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Many view the period after the Second Industrial Revolution as a paradigm of a
transition to a new economy following a technological revolution, including the
Information Technology Revolution. We build a quantitative model of diffusion and
growth during transitions to evaluate that view. With a learning process quantified
by data on the life cycle of US manufacturing plants, the model accounts for the key
features of the transition after the Second Industrial Revolution. But we find that
features like those will occur in other transitions only if a large amount of
knowledge about old technologies exists before the transition begins. (JEL L60,
N61, N62, N71, N72, O33)

The 1860–1900 period is often called the
Second Industrial Revolution because of the
large number of technologies invented during
that time. Historians tell us that the Second
Industrial Revolution launched a century of
rapid development of new manufacturing tech-
nologies based on electricity (Sam H. Schurr et
al. 1960; Nathan Rosenberg 1976; Warren D.
Devine, Jr., 1983; Paul A. David 1990, 1991).
This increase in the pace of technical change led
eventually to a new economy, characterized by
faster growth in manufacturing productivity, as
measured by output per hour.

That particular transition to a new economy is
viewed by many as paradigmatic of what hap-
pens after any major and sustained increase in
the pace of technical change. The transition has
three main features: a productivity paradox (a
surprisingly long delay between the increase in
the pace of technical change and the increase in
the growth rate of measured productivity); slow

diffusion of new technologies; and continued
investment in old technologies. David (1990)
and Boyan Jovanovic and Peter L. Rousseau
(2005) have argued that all three of these fea-
tures of the transition after the Second Industrial
Revolution have parallels in the transition after
the more recent Information Technology (IT)
Revolution.

Why did the transition after the Second In-
dustrial Revolution have these features? And
are they likely to be seen in other such transi-
tions? Here we attempt to answer those ques-
tions by building and using a model of
technology diffusion and growth. The model is
intended to capture the main elements of histo-
rians’ hypotheses about the technological con-
straints facing manufacturing plants, which are
thought to have shaped the transition to a new
economy after the Second Industrial Revolu-
tion. (See, for example, Schurr et al. 1960;
Rosenberg 1976; Devine 1983; David 1990,
1991.) These elements are as follows: new tech-
nologies are embodied in plants, so that plants
must be redesigned in order to use the new
technologies; improvements in the technologies
for new plants are ongoing; and new plants
require a period of learning in order to use the
new technologies. We employ this model to
investigate what aspects of the technological
constraints are critical quantitatively for gen-
erating this particular transition’s three main
features. We then use the model to ask what
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lessons from the transition after the Second
Industrial Revolution can be learned to usefully
guide research on other technological revolu-
tions, especially the recent IT Revolution.

We discover that, quantitatively, learning is
the critical technological constraint in our
model. Indeed, to reproduce the three main fea-
tures of the transition, the model needs learning
about embodied technologies to be both sub-
stantial and protracted.

When the learning process in the old econ-
omy is substantial and protracted, our model
generates the first of the transition features—a
productivity paradox. It does so because, with
such a learning process, the model implies that
at the start of the transition, agents have built up
a large stock of knowledge about old embodied
technologies. Agents who have done that natu-
rally don’t quickly abandon the existing tech-
nology in favor of a new one. Instead, they
spend a long time continuing to learn about their
existing technology before abandoning it in fa-
vor of a new one. This procedure creates a long
delay between the increase in the pace of tech-
nical change and the increase in the growth rate
of measured productivity.

By the same logic, learning and built-up
knowledge are critical for generating the second
of the three transition features—a slow diffu-
sion of new technologies. Our model generates
S-shaped diffusion curves from heterogeneity
across plants in built-up knowledge about old
technologies: plants with little built-up knowl-
edge adopt the new technology sooner, while
plants with a lot of built-up knowledge adopt it
later.

Finally, when learning is substantial and pro-
tracted, our model also generates the third tran-
sition feature—ongoing investment in old
technologies even after new technologies are
introduced. This ongoing investment occurs be-
cause existing plants embodying old technolo-
gies continue to learn and thus grow by adding
physical capital and labor for quite some time
after new technologies are introduced.

We use micro data on US manufacturing
plants to measure the learning process at the
plant level and find that it is, in fact, substantial
and protracted. Indeed, one of our main contri-
butions in making the model quantitative is to
use micro data on the life-cycle patterns of
plants in the US economy—their birth, growth,

and death—to infer the parameters of the learn-
ing process at the plant level. Our method here
builds on the work of Hugo Hopenhayn and
Richard Rogerson (1993) and our own earlier
work (Atkeson and Kehoe 2005). With our
method, we find that learning continues for at
least 20 years.

