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In this article, motivated by the need for efficient closed-loop implementation of the control objectives set
within the integrated planning, scheduling and control (iPSC) problem we introduce a novel framework
that enables its online solution under dynamic disturbances. We introduce the concept of multi-setpoint
explicit controllers through the use of a new multi-parametric nonlinear programming algorithm and
develop a rigorous rescheduling mechanism that mitigates the impact of the dynamic disruptions on
the operational decisions of planning and scheduling. The overall closed-loop problem is formulated as
mixed integer linear program with the control problem integrated via an outer loop. The benefits of the
proposed framework are highlighted through two case studies and the results indicate the necessity of
considering dynamic disruptions within the scope of the integrated problem.
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1. Introduction

Volatile global market environment, increasing competition and
the need for reduction in cost and environmental impact are only
a few of the reasons that have led the process industries to
seek more responsive and integrated operations. Enterprise Wide
Optimisation (EWO) aims to address the aforementioned chal-
lenges and provide the industries with tools that can serve as
means for enhanced profitability and more sustainable operations
(Grossmann, 2012). Within the EWO scope one seeks for more in-
tegrated decision making via the coordinated optimisation of the
supply chain functionalities so as to holistically guarantee the ef-
ficient information sharing and optimal operations among the dif-
ferent levels of decision making. A conceptual representation of the
EWO scope is given in Fig. 1, where the different levels of decision
making, the key decisions and timescales involved are summarised.

Some of the most important operational functionalities of
the process industries comprise of production planning, schedul-
ing, real time optimisation and control. To this end, the pro-
cess systems engineering (PSE) community has focused on the
development of methods for their integration so as to ex-
ploit the inherent synergies and prevent suboptimal opera-
tions due to negligence of their underlying interdependence
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(Chu and You, 2015; Grossmann, 2012; Harjunkoski et al., 2014).
While traditionally, the problems of planning, scheduling and con-
trol have been modelled and solved in a decoupled and sequen-
tial fashion due to more favorable computational requirements. Re-
cently a number of research works have been devoted to their in-
tegration (Charitopoulos et al., 2017b; Gutierrez-Limon et al., 2014;
Shi et al., 2015). Integration of planning and scheduling has been
studied extensively in the past and their simultaneous optimisation
has proven to result in improved profitability since decisions such
as inventory calculation and production targets from the planning
problem are highly interconnected with the optimal resource al-
location which stems from the scheduling problem (Castro et al.,
2004; Maravelias and Sung, 2009). Another significant trend is to-
wards the integration of scheduling and control and a consider-
able amount of research work has been reported on that problem
(Chu and You, 2015). While scheduling deals with the optimal allo-
cation of limited resources and the sequencing of tasks, the under-
lying dynamics of the systems which are mostly dealt by the con-
trol functionality can highly affect the duration of changeovers and
the quality of products manufactured during the production peri-
ods. It follows naturally that the integration of planning, schedul-
ing and control (iPSC) can result in more optimal operations since
the underlying synergies among the individual problems can en-
hance process operations. Unfortunately, if enhanced operations is
the gift of integration, its price is quite high as it results in large-
scale, typically non-convex, optimisation problems and extensive
computational times that prohibit its application to large scale
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Fig. 1. Enterprise wide optimisation scope.

Abbreviation

Meaning

CAD Cylindrical Algebraic Decomposition

CR Critical Region

EWO Enterprise Wide Optimisation

iPSC integrated Planning Scheduling and Control
iSC integrated Scheduling and Control

KKT Karush-Kuhn-Tucker

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Nonlinear Programming
MMA methyl-methacrylate

MPC Model Predictive Control

mp-P Multi-parametric Programming

mp-MPC Multi-setpoint explicit Model Predictive Control
NLP Nonlinear Programming

NLMPC Nonlinear Model Predictive Control

OFC Objective Function’s Coefficient

PSE Process Systems Engineering

RHS right-hand side

RTO Real Time Optimisation

SISO Single Input Single Output

TSP Travelling Salesman Problem

systems. To this end, decomposition and simplifications of the inte-
grated problem have been proposed in the literature so as to allow
for the study of large-scale systems (Pistikopoulos and Diangelakis,
2016; Zhuge and lerapetritou, 2016).

The efficient online computation of the decisions involved in
the iPSC under uncertain conditions remains an open challenge
(Dias and lerapetritou, 2016). The main goal of the present work
is to propose a framework for the closed-loop iPSC under dy-
namic disturbances and illustrate how the consideration of un-
certain operating conditions accentuates the need for integration
among the different levels of decision making. In this article, we
build on the developments previously presented by our group
(Charitopoulos et al., 2017b) for the open-loop case and with the
use of multi-parametric programming a novel framework for the
closed-loop implementation of the iPSC is proposed. The key el-
ements of the proposed framework involve: (i) linear metamod-
els that correlate transition times and costs based on closed-loop
simulations of the underlying dynamic systems, (ii) the implemen-
tation of novel multi-parametric nonlinear model predictive con-
trollers and (iii) an optimisation based algorithm for the efficient
rescheduling that mitigates the impact of disturbances on the on-
line implementation of the integrated problem. The remainder of
the article is structured as follows: first a literature review is pre-
sented on the topic of integrating control with operations and the

need for a closed-loop framework for iPSC is underlined. Next,
the key elements of the proposed framework are introduced; we
briefly summarise the model employed for the open-loop iPSC and
then the role of multi-parametric programming in the closed-loop
implementation of the iPSC is presented. Subsequently, the overall
closed-loop framework is presented in detail with its necessity and
efficiency been shown through two case studies. Finally, conclud-
ing remarks and future research directions are discussed.

2. Literature review

Integrating control and operations has attracted significant
amount of attention from the research community because of the
potential benefits that result from the exploitation of their under-
lying synergies (Chu and You, 2015; Dias and lerapetritou, 2016).
Control relevant decisions provide an important set of data, such as
transition times and production rates, which are crucial for mod-
elling and solving in an optimal manner the scheduling problem.
On the other hand, sequencing decisions are needed by the con-
trol decision layer so as to proceed with the manipulation of the
dynamics of the production system.

The aforementioned interactions between cyclic scheduling
and control were examined by Flores-Tlacuahuac and Gross-
mann (2006) and the authors showed how their open-loop inte-
gration can yield better results when compared to the conven-
tional sequential solution of the problems. The closed-loop integra-
tion of cyclic scheduling and control (iSC) for continuous processes
was studied by Zhuge and lerapetritou (2012) and a model predic-
tive control inspired mechanism was proposed so as to mitigate
the effect that disturbances had on the execution of the schedule.
Through a number of case studies the authors demonstrated how
the closed-loop iSC can cope with disturbance rejection during
production and transition periods. An alternative methodology for
the closed-loop iSC has been reported in Chu and You (2012). The
authors, in an offline step, generated a number of Pl-controllers for
each possible transition and studied the integrated problem as the
optimal simultaneous scheduling and controller selection. In order
to achieve fast computational times, the resulting MINLP with frac-
tional objective function was solved using Dinkelbach’s algorithm.
Aiming to reduce the time needed for the solution Zhuge and
lerapetritou (2014) suggested the use of multi-parametric model
predictive control within the context of iSC. First, the original non-
linear dynamics of the underlying production system were lin-
earised and then the explicit controller was designed through the
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Fig. 2. Conceptual representation of the integrated planning, scheduling and control problem along with the related interdependent decision.

solution of the corresponding multi-parametric program. The ex-
plicit solutions were then incorporated in the scheduling model as
a set of big-M constraints and the overall iSC was modelled as an
MILP. Later on, the same authors proposed the use of fast MPC
(Zhuge and lerapetritou, 2015) and in that work piecewise affine
approximations of the nonlinear dynamics were employed.

One of the main bottlenecks in the integrated problem is the
time-scale separation among the different layers of decision mak-
ing. To this end, Baldea et al. (2015) proposed the use of lower-
dimensional dynamic models and embedded them in the schedul-
ing formulation as a set of soft constraints. In their time scale-
bridging approach, a scheduling oriented MPC was also employed
so as to synchronise the calculations between MPC and scheduling.

However, when the demand is not assumed to follow a pe-
riodic pattern, the integration of planning along with schedul-
ing and control becomes necessary. The iPSC is an inherently
multi-scale problem for which one aims to optimise simultane-
ously the decisions involved in the levels of planning, scheduling
and control so as to improve process operations and take explic-
itly into account their interdependence. As shown in Fig. 2, the
different problems communicate via a number of interconnected
decisions and there is information flow throughout. Gutierrez-
Limon et al. (2014) extended the work of Flores-Tlacuahuac and
Grossmann (2006) and formulated the problem as a large-scale
monolithic MINLP along with a nonlinear model predictive con-
trol (NLMPC); a number of case studies were presented that re-
sulted in large computational times for the solution of the inte-
grated problem while disturbance rejection was not considered.
Recently, in Gutierrez-Limon et al. (2016) a preliminary study on
the effect of rush orders on the optimal solution of the iPSC was
conducted and a number of heuristics were proposed in a reac-
tive strategy sense. Shi et al. (2015) motivated by the need for
faster computational times, proposed a decomposition framework
based on flexible recipes involving all the potential transition be-
tween products. The overall flexible recipe iPSC was modelled as
an MILP and the bilevel decomposition method by Dogan and
Grossmann (2006) was employed to further enhance the computa-
tional behavior of the proposed framework. In our previous work
(Charitopoulos et al., 2017b) we studied the iPSC of continuous
processes using a traveling salesman problem (TSP) based model
that proved to allow for significant computational savings when

compared to the time slot based formulations. We proposed the
use of linear metamodels that correlate transition time and cost
and under deterministic assumptions solved the integrated prob-
lem as an MILP whose optimal solution was equivalent to the one
computed by the monolithic nonconvex MINLP.

