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Abstract
Measurement of gene expression levels and detection of eQTLs (expression quantitative trait loci) are difficult in tissues 
with limited sample availability, such as the brain. However, eQTL overlap between tissues might be high, which would 
allow for inference of eQTL functioning in the brain via eQTLs detected in readily accessible tissues, e.g. whole blood. 
Applying Stratified Linkage Disequilibrium Score Regression (SLDSR), we quantified the enrichment in polygenic signal of 
blood and brain eQTLs in genome-wide association studies (GWAS) of 11 complex traits. We looked at eQTLs discovered 
in 44 tissues by the Genotype-Tissue Expression (GTEx) consortium and two other large representative studies, and found 
no tissue-specific eQTL effects. Next, we integrated the GTEx eQTLs with regions associated with tissue-specific histone 
modifiers, and interrogated their effect on rheumatoid arthritis and schizophrenia. We observed substantially enriched effects 
of eQTLs located inside regions bearing modification H3K4me1 on schizophrenia, but not rheumatoid arthritis, and not 
tissue-specific. Finally, we extracted eQTLs associated with tissue-specific differentially expressed genes and determined 
their effects on rheumatoid arthritis and schizophrenia, these analysis revealed limited enrichment of eQTLs associated with 
gene specifically expressed in specific tissues. Our results pointed to strong enrichment of eQTLs in their effect on complex 
traits, without evidence for tissue-specific effects. Lack of tissue-specificity can be either due to a lack of statistical power 
or due to the true absence of tissue-specific effects. We conclude that eQTLs are strongly enriched in GWAS signal and that 
the enrichment is not specific to the eQTL discovery tissue. Until sample sizes for eQTL discovery grow sufficiently large, 
working with relatively accessible tissues as proxy for eQTL discovery is sensible and restricting lookups for GWAS hits to 
a specific tissue for which limited samples are available might not be advisable.

Keywords Gene expression · Tissue-specificity · Complex human traits · Enrichment · Genome-wide · Brain · Whole 
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Introduction

The aim of genome-wide association studies (GWAS) 
is to detect statistically significant associations between 
single nucleotide polymorphisms (SNPs), and a trait of 
interest (Hirschhorn and Daly 2005). GWAS have pro-
vided insights into the genetic architecture of complex 
traits (Visscher et al. 2017). However, as a large number 
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of variants identified through GWAS are located outside of 
coding regions and specific knowledge of regulatory ele-
ments is limited, uncovering a relationship between GWAS 
hits and biological function has proven to be complicated 
(Lowe and Reddy 2015). Expression quantitative trait loci 
(eQTLs) are SNPs that influence gene expression, and may 
aid functional annotation of SNPs that have been identified 
in a GWAS (Morley et al. 2004; Lowe and Reddy 2015). 
Previous work has found substantial enrichment of eQTLs 
among GWAS hits (Nicolae et al. 2010; Torres et al. 2014) 
and an enrichment in their genome-wide effect on complex 
traits (Davis et al. 2013). Therefore, eQTLs are viewed as 
an important tool in moving from genome-wide associa-
tion to biological interpretation.

As a result of differences in gene expression between cells 
originating from different tissues, eQTLs are potentially 
tissue-specific (GTEx Consortium 2015). Tissue-specificity 
poses no problem if the tissue of interest is readily available 
for research, such as whole blood. However, discovery of 
eQTLs gets complicated when measurement of expression 
levels in a tissue is limited by ethical and practical consid-
erations, for example in brain tissue. Several studies have 
shown that the overlap between eQTLs from different tis-
sues might actually be larger than initially assumed (Ding 
et al. 2010; Nica et al. 2011). The Genotype-Tissue Expres-
sion (GTEx) consortium identified eQTLs in a wide range 
of human tissues and showed that 54–90% of the eQTLs 
identified in one tissue are also designated as an eQTL in at 
least one other tissue (GTEx Consortium 2015, 2017) and 
a high average pairwise genetic correlation  (rg = 0.738) of 
local gene expression between tissues was reported by Liu 
et al. (2017). Therefore, the discovery of eQTLs for tissues 
such as the brain might be advanced by eQTLs discovered 
in tissues that are more accessible, such as whole blood. The 
use of accessible tissues, though, depends on a substantial 
degree of similarity of eQTL effect across tissue, and the 
extent to which eQTL differences between tissues are impor-
tant in complex trait etiology.

An eQTL is commonly viewed as shared between tis-
sues when the same SNP influences a gene in multiple tis-
sues (GTEx Consortium 2015). Alternatively, two eQTLs 
can be viewed as shared if they influence expression of the 
same gene in multiple tissues, even though the SNP itself 
differs between tissues. In this paper, we used a broad and 
a narrow definition of “tissue-shared eQTL”. In the broad 
definition, an eQTL was considered shared between two 
tissues if the SNP tags a gene for which eQTLs were also 
found in the other tissue (the gene has eQTLs in either tis-
sue). Conversely, an eQTL was tissue-specific if the gene it 
tagged only had eQTLs in that specific tissue. For the nar-
row definition of tissue-specific eQTLs, we considered the 
correlation between the SNP effects on the expression of a 
gene in one tissue and the SNP effects on expression of the 

same gene in the second tissue. Where the broad definition 
of tissue-specificity is based on whether a gene has eQTLs 
in either tissue at all; the narrow definition is more restric-
tive, requiring the genetic effects on the expression of a gene 
to have a positive correlation across tissues (i.e. the same 
underlying genetic effect on gene expression to be present 
in two tissues).

To further examine potential tissue-specific eQTL effect 
on complex traits, we leveraged additional information on 
the genomic location of eQTLs. Specifically, we extracted 
eQTLs in regions of the genome where histones have been 
modified within a specific tissue (i.e. tissue-specific epige-
netically changed chromatin states in regulatory regions) 
(Finucane et al. 2015). We then contrasted the enrichment 
in GWAS signal for this subset of eQTLs against the enrich-
ment in GWAS signal for all SNPs associated with the tis-
sue-specific epigenetic modification. Finally, we obtained 
eQTLs associated with the top 10% most strongly differen-
tially expressed genes in each tissue (Finucane et al. 2018) 
and tested whether these are enriched in their effects on spe-
cific complex traits.

