widespread than the left, and
affected subgenual portions of the cingulate.

4.2. Combined sexes

4.2.1. Cortical thinning
Changes in cortical thickness can reflect multiple intrinsic and pa-

thologic processes. Decreased regional thickness appears in numerous

pathological conditions, including epilepsy (Bernhardt et al., 2009;
Burge et al., 2016; Geisseler et al., 2016; Lin et al., 2007; McEvoy et al.,
2009; van Haren et al., 2011). Here, we report extensive neocortical
thinning in selected areas in patients with GTCS relative to controls,
particularly in frontal cortex. Frontal neocortex thinning is common in
frontal or idiopathic generalized epilepsies (Bernhardt et al., 2009;
Hong et al., 2016), but also occurs in temporal lobe epilepsy (Bernhardt
et al., 2008; Lin et al., 2007), where such thinning is associated with
poor surgical outcome (Kamson et al., 2016), and tends to correlate
with duration of epilepsy and seizure frequency (Bernhardt et al., 2009;
Lin et al., 2007). Neocortical thinning, particularly of the frontal cortex,
may stem from remodeling of thalamocortical networks, brought on by
repeated GTCS (Bernhardt et al., 2009), a possibility consistent with
reported thalamic gray matter reductions in SUDEP and high SUDEP-
risk patients (Wandschneider et al., 2015). Here, we show that in pa-
tients with very high GTCS frequency, there is a weak-to-moderate
correlation between neocortical thickness and GTCS frequency across
numerous brain regions, even those that may show thinning in patients
with lower GTCS frequency. Decreased cerebral blood flow is common
in specific brain regions during secondarily-generalized GTCS, and may
also contribute to thinning (Blumenfeld et al., 2009). Profound hypo-
perfusion occurs in the orbitofrontal, lateral frontal, and anterior and
posterior cingulate cortices during seizure generalization and into the
postictal period (Blumenfeld et al., 2009), thus establishing conditions
for loss of tissue.

Frontal cortical thinning has significant implications for seizure
characteristics and physiological expression. Decreased inhibition,
caused by loss or restructuring of frontal inhibitory networks (Chase
and McGinty, 1970; Sauerland et al., 1967), can lead to increased sei-
zure frequency, duration, or severity. Frontal cortex thinning thus has
the potential to worsen the seizure condition. Further concerns rest
with the roles of frontal cortex regions in cardiovascular and somatic
muscle action. Autonomic areas, such as the orbitofrontal cortex, exert
an integral role in cardiovascular regulation, especially in blood pres-
sure control (Kimmerly et al., 2005), and in suppression of somatic
musculature, including respiratory musculature, and particularly upper
airway musculature (Chase and McGinty, 1970; Marks et al., 1987).
Loss of neurons in the orbitofrontal region will diminish its normal
regulatory influences on both somatic respiratory musculature and
autonomic control, thus hindering the potential to recover from dis-
ruptive respiratory muscle action or extreme hypotension.

4.2.2. Cortical thickening
While thinning typically reflects loss or impaired function, inter-

pretation of neocortical thickening is not straightforward. In dysplasia-
related frontal lobe epilepsy, thickening may reflect delayed pruning
(Hong et al., 2016), while increased cortical thickness in patients with
macular degeneration likely reflects compensatory “gain of function” in
peripherally-responsive primary visual cortex reflecting spared per-
ipheral vision (Burge et al., 2016). Cortical thickening, including pre-
frontal and anterior insular cortex, may reflect experience-dependent
increased neural volume (Lazar et al., 2005; Luders et al., 2009), per-
haps analogous to that of enhanced hippocampal volume after spatial
navigation practice (Maguire et al., 2006), and reorganization in visual
cortex following vision loss (Burge et al., 2016). The bilaterally in-
creased insular thickness in GTCS may develop from specialized ex-
periences related to the condition. Repeated insular overactivation from
GTC seizure processes, or as compensatory mechanisms to overcome
the resulting enhanced sympathetic outflow could initiate cortical
thickening. In patients with moderate-high GTCS frequency, thickness
of the left insula strongly correlated with GTCS frequency. The left
insula, with more involvement in parasympathetic responses vs sym-
pathetic action on the right (Oppenheimer et al., 1992), also shows
more extensive thickening in GTCS and poses a particular concern for
SUDEP, since exaggerated parasympathetic action can lead to profound
hypotension, with loss of perfusion.