Even though the problem of integrating control with opera-
tions has received considerable attention from the research com-
munity, no previous work has considered the iPSC under dynamic
disturbances, i.e. closed-loop iPSC. For the online implementation
of the iPSC to be effective and realistic one would have to account
for dynamic disruptions at the level of control and develop an
uncertainty-aware framework so as to secure optimal operations
and real time execution. Due to the integrated nature of the prob-
lem it is reasonable to expect an immediate effect on the schedul-
ing and planning decisions whenever the dynamics of the system
are significantly disturbed.

The need for efficient reactive policies in the context of pro-
cess scheduling has been long underlined in the open litera-
ture (Aytug et al, 2005). A least impact heuristic proposed by
Kanakamedala et al. (1994) was among the first works pub-
lished that considered the problem of reactive scheduling in multi-
product batch plants. The reactive scheduling of batch processes
was also studied by Vin and lerapetritou (2000) and the authors
considered two different kinds of disturbances, rush orders and
machine breakdowns. In their work, the rescheduling mechanism
is developed by the means of a repetitive solution of a reduced
MILP problem every time new information about disruptions be-
comes available to the plant. The degree of deviation from the
original schedule is also controlled through the use of a penalty
in the objective function. Scheduling disruptions and reactive poli-
cies were studied by Mendez and Jaime (2004), where the authors
used continuous time representation for multistage batch facilities
and formulated the rescheduling problem as an MILP. The impact
of rescheduling penalties in the objective function on the quality of
the reschedule solution was also studied by Kopanos et al. (2008).
Novas and Henning (2010) proposed a reactive scheduling frame-
work based on a combination of constraint programming and ex-
plicit object oriented domain model that resulted in nearly optimal
solutions at relatively low computational times. The use of multi-
parametric programming has also been reported in the literature
as a way of developing a reactive policy in scheduling problems by
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several researchers (Kopanos and Pistikopoulos, 2014; Li and Ier-
apetritou, 2008). Recently, Maravelias and co workers (Gupta et al.,
2016; Subramanian et al., 2012) in a series of papers based on
the state-space interpretation of the scheduling of batch processes
studied the effect of different factors on the derivation of periodic
and reactive schedules.

In the following section, we review the mathematical develop-
ments proposed in the present work as a means for the real-time
closed-loop implementation of the iPSC decisions along with an
MIP-based rescheduling mechanism.

3. Mathematical formulations

In this section the main methodological components of the
proposed framework are presented. First, we briefly review on
the open-loop problem and its related modelling aspects. Next,
the concept of multi-setpoint explicit controllers is presented and
lastly the overall framework along with the corresponding algorith-
mic steps are outlined.

3.1. Modelling the integrated planning, scheduling and control
problem

3.1.1. Open-loop integration of planning, scheduling and control

The open-loop case of iPSC was treated in a work recently pre-
sented by our group where a TSP based model was proposed for
the integrated problem along with the use of linear metamodels
(Charitopoulos et al., 2017b). Compared to the time slot based for-
mulations used in the literature (Gutierrez-Limon et al., 2014; Shi
et al, 2015), in the TSP based formulation there is not a fixed
number of time slots to be postulated a priori but rather implicit
unique pairs of products/tasks that need to be sequenced. For se-
quencing purposes, the time slot based formulations require the
introduction of binary variables to assign products to time slots for
each planning period that tend to increase the solution times for
large planning horizons. On the contrary, the TSP based formula-
tions track the sequencing of products/tasks in a similar way to the
classic TSP problem using binary variables to model the relevant
changeovers and computational saving compared to the time slot
based formulation are achieved (Aguirre et al., 2017; Charitopoulos
et al., 2017a; 2017b; Liu et al., 2008).

We briefly review the main equations for ease of understanding
while the interested reader is referred to our earlier works for de-
tailed exposition on the computational behavior and analysis of the
proposed model (Charitopoulos et al.,, 2017b; Liu et al., 2008). In
the TSP-based model, a hybrid time formulation is employed with
planning periods modelled as discrete time points whereas within
each point, continuous time formulation of 6’;,“’ duration is consid-
ered. Within each period only one product (i) can be first (F;,) and
last (Ljp) as shown by Egs. (1) and (2) while the assignment of the
products in each period is done via Eqs. (3) and (4) with the use
of binary variable Ej;,.

N
S Fp=1, Vp (1)
i

N
SLp=1 Vp (2)
i
Fip S Eip5 Vls p (3)
Lip < Eip’ Vl, P (4)

Sequencing of different products (i, j) within the same plan-
ning period is tracked with the binary variable Zj, and Egs.

(5) and (6) while between adjacent planning periods changeovers
are tracked with the binary variable ZF;;, and Eqs. (7) and (8).

N
> Zip=Ep—Fp. Vip 5)
iz

N
> Zip = Eip — Lip,

Vi, p (6)
J#
N
Y TRy =Fp, Vip>1 (7
i
N
> ZFy = Lipa Yip>1 (8)
j

In order to avoid infeasible production subcycles and the enu-
meration of symmetric solutions, the integer variable O;, along
with Eqgs. (9)-(11) are used.

Ojp — Oip+1) = —M(1 - Zy,), Vijel, j#i, p (9)

Op <M-Ejp, Vi, p (10)
N

Fip < Ojp < ZEipa Vi, p (11)

where M is a big number which for the sake of tight relaxation is
equated to the cardinality of the set of products. Within each plan-
ning period, the processing (T;,) and transition time (Titjrgns, TFitjrgmS

are modelled as continuous variables. More specifically, production
times are bounded between minimum and maximum times, 911)0
and GEP respective as shown by Eq. (12). Moreover, the changeover
time between adjacent periods are allowed to split into two parts
(CT1p and CT2;p) as shown by Eq. (13) while the overall time bal-
ance for each period is given by Eq. (14). The variables CT1p and
CT2, are employed to allow for instances where a transition time
can be modelled to be split between two adjacent periods and
thus result in more efficient utilisation of resources (Kopanos et al.,

2010).

OFEp < Tip < O3Eyp, Vi, p (12)

CT1p +CT2, 4 = Y Y TRE™, Vp>1 (13)
i

i

N N N
Z TfP + Z ZTitjr;ns +CT1 P T CTZD\p<\P| = QSD’ vp (14)
i PjA

Notice that Eq. (14) accounts for idle production time by con-
sidering a relevant dummy product. The amount of product i pro-
duced during period p (Prj,) is calculated based on Eg. (15), by
assuming constant production rate (r;). Given product demand per
customer (D, ), backlog (B,), sales (S.p) and inventory (V;,) cal-
culations are based on Egs. (16) and (17) respectively. Also mini-
mum (Virgi“) and maximum (V{Bax) inventory levels can be specified
by Eq. (18).

Prip = riTipv Vl, P (15)

Bcip = Bci,p—l + Dcip - Scipa ch i: p (16)
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Vip = Vip-1+Prip = Y Sip.  Vi.p (17)
Cc

VI < Vip <V Vip (18)

Transitions times are allowed to be decision variables but in
order to avoid the resulting bilinear terms, Glover linearisation is
employed as shown in Eqgs. (19)-(26). For the purpose of the lin-
earisation two more artificial positive variables are defined, 7y,

and Tipf-

T > Tjp + 6" (Zyp — 1), Vi, j#1i, p (19)
Tip™ < Typ, Vi j#Lp (20)
TS < 93PZ;,, Vi, j# i p (21)
T = "2y, Vi j#1p (22)
TE"™ > 7, + 657 (ZFjp — 1), Vi, j, p> 1 (23)
TFj™ < 75, Vi, p>1 (24)
TF™ < 6,°ZFy,. Vi, j. p>1 (25)
TF"™ > o ZFyp, Vi, j. p> 1 (26)

The transition costs are correlated via linear meta-
models with the transition times as explained in
Charitopoulos et al. (2017b) and as shown by Eq. (27). In the liter-
ature of integrating control with operations (Chu and You, 2015)
the calculation of transition costs based on the system’s dynamics
results in complex nonlinear calculations. As a trade-off between
computational complexity and model accuracy the use of linear
metamodels was proposed, where coefficients «;; and B refer to
the slope and intercept of the different correlations. The interested
reader is referred to our recent work (Charitopoulos et al., 2017b)
where a thorough discussion on computational steps and accuracy
of this approach is provided.

CTi™" = oy T*™ + By Vi jel i#] (27)

The revenue from product sales (RV) is given by Eq. (28), the
operational cost (OC) is given by Eq. (29), the inventory (IC) and
backlog (BC) cost are given by Egs. (30) and (31), respectively while
production (PC) and transition costs (PC) are calculated based on
Egs. (32) and (33). Given product prices (P;), unit operational
(C7P"), inventory (CI"V), backlog (CB;) and raw material cost (CaV)
the profit (PROF) over the planning period is computed as shown
below.

RV = ;Z;} PiScip (28)
i

0C = >3 "CP'Pry, (29)
i P

IC=Y"%"C™Vy (30)
i P

BC = XC:ZXP:CBicBCip (31)
i

Product | Product J

Product Iy Product J Product Iy

Fig. 3. Conceptual instance of product duplication due to production discruption.

PC=) "> > CR"unTp (32)
m j p

TC = SOCRYS ST ety (T + TR ) + By (2 + ZFip, )
m P i s
(33)

Overall, the decomposed iPSC model is an MILP and is formu-
lated as follows:

Open — loopiPSC: max PROF= RV — OC — IC — BC — PC — TC

Subjectto: Egs.(1)-(18) (Planning — Scheduling)

Eqs.(19)-(27) (Control considerations)

3.1.2. Open-loop iPSC with rescheduling considerations

The decomposition of the iPSC through the use of linear meta-
models and the offline derivation of the minimum transition times
is valid under a number of deterministic assumptions throughout
the three levels of integration. However, when dynamic disruptions
are considered the need to account for possible reschedulings has
to be addressed. To this end, the model presented in the previ-
ous section is modified accordingly. When dynamic disruptions are
identified during the production of a product, it should be allowed
to resume the production so as to attempt to fulfill the remaining
demand. Product duplication is employed so as to facilitate this is-
sue as shown in Fig. 3.