When the parameters of our model are set
using our method for inferring learning, the
model’s predictions match the three main fea-
tures of the transition after the Second Industrial
Revolution surprisingly well. We find it intrigu-
ing that the model matches the data so well,
even though we did not attempt to replicate any
features of the transition after the Second Indus-
trial Revolution when we chose the parameters
of our model.

What lessons can be drawn from our model
for transitions after other technological revolu-
tions, particularly after the more recent IT Rev-
olution? We investigate this question by
following the lead of David (1990), Timothy F.
Bresnahan, Erik Brynjolfsson, and Lorin M.
Hitt (2002), and others who argue that informa-
tion technologies are similar to electricity in that
they open up new possibilities for organizing
business practices within all types of organiza-
tions, and these organizations need to be rede-
signed to make productive use of the new
information technologies. Motivated by this
work, we reinterpret our model as having busi-
ness organizations rather than manufacturing
plants as the basic units of production. We
assume that each new business organization em-
bodies a new set of business practices that rep-
resent the current frontier of such practices, and
then learns to become more productive with
these practices over time.

The general lesson we draw from our model
is that its implications for the transition after a
technological revolution depend on the histori-
cal context in which the revolution occurs. In
particular, our model predicts a slow transition,
such as that seen after the Second Industrial
Revolution, only if agents have accumulated a
large stock of built-up knowledge of old tech-
nologies before the transition begins. For the
Second Industrial Revolution, we argue that
agents did have a large stock of built-up knowl-
edge about factories based on steam and water-
power. For the IT Revolution, our model will
predict a slow transition only if, at the start of
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that revolution, agents had a large stock of
built-up knowledge about business practices
based on old information technologies.

We use the model to examine which factors
determine the extent of built-up knowledge in
equilibrium. We find that the relative pace of
technical change in the old economy is one of
those factors: the faster the pace of the change,
the smaller is the extent of built-up knowledge
and, hence, the faster is the transition to a new
economy after a technological revolution. We
also find that the more protracted and substan-
tial the learning process, the larger the extent of
built-up knowledge and the slower the transi-
tion after a technological revolution.

Currently, we know little about the extent of
built-up knowledge about business practices in
organizations at the start of the IT Revolution.
Our model suggests, however, that the extent of
that knowledge can be inferred from data on the
diffusion and life cycle of business practices. To
generate quantitatively a slow transition after
the IT Revolution in our model, we must as-
sume that the diffusion of business practices
before that revolution was very slow and that
the life cycle of these business practices was
very prolonged. For example, for our model
to generate a transition after the IT Revolu-
tion that is as slow as that after the Second
Industrial Revolution, at the start of the IT
Revolution over 50 percent of the work force
must have been employed in organizations
with business practices that were more than
six decades old.

Our method of measuring learning at the
plant level contrasts sharply with the standard
approach in the learning literature, exemplified
by the work of Byong-Hyong Bahk and Michael
Gort (1993). These researchers associate learn-
ing in a plant with changes in the average pro-
ductivity of labor and capital at that plant as the
plant ages. This method leads to the conclusion
that there is very little learning at the plant level.
Hence, if the method were used with our model,
it would predict a fast transition, a fast diffusion
of new technologies, and little or no ongoing
investment in old technologies.

We argue in favor of our method of measur-
ing learning because, in the context of our
model, the method proposed by Bahk and Gort
(1993) is conceptually flawed. Indeed, if it were
applied to our model, it would find no learning

at all, regardless of how much learning was
actually going on. Our method for measuring
learning is one of the features that distinguish
our work from related models of transition
based on embodiment and learning, including
those of Andreas Hornstein and Per Krusell
(1996) and Jeremy Greenwood and Mehmet
Yorukoglu (1997).

At the general level, the technology diffusion
in our model is related to the theoretical litera-
ture on S-shaped diffusion curves, including the
work of Jovanovic and Saul Lach (1989) and
V. V. Chari and Hopenhayn (1991). In contrast
to that work, we have neither spillovers of
learning nor complementarities. Our model also
differs from most of the literature on diffusion
in that it generates substantial ongoing invest-
ment in old technologies. (An important excep-
tion is the work of Chari and Hopenhayn 1991.)

More recent theoretical work on diffusion
after a major technical change includes that of
Philippe Aghion and Peter Howitt (1998), El-
hanan Helpman and Manuel Trajtenberg
(1998), and John Laitner and Dmitriy L. Stol-
yarov (2003). In this literature, often referred to
as work on general purpose technologies, the
diffusion of a major new technology is con-
strained by the need to develop complementary
inputs for that technology. These explanations
for the slow diffusion of new technologies do
not account for substantial investment in old
technologies after major technical change.

