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Abstract—Millimeter wave (mmWave) communication is a
promising approach to satisfy the demanding high data rate
requirement of next generation mobile communications. This
paper studies the downlink coverage performance of mmWave
cellular networks with beam alignment errors. An enhanced
antenna model is adopted to model the directional antenna
beamforming pattern, in which the mainlobe beamwidth and
directivity gains can be expressed as functions of the number
of elements in the antenna array. After deriving the probability
density function (PDF) of distance between mobile station (MS)
and its serving base station (BS), the directivity gain with beam
alignment errors is obtained as a discrete random variable. Then,
a computationally tractable expression is derived for the coverage
probability of mmWave cellular networks. Numerical results
indicate that small beam alignment errors will not deteriorate
the coverage probability significantly. Moreover, when the beam
alignment error is small enough, the coverage performance can
be improved by increasing the number of elements in the antenna
array.

I. INTRODUCTION

With the fast development of portable devices and the
radical increase of internet applications, mobile networks
have become indispensable to our society. One of the main
characteristics of future mobile networks is the unprecedented
traffic volumes [1]. To cope with the exponentially increas-
ing demands for high data rate wireless accesses, several
key techniques have been proposed [2], [3]. In particular,
millimeter wave (mmWave) communication, which benefits
from its numerous spectrum resources and short wavelength,
is widely considered as one of the most important technologies
to achieve 10Gbit/s peak date rate. So far, many efforts have
been devoted to the research of mmWave communications [4].

Thanks to the wider bandwidth and smaller wavelength
compared to the sub-6 GHz signal utilized in conventional
cellular networks, the mmWave signals can increase the system
throughput effectively and efficiently. Large antenna arrays
placed in a compact size can further provide high gains and di-
rectivities. However, the high frequency mmWave signals will
experience severe path loss during the propagation, and suffer
from severe penetration loss when they pass through common

materials. Moreover, the severe penetration causes substantial
difference between the line-of-sight (LOS) propagation paths
and the non-line-of-sight (NLOS) propagation paths [5].

The system performance of mmWave communications has
been studied in numerous exsiting works. Owing to the mathe-
matical flexibility of stochastic geometry [6], there are several
applications of stochastic geometry to study mmWave net-
works, such as analysis of coverage and capacity performance
in cellular mmWave networks [7], [8] and in ad hoc mmWave
networks [9], [10]. It should be noted that all studies in [7]–
[10] characterized the impacts of beamforming of antenna
arrays based on the flat-top model. The sinc and cosine
antenna models were used to analyze the impacts of antenna
array size on coverage performance in [11]. Unfortunately,
since the antenna models in [11] were too complicated, the
analysis was limited to the scenarios in which each mobile
station (MS) is assumed to be equipped with only one single
antenna. Moreover, the analyses in [7]–[11] assumed the
beam alignment to be perfect which is impossible for practical
systems. With imperfect beam alignment, the ergodic capacity
for mmWave ad hoc networks was analyzed in [12]. However,
the analytical expression for the ergodic capacity loss due to
imperfect beam alignment in [12] was only valid in the high
signal-to-interference-and-noise ratio (SINR) regime and the
size of the antenna arrays has not been taken into account. To
the best of our knowledge, there have been no published works
which considered the impacts of both the number of elements
in the antenna array and the beam alignment errors on the
system performance of mmWave cellular communications.

This paper studies the downlink coverage performance for
mmWave cellular networks with beam alignment errors. An
enhanced flat-top antenna model is adopted to characterize the
mainlobe beamwidth and directivity gains of antenna arrays
as functions of the number of elements in the antenna array.
Moreover, the directivity gains with imperfect beam alignment
are derived as a discrete distributed random variables. By mod-
eling the BSs as two independent nonhomogeneous Poisson
point processes (PPPs), a computationally tractable analytical
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expression of downlink coverage probability is obtained for
mmWave cellular networks.

