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Abstract—In this paper, a typical cache-enabled small cell net-
work under heterogeneous file and network settings is considered,
where the neighboring base stations are enabled to collaborate
to share the cached content. In particular, maximum distance
separable (MDS) codes are used for content restructuring in
order to take full usage of the content diversity. We aim to
minimize the long-term average user attrition (UA) cost for
fetching content from external storage subject to the overall cache
capacity constraint by jointly optimizing the content placement
and the cooperative policy throughout the network using the
file popularity information. To further reduce the backhual
load, a compound caching technique taking the advantages of
multicast content delivery and cooperative content sharing, which
is referred to as multicast-aware cooperative caching, is then
developed. Mathematical analysis and simulation results are pre-
sented to illustrate the advantages of MDS codes and cooperative
caching in terms of reducing the backhaul requirements.

Index Terms—Caching, cooperation, heterogeneous networks.

I. INTRODUCTION

Caching at the wireless edge is expected to play an im-
portant role in the emerging fifth-generation (5G) wireless
communication networks as the tremendous mobile traffic
growth has imposed high demands on content delivery [1]. By
storing popular content at the network edge, the cached content
can be delivered to users from local caches rapidly instead of
being downloaded from the core network via backhaul which
helps to reduce the peak-time traffic and latency.

Currently, considerable research has been done on physical
layer caching. Of relevance to our work are [2]–[6] where they
focused on the optimization of content placement for cache-
enabled small-cell networks. In [2], MDS coded caching was
considered with homogeneous network settings which gave
rise to identical content placement in all cells. Any cache
miss was dealt with by using separate unicast transmissions
via the backhaul. In another work [3], the authors studied
uncoded multicast-aware caching in delay tolerant networks.
The heuristic nature of the proposed methods also makes them
not applicable for coded caching scenarios. In our previous
work [4], coded multicast-aware caching was proposed in the
partly heterogeneous settings of distinct cache and file sizes
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and homogeneous file popularity and numbers of users in
all the cells. While the works mentioned above are offline
non-cooperative schemes with limited cache sizes, [5] devised
an online cooperative caching scheme with infinite cache
capacity. Since the current user demands were given and the
caching policies for different files were mutually independent,
the formulated problem was actually linear and therefore could
be easily solved heuristically. Finally in [6], an in-network
cooperative caching scheme was proposed with the strong
assumption of knowing the actual file demands of each user
as well. Furthermore, the decentralized heuristic scheme is
suboptimal, and the heterogeneity of the locations of the SBSs
and file popularity in different cells was not well addressed.

To conclude, considering the heterogeneity of cache-enabled
small-cell networks, such as distinct file popularity, file sizes,
cache sizes, coverages and locations of different SBSs, not
only requires redesign of content placement but also cache
size allocation amongst the SBSs, as mentioned in [7], [8].
In this setup, cache decomposition in different cells will be
generally not the same. Considering also the fact that file
sizes may be large compared to the limited cache size in
practice, files are usually split into fragments to make full
use of the content diversity. However, note that all of the
above-mentioned works considered whole file caching except
[2], [4]. When the fragments are randomly selected and stored
in the caches without coding, both the number of fragments
in each cell and which fragments that are stored (i.e., the
degree of content duplication amongst the cells), determine
the backhaul load. As a result, it would be very difficult for
the macro base station (MBS) to deliver the uncached content
via a shared link to all the cells and unicast content delivery is
therefore commonly used between the MBS and SBSs at the
expense of high backhaul cost [2], [5], [6]. On the other hand,
cache content overlap among different cells would restrain
cooperative caching from being effective.

In this paper, our aim is to unleash the potential of cooper-
ative caching and multicast-aware content delivery by taking
advantages of the inherent independence amongst the MDS
coded packets for minimizing the average UA cost. In sum-
mary, this paper has made the following major contributions:

• We develop offline caching schemes optimizing the long-
term average performance by estimating all possible joint
user requests utilizing the file popularity information.

• The heterogeneity of the parameters that affects the cache
management and cooperative policy is all considered with
the coordination among different SBSs and files.

• Furthermore, we derive the performance gains of storing
coded packets over uncoded fragments in the caches and
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quantify the advantages of cooperative caching schemes
over common caching schemes.