Table 4
Regions of cortical thickening.

Areas of cortical thickening: cortical thickness (mm)

GTCS (N=53) Control (N=530)

Mean ± SD Mean ± SD P value

Insula
Left 3.03 ± 0.186 2.98 ± 0.185 <0.0506
Right 3.05 ± 0.178 2.97 ± 0.170 <0.003*

Cingulate (mean)
Left 2.64 ± 0.182 2.58 ± 0.151 <0.04*
Right 2.61 ± 0.194 2.54 ± 0.148 <0.011*^

Rostral anterior cingulate
Left 2.93 ± 0.201 2.79 ± 0.254 <0.001*
Right 2.89 ± 0.265 2.74 ± 0.287 <0.001*

Caudal anterior cingulate
Left 2.65 ± 0.267 2.59 ± 0.226 <0.15
Right 2.56 ± 0.257 2.52 ± 0.222 <0.37

Posterior cingulate
Left 2.51 ± 0.198 2.49 ± 0.172 <0.43
Right 2.54 ± 0.202 2.48 ± 0.173 <0.04*^

Isthmus cingulate
Left 2.46 ± 0.286 2.46 ± 0.213 <0.98
Right 2.45 ± 0.250 2.41 ± 0.212 <0.18

Paracentral lobule
Left 2.34 ± 0.174 2.28 ± 0.196 <0.013*^
Right 2.36 ± 0.167 2.31 ± 0.212 <0.027*

Postcentral gyrus
Left 2.06 ± 0.191 1.99 ± 0.137 <0.0097*^
Right 2.02 ± 0.160 1.99 ± 0.151 <0.11^

Cuneus
Left 1.81 ± 0.186 1.77 ± 0.192 <0.08
Right 1.82 ± 0.143 1.76 ± 0.181 <0.0084*^

Pericalcarine
Left 1.62 ± 0.159 1.49 ± 0.198 <0.001*
Right 1.59 ± 0.151 1.48 ± 0.185 <0.001*

Mean cortical thickness values of insula, cingulate, parietal, and occipital ROIs
in combined male and female group from 53 GTCS patients vs 530 age- and
gender-matched controls. Two-sample, two-tailed t-tests, assuming unequal
variances. (*) indicates significant p-value. (^) indicates significant GTCS sex-
related differences relative to controls; see Table 5 for details.
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The circumstances surrounding SUDEP, which include, by deduc-
tion in unobserved cases, silence and occurrence at times when the
patient would be asleep, with little evidence of trauma, suggest a car-
diovascular event or respiratory failure during the fatal sequence. Such
physiological patterns have been confirmed in isolated observed in-
stances (Kloster and Engelskjon, 1999; Ryvlin et al., 2013). A range of
potential cardiovascular failure eventualities may occur. One scenario
involves a profound loss of blood pressure, which may result from se-
vere arrhythmia, reduced cardiac output, or marked loss of vascular
tone. However, major neural reflex mechanisms are normally in place
to rescue blood pressure from such scenarios. These mechanisms in-
clude recruitment of action of the cerebellar deep nuclei, which serve to
dampen profound hypotension or marked hypertension, with somatic
responses to normalize pressure. Hypotension can be eased with ex-
aggerated tidal volumes or tachypneic respiratory efforts, or with axial
muscle extension to increase blood pressure (Harper et al., 1999), while
transient hypertension can be normalized with cessation of respiratory
efforts (Trelease et al., 1985). If an extreme loss of blood pressure takes
place during a GTCS, those recovery mechanisms that depend on the
integrity of neural areas mediating blood pressure and breathing for
vital support may not respond appropriately. Similarly, if the fatal event
results from sustained apnea or apneusis, normal oxygen and carbon
dioxide reflex recovery mechanisms may not adequately function. A

need exists to determine the nature of potential neural injury that may
contribute to dangerous cardiovascular sequelae in patients with GTCS,
or that would interfere with recovery from such events; cortical struc-
tures exert critical roles in protection of that recovery.