Through product duplication, an identical product is created
and inherits all the relevant information from the original one.
Next a dynamic set is created, I;(i, j, p) which denotes the set of
products that are considered for duplication on a specific planning
period, during which the disruption occurred. Moreover, the fol-
lowing sets are considered: Iz(i) which is the set of only the orig-
inal products and Ip(i, p) which is the set of the dummy prod-
ucts that represent the disturbance occurrence during period p.
Eq. (34) is the modified version of Eq. (16) for the calculation of
backlog, while for inventory calculations Eq. (17) is replaced by Eq.
(35).

Bcip = Bci,pfl + Dcip - Scip - Zscjpv VC, ie IR, p (34)
el

Vip = Vi,p—] =+ Prip — ZSCip =+ Zpl'jp — Zscjp, Vie [R, p (35)
C

jeh el

The minimum and maximum production times are relaxed for
the case of disturbance modelling and thus Eq. (36) arises instead
of Eq. (12). Disturbances do not result production of products thus
Eq. (37) is only employed for any product except for the ones that
belong in Ip

O Ep <Tip <OyPE,  Viglp.p (36)
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Fig. 4. Numerical integration of arbitrary transition curve via Simpson’s rule.

Pl'ip = riTip Vi ¢Ip,p (37)

As will be discussed in the next section, the closed-loop im-
plementation of the iPSC is enabled via the use of novel multi-
parametric controllers which communicate with the open-loop
iPSC via a number of ways. One of them is via the information the
controllers offer back to the integrated problem about the approxi-
mate transition cost between products in the case of rescheduling.
In general the transition cost is the integral of the control actions

trans
(u(t)) over the transition period (][O0, Titjrans]), i.e., fO‘j u(t)dt. In or-
der to allow for fast calculations the controller is programmed to
compute the numerical integral of the transition based on Simp-
son’s rule which provides a good trade-off between numerical
accuracy and computational expense as shown in Fig. 4. Thus,

trans

the quantity CTj; ~ fOT i udt represents the numerical approximate
value of the transition cost as computed by the multi-parametric
controller.

This results in the modification of Eq. (33) about the calculation
of the cumulative transition cost as shown in Eq. (38).

TC=) "> > o (ngrfams + Titjr;?f,i) + Bii(Zip + ZFip, )
P igly i

+ 22D CTy(Zip + ZFi, ) o

ielp ji

3.2. Closing the loop via multi-setpoint explicit nonlinear controllers

3.2.1. Multi-parametric model predictive control

In this section we present the idea behind the design of multi-
setpoint explicit controllers. Multi-parametric programming (mp-P)
as an optimisation based methodology has found numerous ap-
plications in the field of process systems engineering with the
design of explicit controllers probably being the most popular
(Charitopoulos and Dua, 2016; Dua et al., 2008; Oberdieck et al.,
2016). Within the context of explicit MPC, one considers as uncer-
tain parameters the initial states of the system at each sampling
instance and thus an mp-P problem with uncertainty in the right
hand side (RHS) of the constraints is formulated (Bemporad et al.,
2002). The solution of this mp-P problem leads to the computation
of the control law, i.e. the optimal control input as explicit function
of the state of the system together with the regions where each
expression holds. Despite the fact that explicit MPC is one of the
most well studied areas of mp-P theory, the design of explicit con-
trollers for set-point tracking remains a rather difficult task as one
would have to design a controller for each set-point target given
the methodologies that have been presented in the literature until
now, especially for the nonlinear case (Pistikopoulos et al., 2015).

ng, Set-points

Fig. 5. Conceptual representation of a multi-setpoint explicit controller. On the left
hand side a conventional multi-parametric controller for various set-points is de-
picted while on the right hand side a multi-setpoint explicit controller can be visu-
alised with the third dimension being the continuous set-point space.

A generic mathematical formulation of the explicit MPC prob-
lem is given by Eq. (39),

Sx(t) = min T L0k, w) + Exy)
t=0

Subject to:  Xyj—o = X(ty) (39)
Xep1 =f(Xeup))  t=0,1,...,N-1
Vir1 = h(xo) t=0,1,...,N-1
g(Xe, U, Y1) <0 t=0,1,...,N

where X¢, U, y; are the state, control input and system output vec-
tors respectively at every sampling instance, t, and are ny,ny,ny
dimensional. Inequality constraints for the state, output and con-
trol inputs are represented without loss of generality by the vector
function g € R", the mappings h : R™— R% and f : R™tMu
R™ correlate the output with the state and dictate the state evolu-
tion of the system respectively. £: R™ ™ — R is a stage cost and
E: R™ — R is a terminal cost function over the prediction hori-
zon N. The repetitive solution of problem (39) provides the opti-
mal cost ®(x(t,)) and the optimisation vector, which in this case
is the sequence of optimal control inputs u* = [u‘{, u;,...,u’{qf]]
over the finite prediction horizon N. While normally, the online
repetitive solution of the receding horizon control problem is re-
quired, via the means of mp-P one can solve problem (39) for all
possible realisations of the system’s measurements and thus com-
pute offline once and for all the optimal control law as a func-
tion of the system’s measurements, u = §(x;._o) along with the
corresponding critical regions (CRs), i.e. the parametric ranges over
which each explicit expression is optimal.

The class of problems described in (39) involves uncertain pa-
rameters on the right hand side (RHS) of the constraints. When
multiple set-points need to be considered then there are two ways
of designing the explicit controller(s). The first one, is to solve
nsp mp-P problems, where ngp is the number of set-points con-
sidered and thus design ngp explicit controllers. The second al-
ternative, that we propose in the present work, is to design one
multi-setpoint explicit controller (mp-MPC). The idea is to solve
only one mp-P problem for nsp set-points and create a universal
“multi-layer” controller as shown conceptually in Fig. 5.

Designing a multi-setpoint explicit controller mathematically
can be expressed by Eq. (40).

N-1
T (x(ty), Xsp) = n‘}lm > L(Xe, U, Xsp) + E(Xn, Xsp)
t=0

Xsp € XsP

Subject to:  Xy—o = X(ty)
Xi+1 :f(xt,ut) t=0,1, ..,N— 1 (40)
Vi1 = h(X;) t=0,1,...,N—-1
g(X, U, y) <0 t=0,1,...,N
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The difference between problem (39) and problem (40) lies on
the treatment of the set-points as uncertain parameters, which re-
sults in an mp-P problem with both RHS and objective function’s
coefficients (OFC) uncertainty. As seen in (40), apart from the vec-
tor of the initial states (x(ty)) the various set-points (Xsp) are con-
sidered as uncertain parameters as well. It is interesting to notice
that, within the context of EWO, being able to design this kind
of controllers is of great importance because the set-points targets
are calculated dynamically by the decisions at the scheduling level.

3.2.2. A methodology for the design of multi-setpoint explicit
controllers

As mentioned above we are interested in the following case:
given a system that is required to operate at multiple set-
points and the nonlinear terms involved in its model are non-
transcendental we aim to design a single explicit controller that
contains all the associated control laws. To do so, we employ con-
cepts from computer algebra since the uncertain parameters are
treated herein as symbolic expressions while the underlying opti-
misation problem is solved analytically using Grobner bases the-
ory (Charitopoulos et al., 2017c; Dua, 2015). Grobner bases theory
emerged from the Ph.D. thesis of Bruno Buchberger as a way to
analytically solve systems of polynomial multi-variable equations
(Buchberger, 2006). Briefly, Grobner bases and the Buchberger al-
gorithm can be seen as a generalisation of the Gaussian elimina-
tion for the case of linear systems. Before we proceed further it
is important to provide some formal definitions that are crucial in
Grobner bases theory.

Let k be any field and let k[X] = k[Xq, ..., xt] be the ring of poly-
nomials in t indeterminates. Any polynomial can be described as a
sum of terms of the form: ozx‘f] ---xft with e ek and B; €N, i=

1,..., t and the term x’f‘ -~~xft is called power — product.

Definition. (Grobner basis (Buchberger, 2006)) A set of non-zero
polynomials G = {gq,..., g} contained in an ideal I, is called a
Grobner basis for 1 if and only if for all fel such that f#0, there
exists i € {1, ..., t} such that Ip(g;) divides Ip(f), where Ip(-) stands
for the leading power-product of a polynomial function.

In the definition given, an ideal is a set of polynomials of the
t
form ) u;g; with g; in G and arbitrary polynomials u;. The ex-

i=1

istence of such ideal is guaranteed by the Hilbert Basis theorem
(Bochnak et al., 2013), which also guarantees the termination of
algorithms that are used for the computation of Grébner bases.
Roughly speaking, within Grobner bases theory a set of polyno-
mial V is transformed into an other set of polynomials G which is
equivalent to the former but has certain favourable computational
properties. At the core of Grobner bases theory the Buchberger al-
gorithm is found (Buchberger, 2006) which is employed for the
computation of the Grobner basis of a specific set of polynomi-
als. Buchberger introduced within the algorithm the concept of S-
polynomials as well as provided a theorem for the proposed algo-
rithm which for the sake of space are not discussed in the present
article; however, the interested reader can refer to the book of
book of Bochnak et al. (2013). The implementation of the proposed
methodology was done in Mathematica 11. The reason why com-
puter algebra was chosen for the design of the multi-setpoint ex-
plicit controllers is because it provides us with the following de-
gree of freedom. One can consider the various set-points as a sin-
gle uncertain parameter bounded as shown by Eq. (41).

lo up
Xgp < Xsp < Xgp (41)
where XIS%, x‘;lg’ represent the lower and upper bounds on the set-

points set for the controller. However, within a computer algebra

environment, one can actually perform computations either in con-
tinuous or a discrete sets fashion as indicated by Eq. (42). Thus fol-
lowing the methodology followed in the present work, the uncer-
tain parameters involved in the mp-P problem for the design of the
multi-setpoint explicit controller can be treated in either way.