II. SYSTEM MODEL

A. Network Model

Consider a mmWave cellular network where all BSs are
arranged according to a two dimensional homogenous PPP
Φ with intensity λ. MSs are distributed as a stationary point
process independent to the BSs. A typical MS, denoted as
MS0, is assumed to be located at the origin o. All signals are
transmitted using the mmWave bands. Due to the blockage
effect in the propagation, the propagation path between BS
and MS can be LOS or NLOS. Mathematically, the probability
of being a LOS propagation path is

PLOS (r) = e−βr, (1)

where β is the blockage parameter determined by the density
and average size of the blockages, and r is the distance
between the BS and the MS. Accordingly, the probability of
a propagation path being NLOS is

PNLOS (r) = 1− PLOS (r) . (2)

The LOS probabilities are assumed to be independent for
different BSs.

Based on the propagation paths to MS0, all BSs can be
divided into two independent nonhomogenous PPPs, i.e., the
LOS BS process ΦL with intensity function λPLOS (r) and
the NLOS BS process ΦN with intensity function λPNLOS(r).
Furthermore, MS0 is served by the BS, denoted as BS0, either
LOS or NLOS, which provides the strongest average received
power. In other words, the propagation path between MS0 and
BS0 has the smallest path loss.

B. Channel Model

The LOS and NLOS propagation paths will have different
path loss exponents, αL and αN, respectively. In general, they
satisfy αN > αL > 0. Let the length of the propagation path
between BS and MS be r, then the path loss l (r) is described
as

l (r) = lL (r)1LOS + lN (r)1NLOS, (3)

where 1LOS (1NLOS) is the Dirichlet function which is one
when the BS is LOS (NLOS). lL (r) and lN (r) are path loss
functions for LOS propagation path and NLOS propagation
path, respectively. The two path loss functions are further
assumed to be

lL (r) = (1 + rαL)
−1 (4)

and
lN (r) = (1 + rαN)

−1
, (5)

respectively.
In this paper, the small scale fading on each propagation

path is assumed to be independent Nakagami distributed. Then

the power fading h is a normalized Gamma random variable
and its probability density function (PDF) is expressed as

fh (x) =
mm

Γ (m)
xm−1e−mx , x > 0, (6)

where Γ (·) is the Gamma function, and m is the Nakagami
parameter. For the LOS and NLOS propagation paths, m is
set to be NL and NN, respectively. For the tractability of the
following analysis, NL and NN are assumed to be positive
integers [7].

C. Enhanced Directional Beamforming Model

In order to compensate for the frequency dependent path-
loss, antenna arrays are assumed to be deployed at both the
BSs and MSs to perform directional beamforming. To maintain
the analytical tractability, the flat-top model is often used to
characterize the pattern of the directional beamforming [13],
which is shown in Fig. 1, where G is the mainlobe directivity
gain, g is the sidelobe directivity gain and θ is the beamwidth
of the mainlobe.

Fig. 1. Direction beamforming antenna model.

In this paper, antenna arrays deployed at both BSs and MSs
are assumed to the uniform linear antenna arrays (ULAs) and
we adopt a more realistic flat-top antenna model to depict the
antenna radiation patterns. According to [14], for a ULA with
N antenna elements, if the maximum radiation intensity Umax

is normalized to be one, the average intensity is approximated
by

U0≈
π

Nkd
=

λc
2Nd

, (7)

where λc is the wavelength, d is the antenna element sepa-
ration, and k = 2π/λc is the wave number. Meanwhile, the
halfpower beamwidth (HPBW) can be expressed as [14]

θH ≃ 2

[
π

2
− cos−1

(
1.391λc
πNd

)]
, πd/λc ≪ 1. (8)

If the antenna element separation is set to be half-wavelength,
i.e., d = λc/2, the radiation intensities and HPBW will be
functions of the number of elements N in the antenna array.
Using (8), the mainlobe beamwidth in the flat-top model can
be derived as

θ (N) = 2θH = 2π − 4cos−1

(
2.782

πN

)
. (9)

If the mainlobe gain is assumed to be the maximum radiation
intensity, i.e.