II. SYSTEM MODEL

A. Network Model

A small cell network is considered which comprises a single
MBS, and K non-overlapping small cells each consisting of a
single SBS and Ik users, for the kth cell. Let K , {1, . . . ,K}
denote the set of SBSs which operate in disjoint subchannels
with the MBS in order to remove the impact of interference.
Besides, any interference among neighboring SBSs is assumed
eliminated by techniques such as enhanced inter-cell interfer-
ence coordination (eICIC) or/and orthogonal multiple access
[9], [10]. Each SBS has its own local storage. We assume that
the MBS has access to all files in the set F , {f1, f2, . . . , fN}
with respective file sizes s , [s1, s2, . . . , sN ] while the SBSs
have limited cache capacities that are subject to a network-
wide total cache capacity budget M . We let Mk denote the
cache capacity for SBS k, with Mk ≤

∑N
j=1 sj . SBSs can

push the cached packets to the users when requested while the
uncached parts have to be delivered to the SBSs via backhaul
from the MBS or cooperative SBSs. Note that the users located
outside of any small cells can only be served by the MBS and
hence are ignored.

1) Cooperative caching: As shown in Fig. 1, neighboring
SBSs can be connected to each other via high-capacity links
to share their cached content in different cells collaboratively.
In this scheme, the uncached content can be fetched from not
only the MBS via backhaul but also the cooperative SBSs via
the fronthaul links. Considering the different costs for fetching
content from the MBS and the neighboring SBSs, we adopt
the concept of user attrition (UA) cost introduced in [5] to
evaluate the performance of the cooperative caching scheme.1

Cache content placement and the policy for SBS cooperation
are to be jointly optimized to minimize the UA cost. Unless
stated otherwise, this scheme uses unicast for content delivery.

2) Multicast-aware cooperative caching: In this approach,
multicast-based content delivery and content sharing amongst
neighboring SBSs are combined with the aid of MDS codes.
In contrast to conventional cooperative caching, multicasting is
applied by the MBS to deliver content to the SBSs requesting
the same file simultaneously, see Case II of Fig. 1.
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Fig. 1: Cache-enabled heterogeneous small-cell networks.

1UA cost is the overall cost for fetching content from an external storage.

B. MDS Coding

MDS codes are employed to construct pieces of a file that
can be put back together to recover the file. They are particu-
larly suitable for our settings of multicast-aware caching and
cooperative caching in which the cached content in different
cells needs to be coordinated. Compared to the case of storing
uncoded fragments, MDS codes bring a unique benefit that the
coded packets are all independent from each other so that a
certain number of randomly drawn packets will be sufficient
to recover the file. This allows us to use only the number of
packets stored in each cell, instead of the details of the packets,
to derive the backhaul load, simplifying the analysis.

We parametrize MDS codes by (lj , nj) such that file j is cut
into nj fragments and then coded into lj independent packets
by MDS. Any nj packets can rebuild the entire file.

Considering that the kth SBS caches mk,j coded packets
of file j, we let mj = [m1,j ,m2,j , . . . ,mK,j ] be the content
placement vector for file j. For unicast and multicast-aware
cooperative caching scenarios, the total number of packets has
to be at least

lj =
K∑

k=1

mk,j + nj − min
k∈{1,...,K}

K∑
t=1

xt
k,j ,

where xt
k,j denotes the number of packets delivered from SBS

t to SBS k to serve the requests for file j so that there is no
content overlap in both content sharing process amongst the
cooperative SBSs and content delivery phase at the MBS.

C. File Popularity Profile

Note that users in different cells may have different prefer-
ences towards the files. The most popular file in one cell may
receive least attentions from another cell. It is thus better to
consider local file popularity in each cell rather than the global
popularity in the entire network which is often the case in the
literature. Without loss of generality, here we assume that the
file popularity in each cell obeys Zipf’s distribution but with
unique skewness parameter and popularity rank. According to
the Zipf’s law, the frequency for file j to be requested by each
user in cell k can then be written as [11]

pk,j =

(
1/λγk

k,j

)
∑N

i=1 (1/i
γk)

, ∀k, j, (1)

where γk is the skewness in cell k reflecting the concentration
of the popularity distribution and λk,j denotes the rank of the
popularity of file j in cell k. For instance, λk,j = 1 means file
j is the most popular file in cell k. Hence, the probability of
file j not being requested by the users in cell k is

αk,j = (1− pk,j)
Ik , ∀k, j. (2)

Thus, the probability for file j being requested by at least one
of the users in cell k will be 1− αk,j .