I. Documenting the Transition after the Second
Industrial Revolution

We document the three main features of the
transition to a new economy that occurred after
the Second Industrial Revolution: a productivity
paradox, a slow diffusion of new technologies,
and ongoing investment in old technologies.

Many of the technologies that had a profound
impact on living standards in the twentieth cen-
tury were invented between 1860 and 1900.
These technologies include electricity, the inter-
nal combustion engine, the production of petro-
leum and other chemicals, telephones and
radios, and indoor plumbing. (For a description
of technological inventions during this time, see
the work of Robert J. Gordon 2000a.) Although
all of these inventions undoubtedly had a sub-
stantial economic impact, we follow Schurr et
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al. (1960, 1990), Rosenberg (1976), Devine
(1983), and David (1990, 1991) and focus on
the new technologies based on electricity. These
historians have argued that this revolution
launched a century-long period of rapid devel-

opment of new technologies for manufacturing
based on electricity (Devine 1990).

In Figure 1, we show this historical period
does include a productivity paradox, or a sub-
stantial lag between the increased pace of tech-

FIGURES 1–2. A Gradual Transition to a New Economy
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nical change and the response of measured
productivity growth.1 We have computed linear
trends in annual output per hour in US manu-
facturing for three periods: 1869–1899, 1899–
1929, and 1949–1969. (We chose these periods
to omit the Great Depression and World War II;
data are from the US Department of Commerce
1973.) The trend growth rate of output per hour
in the three periods increases gradually, from
1.6 percent to 2.6 percent to 3.3 percent. (We
chose 1869 as the starting point because the
early data are derived from the US Census Bu-
reau’s censuses of manufacturing establishments,
which have been taken every decade since that
year. We focus on the subsequent 100-year pe-
riod. Gordon (2000b) documents a similar grad-
ual acceleration for the growth of output per
hour for the US economy as a whole.)

In documenting the slow diffusion of new
technologies, we focus on the diffusion of elec-
tric power in manufacturing over the 1869–
1939 period. In Figure 2 we plot the percentages
of mechanical power in US manufacturing es-
tablishments that were derived from water,
steam, and electricity from 1869 to 1939 (De-
vine 1983, table 3). Before 1899, more than 95
percent of mechanical power was derived from
water and steam. Between 1899 and 1929, elec-
tricity use gradually replaced water and steam,
so that by 1929, over 75 percent of mechanical
power was electric. If we measure the diffusion
of electricity in manufacturing starting in 1869,
we see that it took 50 years for electricity to
provide 50 percent of mechanical power. This
measure of the speed of diffusion is, of course,
sensitive to the choice of starting date. A measure

of the speed of diffusion that is less sensitive to
that choice is the time required for a technology to
diffuse from 5 percent to 50 percent. For electric-
ity in US manufacturing, such diffusion took place
over about 20 years, from 1899 to 1919.

In documenting the ongoing investment in
old technologies, we focus on the ongoing
growth of steam power over the 1869–1939
period. Figure 2 also shows that the percentage
of mechanical power derived from steam in-
creased from roughly 50 percent in 1869 to
roughly 80 percent in 1899. Given that the total
amount of mechanical power in US manufac-
turing increased over this time period, these
data imply that there was substantial net new
investment in steam power for at least 30 years
after the development of electric power. To put
the diffusion paths of these three types of power
in a longer-term perspective, recall that water-
power is an extremely old technology, while the
use of steam power started to increase in the
United States between 1800 and 1810 (Jeremy
Atack, Fred Bateman, and Thomas Weiss
1980). During the 1800–1899 period, water-
power slowly gave way to steam power, and
only after that did electric power gradually re-
place both of these older technologies.

II. A Model of Technology Diffusion

We now present our quantitative general
equilibrium model of the diffusion of new tech-
nologies and the corresponding impact of these
technologies on economic growth. We build in
three assumptions meant to capture historians’
hypotheses about the technological constraints
faced by manufacturers during the transition
after the Second Industrial Revolution. (For a
more detailed discussion of the links between
the historical analyses and our model, see our
earlier work, Atkeson and Kehoe 2001.) The
assumptions are the following:

● New plants embody new technologies.2 This
assumption is motivated by the work of

1 Throughout, we take as given the standard view ex-
pressed by historians (like David 1990) that a sustained
increase in the rate of technical change began in the Second
Industrial Revolution and continued for many decades af-
terward. This view, together with the data on manufacturing
productivity, leads many observers to see a productivity
paradox after the Second Industrial Revolution. Our objec-
tive is to assess quantitatively whether our model of growth
and technology diffusion can account for this productivity
paradox as well as the associated diffusion patterns of new
and old technologies. An alternative approach, which we do
not take, is to argue that the historians are mistaken: the
pace of technical change did not increase until several
decades after the Second Industrial Revolution and, hence,
there is no productivity paradox. Such an approach would
have to confront the issue of how to generate the observed
patterns of diffusion of new and old technologies.