Xsp € {Xsp, X5 - X7} (42)

Solving multi-parametric nonlinear programming problems
(mp-NLPs) still remains a challenging task despite the research ef-
fort put in the literature of multi-parametric programming. Prob-
lem (43) provides a generic mathematical formulation of mp-
NLPs:

z(0)= m)i(n f(x, 6)

Subject to:g(x, ) <0 (43)
XeXCR™ 0ec®cCR™

where x is the nx-vector of optimisation variables and belongs to
the bounded set X, @ is the ny—vector of uncertain parameters and
belongs to the set ® which may be unbounded. The function f and
is a scalar-valued function and the function g is a vector-valued
function of ng dimensions denoting the constraints of the optimi-
sation; note that both of the functionals mentioned can be linear
or non-transcendental nonlinear. While a comprehensive review on
the topic can be found in Dominguez et al. (2010) no previous
work in the field has presented an algorithm that can facilitate
mp-NLPs with simultaneous variations on the RHS and the OFC.
A considerable amount of research work has been devoted to the
analytical solution of mp-NLPs using computer algebra principles
(Charitopoulos and Dua, 2016; Charitopoulos et al.,, 2017d; Dua,
2015; Fotiou et al., 2005) but only the case of RHS uncertainty has
been treated. Recently, Charitopoulos et al. (2018) proposed an al-
gorithm for the solution of mp-NLPs with non-transcendental non-
linear terms under the presence of simultaneous variations on RHS,
left hand side (LHS) and OFC and this is the main machinery that
is employed in the present work for the design of multi-setpoint
explicit controllers.

They key idea of the aforementioned algorithm can be sum-
marised as follows: given an mp-NLP, formulate the first order KKT
conditions and solve the resulting system of nonlinear equations
using Grobner Bases while treating the uncertain parameters as
symbols. This step results in a set of candidate solutions for the
optimisers X and the Lagrange multipliers A which are paramet-
ric in @ and include: infeasible, local and global optima. For the
candidate solutions computed, qualify with the primal and dual
feasibility together with a constraint qualification and remove the
infeasible explicit solutions. Finally, perform a comparison proce-
dure and keep only the globally optimal solutions along with their
corresponding CRs, by computing the corresponding Cylindrical Al-
gebraic Decompositions (CAD). For a detailed exposition the inter-
ested reader is referred to Charitopoulos et al. (2018) while a com-
prehensive overview on topics of Grobner Bases Theory and CAD
can be found in Bochnak et al. (2013). It is worth to note that the
proposed algorithm is dependent on Grobner Bases calculations
which have been proven to be doubly exponential with respect to
the variables under determination in the worst case (Charitopoulos
et al., 2018; Fotiou et al,, 2005). In Fig. 6, an outline of the algo-
rithm is presented.

3.3. The overall closed-loop integrated framework

Real processes are subject to a number of disturbances that
endanger the feasibility and optimality of operations. For contin-
uous manufacturing processes, fluctuations on the feed composi-
tion, feed temperature as well as the flow rate of the reactants
can lead to significant deviations from the desired open-loop state

Please cite this article as: V.M. Charitopoulos et al., Closed-loop integration of planning, scheduling and multi-parametric nonlinear
control, Computers and Chemical Engineering (2018), https://doi.org/10.1016/j.compchemeng.2018.06.021



https://doi.org/10.1016/j.compchemeng.2018.06.021

JID: CACE

[m5G;August 8, 2018;11:50]

8 V.M. Charitopoulos et al./Computers and Chemical Engineering 000 (2018) 1-21

Input mp-NLP problem

Formulate and solve the 1st
order KKT conditions

[x(6), MO)]

).

Y
Infeasible >——»
N

N
Evaluate primal/dual feasibility
conditions using CAD

CR; = {0 € ©|g(0) < 0 A M(0) = 0}

For overlapping CRs follow the
comparison procedure and keep
only globally optimal solutions
using CAD

lCRiﬂCRj=ﬂ?

Collect final non-overlapping
LCRS and their explicit solutionsJ

l

[ Terminate ]

Fig. 6. Outline of the mp-NLP algorithm.

trajectory and result in the production of off-spec material. In the
context of iPSC the different timescales involved, lead to the for-
mulation of large scale MINLPs that pose an additional degree of
complication that exacerbates the computational requirements and
thus prohibit its online solution. In order to alleviate the compu-
tational complexity the proposed strategy involves an offline step
where linear metamodels that correlate the transition time and
cost are built, along with the related nominal minimum transition
times. By doing so, this aspect of the interdependence between
scheduling and control is exploited and at the same time the
control timescale is de-dimensionalised thus reducing the com-
putational complexity. Furthermore, it can happen that the data
provided about the transition time and cost from the optimal con-
trol simulations can lead to inconsistencies when compared to the
closed-loop behavior of the system due to potential model mis-

match or because of the different objectives considered. To this
end, the data used for the derivation of the linear metamodels as
well as the minimum transition times are computed via a num-
ber of closed-loop simulations of the underlying dynamic system
through the use of the multi-setpoint explicit controller that was
introduced earlier. This was also done in order to simulate what
would happen in a real process where the mechanisms that dic-
tate the transition costs and times may not be sufficiently captured
by open-loop dynamic optimisation simulations but from historical
data.

For the online part we consider the solution of an MILP (open-
loop iPSC problem) and then the corresponding control problem
that tracks online the open-loop solution. Conceptually, the pro-
posed strategy for the closed loop solution is given in Fig. 7.

Firstly, the mp-MPC for the underlying dynamic system is de-
signed. As shown in Fig. 7 in an offline step the linear metamod-
els that correlate transition time and cost are computed based on
the closed-loop simulations of the system. The linear coefficient
of the metamodels are then used in the (open-loop iPSC) prob-
lem which is an MILP. The two parts (open-loop iPSC and (mps)-
MPC) are coupled through the decision variables Ej,, O;, and Zj,
ZF;jp. More specifically, the set of assigned products to the plan-
ning period is created and renewed in every planning period, i.e.
Igctive (P)= {i|E;, = 1}. Notice that every time a rescheduling takes
place the set of assigned products is revised accordingly. Next,
the production sequence is made known to the controller through
the integer variable O;, and the binary variables that indicate the
changeovers (Z;, and ZF;;,) are employed for the derivation of
the desired set-points. In Algorithm 1, an algorithmic chart for
the integration of closed loop control is given. Initially a nomi-
nal production plan and the relevant schedules are computed by
solving the open-loop iPSC (Algorithm 1, Step 1). The main com-
putational loop iterates over all the planning periods under con-
sideration (Algorithm 1, Step 2). The sequencing decisions and the
set of assigned products are developed and then the schedule is
supervised in a logic manner. A scalar k is used to track the or-
der of the product that is currently being processed (Algorithm 1,
Steps 3-6). Then following the proposed framework the informa-
tion goes to the outer control loop where the mps-MPC is em-
ployed and the system is regulated around the desired set-point
subject to the quality bound (xq). If the system stays within this
limit (Algorithm 1, Step 10) then we sample the next instance nor-
mally; otherwise if the threshold/quality bound is violated that
means that we have to fix the products current production time,
set the current measurement as the state of the disturbance and go

TSP Planning and
Scheduling

Meta-modeling for process

Demand for Control
—

Product prices

dynamics

Multi-setpoint
explicit

State space model

Process o

T dynamics o XxTEE

MPC i Y >
<

Process output
——

Y Yes

o] [ ) L
T [

i

Data for
transition f------
s

Data for
transition fo-----
o

Steady state
calculations
Process
dynamics

Data for
transition
[

Offline

Fig. 7. Flowchart of the proposed closed loop implementation of the iPSC for continuous manufacturing processes.
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Input: iPSC problem, €, w, x4
Output: Closed loop iPSC solution
1: Solve open-loop iPSC model
2:Forp=1,..,|P|:

3: Create a set of assigned products I cive (i) = {i|Ey = 1}
4: Get 0y and Z;jp, Zfijp
5: | Doi,j € lcive While (k < |lotivel A Oy =k A Zyjp o1 Zfij, = 1):
6: | | X0 = x§5;

(mp-MPC regulatory)
7: While (T < Tip):
8: x5 = x%;
9: Do mp-MPC regulatory steps;
10: If (|xo — xP|< xg):
11: Tmpe = Tnpe + 1
12: Else:
13: Xe+1 = Xg, Up = Ug;
14: Tmpe = Tnpe + 15
15: Go To (‘Reschedule_PR’)
16: EndDo
17 EndWhile
18: Tip = Tonpe 5
19: Tonpe = 0;

(mp-MPC tracking)

20: xo = x}°, xjs = x%P;
21; Do counter While (|xy — x°7|=> w):
22: Do mp-MPC tracking steps;
23: If (ld| < €):
24: Tmpc = h - counter;
25: Xt+1 = Xt;
26: counter=counter + 1;
27 Else:
28: Xt41 = Xg, U = Ug;
29: counter=counter + 1;
30: Tmpc = h - counter;
31: Go To (‘Reschedule_TR’)
32: EndDo
33: EndWhile
34: Titj;ans = Tmpc?
35: Tpe = 0;
37 EndWhile
38: k=k+1
39:] EndDo
40:f k=0
41:EndFor

Algorithm 1. Closed-loop iPSC.

to Algorithm 2 to initiate the rescheduling (Algorithm 1, Steps 10—
16). If the nominal production time has been accomplished with-
out disruptions then we set the set-point of the mps-MPC as the
steady state of the next product (Algorithm 1, Step 20) and start
the changeover. Similar to the previous steps there has been set a
threshold (€) for which a disturbance during a transition is sup-
posed to lead to negligible disruption and thus no rescheduling
is triggered (Algorithm 1, Steps 21-33); otherwise a rescheduling
needs to be initiated and the steps outlined in Algorithm 3 should
be followed.