III. COOPERATIVE CACHING

In this section, we consider that the SBSs can fetch content
from the neighboring SBSs via some high capacity links and
study the optimal cooperative caching policy among the SBSs.
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Note that the independence amongst the MDS coded packets
cached in all the cells almost surely guarantees that the shared
contents are always non-overlapping.

Cooperative caching consists of three phases:
(i) the content placement phase,

(ii) the cnt sharing phase among the SBSs, and
(iii) the content delivery phase from the MBS via backhaul.
Note that in the content delivery phase, we assume that unicast
is used by the MBS to sent uncached content to the SBSs.

To further eliminate the redundancy, we assume that the
SBSs can selectively deliver part of the packets from their
own caches to the requested SBS rather than thontee whole of
the cached packets. The amounts of shared content among the
cooperative SBSs are defined as X = {xt

k,j}K×N×K where
xt
k,j denotes the number of packets delivered from SBS t to

SBS k for file j. Accordingly, we let f t
k be the associated cost

when SBS k fetches content from SBS t and fM
k denote the

cost for delivering content to SBS k from the MBS.
The UA costs are proportional to the square of the minimum

distances between the associated BSs with the unit cost
coefficients defined as f0 and fM

0 , respectively. Note that {f t
k}

must satisfy the triangle inequality, i.e., f t
k ≤ f t

l +f l
k, and the

cost for fetching content from local storage can be ignored, i.e.,
fk
k = 0,∀k. Moreover, the UA costs for fetching content from

the MBS via backhaul are usually higher than those caused
by the cooperation between the SBSs due to proximity.

Instead of focusing on the backhaul load in the non-
cooperative caching scenarios, our objective here is to min-
imize the average UA cost, i.e., the cost of fetching content
from external storage, subject to a given overall cache capacity
constraint by optimizing the cache content placement and
cooperation policy jointly. In this case, the expected UA cost
defined as CMDS

coop can be written as

CMDS
coop =

N∑
j=1

K∑
k=1

[(
1−min

(
1,

K∑
t=1

xt
k,j

nj

))
fM
k

+
K∑
t=1

xt
k,j

nj
f t
k

]
sj(1− αk,j). (3)

Hence, the problem of interest is given by

min
{mk,j},{xt

k,j}
CMDS

coop (4a)

s.t.
K∑

k=1

N∑
j=1

mk,j

nj
sj ≤ M, (4b)

0 ≤ mk,j ≤ nj , ∀k, j, (4c)
0 ≤ xt

k,j ≤ mt,j , ∀k, j, t, (4d)

where the cache size allocation problem is merged into the
optimization of the content placement. Apparently, xk

k,j =
mk,j , ∀k, j holds true in (4).

The significance of adopting MDS codes is to avoid content
overlap among the fragments stored in different caches, hence
reducing the average UA cost. Suppose that SBS k stores mk,j

different fragments randomly drawn among the nj fragments
and xk

t,j of the mk,j fragments are randomly selected to be sent

to SBS t. It is difficult to ensure that the fragments from the
neighboring cells are always mutually exclusive. Thus, both
the number of fragments stored in local cache and sent to other
cells and which fragments being cached and shared contribute
in deciding the backhaul rate and the average UA cost.

Lemma 1: Given any cooperative caching policy satisfying
constraints (4b)–(4d), the UA cost in the coded scenario is
always lower than the associated cost in the uncoded scenario
defined as Cuncoded

coop , i.e., CMDS
coop ≤ Cuncoded

coop .
Proof: See Appendix A.