For our analyses we leverage large eQTL resources: 
cis-eQTLs per gene discovered in large samples of RNA 
expression levels assessed in whole blood (N = 4896) 
(Wright et al. 2014; Jansen et al. 2017) and in brain tissues 
(N = 134) (Ramasamy et al. 2014). Based on these resources 
we attempt to detect tissue specific signal in eQTL effects on 
11 complex traits. Secondly, we retrieved all eQTLs iden-
tified in any of the 44 tissues from the GTEx consortium 
(N = 70–361, median = 126.5) (GTEx Consortium 2015, 
2017). Enrichment is quantified using Stratified Linkage 
Disequilibrium Score Regression (SLDSR) (Bulik-Sullivan 
et al. 2015; Finucane et al. 2015).

Our analyses were designed to elucidate the nature of the 
relation between cis-eQTLs and complex traits. We quanti-
fied the extent to which this relation is dependent on the 
tissue used in eQTL discovery. We then considered whether 
tissue specific information, either epigenetics or the level of 
gene expression, could help resolve possible tissue-specific 
eQTL effects on complex traits.

Materials and methods

SLDSR method & eQTL annotation definition

A measure of linkage disequilibrium (LD) for each SNP, 
called an “LD score”, can be computed by taking the sum 
of correlations between that SNP and all neighboring SNPs 
(Bulik-Sullivan et al. 2015; Finucane et al. 2015). Under 
a polygenic model, LD scores are expected to show a lin-
ear relationship with GWAS test statistics of correspond-
ing SNPs, where the slope is proportional to  h2

SNP. For 
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SLDSR, LD scores are based on only (functional) parts of 
the genome, called annotations, and used as predictors in 
a multiple linear regression (Finucane et al. 2015). In this 
manner, SLDSR is able to partition  h2

SNP into parts that are 
explained by these annotations (i.e.  h2

annot), while account-
ing for influences of the remaining annotations in the model. 
The enrichment of an annotation is then obtained by tak-
ing the ratio of  h2

annot over the proportion of SNPs that fall 
within that annotation.

For eQTLs, the number of SNPs to include in the anno-
tation is a complicated quantity: not all significant eQTLs 
are likely causal; whereas including only lead, or putative 
causal, eQTLs may result in very narrow annotations located 
near genes and other regulatory elements, which presents a 
risk of inflated estimates of the enrichment in GWAS signal. 
Therefore, we tested the effect of various criteria for inclu-
sion of a SNP into the eQTL annotation. Since eQTLs are 
essentially discovered in what amounts to a local GWAS, we 
expected the average LD score of eQTLs to be higher than 
that of an average SNP, which may influence the results of 
downstream SLDSR analyses. In order to break the relation 
between LD score and probability of inclusion, we consid-
ered eQTL annotations that were based on a subset of all 
significant eQTLs for a given probe. First, we included the 
most strongly associated SNP, a SNP with a high expected 
LD score, of each probe. Second, we included one SNP 
per probe with a median p-value from the set of signifi-
cant eQTLs. Third, we included one SNP per probe with a 
mean p-value from the set of significant eQTLs. Fourth, we 
included the ten most strongly associated SNPs per probe. 
Finally, we included all SNPs significantly associated with 
gene expression after FDR correction at α = 0.05. We added 
each annotation separately to the baseline categories in an 
SLDSR model, and determined how the various p value 
thresholds influenced the SLDSR coefficient of the eQTL 
annotation and its corresponding test statistic. For each 
annotation, we looked up the SNPs in the baseline category, 
and extracted their baseline LD scores and minor allele fre-
quencies (MAF). We then compared the mean LD score, 
median LD score and mean MAF between the various eQTL 
annotations and the entire baseline category. Based on the 
results (Table S1, Figs. S1 and S2), we considered all sig-
nificant cis-eQTLs as an annotation, and retained additional 
gene-centric and regulatory annotations in the model.

Target traits

As outcome for SLDSR, we used summary statistics of 
GWAS on Crohn’s disease (Jostins et al. 2012), rheuma-
toid arthritis (Okada et al. 2014), ulcerative colitis (Jostins 
et al. 2012), BMI (Speliotes et al. 2010), educational attain-
ment (Okbay et al. 2016), schizophrenia (Pardiñas et al. 
2018), age at menarche (Perry et al. 2014), coronary artery 

disease (Schunkert et al. 2011), height (Wood et al. 2014), 
LDL levels (Teslovich et al. 2010), and smoking behavior 
(The Tobacco and Genetics Consortium 2010). The first 
three traits were chosen because they had been related to 
the immune system and were therefore expected to reveal 
considerable enrichment of blood eQTL signal (Jostins 
et al. 2012; Okada et al. 2014). Similarly, brain eQTLs were 
expected to show substantial enriched effects due to previ-
ous reports on the involvement of the central nervous system 
(CNS) in schizophrenia (Pardiñas et al. 2018), educational 
attainment (Okbay et al. 2016), and BMI (Vimaleswaran 
et al. 2012). Of course, these traits did not perfectly align 
with either tissue, e.g. the immune system has been impli-
cated in the etiology of schizophrenia (Andreassen et al. 
2015) and BMI (Karalis et al. 2009). Enrichment of blood 
and brain eQTL effects on the remaining traits was calcu-
lated to contrast the results with traits for which we do not 
have a strong a priori expectation of the relationship between 
trait and tissue.