G = Umax = 1, (10)



the sidelobe gain will be a function of N given by

g (N) =
2πU0 − θ (N)Umax

2π − θ

=
(π/N)− π + 2cos−1 (2.782/(πN))

2cos−1 (2.782/(πN))
. (11)

D. Beam Alignment Error Model

In practice, implementation limitations will cause the anten-
na array point away from the desired target. In this paper, the
beam alignment error δ is modeled as a truncated-Gaussian
distributed variable with zero mean [12], whose PDF is

fδ (t) =

√
2
πσ2 e

− t2

2σ2

erf
(

π√
2σ

)
− erf

(
−π√
2σ

) , t ∈ (−π, π] , (12)

where erf (x) = 2
∫ x
0
e−t

2

dt
/√

π is the error function, and
σ is the standard deviation of the original Gaussian variable.
Furthermore, the expectation of the absolute error |δ| can be
calculated by

E [|δ|] = 2
√
2σ

erf
(
π−µ√
2σ

)
− erf

(
−π−µ√

2σ

) 1√
π

(
1− e−

π2

2σ2

)
. (13)

According to (13), |δ| is a monotonically increasing function
of σ.

III. DOWNLINK COVERAGE ANALYSIS

In this paper, all BSs are assumed to serve MSs with the
same power. Mathematically, the coverage probability Pc is
defined as the probability that the SINR at MS0 side is larger
than some threshold T , i.e.,

Pc
∆
= P [SINR > T ] . (14)

In (14), the received SINR can be expressed as

SINR
∆
=

h0mR0mT0 l (r0)∑
i∈Φ\{0}

himRimTi l (ri) + σ2
n

=
h0mR0mT0 l (r0)

IL + IN + σ2
n

, (15)

where h0 is the small scale fading on the desired propagation
path, and σ2

n is the thermal noise power normalized by the
transmit power, mR0 (mRi) is the directivity gain of receiving
antenna array at MS0 for the desired (interfering) signal, mT0

(mTi ) is the directivity gain of transmitting antenna array
at the serving BS0 (the interfering BSi), and r0 (ri) is the
distance between MS0 and BS0 (BSi). In (15), IL is the
cumulative interference from all the other LOS BSs (except
the serving BS for MS0) in ΦL and can be expressed as

IL =
∑

i∈ΦL\{0}

hLimRimTi lL (ri), (16)

where hLi is the small scale fading on the propagation path
between MS0 and interfering LOS BS BSi. Similarly, IN is the

cumulative interference from all the other NLOS BSs (except
the serving BS for MS0) in ΦN and can be expressed as

IN =
∑

i∈ΦN\{0}

hNimRimTi lN (ri), (17)

where hNi is the small scale fading on the propagation path
between MS0 and interfering NLOS BS BSi.

A. PDF of distance between MS0 and BS0

Let rL (rN) be the distance between MS0 and its nearest
LOS (NLOS) BS. If the serving BS of MS0 is LOS, the path
loss satisfies

lL (rL) < lN (rN ) , (18)

which can be derived as

rN > r
αL/αN

L . (19)

Similarly, if the serving BS of MS0 is an NLOS one, we have

rL > r
αN/αL

N . (20)

To facilitate the following analysis, two functions are defined
as follows

ψL (r) = rαL/αN , (21)

ψN (r) = rαN/αL . (22)

Lemma 1. If MS0 is associated with an LOS BS, the PDF of
the distance to its serving BS is

fL (x) = 2πλxPLOS (x)×

e
−2πλ

(∫ x
0
tPLOS(t)dt+

∫ ψL(x)

0 tPNLOS(t)dt
)
, x > 0. (23)

In contrast, if MS0 is associated with an NLOS BS, the PDF
of the distance to its serving BS is

fN (x) = 2πλxPNLOS (x)×

e
−2πλ

(∫ x
0
tPNLOS(t)dt+

∫ ψN(x)

0 tPLOS(t)dt
)
, x > 0. (24)

Proof: The proof is given in Appendix A.