As shown in Algorithm 1 whether the disturbance is detected
during a production or a transition period calls for different strate-
gies. During the production period the role of control is to reg-
ulate the system around the desired steady state given a quality
bound for allowable deviation (xq), which in the context of iPSC
reflects a specific product grade, while during the transition period
there is a need for set-point tracking control. In the case that dis-
turbance is detected during the production time of a product, it
is assumed that its production is instantly interrupted as the dis-
turbance exceeds the prespecified threshold (€); note that in the
present work we follow the convention of Zhuge and lerapetri-
tou (2012) and these parameters are assumed to be determined
via heuristics based on process knowledge. Practically this hap-
pens because in real processes there will always exist some noise
and model-mismatch and without those tolerances there would
be excessive need for rescheduling. Once the disturbance is de-
tected during the production period, it is reasonable to consider

Input: Implemented actions from iPSC
Output: Rescheduled iPSC solution

1: Define dummy product “d_name” with xfis name = Xd
2: For i ="d_name”: -

3: Forj=1,..,[]

4: X0 = X% x]°=x°F;

5: Do counter While (|x; — x°7|> w):

6: mp-MPC tracking steps
7: Tmpe = counter - h;

8: counter=counter + 1;
9: EndWhile

10: TH™ = Tope;

11: CTy = fDT’"”C udt;

12: Tope = 0;

13:| EndFor

14: EndFor

15: Define Iqs = {il0y < k}

16: For i,j € Ipqs:

17: | Fix Ty Zijp Bips TES

18: EndFor

19: Find i| 0y, = k, create an alias element, e.g. iy, and the corresponding dynamic
set, I4(p) = {i, p| Eip = 1 for p=peyrrent; 0 otherwise }

20: Duplicate the data for alias element

21: Solve reduced iPSC

22: Set k=k+1

23: Go To (Step 3) of Algorithm 1

ns

Algorithm 2. Rescheduling routine for production disruption.

Input: Implemented actions from iPSC
Output: Rescheduled iPSC solution

1: Define dummy product “d_name” with x = x4

2: For i ="d_name”:

3: Forj=1,..1]

4: xo = x7%; x]"-”: x5P;

5: Do counter While (|xy — x°P|> w):

6: mp-MPC tracking steps
7: Tmpc = counter - h;
8: counter=counter + 1;
9: EndWhile

10: T = Tpes

11: CTy; = fOTmpC udt;

12: Trpe = 0;

13:] EndFor

14: EndFor

15: Define Iqs; = {i|0y, < k}

16: For i,j € Iyqq:

17: | Fix Tip’ Zijp' Eip' Tit}zans

18: EndFor

19: Solve reduced iPSC

20: Set k=k+1

21: Go To (Step 3) of Algorithm 1

Algorithm 3. Rescheduling routine for transition disruption.

the need of re-assignment of that product within the same plan-
ning period and this is achieved via a product duplication. The
steps outlined in Algorithm 2 are then followed in order to de-
cide upon the rescheduled optimal sequence that allows for re-
sume of the production. That is, the current measurement of the
system is assumed to be the steady state of a dummy product
(xff_name) and the mps-MPC is employed to simulate all the poten-
tial transitions to the other products and compute transition times
and costs (Algorithm 2, Steps 1-14). Next, the set of products that
have already been processed in the current period is constructed
(Ipast) and the relevant timing and sequencing decisions are fixed
(Algorithm 2, Steps 15-17). Notice that by fixing the timing de-
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cisions, production decisions are also fixed given the assumption
about constant production rate. Since the disruption was detected
during a production period, it should be allowed to the model to
choose the resume of production and to do so we follow the prod-
uct duplication concept and define an alias element in the products
set that is set to be active only for the current planning period and
then we proceed in solving the reduce iPSC (Algorithm 2, Steps 19—
23). We employ the term “reduced iPSC” since the open-loop iPSC
model is solved in reduced decision space, i.e. with the past deci-
sions fixed.

Another case involves the disturbance detection and rejection
during the transition time from one product to the other. In that
case, there is no need to account for product duplication and we
only introduce a new dummy product that represents the current
state of the system after the disturbance is realised. Similar to
Algorithm 2, we exploit the ability of mp-MPC to run simulations
in very fast times and the potential transition times and costs are
computed (Algorithm 3, Steps 1-14). The output of these compu-
tations are passed to the model and the past decisions are fixed
(Algorithm 3, Steps 15-18) and the reduced iPSC is solved again to
define the optimal rescheduling action (Algorithm 3, Steps 19-21).
A summary of these steps is given in Algorithm 3.

Overall, the integrated problem is formulated and solved as an
MILP and the closed-loop is achieved through the rescheduling
mechanism outlined in this section via the use of the proposed
mp-MPC.

4. Case studies

In this section the closed loop implementation of iPSC is illus-
trated through two case studies, where each planning period is as-
sumed to be equal to one week. In all the case studies presented,
it is assumed that every system exhibits multiple steady states at
which a specific product is produced in a single CSTR while the
occurrence of idle time results in the related start-up and shut-
down requirements from a systems dynamics perspective. More-
over, a short discussion on the results is conducted at the end
of each case study. All the optimisation problems, are formulated
and solved using GAMS 24.7.4, on a Dell workstation with 3.70 GHz
processor, 16GB RAM and Windows 7 64-bit operating system us-
ing CPLEX 12.6.1 for the solution of the MILPs and BARON 16.8.24
(Sahinidis, 1996) for the solution of NLPs. BARON was chosen for
the comparison between the NLMPC and mp-MPC scheme because
it is a global optimisation solver and the explicit solutions com-
puted for the design of the mp-MPC controllers are globally opti-
mal as well.

4.1. Single input single output CSTR

First, a case study involving a SISO multi-product CSTR is con-
sidered. Based on the concentration (Cg) and the volumetric flow
of the reactant (Qg) a number of products can be manufactured
at different steady state operating conditions; the related data are
given in Table 1. From the control perspective, the state variable of
the system is the concentration of the reactant, while the control
input is the volumetric flow of the liquid. A conceptual represen-
tation of the related system is given in Fig. 8. The reaction is 3rd

order irreversible, i.e. R * 3P, —%g = kCg. The nonlinear dynamic
model of the system is given by Eq. (44)

dCg ~ Qr

— =—(Co-Q)+ 2% 44
a = v (Co—Cr)+ % (44)
where Cy denotes the concentration of the reactant in the feed
stream, V is the reactor volume and k is the reaction’ s kinetic con-
stant.

In order to design the multi-setpoint explicit controller the sys-

tem’s model is transformed into its algebraic equivalent. In this

Table 1
Data of SISO CSTR case study.

Cost data of SISO CSTR.

Product OC; (et P (ot

A 0.13 200

B 0.22 150

C 0.35 130

D 0.29 125

E 0.25 120

F 0.18 180

G 0.27 124

H 0.29 140
Dynamic data of SISO CSTR.

Product xgs(mel) uss (k)

A 0.0967 10

B 0.2 100

C 0.3032 400

D 0.393 1000

E 0.5 2500

F 0.15 39.7

G 0.45 1656.8

H 0.247 200.1

Raw material
feed

Final products

Fig. 8. SISO CSTR production scheme, the manipulated variable is the volumetric
flowrate of the liquid (Qgr) while the state variable is the concentration of the reac-
tant (Cg).

work, for the sake of simplicity an Euler integration scheme is fol-
lowed and the problem is formulated as shown in Eq. (45).

oy

min J(6) = D 1I%(®) = Xeerl
t=0

Subject to:

% = %(CO _X) +f@R

X(t]tz0) = 01

Xrefzg2 (45)
0<x(t)<1, 0<t<tpy

0 <u(t) <3000, 0<t<tpy

For the design of multi-setpoint explicit controller the algo-
rithm outlined in Section 3.2 was employed; the interested reader
is referred to Charitopoulos et al. (2018) for a more detailed expo-
sition on the main algorithmic steps. The mp-MPC was designed
for prediction horizons of unity, two and three; the final glob-
ally optimal explicit solutions along with their corresponding CRs
are given in Table 2 while the final partition of the parametric
space is given in Fig. 9. The corresponding explicit solutions are
given in Table 3. With regards to the computational behavior of the
proposed scheme solving the corresponding mp-NLP for tpy =1
takes 22.65 s, tpy = 2 takes 262.43 s and tpy = 3 takes 2540.65 s.
As typically observed in the mp-P literature the computational
effort grows rapidly with the number of variables and constraints
(Oberdieck et al., 2016).

Once the multi-setpoint explicit controller is designed we in-
vestigate its performance in comparison to the use of conventional
MPC within the context of iPSC. First we consider the case of no
imposed disturbances and then at specific time an additive distur-
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Table 2
Final CRs and explicit solutions (control law and state evolution) for tpy = 1 for the SISO CSTR case study.

CRs Mathematical expression Explicit solution

{0096718 <6, <0.503

0.0203 + 6, < 6, .
CR;:= 6, >0.0967 {Ck(t i})) i%l -5
0503 <6; <1 Qr(t=0) =
6, <0.5
6, =1
022 0'0967{0 <6, <0.09126
3-1003 +4976
CRy— 6, <05] [009126<6) <04994 , Cr(t=1) = CT1040)
0.9946; +0.006 < 0.0263 + 6, Qr(t = 0) = 3000
0.0967 < 6,
0 <6, <0.09126
0.0913 < 6; < 0.0967
0.0967 < 6, < 0.002(3 + 4976, — 1063)
CRe: {0.49950, <0.503 {CR(tzl):02 i
= 03500, +500.
3 0.02(500; - 03) <6, <05 Qu(t = 0) = 000001 500+500)

0.0967 < 6 < 0.4994
0.02(506; — 63) < 6, < 0.002(—106; -+ 4976; + 3)

6 0,

(a) Final CRs of the SISO CSTR case (b) Final CRs of the SISO CSTR case
study for tpyg = 1. study for tpg =2 .