The discovery sample for detection of blood eQTLs 
(Wright et al. 2014; Jansen et al. 2017) included partici-
pants from the Netherlands Twin Register (NTR) (Boomsma 
et al. 2008) and participants from the Netherlands Study of 
Depression and Anxiety (NESDA) (Penninx et al. 2008). 
These two cohorts did not participate in the GWAS for schiz-
ophrenia, Crohn’s disease, rheumatoid arthritis, ulcerative 
colitis, or coronary artery disease. However, participants 
from these two cohorts, not necessarily the same ones, did 
participate in the GWAS for height, BMI, LDL levels, smok-
ing behavior, educational attainment, and age at menarche. 
For educational attainment and smoking behavior, we were 
able to obtain summary statistics omitting subjects from 
NTR/NESDA. For both these traits, we looked at trait-spe-
cific enrichment of blood and brain eQTL effect in GWAS 
signal, comparing results from using publicly available 
datasets with using summary statistics based on the same 
sample without subjects from the NTR or NESDA. The 
results did not reveal appreciable differences between the 
respective datasets for educational attainment, but did show 
substantial differences for smoking behavior (Fig. S3). This 
latter finding could conceivably be a function of relatively 
strong effects of smoking behavior on gene-expression levels 
(Vink et al. 2015). Therefore, the remaining analyses for 
smoking behavior were performed using the summary sta-
tistics omitting subjects from the NTR and NESDA, whereas 
analyses for the remaining traits (height, BMI, LDL levels, 
and educational attainment) were run using publicly avail-
able summary statistics. This caveat only applies to eQTL 
annotations based on NTR/NESDA data (i.e. whole blood). 
We note that the issue of overlap also applies to other tech-
niques where the error covariance is assumed to be zero 
[e.g. MetaXcan (Barbeira et al. 2017), Transcriptome-Wide 
Association Study (TWAS; Gusev et al. 2016), Generalised 
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Summary-data-based Mendelian Randomisation (GSMR; 
Zhu et al. 2018), etc.]

Blood and brain eQTL enrichment

Gene expression was quantified by extracting and measuring 
RNA levels using an array, consisting of several hundreds 
of thousands of probes (Wright et al. 2014; Ramasamy et al. 
2014). Several of these probes (a probe set) were designed to 
bind to the same RNA sequence, or transcripts, where each 
transcript represents (a specific form of) a gene. eQTLs were 
then discovered by running an association analysis between 
SNP and transcript-level.

A catalog of whole blood cis-eQTLs was obtained from 
Jansen et al. (2017; Wright et al. 2014), where all eQTLs 
significantly associated with gene expression after FDR 
correction at α = 0.05 in up to 4896 subjects were included 
in our whole blood eQTL annotation. A list of brain 
eQTLs was obtained from the UK brain expression con-
sortium (UKBEC), for which the analyses are described in 
Ramasamy et al. (2014) and based on brain samples taken 
from 12 brain regions for 134 Caucasian individuals. We 
based the brain eQTL annotation on SNPs that were signifi-
cantly associated with the average gene expression across 
all 12 brain regions. SLDSR annotations were constructed 
as per the instructions in Finucane et al. (2015). To guard 
against upward bias in the eQTL enrichment signal, two 
extra annotations containing SNPs within a 500 bp (bp) and 
100 bp window around any eQTL were constructed for each 
eQTL set (Finucane et al. 2015). To ensure that the enrich-
ment of eQTL effects in GWAS signal was not in fact caused 
by their proximity to the genes they influence, an addi-
tional gene centric annotation was computed, which con-
tained all SNPs within 1Mbp of all genes for which eQTLs 
were included. Finally, we performed an inverse-variance 
weighted meta-analysis across the traits to determine the 
average effect of blood and brain eQTLs on complex traits 
in general.

Tissue‑specific eQTL enrichment

To distinguish between the shared and unique effects of 
eQTLs discovered in whole blood and brain, we used a 
broad and narrow definition of “tissue-shared eQTL”. For 
the broad definition of tissue-sharedness, we made a distinc-
tion between (a) genes that were only tagged by eQTLs dis-
covered in either tissue and (b) genes for which eQTLs were 
found in both tissues. Then, the eQTLs were split based on 
the combination of discovery tissue and genes they tagged. 
Specifically, the eQTLs were divided into: (1) eQTLs that 
have been discovered in whole blood and were associated 
with genes for which only eQTLs were found in whole blood 
(tissue-specific blood eQTLs), (2) eQTLs that have been 

discovered in whole blood and were associated with genes 
for which eQTLs were also found in brain (tissue-shared 
blood eQTLs), (3) eQTLs that have been discovered in brain 
tissue and were associated with genes for which only eQTLs 
have been discovered in brain (tissue-specific brain eQTLs), 
and (4) eQTLs that have been discovered in brain and were 
associated with genes for which eQTLs were also found in 
whole blood (tissue-shared brain eQTLs). Note that, under 
this definition, the same SNP tagging different genes in dif-
ferent tissues are categorized as tissue-specific.

For the narrow definition of tissue-sharedness, we 
required a positive correlation in SNP effects on the expres-
sion of a gene across tissue. Specifically, we divided all 
probe sets by the genes they tagged. Then, for each gene, 
we listed all eQTLs within each probe set and calculated 
the pairwise correlation in SNP effects on gene expression 
between all probe sets. Correlations that were based on less 
than ten overlapping eQTLs were set to missing. Frequently 
multiple probe sets measure the expression of a single gene, 
in those cases we computed the average and median corre-
lations between the SNP effects on probe sets which meas-
ure gene expression in blood, brain, and across blood and 
brain probe sets. Finally, we examined the distribution of 
correlations across genes under various cutoff values for 
the minimum number of overlapping eQTLs. Based on the 
various cutoff values we tested, we chose a cutoff of at least 
35 overlapping SNPs and a correlation above 0.35. eQTLs 
were categorized as shared between tissues if they affected 
a probe set that showed a correlation above the cutoff with 
at least one other probe set in the other tissue.