B. Directivity Gains with Imperfect Beam Alignment

Based on the enhanced flat-top beamforming model, the
alignment is achieved when the azimuth of target transmitter
or receiver falls in the mainlobe of its antenna array. In other
words, if the absolute beam alignment error is not larger
than half of the mainlobe beamwidth, i.e., |δ| ≤ θ (N)/2,
the antenna array is deemed to be aligned. Using (12), the
alignment probability can be calculated by

PA(σ,N)=P
[
|δ| ≤θ (N)

2

]
=

erf

(
π−2cos−1( 2.782

πN )
2
√
2σ

)
erf

(
π√
2σ

) . (25)

It can be observed from (25) that the alignment probability
changes with N and σ.

Since the beam alignment is not perfect, the directivity gain
of the receiving (transmitting) antenna array for the desired
signal of MS0, mR0 (mT0 ), can be described as a discrete



random variable. Moreover, the probability mass functions
(PMFs) of mR0 and mT0 can be expressed as

fmR0
(x) =

{
PA (σR, NR) x = 1

1− PA (σR, NR) x = g (NR)
(26)

and

fmT0
(x) =

{
PA (σT, NT) x = 1

1− PA (σT, NT) x = g (NT)
, (27)

respectively, where NR (NT) and σR (σT) are the number
of elements in the antenna array and the beam alignment
error standard deviation of the receiving (transmitting) antenna
array at MSs (BSs), respectively. Meanwhile, if both the AoAs
and AoDs of interfering propagation paths are assumed to be
independently and uniformly distributed in (−π, π], the PMFs
of directivity gains of the receiving and transmitting antenna
arrays for interfering signals of MS0, mRi and mTi , can be
expressed as

fmRi
(x) =

{
θ(NR)
2π x = 1

1− θ(NR)
2π x = g (NR)

(28)

and

fmTi
(x) =

{
θ(NT)
2π x = 1

1− θ(NT)
2π x = g (NT)

, (29)

respectively.

C. Coverage Analysis

Denote the set of events that MS0 is covered by an MS
as A. Thus, A can be divided into two disjoint subsets, AL

and AN, which are the sets of events that MS0 is covered by
an LOS MS and an NLOS MS, respectively. Accordingly, the
coverage probability Pc can be expressed as

Pc = PA = PAL + PAN

=

∫ ∞

0

Pc,L (x) fL (x) dx+

∫ ∞

0

Pc,N (x) fN (x) dx, (30)

where fL (x) and fN (x) are the PDFs given in Lemma 1,
Pc,L (x) (Pc,N (x)) is the conditional coverage probability
given the condition that MS0 is served by an LOS (NLOS)
BS located at distance of x.

Theorem 1. If MS0 is served by an LOS BS or an NLOS BS
located at distance of x, the conditional coverage probabilities
can be respectively obtained in (31) and (32) at the top
of the next page, where sL (x) = TβL

mR0mT0 lL(x)
, sN (x) =

TβN

mR0mT0 lN(x) , βR = NR(NR!)
− 1
NR , βT = NT(NT!)

− 1
NT .

LIL,LOS (s) and LIN,LOS (s) (LIL,NLOS (s) and LIN,NLOS (s))
are the Laplace transforms (LTs) of interference IL and IN
with respect to s under the condition that MS0 is served by
an LOS (NLOS) BS, respectively.

Proof: The proof is given in Appendix B.

The derivations of the LTs of IL,LOS, IN,LOS, IL,NLOS and
IN,NLOS are given in Appendix C.

Using (23), (24), (26)−(29), (C.1)−(C.4), the coverage
probability of MS0 can be further derived in Theorem 2.

Theorem 2. In the mmWave cellular network with imperfect
alignment, if MS0 is served by the BS which provides the
largest received signal power, the coverage probability Pc can
be obtained in (33) at the top of the next page.

Proof: (31) can be obtained by substituting (31) and
(32) into (30) and changing the order of the integer and the
summation.