Fig. 9. Optimal partition of the parametric space for the SISO CSTR case study.

Table 3
Final explicit optimal solutions for tpy = 2 for the SISO CSTR case study.

Clt=1)=0, - %
1 ? } 0
if (61, 02) € CR, then CR(f=2>=*%(9fm) — 50 + 01
Qr(t=0)=0
QRr(t=1)=0
Cr(t=1)=6 - &
Cr(t=2)=06,
if (01, 02) € CR; then Qr(t=0)=0
4(0, (6‘1—50)(9} (93750)27125000)7525000092)
Qt=1) =~ 63500, +50

3-100; +4976;
Cr(t = 1) = G

(1003 -a970 1)3 3 (1003 -4976; +497) 30,-1)
203+ + 500 +1006; - —L—

62500000

if (01, 0,) e CR3 then Cr(t=2) =

Qr(t =0) = 3000

Qr(t =1) =3000

Crt=1) = (3-100;+4976; )
== 500

Cr(t=2)=06,

- Qr(t = 0) = 3000
if (61, 02) € CRy then ~100069+14910007 +90065 ~741027065 ~894600

Q=1 = 25(1007—4976, +497
424776320303 +222308102 62124865816, +62500000000, 37499973
25(100; —4976,+497)

100

CGr(t=1)=6,
Cr(t=2) =6,
3
Ot = 0) = 10000(911:509, +506,)
1000003

KRt=1)=—5

if (61, 0,) € CRs then

Please cite this article as: V.M. Charitopoulos et al., Closed-loop integration of planning, scheduling and multi-parametric nonlinear
control, Computers and Chemical Engineering (2018), https://doi.org/10.1016/j.compchemeng.2018.06.021



https://doi.org/10.1016/j.compchemeng.2018.06.021

JID: CACE

[m5G;August 8, 2018;11:50]

12 V.M. Charitopoulos et al./Computers and Chemical Engineering 000 (2018) 1-21

0.5

IS
S

o
w

Cg(mol/L)

0.2

o1 — mp-MPC
~ NLMPC

005 20 0 60 80 100 120 40 160 180
4(h)

Fig. 10. Comparison of the closed loop behavior of the state of the SISO CSTR (Cg)
using explicit MPC (blue continuous line) and conventional MPC (red dashed line)
for prediction horizon of unity (1st planning period). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this article.)

bance is imposed and the dynamic behavior of the closed loop sys-
tem is evaluated.

4.1.1. Case 1: No additive disturbance imposed

First the closed loop behavior for prediction horizon of unity
and then two is evaluated for the mp-MPC, the threshold values
are set to w = 1076, € = +5% and no imposed additive disturbance
is considered, while a planning horizon of two weeks is employed.
When the mps-MPC is employed, it takes 0.1705 CPU s for the
nominal iPSC solution to be computed. For the case of the con-
ventional NLMPC the same results are computed at 291.92 CPU s,
a rather considerable difference in terms of computational effort.
It is important to note that based on Fig. 10, the dynamic response
of the system as computed by the mp-MPC and the conventional
NLMPC are identical.

The same instance of the case study was investigated, by em-
ploying prediction horizon of 2 for both the explicit and the con-
ventional MPC schemes. Regarding the dynamic response and the
stability of the underlying control system, the results indicate no
difference when compared to the ones computed for prediction
horizon of unity. As far as the online computational complexity is
concerned, for the case of the multi-setpoint explicit MPC it takes
0.1707 s for the whole iPSC to be solved and validated in a closed
loop manner while the same problem takes 831.24 s using the
conventional MPC using BARON 16.3.4 and optimality tolerance of
1073,

As mentioned earlier in the article, real process systems are
subject to a number of disturbances that may affect significantly
the performance of the process. For the case that no disturbances
are accounted for, the solution of the open loop and the closed
loop iPSC are identical as demonstrated in case 1. However, under
the effect of disturbances the need of feedback control mechanism
becomes crucial. In the next two cases we investigate the effect of
the implementation of the closed-loop strategy under the occur-
rence of disturbances that lead to state deviation.

4.1.2. Case 2: State deviation during the transition period
In this case we assume that the nominal iPSC has been solved
and the optimal decisions begin to be applied to the plant. During

Table 4

0 Open-loop iPSC

— Closed-loop iPSC
0.8 === Nominal iPSC

Disturbance

e
o

Cp (mol/L)

o
S

0.2

0.0 20 40 60 80 100 120 140 160

t(h)

Fig. 11. Comparative plot of the state deviation during the transition period.

the first planning period, a disturbance is detected 12 minutes af-
ter the beginning of the transition from product A to product B and
its magnitude exceeds the prespecified threshold. The reschedul-
ing mechanism is triggered and first the current state of the sys-
tem is passed to the mp-MPC according to the steps outlined in
Algorithm 3. It takes 0.008s for the mp-MPC to compute the can-
didate transition times and costs which are subsequently passed
to the iPSC rescheduling model in order to compute the next op-
timal step. In this instance, the rescheduling mechanism dictates
the change in the nominal sequence and instead of B the system is
driven to the production of E while the production of B is set to be
the last of the planning period. A graphical representation of this
instance is given in Fig. 11.

On the other hand, if the iPSC solution was applied without any
feedback mechanism that would effectively close the loop, the pre-
computed nominal control would have been applied to the system
regardless of the disturbance occurrence. The impact of the distur-
bance on the open-loop framework was simulated by fixing all the
relevant decisions and as shown in Fig. 11, it results in significantly
extended transition time from product A to B which results in turn
in considerable reduction of the production time and thus increase
in the backlog of the corresponding unmet demand. A summary of
the results is given in Table 4.

4.1.3. Case 3: Multiple disturbances over the planning horizon

In this case we consider 8 products and 4 planning periods.
Solving the nominal problem, no disturbance is assumed and it
takes 9.984 s for CPLEX 12.6.3 to compute the optimal solution.
Within the first planning period, during the transition from H to C,
4.2 min after the transition has started (nominal transition time is
6.6 min), a state deviation is realised which exceeds the threshold
and is equal to 0.04 ™ resulting in a concentration of 0.329 M,
after its realisation the proposed framework is employed and the
need for rescheduling is examined. First, the explicit controller is
used for a simulation between all the remaining products of the
set Iqive(p) and then the reduced iPSC is solved (7.083 s) for the
remainder of the planning horizon. In this case, the optimal solu-
tion dictates that it is preferable to keep on the prolonged transi-
tion rather than switching production to another product. The re-
sult of the extended transition is the decrease of production time
of product G and its subsequent increase during planning period 2.

Comparative results for the solutions computed by the closed loop iPSC and the open loop iPSC.

Open loop no disturbance

Closed loop with disturbance

Open loop with disturbance

iPSC solution A—-B—-C—-D—E A—-E-D—-C—B A—-B —-C—-D—E
E-C—-B—A B-A—-C—E E-C—-B—>A

Profit (rmu) 9.18-10° 9.174-10¢ 8.65-10°

Backlog cost (rmu) 623319 68729.1 338677.65

Total CPU (s) 0.152 (mp-MPC)/

831.24 (NLMPC)

0.27 (mp-MPC)

0.152 (mp-MPC)
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(d) Gantt chart for production schedule of the four planning periods after rescheduling in

period p4.

Fig. 12. Gantt charts of the closed-loop iPSC for the SISO CSTR case study. The horizontal axis represent the time (h) and each week spans across 168 h with changeovers

indicated using the “Y” label.

Moving on to period 2, another dynamic disruption is realised
during the transition from G to C (after 1.4 h of its start) and the
system is led to x4, = 0.2306 "“T"‘ Following Algorithm 1, this mea-
surement is passed to mp-MPC for the calculation of the potential
transition times and costs. This instance of the closed-loop inte-
gration in quite interesting as the rescheduling mechanism for the
current planning period generates a completely different solution
for the remaining iPSC and this can be visualised in Gantt chart
that is given in Fig. 12.

As shown in Fig. 12 the disruption results in decrease of pro-
duction of product C that in order to be rectified the sequencing
decisions in planning period p3 were revised. Finally, during pe-
riod 4, the case of dynamic disruption during production period
is examined. While product D is being produced there is a dis-

crepancy in the system’s dynamics. Due to this discrepancy during
the production period the steps outlined in Algorithm 2 are fol-
lowed and a duplicate product of D is created and the reduced
iPSC is solved again with fixed the past decisions. As shown also
in Fig. 12, it was computed that the optimal corrective move would
be to return in the production of D. A graphical interpretation of
the system’s dynamics throughout the 4 planning periods is given
in Fig. 13, where also the last rescheduling instance is illustrated
in more details.