Enrichment of eQTLs obtained in 44 tissues (GTEx)

There are several limitations to above-mentioned analyses 
of tissue-specific enrichments of eQTL effects in GWAS 
signal. The eQTLs were obtained from two different pro-
jects, which varied in terms of sample size, gene expres-
sion array used and their definition of an eQTL. To miti-
gate the heterogeneity between studies, and to extend to 
additional tissues, we performed additional analyses using 
eQTLs obtained by a common pipeline from 44 tissues (see 
Table S2) (GTEx Consortium 2015, 2017). For each of the 
44 tissues, we created annotations for analysis in SLDSR 
following the previously described procedure. Analogous to 
the procedure of Finucane et al. (2015) for cell-type-specific 
analysis using SLDSR, we did not specify windows for the 
single-tissue GTEx annotations, but included an additional 
annotation that contained the union of all GTEx eQTLs, i.e. 
all SNPs that are designated as part of at least one of the 
44 single-tissue GTEx annotations, and added a 100 and 
500 bp window around this union of GTEx eQTLs. Based 
on the Z-score of the SNP-heritability (Finucane et al. 2015) 
and previous reports of substantial influence of either tissue 
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in the etiology of the traits (Okada et al. 2014; Finucane 
et al. 2015, 2018; Pardiñas et al. 2018), we considered two 
well-powered traits, one for which we assumed there to be 
significant enrichment in signal for blood eQTLs (rheuma-
toid arthritis) and one for brain eQTLs (schizophrenia). For 
each of these two traits, we ran one SLDSR model con-
taining only the baseline categories and the union of GTEx 
eQTLs. Furthermore, 44 additional models were fitted to 
both traits, each model containing the baseline categories, 
the union of GTEx eQTLs and one of the 44 single-tissue 
GTEx annotations.

GTEx has relative small sample sizes for the discov-
ery of brain eQTLs (mean = 89, range = 72–103) com-
pared to discovery of eQTLs in other tissues (mean = 160, 
range = 70–361) (GTEx Consortium 2015, 2017). To inves-
tigate the effect of differences in sample size on estimates 
of enrichments in GWAS signal, we collapsed the union of 
individual brain eQTL annotations into a shared brain eQTL 
annotation (i.e. an eQTL found in at least one of the GTEx 
brain annotations was included in the shared brain eQTL 
annotation). This annotation was then analyzed as an addi-
tional GTEx eQTL annotation in schizophrenia. We further 
tested the relationship between tissue sample size and tissue 
eQTL enrichment.

Enrichment of the intersection between eQTLs 
and histone marks

Finucane et al. (2015) identified SNPs that were associ-
ated with tissue-specific histone marks, a type of epigenetic 
modification related to enhancers and promoters of actively 
transcribed genes. Out of the 220 cell-type-specific histone 
marks that were available, 100 were found in the CNS or 
in immune tissues (Table S3). For each of the 100 annota-
tions, we extracted its intersection with the union of GTEx 
eQTLs (i.e. SNPs found in both annotations) and made a 
new SLDSR annotation. We then applied 100 SLDSR mod-
els to summary statistics of schizophrenia and rheumatoid 
arthritis where each model contained the baseline categories, 
the union of GTEx eQTLs, one of the 100 cell-type-specific 
histone marks and its corresponding intersection annotation. 
Enrichments in GWAS signal of the intersection should be 
interpreted as enrichment of genome-wide SNP effects on 
a complex trait beyond the additive effects that work on all 
SNPs that are a cis-eQTL and histone mark in question. 
In fact, we tested whether the interaction between tissue-
specific chromatin state and eQTLs were enriched in their 
genome-wide effect on complex traits.

GTEx eQTLs for tissue‑specific differentially 
expressed genes

Finucane et al. (2018) looked at tissue-specific gene expres-
sion and determined that the top 10% of these differentially 
expressed genes are substantially enriched in their effects in 
GWAS signals for a wide range of traits. Here, we built on 
these findings by taking the top 10% most strongly differen-
tially expressed genes in the 44 GTEx tissues and extracting 
the eQTLs for these specific genes, regardless of the discov-
ery tissue. These were separately added as an annotation 
to an SLDSR model together with the baseline categories 
and union of GTEx eQTLs. A significant increase in enrich-
ment in GWAS signal in the eQTLs compared to the genes 
themselves, would indicate that eQTLs explain part of the 
enrichment seen by Finucane et al.

Results

SLDSR eQTL annotation definition

We compared five annotations that included various SNPs 
based on the p value of their associations with gene-expres-
sion levels (lead eQTL, median eQTL, mean eQTL, top 10 
lead eQTLs, and all eQTLs). Supplementary Table S1 shows 
various metrics of these annotations. Surprisingly, lead 
eQTLs had the lowest mean and median LD score amongst 
the annotations, indicating that the annotation contained less 
signal (Table S1). However, it was still higher compared to 
the mean or median LD score of all SNPs in the baseline 
annotation. Including all significant eQTLs in the annotation 
resulted in the highest mean and median LD score. All anno-
tations had a mean MAF 0.27–0.28, whereas the mean MAF 
of the entire baseline category was 0.24. Figure S1 plots 
the enrichment in GWAS signal for blood eQTLs for one 
annotation against the other annotations. Smaller annota-
tions had a higher enrichment in GWAS signal; however, the 
enrichment in GWAS signal did not differ between taking 
the lead eQTL, eQTLs with a mean p value, or eQTLs with 
a median p-value. Figure S2 plots the coefficient Z-score 
of the various annotations against one another. Coefficient 
Z-score did not differ much between the annotations. Since 
including all significant eQTLs did not result in a decrease 
of the mean or median LD score compared to the other anno-
tations tested here and did result in larger annotations, we 
selected the annotation based on all significant eQTLs for 
further analyses.