Cortical thickness changes may also reflect long-term functional
reorganization accompanying chronic epilepsy (Elger et al., 2004;
McDonald et al., 2008). Thickening of the ACC and cuneus, for ex-
ample, may result from the marked increase in interhemispheric func-
tional connectivity between these two regions in patients with GTCS (Ji
et al., 2014), while thinning of superior frontal cortex is consistent with
demonstrated declines in functional connectivity within the default
mode network (Song et al., 2011). The findings here of increased
thickening in the paracentral lobules and precentral gyrus are sup-
ported by a recent, smaller study of patients with secondarily-general-
ized seizures, which showed greater gray matter volumes in the motor
pathway (paracentral regions) (Hsin et al., 2017). Such changes may
underlie reduced seizure threshold, or a decreased latency to seizure
generalization. The ACC helps mediate bradycardia via influences on
blood pressure and heart rate (Critchley et al., 2003). Although the ACC
is spared from acute neuronal/axonal swelling in GTCS patients, long-
term cortical thickening found here suggests that impaired respiratory
and cardiovascular regulation may result from damage to that area. The
ACC thickening may relate to decreased thalamic-ACC functional

Fig. 2. Regions of significant group difference overlaid on “pial” views (showing topical view of sulci and gyri) and “inflated” views (i.e. sulci expanded and gyri
flattened) for data from 31 female GTCS patients vs 310 age-matched female controls (Female, A-D) and from 22 male GTCS vs. 220 age-matched male controls
(Male, E-H). Lateral views (A, C, E, F) and medial views (B, D, F, H) in left and right brain views show areas of cortical thinning (blue scale) and thickening (red-
yellow scales) in GTCS patients over controls, partitioned by sex. t-statistic thresholds (FDR Rate: p=0.05) set in the combined male-female analysis (Fig. 1) were
maintained here for consistency. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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connectivity in patients at risk for SUDEP (Allen et al., 2017).
The neuronal architectural changes common in the hippocampus in

temporal lobe epilepsy (Mathern et al., 1995; Scheibel et al., 1974) can
also take place in neocortex (Salin et al., 1995), and include significant
increases in length and number of axon collaterals and swellings.
Thickening may also reflect progressive architectural changes, stem-
ming from glial, neuronal, or synaptic reorganization, such as those
resulting from repeated episodes of severe seizure activity or status
epilepticus (Colciaghi et al., 2014). In patients with moderate-high
GTCS frequency, seizure frequency correlated strongly with thickness of
the cingulate cortex. Increased cortical thickness in the posterior and
anterior cingulate is also consistent with glial activation, which is ac-
companied by cell swelling. Inflammatory processes resulting from re-
peated GTCS may contribute to such swelling. Previously, we found
increased tissue homogeneity in the PCC (presumably from inflamma-
tion); however, the ACC was spared these changes in homogeneity
(Ogren et al., 2016a; Ogren et al., 2016b). Altered glial function in the
PCC would suggest that GTCS could induce long-term injury to both
sites. The PCC plays a significant role in “intrinsic” homeostatic control,
and altered functional connectivity of the PCC to other brain regions
has been associated with seizures (Bharath et al., 2015; Song et al.,
2011). Increased glial activation and corresponding neuronal swelling
in the PCC may be associated with dysregulation of homeostatic

control, perhaps contributing to the cardiovascular sequelae in patients
with GTCS.

Understanding the source of the changes in cingulate volume in
GTCS patients could elucidate the physiological mechanisms under-
lying changes in autonomic and breathing control in epilepsy. While
cingulate cortex structures were evaluated here, those structures project
to frontal and temporal areas which also showed significant changes,
and an understanding of the operating mechanisms must include in-
teractions between these other cortical areas and the cingulate cortex.

4.3. Sex-specific effects

A remarkable aspect of the GTCS-induced changes in cortical
thickness was the different extent of changes by sex, particularly since
we observed no major differences in duration of epilepsy or frequency
of GTCS between these groups. A significant factor in determining
neural influences on breathing and cardiovascular control in disease
conditions is sex; such conditions, including obstructive sleep apnea,
heart failure, and congenital central hypoventilation syndrome can
show significant injury in cardiovascular and respiratory regulatory
brain sites (Kumar et al., 2012; Kumar et al., 2015; Macey et al., 2008;
Macey et al., 2012b; Ogren et al., 2014), but that injury frequently
differs substantially between males and females, especially in limbic

Table 5
Differences in mean cortical thickness values (GTCS vs Controls).