4.2. Methyl-methacrylate polymerisation reactor

Next the closed-loop iPSC of an isothermal methyl-methacrylate
(MMA) polymerisation CSTR is studied. The free radical polymeri-
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Fig. 13. Cg_s plot indicative of the system’s dynamics over the entire planning horizon.
Table 5 Table 7
Decision variables of the MMA kinetic model. Steady state information about the different polymer grades of the MMA CSTR case
study.
Cr (kme! State: concentration of monomer v
Q) (kmol) State: concentration of initiator Product  C G D D;s yss Ep
00 (( &) ) gta:ej geag CEaT“S molar DN A 32285 01216 00163 27747 17000 01675
oy O o Al eSS oncentiation B 30780 01487 00195 29254 15000  0.2049
BGH Input: flow rate of initiator c 33667 01009 00138 26364 19000  0.1391
Y =Di/Do (1) Output: molecular weight D 33331 01056 00144 26101 18,500  0.1455
E 3.4635 0.0885 0.0123 253.95 20,500 0.1219
Table 6 F 3.5552 0.0780 0.0111 244.76 22,000 01075
Kinetic data for the MMA polymerisation reactor. G 3.7257 0.0615 0.0091 227.69 25,000 0.0847
F_l00mh y Towrt H 3.8815 0.0491 0.0075 212.09 28,000  0.0677
vo1o 0”‘3/ Reator o e 1 39786 00426 00067 20238 30000  0.0587
e os 8“‘ le_i,c fr ""ﬂ_:”,“e ] 41154 00346  0.0057 188.68 33,000  0.0476
=v - nitiator efficiency K 42015 0.0302  0.0051 180.06 35000  0.0416
kp = 2.50 x 10° gy Propagation rate constant L 43238 00248 00044 16781 38000  0.0341
kg = 1.09 x 10" s Termination by disproportionation M 44013 00217 00040 16005 40,000  0.0299
o Rate constant ) N 44760 00191 00036 15257 42000  0.0263
kee = 1.33 x 10° 75 Termination by coupling 0 45302 00173 00033 14715 43500  0.0239
Rate constant P 45830 0.0157 0.0031 141.86 45,000 0.0217
C,, =8.00 kmol/m3 Inlet initiator concentration
Cm,, = 6.00 kmol/m? Inlet monomer concentration
K = 2.45 x 103 knr1"03] 5 Chain transfer to monomer rate constant
k =1.02x 107" h! Initiation rate constant
Mp, = 100.12 kg/kmol Molecular weight of monomer dC1 FlClin - l:Cl ]
S L e e (47)
dt \Y%
sation reaction takes place in an isothermal CSTR at the tempera-
ture of 335K, where MMA is produced using azobis (isobutyroni- dD, 20k, C, 2fk,C FDg
trile) as initiator and toluene as solvent. The mathematical model ~ —3 = (0.5krc + de)ﬁCm +Kpm e m T
. L Td + K1c Krg + K1c
is adopted from Chu and You (2012) and is given by Eqs. (46)-(50). (48)
The system involves 4 state variables, i.e. the concentration of the
monomer (Cp,), the concentration of the initiator (C;), the molar
concentration of the dead chains (Dg) and the mass concentration dD, 26k, G FD,
of the dead chains (D;), one control input, ie. the flowrate of the g = Mm (kp + Kem) mcm -V (49)
initiator (F;) and one output, i.e. the molecular weight of the poly-
mer produced (y). Based on different steady states that the sys- D
tem exhibits it is possible to produce different polymeric grades y= Z1 (50)
which correspond to different molecular weights and each grade Do

forms a product within the iPSC framework. The notation used in
the present case study is given in Table 5, while the values of ki-
netic parameters are given in Table 6.

de _ 2f*k1C1 F(Cmin — Cm)
T~ W )y e v (40)

In order to demonstrate the merits of the proposed framework
we assume that there are 16 polymer grades that can be pro-
duced and their corresponding steady state information are given
in Table 7; notice that for the sake of space the values are given
with truncated decimal points while for the numerical calculation
the precision was up to 10 decimal places.
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Table 8

Economic data of the MMA case study.
Product oC; [ P [y ri [%]
A 263 388.5 100.529
B 188 252.8 122.937
C 163 2478 83.457
D 226 293 87.325
E 220 3305 73.165
F 210 260 64.504
G 190 290 50.833
H 240 350 40.635
I 230 395 35.214
] 290 325 28.607
K 205 310 24.997
L 210 316 20.500
M 183 220 17.996
N 155 260 15.814
(0] 149 300 14.359
P 134 324 13.040

Table 9

Computational study of CPU (s) for different prediction horizons using BARON with
zero relative optimality gap.

H, CPU (s)
1 602.676
2 1905.328
5 3600°

10 3600°
20 3600°

3 The solver failed to converge within 3600 s.

Table 10

Uncertain parameters of mps-MPC for the MMA CSTR case study.
Uncertain parameter Bounds Correlation
01 [0, 5] Cnjt=o
0, €[0, 0.5] Ciit=o
05 €[0, 0.05] Dojt-0
04 €[0, 300] Dyje—o
05 €10, 5] Set-points for Cp
Os €[0, 0.5] Set-points for C;
67 €[0, 0.05] Set-points for Dy
O3 €10, 300] Set-points for D;

With regards to the economic data a summary of the selling
prices and costs is given in Table 8 while inventory and backlog
costs are calculated as 10% and 30% of the product’s selling price,
P,.

Since none of the nonlinear terms in the system is transcenden-
tal, the proposed methodology for the design of the explicit con-
troller can be employed. More specifically, the infinite dimensional
optimal control problem is transformed into a finite one with the
employment of a discretisation scheme. The present case study has
been studied by a considerable number of researchers and it has
been reported that its optimal control through numerical schemes
is rather challenging due to numerical instabilities that may arise
during the discretisation. To this effect, the most common discreti-
sation scheme used is orthogonal collocation on finite elements
because of its inherent properties of numerical stability. However,
in the present work we employed forward Euler discretisation with
a step size of he = 0.01 h as trade-off between computational com-

plexity and stability of the integration scheme. A number of simu-
lations were conducted so as to decide on a step size that can be
small enough so as to avoid oscillatory behavior but not too small
so as to avoid an extenuating repetitive solution that would result
in further computational effort. Moreover, as will be shown in the
results the nature of proposed methodology, i.e. the analytical and
not numerical solution of the mp-MPC problem, enhances the ro-
bustness of the solutions computed as numerical instabilities were
circumvented.

Following the proposed methodology, first the set of differential
equations involved in the problem is discretised and then the para-
metric optimisation problem is formulated and solved in Mathe-
matica 11. At this point, the prediction horizon was set to be equal
to unity as from offline simulations the enhancement of the con-
troller’s stability was not highly affected. On the contrary, follow-
ing the proposed methodology the global optimality of the explicit
solutions is guaranteed whereas using readily available numerical
solvers for online implementation of globally optimal solutions re-
sults in rather exhaustive computational times given the need for
rapid solutions within the context of iPSC. For illustration purposes
the results of a comparative study using BARON 16.8.24 solver in
GAMS with varying prediction horizons is provided in Table 9.

In order to design the explicit controller we consider 8 uncer-
tain parameters, 4 for each state and 4 for each family of set-
points. From previous experience within our group the number of
uncertain parameters considered does not affect the computational
complexity of the solution procedure as the uncertain parameters
are treated in a symbolic way. In Table 10, the notation for the
uncertain parameter introduced in the present example is given.
Note that the bounds on the uncertain parameters regarding the
set-points are continuous. It can be argued that having these pa-
rameters as continuous may lead to unnecessary computations but
one could argue that in the context of enterprise wide optimisa-
tion where the supervisory controller receives data from the RTO
layer the constant use of the same set-points is not guaranteed. In
that case a conventional explicit controller would have to be re-
designed from the beginning (solution of the corresponding mp-P
problem, storage of the explicit solutions, possibly, in a micro-chip)
whereas following the methodology proposed herein, there would
be no need for that, under the assumption that the bounds used
initially are the feasible range of the system.

The corresponding mp-NLP problem consists of one optimisa-
tion variable, the control input, ten constraints and eight uncer-
tain parameters. Note that even though the optimisation variable is
one, the variables for which we seek analytical solution are eleven,
i.e. the optimisation variable and the Lagrange multipliers of the
constraints. Solving the mp-NLP results in 5 candidate solutions
which are shown in Table 11. An interesting observation is that the
underlying control law is linear function function of the uncertain
parameters and most specifically of the concentration of the initia-
tor at each sampling instance and the set point for that state, even
though the original optimisation problem is highly nonlinear.

Following the proposed mp-NLP algorithm, the final set of glob-
ally optimal explicit solutions are 3. The mathematical definition of
CR, is given by Eq. (51) as an indicator of the non-convex nature
of the underlying parametric programming problem.

Table 11
Candidate solutions for explicit controller of the MMA case study.
F A A2 Az Mg As  As A7 Ag Ay A

1 12560 — 124 0 0 0 0 0 0 0 0 0 0
2 04 —0.01582376, + 0.01665 — 0.0000512 0 0 0 0 0 0 0 0 0
30 0 0.01582376, — 0.01665 0 0 0 0 0 0 0 0
4 1246, 0 0 0 -20s O 0 0 0 0 0
5 625-1246, 0 0 0 0 0 0 0 206—-1 0 0
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042 <6, <05

0; = 1.8769
0<6,<042

65 < 0.05
64 <300

2.43.1075v/6,%0,+

0.001136, + 0.0000457,/6, + 65 < 0.05
4.6722,/6, + 04 < 303.03

145 6,
1.72 < 0; < 1.877
1.87695 <6, <5

2.319-107562 + 0.446 <

.10-16 . 102204 1026092
64+ 2.49/636; < 303.03 8.85.10-16,/6.86 - 102207 + 2.64 - 10260
0<0 92 <05 +92
0=6, - 0<6 <172
0=6.<5 0.001136; + 65 < 0.05 2.319-10-562 + 0.446 <
0.0032+ 8.85-107'6,/6.86 - 10220;f + 2.64 - 102602
R2=10.9886, < 66 +6,
06 < 0.5 64 < 300
0597 < 0.05 1.72 <9]75 ,
0 < 6 <300 2.319- 107507 + 0.446 <
8.85.10-1,/6.86 - 102267 + 2.64 - 102667 + 6,
6, < 148
2 = 612

1.877 <6, <5
1.48

6, > L8

030051 6, < 2.319. 107502 + 0.446

(51)

After the explicit controller has been designed the explicit so-
lutions and their CRs are coded in GAMS in the form of condi-
tional statements where they are integrated with the open loop
iPSC model so as to validate the computed solution and reject sys-
tematic disturbances; thus closing the loop in the iPSC.