Blood and brain eQTL enrichment

We fitted an SLDSR model containing the baseline cat-
egories, the complete annotation for both brain and blood 
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eQTL tissues, their 100 and 500 bp windows, and gene-
centric annotations to all traits (Crohn’s disease, rheuma-
toid arthritis, ulcerative colitis, BMI, educational attainment, 
schizophrenia, age at menarche, coronary artery disease, 
height, LDL levels, and smoking behavior). We performed 
one-tailed tests for enrichment for each annotation and cor-
rected for multiple testing across annotations within trait. 
We found significant effects of brain eQTLs on educational 
attainment, rheumatoid arthritis, smoking behavior, and 
schizophrenia (Table S4A–K). Blood eQTLs showed sig-
nificantly enriched effects on height and smoking behavior. 
The gene-centric annotation for both blood and brain eQTLs 
showed no effect on any trait after correction for multiple 
testing. We then meta-analyzed the results for all annota-
tions, both in the baseline model, and those associated with 
eQTLs across the 11 traits. Our analysis revealed significant 
effect of both blood (p < 0.001) and brain (p < 0.001) eQTL 

effects (Table S5), exceeding, in terms of significance, all 
the baseline categories considered by Finucane et al. (2015) 
except for conserved genomic regions.

Tissue‑specific eQTL enrichment

We used a broad definition of tissue-sharedness in eQTL 
effects to separate the list of blood eQTLs into a list of tis-
sue-specific blood eQTLs and a list of blood eQTLs with 
shared effects across tissue. We then modelled the baseline 
categories together with all blood eQTLs and the tissue-
specific blood eQTLs. The same was done for brain eQTLs. 
We observed no evidence for enrichment of blood-specific 
eQTLs (relative to all blood eQTLs) on immune-related 
traits, nor do we find significant enrichment of effect on 
brain-related traits of eQTLs associated with genes for which 
eQTLs were solely identified in brain tissue (Tables 1, 2).

Table 1  Coefficients of 
complete blood eQTL 
annotation and broad tissue-
specific blood eQTLs

Values between brackets indicate standard errors. One asterisk indicates categories reaching nomial signifi-
cance (p < 0.05). Two asterisks indicate categories passing FDR correction for multiple testing (α = 0.05). 
Three asterisks indicate categories passing Bonferroni correction for multiple testing

Trait Complete blood eQTLs Unique blood eQTLs (broad)

Crohn’s disease 6.115e−07(3.987e−07) − 1.459e−07(4.946e−07)
Rheumatoid arthritis 2.352e−07(8.077e−08)*** − 1.291e−07(1.397e−07)
Ulcerative colitis 7.904e−08(2.073e−07) 2.003e−07(2.736e−07)
BMI 1.484e−07(8.701e−08)* − 5.728e−08(7.924e−08)
Educational attainment 4.386e−08(1.936e−08)* − 1.806e−08(2.483e−08)
Schizophrenia 1.604e−08(2.167e−07) 5.361e−07(3.039e−07)*
Age at menarche 6.830e−08(6.127e−08) − 3.606e−08(7.277e−08)
Coronary artery disease 6.874e−09(6.288e−08) 2.397e−08(7.847e−08)
Height 2.863e−07(8.099e−08)*** − 8.241e−08(1.318e−07)
LDL levels 2.161e−07(1.042e−07)* − 1.908e−07(1.387e−07)
Smoking behavior 1.202e−07(4.854e−08)** − 1.034e−07(6.523e−08)

Table 2  Coefficients of 
complete brain eQTL 
annotation and broad tissue-
specific brain eQTLs

Values between brackets indicate standard errors. One asterisk indicates categories reaching nomial signifi-
cance (p < 0.05). Two asterisks indicate categories passing FDR correction for multiple testing (α = 0.05). 
Three asterisks indicate categories passing Bonferroni correction for multiple testing

Trait Complete brain eQTLs Unique brain eQTLs (broad)

Crohn’s disease 1.076e−06(4.447e−07)** − 2.724e−07(5.644e−07)
Rheumatoid arthritis 3.099e−07(1.234e−07)** − 7.296e−08(1.483e−07)
Ulcerative colitis 1.482e−07(2.250e−07) 6.010e−08(3.236e−07)
BMI 9.540e−08(4.289e−08)** − 6.726e−08(7.140e−08)
Educational attainment 7.149e−08(2.037e−08)*** − 4.628e−08(3.245e−08)
Schizophrenia 7.849e−07(2.655e−07)*** − 6.929e−08(3.930e−07)
Age at menarche 7.583e−08(4.896e−08) − 3.136e−08(7.101e−08)
Coronary artery disease 2.820e−08(5.694e−08) − 5.672e−08(8.192e−08)
Height 2.505e−07(8.777e−08)*** − 7.998e−08(1.261e−07)
LDL levels 1.707e−07(8.394e−08)* − 3.242e−07(1.019e−07)
Smoking behavior 8.208e−08(6.311e−08) − 3.084e−08(8.465e−08)
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Next, we used a narrow definition of tissue-shared-
ness to again make the distinction between tissue-specific 
blood eQTLs and blood eQTLs that show a cross-tissue 
effect. We then modelled the baseline categories together 
with all blood eQTLs and the unique blood eQTLs. The 
same was done for the brain eQTLs. Figures S4 and S5 
show the distribution of mean correlations across genes, 
within respectively blood and brain probe sets. Most 
probe sets showed a moderate to high, positive correla-
tion, with a long tail to the left. The mean correlation 
across genes within respectively blood and brain probe 
sets was 0.63 and 0.67. The mean number of eQTLs that 
overlapped between probe sets, within tissue was 214 
(blood) and 158 (brain). Across tissue, the mass of the 
distribution of correlations was more spread across the 
range, although a sharp increase was seen at roughly 0.35 
(Fig. S6). Compared to the analyses within tissues, the 
mean correlation between eQTL effects in expression in 
brain and blood was 0.25. The average number of number 

of overlapping eQTLs between brain and blood probes 
for the same gene was 139. Similar to the analyses using 
the broad definition of tissue-sharedness, blood-specific 
eQTLs were not enriched in GWAS signal for immune 
related traits (Table 3). Likewise, brain-specific eQTLs 
showed no significant enrichment in their effect on brain-
related traits (Table 4).