IV. NUMERICAL RESULTS

In this section, the impacts of alignment errors and the
number of elements in the antenna array on the system
coverage probability will be discussed, and the accuracy of
coverage probability expression will be verified. Without loss
of generality, the mmWave cellular network is assumed to
work in an environment with blockage parameter β = 0.0069
such that the BS at the distance of 100 meters can be LOS
and NLOS with equal probability. The BS intensity is assumed
to be λ = 1

π × 10−4 m−2. The SINR threshold is set to be
T = 10dB. The noise power normalized by the transmit power
is set to be −124dB. Referring to the parameters setting in [7],
the path loss exponents and Nakagami parameters are set to
be αL = 2 (αN = 4) and NL = 3 (NN = 2) for LOS (NLOS)
propagation paths, respectively. Due to the space limit of MS,
the number of elements in the antenna array at MS is set to
be NR = 4.
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Fig. 2. Coverage probability versus |δ| with |δR| = |δT| = |δ|.

Fig. 2 provides the coverage probability with different beam
alignment errors. It can be seen that the coverage probability
decreases with the increase of alignment errors. Moreover,
when the alignment error is relatively small, the decrease of
the coverage probability is not remarkable. Particularly, it can
be seen that the maxima of average absolute alignment errors
without degrading the coverage performance are 4◦ and 2◦

for NT = 8 and NT = 16, respectively. This is because that
when the average absolute alignment error is smaller than half
of the mainlobe beamwidth, the misalignment occurs with low
probability.

Fig. 3 shows the coverage probability with different number
of elements in the antenna array. It can be seen that when the
number of elements in the antenna array is small, the coverage
probability can be improved by adding antenna elements. The



Pc,L = EmR0
,mT0

[
NL∑
n=1

(−1)
n+1 (NL

n

)
e−nsL(x)σ

2
nLIL,LOS (nsL (x))LIN,LOS (nsL (x))

]
(31)

Pc,N = EmR0 ,mT0

[
NN∑
n=1

(−1)
n+1 (NN

n

)
e−nsN(x)σ2

nLIL,NLOS (nsN (x))LIN,NLOS (nsN (x))

]
(32)

Pc =

NL∑
n=1

(−1)
n+1 (NL

n

)∫ ∞

0

fL (x)EmR0 ,mT0

[
e−nsL(x)σ

2
nLIL,LOS(nsL(x))LIN,LOS(nsL(x))

]
dx

+

NN∑
n=1

(−1)
n+1 (NN

n

)∫ ∞

0

fN (x)EmR0 ,mT0

[
e−nsN(x)σ2

nLIL,NLOS(nsN(x))LIN,NLOS(nsN(x))
]
dx (33)
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Fig. 3. Coverage probability versus NT for different beam alignment errors.

reason is that the mainlobe beamwidth of small antenna array
is wide enough to keep beam alignment. Therefore, interfer-
ence power can be decreased by reducing the sidelobe gain of
the antenna array. However, it should be noted that increasing
the number of elements in the antenna array cannot always
improve the coverage probability. It can be observed that when
the number of elements in the antenna array grows larger and
the alignment errors exist, the mainlobe beamwidth becomes
too narrow to guarantee the beam alignment. Therefore, the
coverage probability deteriorates significantly.

V. CONCLUSION

This paper analyzes the coverage probability of mmWave
celluar networks with beam alignment errors. Based on the
enhanced flat-top antenna model, we analyze the impacts
of number of elements in the antenna array and the beam
alignment errors on the coverage performance. The coverage
probability is derived in a tractable analytical expression. Sim-
ulation results verify the accuracy of our theoretical analysis.
Numerical results show that the coverage performance will
not be deteriorated by small beam alignment errors and when
the beam alignment errors are small enough, the coverage
performance can be improved by increasing the number of

elements in the antenna array. However, when the beam
alignment errors are large, the alignment probability of large
antenna arrays may not high enough such that increasing the
number of elements in the antenna array will decrease the
coverage probability.

ACKNOWLEDGMENTS

This work is supported by the National Nature Science
Foundation of China (No.61571115) and the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska–Curie grant agreement (No.709291).