4.2.1. Discussion of results

The overall closed-loop iPSC problem is formulated as an MILP
with 15,334 equations, 10,376 continuous variables and 3485 bi-
nary variables while the solution time for the nominal case takes
26.12 s using CPLEX 12.6.3 in GAMS. It is worth to note that the
optimisation dictates to run the plant in a continuous way through
the planning period so as to avoid the related long start-up/shut-
down times. In this case study we account for minimum produc-
tion time of 4h, i.e. for a product to be assigned to a planning
period at least 4h should be allocated for its production. As men-
tioned earlier in the article, the main requirement for the efficient
online implementation of the closed-loop iPSC solution is that the
computational time needed for the solution of the optimisation
problem is less than sampling time of the underlying control sys-
tem. For this case study, the sampling time is 36 s and thus it is
requires to solve the iPSC in times less than 36 s. The parame-
ters for the rescheduling framework in this case study were set as
=105, € = +5%. The first rescheduling action takes place dur-
ing the production of product O, when a disturbance that exceeds

8.85.10716,/6.86 - 1020 + 2.64 - 102562

04 +2.49,/6,6, <303.03
0<6; <1.879
04 < 300

1.87 < 6; < 4.989

64 < 300

6 > 4.989

4028021819470, 4 1617.74 < 6,
1

the threshold is realised and the rescheduling mechanism is trig-
gered. Following the steps of Algorithm 1 a new duplicate product
is generated and the reduced iPSC solved with fixed the past deci-
sions, in this case the production time of O that was achieved and
the relevant binary decisions with respect the order of O in the
schedule. Solving the reduced iPSC takes 28.83 s, slightly increased
when compared to the nominal case but this increase is due to the
introduction of the two dummy products in the reduced iPSC, i.e.
the duplicate of O and the dummy disturbance product. As shown
in the Gantt chart in Fig. 14, the reschedule results in interrupt-
ing the production of O and move to the production of N while
compared to the nominal plan in period p; the additional produc-
tion of product G was chosen too. The next disturbance is detected
during the transition from ] to I and once again the rescheduling
mechanism is activated but this time the system is controlled to-
wards the completion of the nominal transition while the related
computational time is 7.96 s. Similarly to planning period 1, in
period 2 another reschedule takes place due to dynamic disrup-
tion during the transition from product E to product G and the
system is resumed to its nominal schedule with the completion
of the original transition. During period 3 the no dynamic distur-
bance that exceeded the relevant threshold was detected. Period 4
involved a reschedule during the production of product K, 5.36 h
after its initialisation and the rescheduling framework resulted in
resuming its production. Finally, during period 6 another instance

Please cite this article as: V.M. Charitopoulos et al., Closed-loop integration of planning, scheduling and multi-parametric nonlinear
control, Computers and Chemical Engineering (2018), https://doi.org/10.1016/j.compchemeng.2018.06.021



https://doi.org/10.1016/j.compchemeng.2018.06.021

ARTICLE IN PRESS

JID: CACE mbG;August 8, 2018;11:50
V.M. Charitopoulos et al./Computers and Chemical Engineering 000 (2018) 1-21 17

" ] O == B P
E | Y mm— F e M
:l:-?_ N = E s D

T L= G A =
.E o J w— H [oge—
£ d ] e K
=
o N

0 20 40 60 80 100 120 140 160 180
Time (h)
(a) Nominal gantt chart for the entire planning horizon.
2 o [IENCEEN N O wm o C [ J [0 16 B [F] 19— . K—
2 p2 [FI EIN] G [ H] I S R NS
2 p3 P T Me— Fe A —
Eps DI AT ENT FET G K[ N B | L— ¢ c—
c
£ s [J I T [IHET G | D] 1 He—
& p6 P L C [ [ALEITA[]B ]
0 20 40 60 80 100 120 140 160 180
Time (h)

(b) Gantt chart after the 1% reschedule during p;. A disturbance during the production of product O resulted in interruption
while product G was selected to be additionally produced instead towards the end of p;.
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(c) Gantt chart after the 2°¢ reschedule during p;. Disturbance during the changeover from J to I which resulted in reduction
of production time for G during pi.
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(d) Gantt chart after the reschedule during po. Disturbance during the changeover from E to G which resulted in reduction
of production time for P during ps.

» [o J— K e
:g Y — G [ JE—
= N === B === D

g

o M F e A

£ L s E K'
£ J = H C —
8

o

Time (h)

(e) Gantt chart after the reschedule during p4. Disturbance during the producton of K which resulted in restoration of its
production (K’) from E to G while a reduction of production time for N during ps4 was rescheduled.
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Fig. 14. Gantt charts of all the reschedules for the MMA case study where the gray blocks represent changeover periods.
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Table 12
Overview of the impact of the rescheduling mechanism on different factors of the iPSC.
. . 2Ty
Rescheduling Run Profit (rmu)  Transition cost (rmu)  Backlog cost (rmu) W
ip - +TFip
7
Nominal 1.876- 108 714.63 553,094.75 4.86
1st Reschedule P, 1.851-106 691.83 562,172.88 4,62
2nd Reschedule P, 1.811-10° 714.63 599,572.34 4.51
Reschedule P, 1.767 - 108 753.58 639,595.41 432
P3 1.767 - 106 753.58 639,595.41 432
Reschedule P, 1.748 - 106 775.78 651,992.14 4.23
Ps 1.748 - 108 775.78 651,992.14 423
Reschedule Pg 1.703 - 108 850.34 692,827.74 411

of dynamic disruption during the production of O was detected.
The graphs of the system’s dynamics are given in Fig. 15 while
the closed loop results from a scheduling perspective are given in
Fig. 14.

Next based on the solution of the MMA case study, a discussion
on the impact that the rescheduling mechanism has on the overall
iPSC is conducted and some key correlations are underlined.

4.2.2. Impact of the rescheduling mechanism on the overall iPSC

The integrated nature of the iPSC gives rise to several synergies
as well as hidden interdependences that can prove to be rather
crucial for the optimal operations. In Table 12, a number of indi-
cating factors from the iPSC problem are given against the different
rescheduling runs that took place in the MMA case study. The gen-
eral trends, as expected, is that the profit and overall production
time to overall transition time ratio are decreasing functions of the
rescheduling runs while on the other hand opposite behavior is ex-
hibited by the transition cost and backlog cost of the overall plan.
If we have a closer look at the results presented in Table 12 we no-
tice that different rescheduling runs have different impact on the
factors under examination.

Firstly, the reduction in profit during the second reschedul-
ing run of the period P is significantly greater than the decrease
from the first rescheduling. The key difference between the two
reschedules is the timing that the disturbance was detected. In
the first instance, the disturbance was detected early during the
first planning period but during a production time while the sec-
ond reschedule took place during the transition from product ] to
product L. It seems that disturbances during transition periods have
greater impact on the profit due to increased production of off-
spec material. The timing of the disturbance seems to play, in this
case, a secondary role as the first planning period had since the
nominal plan an end time of 168 h which is the upper bound on
time per planning period. The next interesting observation is that
the transition cost during the first reschedule decreases slightly
when compared to the nominal case. One would expect the transi-
tion cost to be monotonically increasing function of the reschedul-
ing runs but from studying the economic data of the case study the
following can explain the unexpected drop in transition cost. From
the occurrence of the disruption in the dynamics, the transition
form product O to N is benefited and thus happens in less time
and thus cost. Moreover, product G that is inserted for production
is the one that has the fastest transition time/less transition cost
from product I and also its price is similar to the price of product
O whose production time was reduced.

Finally, the greatest change in the indicating factors is observed
in the last rescheduling during the sixth period and there are a

number of reasons that result in this. Demand that is backlogged
during the end of the planning horizon does not allow for recovery
of the lost sales since the model cannot allocate the backlogged
demand in subsequent periods as in the reschedulings that hap-
pened in the earlier periods. Overall the following can be char-
acterised as important factors that affect the optimal operation of
the production facility within the iPSC scope: (i) the timing of the
disturbance, i.e. if it happens at the beginning/middle/end of the
planning period, (ii) the occurrence of the disturbance, i.e. if the
disruption happens during the production or the transition time
can result in loss of production but also in extended waste due
to off-spec materials, (iii) the existence of idle time during each
planning period and (iv) the complex trade-offs that stem from the
economics of the iPSC, e.g. it might be more preferable to lose pro-
duction of a product that has lower selling price when compared
to a more premium grade. Finally, a graphical illustration of the
economic indicators is given in Fig. 16.

5. Concluding remarks and future research directions

A novel framework for the closed-loop implementation of iPSC
with rescheduling considerations has been presented. The key fea-
tures of this framework involve: (i) a TSP model for the decisions
at the planning and scheduling level where immediate sequence
was used instead of the time-slots that have been proposed in the
literature, (ii) a meta-modelling approach that allows the decision
maker to take into consideration the transition cost for each tran-
sition and (iii) a novel model based controller for the closed-loop
implementation of the control strategy. For the control level, we
present the novel concept of multi-setpoint explicit controllers for
a special class of nonlinear dynamic systems. The case studies il-
lustrate that the use of multi-setpoint explicit controllers within
the closed-loop framework enable real-time implementation of the
decisions made by the integrated problem in the face of dynamic
disruptions, something that had not appeared in the literature so
far.

The case studies examined indicate that under the considera-
tion of uncertain process dynamics, the inherent interdependence
of the integrated problem manifests itself, since a disruption in
the process dynamics can result in major changes on the decisions
from the levels of scheduling and planning in order to guarantee
optimal operations. To this end, currently in our group we exam-
ine the development of a hybrid methodology that accounts for
multi-scale uncertainties throughout the three levels of decision
making and investigate potential trade-offs and synergies that the
integrated problem exhibits.

Please cite this article as: V.M. Charitopoulos et al., Closed-loop integration of planning, scheduling and multi-parametric nonlinear
control, Computers and Chemical Engineering (2018), https://doi.org/10.1016/j.compchemeng.2018.06.021
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Fig. 15. Y = f(t) plots indicative of the system’s dynamics over the entire planning horizon.
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Fig. 16. Visual representation of the effect of the rescheduling mechanism on the economic performance of the iPSC.
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