Enrichment of eQTLs obtained in 44 tissues (GTEx)

We interrogated the enrichment of the union of GTEx 
eQTLs and 44 single-tissue GTEx annotations in their effect 
on schizophrenia and rheumatoid arthritis. Figure 1 shows 
the coefficient of these GTEx annotations, sorted on their 
Z-scores for rheumatoid arthritis. In both cases, the union 
of GTEx eQTLs contributed significantly to explaining the 
polygenic signal (Table S6), indicating that eQTLs were 
significantly enriched in their effects on complex traits. The 
single-tissue annotations, however, performed notably worse 

Table 3  Coefficients of 
complete blood eQTL 
annotation and narrow tissue-
specific blood eQTLs

Values between brackets indicate standard errors. One asterisk indicates categories reaching nomial signifi-
cance (p < 0.05)

Trait Complete blood eQTLs Unique blood eQTLs (narrow)

Crohn’s disease 9.431e−07(5.744e−07) − 4.406e−07(6.256e−07)
Rheumatoid arthritis 2.356e−07(1.519e−07) − 8.019e−08(1.679e−07)
Ulcerative colitis 2.507e−07(4.785e−07) − 6.476e−08(4.908e−07)
BMI 1.518e−07(8.285e−08)* − 3.952e−08(8.619e−08)
Educational attainment 4.712e−08(3.128e−08) − 1.472e−08(3.432e−08)
Schizophrenia 5.029e−07(4.088e−07) − 1.851e−07(4.406e−07)
Age at menarche − 2.363e−09(1.289e−07) 5.540e−08(1.281e−07)
Coronary artery disease − 2.998e−08(1.075e−07) 5.611e−08(1.199e−07)
Height 8.629e−08(1.980e−07) 1.674e−07(2.148e−07)
LDL levels − 3.215e−08(1.260e−07) 1.557e−07(1.412e−07)
Smoking behavior 1.819e−07(8.704e−08)* − 1.316e−07(9.085e−08)

Table 4  Coefficients of 
complete brain eQTL 
annotation and narrow tissue-
specific brain eQTLs

Values between brackets indicate standard errors. One asterisk indicates categories reaching nomial signifi-
cance (p < 0.05)

Trait Complete brain eQTLs Unique brain eQTLs (narrow)

Crohn’s disease 9.500e−07(1.040e−06) 2.371e−08(1.036e−06)
Rheumatoid arthritis 6.997e−07(3.364e−07)* − 5.031e−07(3.290e−07)
Ulcerative colitis − 2.301e−08(3.799e−07) 2.441e−07(4.207e−07)
BMI 7.360e−08(8.037e−08) − 2.821e−09(8.464e−08)
Educational attainment 7.571e−08(4.264e−08)* − 3.154e−08(4.577e−08)
Schizophrenia 3.203e−07(3.878e−07) 5.190e−07(4.362e−07)
Age at menarche 1.130e−07(1.170e−07) − 6.058e−08(1.239e−07)
Coronary artery disease 1.076e−08(9.983e−08) − 1.084e−08(1.121e−07)
Height 1.300e−07(1.240e−07) 9.491e−08(1.496e−07)
LDL levels 1.216e−07(1.794e−07) − 1.096e−07(2.002e−07)
Smoking behavior 1.231e−07(7.249e−08)* − 7.162e−08(8.370e−08)
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in terms of their genome-wide effects on schizophrenia and 
rheumatoid arthritis. For rheumatoid arthritis, the coefficient 
Z-scores of the whole blood annotation reached nominal 
significance (Z = 2.251), but failed correction for multiple 
testing. None of the other annotations reached nominal sig-
nificance. The union of all GTEx brain annotations did not 
contribute significantly to explaining  h2

SNP of schizophrenia 
(Z = 0.621, p = 0.267). Sample size in the eQTL discovery 
phase appeared to be a strong determinant of tissue-specific 
enrichment in GWAS signal. The correlation coefficients 
between the coefficient Z-scores and sample sizes were 
0.658 (p < 0.001) and 0.467 (p = 0.001) for schizophrenia 
and rheumatoid arthritis, respectively (Table S6).

Enrichment of the intersection between eQTLs 
and histone marks

We extracted the intersection of eQTLs and histone marks 
found in specific CNS and immune cells, and estimated the 
enrichment of the intersection in its effect on rheumatoid 
arthritis and schizophrenia. We found significant enrichment 
in GWAS signal for eQTLs that intersected with histones 
bearing modification H3K4me1, a modification thought 
to be present in the enhancer of actively transcribed genes 
(Zhou et al. 2011; Allis and Jenuwein 2016), in CNS cells 
for schizophrenia (see Table S7). There was some evidence 
for significant enrichment of eQTLs that intersected with 
genomic regions in immune cells bearing the H3K4me1 
mark in their effect on schizophrenia, but not on rheumatoid 
arthritis. Specifically, none of the annotations that contained 

the intersection between eQTL and cell-type-specific histone 
modification showed evidence of enrichment for rheuma-
toid arthritis (Table S8). The union of GTEx eQTLs reached 
statistical significance for all models. For the separate anno-
tations, we found significant enrichment in GWAS signal 
across most histone marks found in CNS cells and three 
significant immune cell-types that bore the H3K4me3 modi-
fication, a modification associated with transcriptional start 
sites and promoters of actively transcribed genes (Zhou 
et al. 2011; Allis and Jenuwein 2016), for schizophrenia 
(Table S9). The opposite picture was seen for rheumatoid 
arthritis: a wide variety of immune-cell specific histone 
marks showed significant enrichments in GWAS signal, 
while coefficients for most marks found in CNS cells were 
below zero (Table S10).