Differences in mean cortical thickness values (GTCS vs Controls) in ROIs where change in cortical thickness
differed between females and males. Females: 31 GTCS patients vs 310 age- and gender-matched controls, Males:
22 GTCS patients vs 220 age- and gender-matched controls. Two-sample, two-tailed t-tests, assuming unequal
variances. (*) indicates significant p-value. Blue-shaded cells indicate significant (asterisks) thinning in GTCS over
controls, orange-shaded cells indicate significant (asterisks) thickening in GTCS over controls.
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areas (Macey et al., 2012a). Moreover, responsiveness of affected brain
sites to evoked pain or blood pressure challenges significantly differs
between sexes (Henderson et al., 2008; Macey et al., 2016; Macey et al.,
2017). The mechanisms underlying these pattern differences between
males and females are unclear, but there is a potential for sex-related
protective mechanisms and consequent injury differences to exist in
GTCS, where analogous exposure to hypoxic and extreme blood pres-
sure changes are common in the condition.

Differences in cortical thickness exist between healthy males and fe-
males (Luders et al., 2006; Sowell et al., 2007). To account for any inherent
sex differences contributing to the findings, we partitioned by sex, com-
paring male and female GTCS patients to male and female controls, re-
spectively. The sex differences we identified were not confined to auto-
nomic regions, but also included somatosensory areas such as the
postcentral gyri, which showed bilateral increases in females but only left-
sided increases in males. Males showed bilateral thinning of the orbito-
frontal cortex, but female thinning appeared only on the left. Cortical areas
with prominent autonomic regulatory roles also showed sex-related
thickness changes; the posterior cingulate and isthmus were significantly
thicker in males, but not so in females, and the anterior cingulate, while
thicker in GTCS over controls, showed no such gender separation. The right
insula was thicker for both sexes, but thickening in males was less on the
left. Some sex-related processes modify the extent and localization of cor-
tical thickening. Those processes may be related to perfusion-related dif-
ferences between the sexes (Gur et al., 1982; Satterthwaite et al., 2014), the
presence of neuroprotective factors in females, such as progesterone
(Herzog et al., 1997) or estrogen (Miller et al., 2005; Singer et al., 1999;
Whitehead and McNiel, 1935), differences in the origin or duration of
epilepsy, or other contribution. Differences in the extent of injury between
sexes in other conditions with remarkable cortical damage, such as ob-
structive sleep apnea are well-known (Macey et al., 2012a), and have been
attributed to altered perfusion or susceptibility to hypoxic injury between
males and females (Gur et al., 1982). Such disparities in laterality and
extent of injury have direct implications for specific severities of symptoms
accompanying GTCS. Equally important is the knowledge of sites of such
injury, and the need to tailor specific interventions for males versus females
to counteract the neural pathology.

4.4. Hemispheric lateralization

The lateralization of cortical thickness changes, whether sex-de-
pendent or not, deserves attention, since cortical regions within the left
or right hemisphere exert such substantially different influences on
cardiovascular and somatic output. The most obvious of these later-
alization issues as a concern rest with the insular cortices, with the right
side exerting much more influence on sympathetic action, and the left,
parasympathetic influences (Oppenheimer et al., 1992). Both sides
showed thickening, but only barely on the left with combined sex data.
Presumably, this finding suggests a more-robust sympathetic influence
during seizures. Compromised function of the right insula may con-
tribute directly to increased cardiovascular risk. Lesions of the right, but
not left, insula, along with right frontal and parietal lesions, are asso-
ciated with cardiac arrhythmias following stroke (Seifert et al., 2015).
The unequal sex-related thinning of the orbitofrontal cortex, with males
showing more thinning suggests that more cortex may remain in fe-
males to suppress respiratory motor and autonomic actions than in
males. There is evidence to suggest that GTCS alter SUDEP risk differ-
ently in males from females. While male gender is associated with an
increased overall risk of SUDEP (Hesdorffer et al., 2011), the associa-
tion between high seizure frequency and increased SUDEP occurrence is
much stronger in females (Walczak et al., 2001).