We can tackle (4) by proving that the optimal cooperative
caching policy always satisfies

∑K
t=1

xt
k,j

nj
≤ 1, ∀k, j. Letting

({x̃t
k,j}, {m̃k,j}) be the optimal solution to (4) with at least a

group of (k∗, j∗) satisfying
∑K

t=1

x̃t
k∗,j∗

nj
> 1, we can always

find some ({xt
k,j}, {m̃k,j}) with xt

k,j = x̃t
k,j , ∀(k, j, t) ̸=

(k∗, j∗, t) and
∑K

t=1

x̃t
k∗,j∗

nj
= 1 which satisfy all the con-

straints in (4) while demanding the same cost from backhaul
but a lower cost from content sharing among the cooperative
SBSs. Consequently, the average UA cost is given by

CMDS
coop =

N∑
j=1

K∑
k=1

[(
1−

K∑
t=1

ztk,j

)
fM
k +

K∑
t=1

ztk,jf
t
k

]
× sj(1− αk,j), (5)

where we let qk,j =
mk,j

nj
and ztk,j =

xt
k,j

nj
. Problem (4) can

then be rewritten as

min
{qk,j},{zt

k,j}
(5) (6a)

s.t.
K∑

k=1

N∑
j=1

qk,jsj ≤ M, (6b)

0 ≤ qk,j ≤ 1, ∀k, j, (6c)
K∑
t=1

ztk,j ≤ 1, ∀k, j, (6d)

0 ≤ ztk,j ≤ qt,j , ∀k, j, t, (6e)

which is linear and can easily be solved using, e.g., CVX.
For comparison, the average UA cost in the unicast based

non-cooperative caching scenario is given by

Cunicast
noncoop =

N∑
j=1

K∑
k=1

(1− qk,j) f
M
k sj(1− αk,j). (7)

As f t
k ≤ fM

k and zkk,j = qk,j , ∀k, t, j, we have

CMDS
coop ≤

N∑
j=1

K∑
k=1

1− K∑
t=1

ztk,j+
∑
t ̸=k

ztk,j


× fM

k sj(1− αk,j) ≤ Cunicast
noncoop. (8)

IV. MULTICAST-AWARE COOPERATIVE CACHING

In this section, a compound caching policy named multicast-
aware cooperative caching is proposed. Taking the advantages
of both multicasting at the MBS and collaboration among the
SBSs, the UA cost of the network can be further reduced.
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Unlike the literature where the knowledge of the actual
requests from the cells was usually assumed, we analyze
all possible request profiles and their probabilities using the
learned file popularity. Here, the joint user request profile in
all the cells is focused rather than the user request profiles
in individual cells to capture the multicasting opportunities
among the SBSs requiring the same file. In this case, the
average backhaul load is defined as the average volume of the
file packets requiring to be fetched from the MBS via backhaul
with a single multicast transmission instead of multiple unicast
transmissions to the SBSs requiring the same file in terms of
all possible user request profiles.

We let Πj be the collection of all the possible user request
profiles and πj ∈ Πj denote a particular user request profile
for file j in all cells. Given any user request profile πj , Kπj

is used to denote the set of the cells where file j is required
by the served users. In case that file j is requested in all the
cells except cell K, we have πj = [1, 1, . . . , 1, 0]1×K where 1
means that file j is requested by users in the considered cell
while 0 states that none of the users in the cell requests the
file. Therefore, it follows that Kπj = {1, 2, . . . ,K−1} for the
mentioned πj . The joint user request profile for all the files
simultaneously can be written as {π1, . . . , πN}. For each file
j, if there are t(≤ K) cells where the served users request
file j, the corresponding file request profile πj and the cell set
Kπj may have

(
K
t

)
possible combinations.

In consideration of multicast-aware cooperative caching, the
UA cost can be written as

CMDS
mult,coop=

∑
{π1,...,πN}

N∑
j=1

[(
1− min

k∈Kπj

K∑
t=1

ztk,j

)
max
k∈Kπj

fM
k

+
∑

k∈Kπj

K∑
t=1

ztk,jf
t
k

 sjPr({π1, . . . , πN}). (9)

where Pr({π1, . . . , πN}) denotes the joint probability that a
certain user request profile for all the files, i.e., {π1, . . . , πN}
appears.

Lemma 2: Based on the fact that the backhaul load and
shared content for a particular file j only relies on πj regard-
less of {πi}i ̸=j , the UA cost in (9) can be rewritten as

CMDS
mult,coop=

N∑
j=1

 ∑
πj∈Πj

(
1− min

k∈Kπj

K∑
t=1

ztk,j

)
max
k∈Kπj

fM
k

×Pr(πj) +
K∑

k=1

K∑
t=1

ztk,jf
t
k(1− αk,j)

]
sj , (10)

where Pr(πj) is the probability that πj appears.
Proof: See Appendix B.