GTEx eQTLs for tissue‑specific differentially 
expressed genes

The enrichment in GWAS signal for the eQTLs for the top 
10% most specifically expressed genes in a tissue correlated 
0.58 and 0.24 with the enrichment in GWAS signal for the 
body of the specifically expressed genes reported by Finu-
cane et al. (2018) for schizophrenia and rheumatoid arthri-
tis, respectively. eQTLs for differentially expressed genes in 
brain tissues were top-ranked compared to other tissues in 
terms of their coefficients and Z-scores, but were not signifi-
cantly enriched. None of the coefficients for the eQTL anno-
tations surpassed the significance threshold after correction 

Fig. 1  Coefficient Z-scores of the GTEx annotations. Barplot of coefficient z-scores for all GTEx annotations for schizophrenia (grey) and rheu-
matoid arthritis (red). Bars are sorted from highest to lowest based on the results from rheumatoid arthritis. (Color figure online)
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for multiple testing (Table S11). This indicates that these 
eQTLs contribute most strongly to the overall SNP-herit-
ability. Furthermore, the eQTL annotations showed larger 
coefficients compared to corresponding annotations of 
whole genes (Finucane et al. 2018). For rheumatoid arthri-
tis, eQTLs associated with differentially expressed genes 
for whole blood showed the most significant coefficient, but 
again failed correction for multiple testing (Table S11).

Discussion

Stratified Linkage Disequilibrium Score Regression pro-
vides a way to partition  h2

SNP into fractions explained 
by (functional) parts of the genome. A “full baseline 
model” containing 24 non-cell-type-specific annotations 
of SNPs, such as SNPs located in promoters or coding 
regions, was developed for analyses with SLDSR (Finu-
cane et al. 2015). Here, we added annotations containing 
eQTLs derived from whole blood and brain tissue into 
the model, and showed that eQTLs were substantially 
stronger enriched in their effect on complex traits com-
pared to all baseline categories, except for conserved 
genomic regions. The complete blood eQTL annotation 
was significantly enriched in GWAS signal for rheuma-
toid arthritis. The complete brain eQTL annotation was 
significantly enriched in GWAS signal for schizophrenia, 
which is consistent with previous estimates of eQTL effect 
enrichment (Davis et al. 2013). Considerable enrichment 
for eQTLs, even for traits not apparently linked to the brain 
or immune system (e.g. smoking behavior), suggested that 
non-trivial eQTL overlap across tissues might be present.

Inclusion of both brain and blood eQTLs into the 
SLDSR model did not separate the signal into tissue-spe-
cific effects. In general, we were not able to clearly iden-
tify tissue-specific eQTL signals with these datasets and 
SLDSR. For type-II diabetes (T2D), Torres et al. (2014) 
considered the effects of eQTLs that were identified in 
either one of three tissues (whole blood, adipose tissue 
and skeletal-muscle tissue). Only muscle-specific eQTLs 
were enriched in their effect on T2D. Conversely, eQTLs 
that were discovered in all three tissues explained larger 
part of the phenotypic variance of T2D and were stronger 
enriched in their effect on T2D. These findings are largely 
in line with our analyses on the 44 single-tissue GTEx 
eQTL sets. We found that, while an annotation containing 
all eQTLs identified in GTEx was significantly enriched 
in its effect on schizophrenia and rheumatoid arthritis 
[Z = 4.911 (p < 0.001) and Z = 2.871 (p = 0.004) respec-
tively], none of the analyzed brain tissues were enriched 
beyond all eQTLs in their effect on schizophrenia. Simi-
larly, whole blood eQTLs were not significantly enriched 
beyond all GTEx eQTLs taken together in their effect on 

rheumatoid arthritis. Again, these findings are not consist-
ent with the hypothesis of abundant tissue-specific cis-
eQTLs with effects on complex traits related to the specific 
tissue in question. Our findings further support a lack of 
power to detect any tissue-specific eQTL effects. This lack 
of power may be partially driven by the small physical 
distance between eQTLs, as any cis-eQTL is by definition 
within 1Mbp or even 250Kbp of a gene. This makes it 
very likely that the eQTLs in one tissue are in strong LD 
with the true causal eQTL in another tissue, complicating 
detection of tissue specific effects.

Finucane et al. (2015) examined the enrichment in effect 
of 220 tissue-specific epigenetically modified regions on var-
ious human traits and showed that epigenetic modifications 
in tissues most relevant to the etiology of those traits were 
top-ranked among the results. Finucane et al. (2018) looked 
at differentially expressed genes across tissue and calculated 
the enrichment in GWAS signal for these genes for multi-
ple human traits. In line with the results for tissue-specific 
epigenetically modified regions, the results showed strong 
enrichment of GWAS signal for genes that were differen-
tially expressed in trait-relevant tissues. Here, we took the 
intersection between tissue-specific epigenetically modified 
regions and the union of GTEx eQTLs. We find evidence for 
possible enrichment for eQTLs that intersected with tissue-
specific H3K4me1 histone marks in both brain and immune 
cells in their effect on schizophrenia, but not for rheumatoid 
arthritis. Thus, eQTLs in H3K4me1 marks were enriched in 
their effect on schizophrenia above the expected enrichment 
based on the fact that these SNPs were both eQTLs and 
located in H3K4me1 histone marks. What is of substantial 
interest is that the enrichment in GWAS signal appeared 
specific to H3K4me1 marks, and not to other histone marks, 
suggesting that these marks specifically can aid in prioritiz-
ing genomic regions in which tissue-specific eQTLs may 
reside. Especially when contrasted with tissue-specific gene 
expression levels and tissue-specific histone modifications, 
tissue-specific eQTLs are of limited value in relating com-
plex traits to a tissue. In fact, considering eQTLs associated 
with genes that are differentially expressed in a specific tis-
sue identifies stronger enrichment in tissue-specific effects. 
While specifically expressed genes are enriched in their 
effects on complex traits related to the tissue of interest, 
eQTLs for these genes are not. The primary utility of eQTL 
studies for complex traits appear to lie in their ability to link 
genes with trait, irrespective of tissue, through MetaXcan 
(Barbeira et al. 2017), TWAS (Gusev et al. 2016), or GSMR 
(Generalised Summary-data-based Mendelian Randomisa-
tion; Zhu et al. 2018).

