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1. Modal analysis by finite-difference method

We consider only the TM mode in a 2D PC. The governing equation for the 2D eigenvalue problem can be written as
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where k0 is the free-space wavenumber and ϵ̄ is the averaged dielectric constant.

For the band-structure calculation, each unit cell is divided into many grids as shown below. Here, the lattice constant Px

is equal to Py for square unit cell. ϕm,n (m,n = 1, 2, 3, ...N ) denotes the electric field Ez at each sampling point. Due to

the periodicity, each unit cell has N × N unknowns. The Floquet or Bloch boundary conditions should be imposed at the

boundaries, i.e.

ϕm,N+1 = ϕm,1e
jkxPx , ϕN+1,n = ϕ1,ne

jkyPy (2)

where kx and ky are the Bloch wavenumbers in the lattice.
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Fig. S1. One unit cell with finite-difference grids.

To simulate curved boundaries of the cylindrical rods, considering the tangential Ez component is continuous across the

air-dielectric interface, the averaged dielectric constant is of the following form,

ϵ̄ = ϵm,n =
1

4
(ϵm−0.5,n−0.5 + ϵm+0.5,n−0.5 + ϵm−0.5,n+0.5 + ϵm+0.5,n+0.5) (3)
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Finite-difference approximation of the differential eigenvalue equation is given by,
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Then, we can recast the differential eigenvalue equation into a matrix form,

MΦ =
(ω
c

)2

Φ, Φ = (ϕ11 ϕ12 ... ϕ1N ϕ21 ϕ22 ... ϕ2N ... ϕN1 ϕN2 ... ϕNN )T (5)

where M is a sparse matrix with N2×N2 dimensions. The above can be solved by a standard eigenvalue solver in MATLAB.

By sweeping kx and ky along the edge of the irreducible Brillouin zone, we can solve the corresponding eigenvalue (mode

frequency) and eigenvector (eigenmode). By connecting the eigenvalues to each kx and ky pair, we can build the band structure

of the periodic lattice. The numerical results of the PC with the same geometry and parameters in the manuscript are plotted

below.
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Fig. S2. A 2D PC and its band structure. The PC consists of dielectric rods in a square lattice with the lattice constant

a = 12 mm. The rods with the dielectric constant of ϵr = 8.5 and radius of r = 0.2a mm are placed in the air background.

We show the first four bands of the TM mode. A photonic band gap opens up between the first and second bands and

forbidden frequencies range from 0.3236c/a to 0.4328c/a, where c is the speed of light in vacuum.

For the modal analysis of the localized mode around a point defect in a 2D PC, we use a supercell consisting of 5× 5 unit

cells. The central rod in the supercell is the defect rod and the others are ideal bulk rods. The band structure when the radius

of the defect rod rd = 0.6a is shown below. Within the bandgap, we find the eigenvalues and eigenvectors, which correspond

to the defect modes. Due to translation symmetry breaking along both the x and y directions, eigenvalues and eigenvectors

are the same at different points along the edge of the irreducible Brillouin zone.
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Fig. S3. The band structure of the 2D PC with a point defect. Three defect modes have been found when rd = 0.6a.

Arranged from lowest to highest eigenfrequencies, they are the quadrupole-xy, quadrupole-diag and monopole-2 modes.

2. Simulation results for quadrupole defect states

l

Fig. S4. The evolution of the radiated Ez above the 3D PC with varying height of the PC. The highlighted result is for

the case with the optimized parameters, same as the parameters in Fig. 5. As for the influence of finite height, we can see

the decrease in height tends to push the mode down to the dipole shape and correspondingly, increase in height will pull the

mode up to the monopole-2 state.
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Parameters 8.8 GHz 230 THz

Lattice constant, a 12 mm 458.4 nm

Radius of bulk rods, r 2.5 mm 95.5 nm

Radius of defect rod, rd 7.2 mm 275.0 nm

Radius of scatterer, rs 1.65 mm 63.5 nm

Radius of the circular opening, rc 9.5 mm 363.0 nm

Height of rods, h 9.2 mm 350.0 nm

Table S1. Original and scaled parameters of the structure with a quadrupole defect. The original metallic plates are

considered as the PEC (perfect-electric-conductor) boundary with no thickness. Therefore, the scaling law is not applicable to

the two metallic plates. In the scaled structure, aluminum plates are used and their thickness have been optimized to obtain

desired results and the resultant h = 50 nm. Dispersion of aluminum has been taken into consideration.
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Fig. S5. Simulated intensity and phase distributions of the Ez component at a transverse plane of 1000 nm above the

scaled structure. Due to the dispersion of the aluminum, the operating frequency is shifted to 224.5 THz.
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3. Simulation results for dipole defect states
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Fig. S6. Excited dipole states inside a 2D PC and evolution of the radiated Ez above the 3D PC with the defect rod

of rotational symmetry. (a) The simulated scattering parameter for a 2D PC. Since the dipole states are degenerate states,

we can only see one resonance around 8.5 GHz. According to the numerical results in Fig. 2, the mode frequency for the

two modes is 0.3389c/a, i.e. 8.47 GHz, which is consistent with the simulation results here. (b) The dipole state inside a 2D

PC. (c,d) The projection of the complex field above the 3D PC onto the orthonormal basis of eilϕ along the azimuthal

direction. The results are plotted with varying (c) frequency and (d) height of the PC. We can see due to the degeneracy of

the dipole states, the capability of tuning the two states is very limited. The desired weights and phase factor of the two

dipole states for generating a rotational mode cannot be obtained, by adjusting the frequency or the height of the 3D PC.
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4. Generation of OAM of order ±1 and ±2

Fig. S7. Excited dipole states for generating OAM of order ±1 with different feeding ports and defect orientations.
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Fig. S8. The simulated phase distributions of radiated Ez along the azimuthal direction at a transverse plane of

30 mm above the 3D PC.

5. Experiment details

Fig. S9. Assembled PC samples. (a) The assembled PC sample with the dipole defect. (b) The assembled PC sample with

the quadrupole defect.