The average UA cost minimization problem is

min
{qk,j},{zt

k,j}
CMDS

mult,coop s.t. (6b)–(6e). (11)

We recognize that similar content in different cells is preferred
for multicast-aware caching while for cooperative caching the
cached content in different cells should be mutually exclusive.
The use of MDS codes strikes a balance in the combination.

Lemma 3: Given any mutlicast-aware cooperative caching
policy ({qk,j}, {ztk,j}) satisfying the constraints in (11), the
UA cost in the coded scenario is always much lower than that
in the uncoded case, i.e., CMDS

mult,coop ≤ Cuncoded
mult,coop.

Proof: See Appendix C.
To solve (11), we resort to a greedy algorithm by listing

all possible user request profiles for each file. Furthermore, a
number of new variables and constraints needs to be added
to linearize the function min(·). That is, for any user request
profile πj , we introduce a new variable ξπj subject to the
constraints, i.e., (0 ≤ ξπj ≤

∑K
t=1 z

t
k,j , ∀k ∈ Kπj ), to replace

mink∈Kπj

∑K
t=1 z

t
k,j in (10). Since (11) can be linearized,

general solvers can be employed to solve it for small-scale net-
works. In practical scenarios with dozens of BSs and thousands
of files where the greedy approach is not viable, in-cluster
cooperative caching schemes can be used by decomposing the
SBSs into a series of disjoint clusters and enabling the SBSs
within the same cluster to cooperate to share cached content.

V. SIMULATION RESULTS

In this section, simulation results are presented to compare
the performance of the proposed cooperative caching schemes
with that of the non-cooperative scheme in terms of the
average UA cost. A small scale network with K = 5 SBSs
is considered where the MBS is located at the center of
the macro cell with radius R = 400km while the SBSs are
randomly deployed uniformly within the cell without coverage
overlapping. The overall cache capacity budget is presented as
the average cache size for each SBS scaled by the overall file
size given by ρ = M/K/

∑
j sj . Unless otherwise specified,

we set ρ = 0.25, N = 100 with the file sizes randomly chosen
uniformly within [0, 500]MB. The skewness parameters {γk}
are selected randomly within [0, 2] while the popularity ranks
of the files in each cell are generated randomly. Also, the
number of users in each cell is set to be ranged within [0, 10],
respectively. Here we assume that two SBSs can share content
in their caches when the cost for retrieving content from the
other SBS is lower than that of fetching content from the
MBS. The unit cost coefficients for the two routes for fetching
content from external storage are set as fM

0 = 2 and f0 = 1,
unless otherwise specified.

Results for common cache management schemes such as
the uniform content placement and popularity based content
placement are provided and compared. For the two common
schemes, we assume uniform cache size allocation among the
SBSs, i.e., Mk = M/K, ∀k, ∀j. The former assumes that the
cache capacity is equally allocated to the files while the later
allocates the storage to most popular items in priority. Unless
otherwise specified, unicast based content delivery and non-
cooperative cache management are utilized.

As can be observed in Fig. 2, the proposed multicast-aware
cooperative caching scheme shows the best performances
followed by the unicast based cooperative caching scheme
while the non-cooperative caching scheme yields the worst
performance in all the cases. In addition, the multicast-aware
cooperative caching schemes using common content place-
ment demand higher UA costs compared with the proposed
optimal multicast-aware caching scheme as expected.



5

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5
x 10

5

Average Cache Size (% of the overall file size)

A
v
er

ag
e 

U
A

 C
o
st

Non Cooperative Caching

Cooperative Caching

Multicast Aware Cooperative Caching (Unif)

Multicast Aware Cooperative Caching (Pop)

Multicast Aware Cooperative Caching

(a) Impact of overall cache size M .

1 2 3 4 5
0

5

10

15

20

SBS

C
ac

h
e 

S
iz

e 
A

ll
o

ca
ti

o
n

 (
G

B
)

Non Cooperative Caching

Cooperative Caching

Multicast Aware Cooperative Caching (Unif)

Multicast Aware Cooperative Caching (Pop)

Multicast Aware Cooperative Caching

(b) Allocated cache sizes (ρ =
0.25).

1 2 3 4 5
0

1

2

3

4

5

6
x 10

5

A
v
er

ag
e 

U
A

 C
o
st

f
0

M

Non−Cooperative Caching

Cooperative Caching

Multicast−Aware Cooperative Caching (Unif)

Multicast−Aware Cooperative Caching (Pop)

Multicast−Aware Cooperative Caching

(c) Impact of cost coefficient fM
0 .