One of the limitations of our work involves the substantial 
differences in discovery sample size between the tissues, 
which influences the power to detect eQTLs (Lonsdale et al. 
2013). Even within the GTEx tissues, where differences in 



383Behavior Genetics (2018) 48:374–385 

1 3

sample sizes are relatively small compared to the difference 
between eQTLs obtained from Jansen et al. (2017) and 
Ramasamy et al. (2014), we still saw a significant correlation 
between the discovery sample size and enrichment of eQTLs 
in GWAS signal. Several methods have been developed to 
capitalize on cross-tissue overlap in eQTLs to improve 
power to detect SNP effects on gene expression within tis-
sue. Flutre et al. (2013) and Li et al. (2017) proposed two 
Bayesian approaches to jointly link gene expression levels 
measured in multiple tissues to genome-wide SNPs. Their 
methods put a stronger prior on a SNP being an eQTL within 
a tissue with increasing evidence of the SNP being an eQTL 
across several tissues, resulting in an increased power to 
detect tissue-shared eQTLs. The primary aim of our paper 
was to explore assessment of the effects of eQTLs expressed 
in whole blood on presumably brain-related traits, and vice 
versa. Methods such as TWAS and GSMR rely on eQTLs 
that have been discovered in tissues that have not been linked 
to the etiology of the trait of interest. It is therefore of inter-
est to test the tissue specificity of eQTLs discovered in sin-
gle issues. TWAS and GSMR have not yet been applied to 
multi-tissue eQTLs and, as such, performing a second dis-
covery of multi-tissue eQTLs in a GTEx content was beyond 
the scope of our study. Rather, we constructed an annotation 
containing the union of GTEx eQTLs, which may underesti-
mate the true number of eQTLs but sufficed for addressing 
the primary aim of our paper. Note that GTEx release ver-
sion seven includes a multi-tissue analysis and the increased 
power to detect tissue-shared eQTLs might allow for a more 
accurate partitioning of the SNP-heritability. We showed, 
in the analyses with eQTLs within differentially expressed 
genes, that enrichment in GWAS signal is stronger in these 
eQTLs compared to taking all SNPs in the same genes. This 
indicates that eQTLs, irrespective of the tissue in which they 
have been discovered, play an important role in the etiology 
of complex traits, and do so via the gene they are associated 
with. This does not take away the need to increase sample 
sizes when performing tissue-specific discovery of (cis-)
eQTLs. Tissue specificity, in the end, is a relative judgement 
best reached based on weighing multiple lines of evidence, 
among which are differential expression, epigenetic regula-
tion, and eQTLs. For eQTLs to play a large role in determin-
ing the tissue-specific effects on complex traits, a continued 
investment in resources like GTEx is required in order to 
increase sample sizes for detection, especially in rare tissues.

Our conclusions currently are limited to cis-eQTLs and 
may not generalize to trans-eQTLs which are more tissue 
specific. Our results are consistent with, and complimen-
tary to, the work of Liu et al. (2017), which examined 
the genetic correlation between gene expression levels 
across 15 tissues. This revealed substantial correlations 
between cis-genetic effects on gene expression, but not 
between trans effects, across 15 tissues. Our analyses 

confirmed the value of using whole blood as discovery 
tissue for detection of cis-eQTLs and further demonstrated 
the usefulness of techniques that use cis-eQTLs discov-
ered in whole blood to study the etiology of complex traits 
related to different tissues (Gamazon et al. 2015; Gusev 
et al. 2016). The results presented here highlight the over-
lap of cis-eQTL effects across tissues on a genome-wide 
level. However, the effect of a cis-eQTL might vary sub-
stantially across tissues for individual genes (Grundberg 
et al. 2012). Our conclusions were based on genome-wide 
enrichments and therefore should not be interpreted as 
limited evidence for tissue-specific eQTL effects for indi-
vidual genes. Therefore, eQTL discovery in the tissue most 
relevant to a specific trait or disorder remains important to 
further our understanding of the genetic regulation of tis-
sue-specific gene expression. What is also clear is that to 
discover those tissue-specific eQTLs that are of relevance 
to the interpretation of GWAS of complex traits, tissue-
specific eQTL discovery needs to be refined. The practice 
of, as a post-hoc analysis to GWAS, performing eQTL 
lookup in a specific tissue linked to a trait, when larger 
dataset for other accessible tissues are available, may be 
suboptimal. In fact, one may prefer to perform a lookup 
in the overlap between histone modifications in a relevant 
tissue and eQTLs regardless of tissue. One can further 
consider utilizing eQTLs to link GWAS findings to a gene, 
and subsequently consider the differential expression of a 
gene to identify the tissue in which the gene is most likely 
to act in effecting the trait. Tissue-specific differential gene 
expression vastly outperforms eQTLs in tagging regions 
of the genome enriched in their effect on complex traits.

It is also evident that a limited dichotomous definition 
of eQTL/no-eQTL may be insufficient to identify tissue-
specific eQTL effects. One improvement would be to com-
pute the difference in eQTL effect on expression of the 
gene between tissues, and perform inference based on this 
difference in effect. eQTLs are strongly enriched SNPs, 
with clear biological function and utility for the translation 
of GWAS findings, though tissue-specific eQTL mecha-
nisms remain elusive. The discovery of tissue-specific 
eQTL effects, which can aid in linking complex trait to 
tissue, may require novel research strategies.
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