APPENDIX A
PROOF OF LEMMA 1

The probability that MS0 is served by an LOS BS at
distance of x can be obtained as

PL = e
−2πλ

(∫ x
0
tPLOS(t)dt+

∫ ψL(x+∆x)

0 tPNLOS(t)dt
)

×
(
1− e−2πλ

∫ x+∆x
x

tPLOS(t)dt
)
, x > 0,∆x→ 0. (A.1)

Then, the PDF of the distance between MS0 and its serving
LOS BS can be obtained as

fL (x) = lim
∆x→0

PL

∆x
= 2πλxPLOS (x)×

e
−2πλ

(∫ x
0
tPLOS(t)dt+

∫ ψL(x)

0 tPNLOS(t)dt
)
,
x > 0.(A.2)

The derivation of fN (x) is in the similar manner to fL (x).

APPENDIX B
PROOF OF THEOREM 1

If MS0 is served by an LOS BS located at the distance of
x, the received SINR at MS0 is

SINRL

=
hL0mR0

mT0
lL (x)∑

i∈ΦL\b(o,x)
hLimRimTi lL (ri) +

∑
i∈ΦN\b(o,ψL(x))

hNimRimTi lN (ri) + σ2
n

=
hL0mR0mT0 lL (x)

IL,LOS + IN,LOS + σ2
n

. (B.1)



Pc,L = P [SINRL > T ] = P
[

hL0mR0mT0 lL (x)

IL,LOS + IN,LOS + σ2
n

> T

]
= P

[
hL0 >

T

mR0
mT0

lL (x)

(
IL,LOS + IN,LOS + σ2

n

)]
(a)
≈ EmR0 ,mT0

[
1− EIL,LOS,IN,LOS

[(
1− e

− T
mR0

mT0
lL(x)

(x)(IL,LOS+IN,LOS+σ
2
n)
)NL

]]
(b)
= EmR0 ,mT0

[
NL∑
n=1

(−1)
n+1 (NL

n

)
EIL,LOS,IN,LOS

[
e−nsL(x)(IL,LOS+IN,LOS+σ

2
n)
]]

(c)
= EmR0 ,mT0

[
NL∑
n=1

(−1)
n+1 (NL

n

)
e−nsL(x)σ

2
nLIL,LOS (nsL (x))LIN,LOS (nsL (x))

]
(B.2)

The conditional coverage probabilities Pc,L can be calculated
by (B.2) at the top of this page, where (a) is from [15] and
the independence between the directivity gains and the point
process of the BSs, (b) follows the Binomial theorem and
the assumption that NL is an integer, (c) follows from the
independence between ΦL and ΦN, and the definition of the
LT. Pc,N can be derived in the similar manner to Pc,L.

APPENDIX C
DERIVATIONS OF THE LTS

The LT of IL,LOS can be calculated as

LIL,LOS (s) = E
[
e
−s

∑
i∈ΦL\b(o,x)

hLimRi
mTi

lL(ri)
]

(a)
= E

 ∏
i∈ΦL\b(o,x)

e−shLimRi
mTi

lL(ri)


(b)
= e

−2πλEmRi
,mTi

[∫ ∞
x

(
1−hL

[
e
−slL(t)hLmRi

mTi

])
tPLOS(t)dt

]

(c)
= e

−2πλEmRi
,mTi

∫ ∞
x

1−
 1

1+
slL(t)mRi

mTi
NL

NL
tPLOS(t)dt


,(C.1)

where (a) follows the independence between different in-
terfering LOS propagation paths, (b) follows the probability
generating functional (PGFL) of the PPP, and (c) is from
the moment generating function of hL. Similarly, the LTs of
IN,LOS, IL,NLOS and IN,NLOS can be derived as follows.

LIN,LOS(s) =

e

−2πλEmRi
,mTi

∫ ∞
ψL(x)

1−
 1

1+
slN(t)mRi

mTi
NN

NN
tPNLOS(t)dt


,(C.2)

LIL,NLOS(s) =

e

−2πλEmRi
,mTi

∫ ∞
ψN(x)

1−
 1

1+
slL(t)mRi

mTi
NL

NL
tPLOS(t)dt


,(C.3)

LIN,NLOS(s)=

e

−2πλEmRi
,mTi

∫ ∞
x

1−
 1

1+
slN(t)mRi

mTi
NN

NN
tPNLOS(t)dt


, (C.4)

respectively.
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