Fig. 2: The average UA cost of the proposed cooperative caching schemes versus the non-cooperative scheme.

As we see in Fig. 2a, the UA costs decrease with the overall
cache size in all cases. Apparently, the utility of cooperation in
caching and multicast-aware caching reduce the average UA
cost in the network dramatically.

Fig. 2b presents the cache size allocation among the SBSs
using different caching schemes when ρ = 0.25. Results show
that the optimal cache sizes for different cells are always
heterogeneous as opposed to the assumption of uniform cache
size allocation in many caching networks.

Finally, the impact of the ratio between the unit cost
coefficients is studied in Fig. 2c where f0 = 1 but fM

0

varies. Apparently, the UA cost of the non-cooperative caching
scheme is proportional to fM

0 while the cooperative schemes
have much better tolerance towards the increase of fM

0 for
fetching content via backhaul.

VI. CONCLUSIONS

In this paper, we considered the design of content caching
and sharing for cache-enabled heterogeneous small cell net-
works. We developed the cooperative caching schemes utiliz-
ing unicast and multicast content delivery between the MBS
and the SBSs, respectively, for minimizing the long-term av-
erage UA cost subject to the overall cache capacity constraint.
In both cases, we have obtained the optimal content placement
by reformulating the original problems into convex ones with
the analysis of the advantages of utilizing MDS codes, and
cooperative caching over common caching schemes.

APPENDIX A

Given some cooperative caching policy ({xt
k,j}, {mk,j}),

the costs for fetching content from neighboring cells are the
same in the coded and uncoded caching scenarios. Therefore,
the difference in the backhaul cost shows up most clearly
in the UA costs. When uncoded fragments are stored, all
the fragments except the ones that are either stored in local
cache or fetched from the neighboring cells are needed from
the MBS via backhual to each cell requesting the particular
file. Considering the possible content overlap amongst those
fragments, the number of unique fragments for file j available
at cell k ∈ Kπj would always be less than or equal to∑

t x
t
k,j for a certain user request profile πj which leads to a

higher backhaul rate than that in the MDS coded case. If the
fragments are assumed to be randomly selected to be stored in
the cells and then sent to the neighboring cells equiprobably,

the probability of each fragment of file j needing to be sent
to cell k via backhaul, i.e., not being stored locally or sent to
the particular cell k from other SBSs, would be given by

ρ̂k,j =
K∏
t=1

(nj−1
mt,j

)(
nj

mt,j

) +

(
nj−1

mt,j−1

)(
nj

mt,j

) (mt,j−1
xt
k,j

)(mt,j

xt
k,j

)
 =

K∏
t=1

(
1−

xt
k,j

nj

)
.

(12)

In this case, the average UA cost can be written as

Cuncoded
coop =

N∑
j=1

K∑
k=1

[
ρ̂k,jf

M
k +

K∑
t=1

xt
k,j

nj
f t
k

]
sj(1−αk,j). (13)

Compared with the UA cost in (8), if we can prove that
K∏
t=1

(
1−

xt
k,j

nj

)
≥ 1−min

(
1,

K∑
t=1

xt
k,j

nj

)
, ∀k, j, (14)

then it holds true that CMDS
coop ≤ Cuncoded

coop . Hence, here we
focus on the proof of the result (14). As can be observed, when∑K

t=1

xt
k,j

nj
≥ 1, (14) is always true. When

∑K
t=1

xt
k,j

nj
< 1,

the right hand side of (14) equals to
(
1−

∑K
t=1

xt
k,j

nj

)
. In this

case, we prove (14) using mathematical induction.
To be brief, we mathematically reformulate the problem into

a general problem, which reads
K∏
t=1

(1− χt) ≥ 1−
K∑
t=1

χt, (15)

where χt ∈ [0, 1]. Obviously, when K = 1 or 2, the statement
is always true as expected. Now assuming that (15) holds for
K = κ, we hence have

κ∏
t=1

(1− χt) ≥ 1−
κ∑

t=1

χt. (16)