Some of the alterations, such as thickening of the ACC and cuneus,
likely reflect increased interhemispheric functional connectivity (Ji
et al., 2014), possibly leading to facilitated seizure generalization. We
speculate that thinning in frontal areas, particularly in the orbitofrontal
cortex, may interfere with important inhibitory processes on respiratory

somatic musculature action and on blood pressure control, prolonging
activation of inspiratory musculature to recover from an apnea, or di-
minishing influences on other brain structures needed to restore blood
pressure. The bilateral increased thickness in the insular cortices are a
particular concern, since the right insula exerts major influences on
extent of sympathetic outflow, with the possibility of exaggerated
asymmetric outflow levels increasing the possibility of dangerous car-
diac arrhythmia (Seifert et al., 2015), while the left (parasympathetic
influences) could lead to significant postictal bradycardia/asystole, a
finding associated with GTCS and with SUDEP or near-SUDEP (Ryvlin
et al., 2013).

5. Limitations

Numerous processes have the potential to influence changes in brain
structure in GTCS patients, with some of these changes possibly altering
cardiovascular and respiratory regulation. Those factors include long-
standing use of antiepileptic medications, which, although not well
described, may influence cortical thickness (Pardoe et al., 2013). In
other conditions, such as schizophrenia, typical antipsychotic medica-
tions lead to cortical thinning, while other “atypical” antipsychotics
appear to be associated with cortical thickening in the same regions
(van Haren et al., 2011). Sampling and other issues precluded distin-
guishing many of these factors in this study. Future large-scale studies
could factor antiepileptic drug use into the analysis, and might also
group patients by etiology, duration of epilepsy, and seizure frequency.
Here, we combined patients with generalized and initially focal tem-
poral lobe onsets. Prospective analyses should separate these groups,
and would also benefit from the addition of a separate group, comprised
of patients who experience only focal seizures.

The processes underlying semi-automated FreeSurfer analysis pose
potential issues with respect to the validity of “cortical thickness” as a
measure. Statistical analysis of discrete brain regions relies upon a de-
gree of independence from adjacent regions. These assumptions of in-
dependence may not be met, due to interdependence of adjacent brain
structures. In addition, statistical thresholds would ideally be calculated
across individual regions; however, the present cortical thickness ana-
lysis methodology uses only a single whole-brain threshold. Such sta-
tistical issues would lead to overly-conservative findings (i.e., increased
risk of false negatives). Although the GTCS patients and the UCLA
control patient values were all measured with a 3 T scanner, the OASIS
control subjects were assessed with 1.5 T devices, leading to a concern
of signal precision with lower-field scanners. However, FreeSurfer va-
lues are relatively immune to such field strength variations, likely be-
cause the processing algorithms down-sample the scans to a common
resolution (Han et al., 2006; Reuter et al., 2012).

6. Conclusions

Widespread cortical thickness changes occur in patients with GTCS
relative to controls, with alterations appearing in cortical areas with
significant influences on cardiovascular and breathing patterns.
Occurrence of GTCS is the major risk factor for SUDEP (Harden et al.,
2017). For patients with as few as three GTCS per year, SUDEP risk is
increased 15-fold over GTCS-free patients (Harden et al., 2017), but the
mechanisms by which GTCS increase this risk are unknown. The mor-
phologic changes in cortical areas regulating sympathetic outflow, to-
gether with the alterations that can modify breathing patterns and re-
covery from apnea suggest the development of injurious circumstances
that enhance conditions for SUDEP. The extent, localization and later-
alization of changes in cortical thickness varied by sex. Whether these
sex differences result from neuroprotective effects, male-female differ-
ences in cerebral blood flow, or other unknown factors is unclear.
However, the differences emphasize that consideration of sex is essen-
tial in assessing brain changes with GTCS. Cardiovascular and other
autonomic control, as well as certain somatomotor regulation is
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typically lateralized; thus, the preferential cortical thickness changes by
hemisphere must be a major consideration in determining MRI-mea-
surable biomarkers of increased cardiovascular and respiratory pa-
thology. The correlation data emphasize again the importance of re-
ducing the number of GTCS, a factor that exerts a significant influence
on extent of cortical changes. The current practice guidelines urge
management of epilepsy therapies and counseling GTCS patients on the
importance of medication in reducing SUDEP risk. Future guidelines
might include tailored recommendations based on MRI findings.
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