Then it follows that
κ+1∏
t=1

(1− χt) =
κ∏

t=1

(1− χt)−
κ∏

t=1

(1− χt)χκ+1

≥

(
1−

κ∑
t=1

χt

)
− χκ+1, (17)

due to the fact that 0 ≤
∏κ

t=1 (1− χt) ≤ 1 as well as the
inequality (16). Now we are able to conclude that the statement
is true for all available K via induction. Then going back to
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the original problem and letting χt =
xt
k,j

nj
for any given k,

we have proved the statement
K∏
t=1

(
1−

xt
k,j

nj

)
≥ 1−

K∑
t=1

xt
k,j

nj
, ∀k, j. (18)

Based on this analysis, CMDS
coop ≤ Cuncoded

coop is then proved.

APPENDIX B

In (9), the instantaneous UA costs for all kinds of possible
user request profiles {π1, . . . , πN} are summed up to obtain
the average UA cost while that for a particular user request
profile is composed of the associated UA costs for all the files.
Equivalently, the average backhaul rate can also be calculated
by summing up the average UA cost for each file in terms of
all kinds of possible user request profiles. Mathematically, we
are able to rewrite (9) as

CMDS
mult,coop=

N∑
j=1

∑
{π1,...,πN}

[(
1− min

k∈Kπj

K∑
t=1

ztk,j

)
max
k∈Kπj

fM
k

+
∑

k∈Kπj

K∑
t=1

ztk,jf
t
k

 sjPr({π1, . . . , πN}). (19)

For a particular file j, the UA cost is subject to the shared con-
tent ztk,j and the associated user request profile πj regardless
of the profiles for other files {πi}i ̸=j . That is to say, any user
request profile {π1, . . . , πN} with the same πj would yield the
same UA cost for file j. Consequently, when calculating the
UA cost for a file, we can only consider different user request
profiles for the certain file and ignore the user request profiles
for other files. Hence, (9) can be further reformulated into

CMDS
mult,coop =

N∑
j=1

∑
πj∈Πj

[(
1− min

k∈Kπj

K∑
t=1

ztk,j

)
max
k∈Kπj

fM
k

+
∑

k∈Kπj

K∑
t=1

ztk,jf
t
k

Pr(πj)sj . (20)

As we can see, the first item denotes the backhaul cost while
the second item presents the cost for content sharing among
the cooperative SBSs. For each given user request profile
for a particular file πj , the cost for fetching content from
the cooperative SBSs at cell k appears only when file j is
requested by the users in cell k which means that πj(k) = 1
regardless of the individual user request profiles in other cells.
It is easy to prove Pr(πj |πj(k)=1) = 1− αk,j , and so (10).

APPENDIX C

If ({xt
k,j}, {mk,j}) is given, then the costs for fetching

content from neighboring cells will be the same in the coded
and uncoded caching scenarios. As a result, the comparison
is focused on the backhaul costs in the two scenarios. When
uncoded fragments are stored, all the fragments except for the
ones that can be fetched at all of the cells requesting the file ei-
ther from local cache or from the neighboring cells are needed
to be sent from the MBS via multicast transmission. Assuming

that the fragments are randomly selected to be stored in the
cells and then sent to the neighboring cells equiprobably, the
probability of each fragment of file j available at all of the
cells requesting the file either from local cache or from the
neighboring cells would be given by

ρ̃πj =
∏

k∈Kπj

(1− ρ̂k,j), (21)

where ρ̂k,j is the probability of each fragment of file j not
being stored locally or sent to the particular cell k from other
SBSs given by (12) in Appendix A. Similar to the multicast-
aware case, the average UA cost can be written as

Cuncoded
mult,coop =

N∑
j=1

 ∑
πj∈Πj

(
1− ρ̃πj

)
max
k∈Kπj

fM
k Pr(πj)

+
K∑

k=1

K∑
t=1

ztk,jf
t
k(1− αk,j)

]
sj . (22)

According to (12) and (18), we obtain

ρ̃πj ≤
∏

k∈Kπj

(

K∑
t=1

xt
k,j

nj
). (23)

As 0 ≤
∑K

t=1

xt
k,j

nj
≤ 1, ∀k ∈ Kπj , it holds true that ρ̃πj ≤

mink∈Kπj

∑K
t=1 z

t
k,j . Compared with the average UA cost in

(10), we derive that CMDS
mult,coop ≤ Cuncoded

mult,coop.
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