2 Note that we do not assume that all new technologies
are embodied in new plants. In fact, our model is consistent
with the idea that most of the ongoing technical change in
the economy is driven by either disembodied technical
change or technical change embodied in other factors, such
as capital goods or labor.
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Devine (1983, 1990) and David (1990,
1991), who argue that manufacturing plants
needed to be completely redesigned in or-
der to make good use of the new technol-
ogies stemming from the development of
electric power.

● Improvements in the technology for new
plants are ongoing. Specifically, we model
the transition to a new economy after the Sec-
ond Industrial Revolution as arising from a
once-and-for-all increase in the rate of improve-
ment in the frontier technology embodied in the
design of new plants. This assumption captures
the arguments of Schurr et al. (1960), Rosen-
berg (1976), Devine (1990), and Sidney Sonen-
blum (1990) that the process of improving
efficiency through changes in factory design
after the Second Industrial Revolution con-
tinued for decades, through at least the 1980s,
and lay behind the new economy after this
revolution.

● New plants improve their technology through
a period of learning. This assumption is con-
sistent with a broad body of work on learning
as well as the discussions of David (1990,
1991) and Alfred D. Chandler (1992).

In describing our model formally below,
we build in these assumptions in abstract
terms so that, with a simple reinterpretation,
the model can be applied to a variety of
transition experiences. At first, we interpret
the elements of the model with an eye toward
applying it to the transition after the Second
Industrial Revolution. Later we discuss how
to reinterpret these elements in order to apply
the model to the transition after the IT Rev-
olution (see Section IVA).

A. The Basic Structure

In the model, time is discrete and is denoted
by periods t � 0, 1, ... . The economy has a
continuum of size 1 of households. Households
have preferences over consumption ct given by
¥t�0

� �tlog(ct), where � is the discount factor.
Each household consists of a worker and a
manager, each of whom supplies one unit of
labor inelastically. Households are also en-
dowed with the initial stock of physical capital
and ownership of the plants that exist in period
0. Given sequences of wages for workers, wages

for managers, intertemporal prices {wt, wmt,
pt}t�0

� , initial capital holdings k0, and an initial
value a0 of the plants that exist in period 0, house-
holds choose sequences of consumption {ct}t�0

� to
maximize utility subject to the budget constraint

(1) �
t � 0

�

pt ct � �
t � 0

�

pt �wt � wmt � � k0 � a0 .

Production in this economy is carried out in
plants. In any period, a plant is characterized by
its specific productivity A and its age s. To
operate, a plant uses one unit of a manager’s
time, physical capital, and (workers’) labor as
variable inputs. If a plant with specific produc-
tivity A operates with one manager, physical
capital k, and labor l, the plant produces output

(2) q � zA�1 � ���/�F�k, l��,

where the function F is linearly homogeneous
of degree 1 and the parameter � � (0, 1). The
technology parameter z is common to all plants
and grows at an exogenous rate. We call z
economy-wide productivity. Following Robert
E. Lucas, Jr. (1978, 511), we call � the span of
control parameter of the plant’s manager. Here,
the parameter � may be interpreted as determin-
ing the degree of diminishing returns at the
plant level. We refer to the pair (A, s) as the
plant’s organization-specific capital, or simply
its organization capital. This pair summarizes
the built-up expertise, or knowledge, that dis-
tinguishes one organization from another. In
(2), the exponent (1 � ��)/� on A is a conve-
nient scaling of specific productivity.

Each plant produces a differentiated product,
which a competitive firm aggregates to produce
a homogeneous final good. Each plant chooses
its price and inputs to maximize profits, given the
downward-sloping demand from the firm that pro-
duces final goods. The competitive final goods
firm produces aggregate output according to

yt � � �
s
�

A

qt(A)��t(A, s)� 1/�

,

where �t(A, s) denotes the measure of plants
with organization capital (A, s) that operate in t.
The final goods firm has a static demand func-
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tion qt(A) � pt(A)�1/(1�� )yt. Note that we use a
symmetry property of the equilibrium: indepen-
dently of age, all operating plants with the same
specific productivity A choose the same output
and set the same price. We also normalize the
price of the final good to be 1.

The timing of events in period t is as follows.
An owner’s decision whether to operate a plant is
made at the beginning of the period. Plants that do
not operate produce nothing; the organization cap-
ital in these plants is lost permanently. Plants with
organization capital (A, s) that do operate, in con-
trast, hire a manager, capital kt, and labor lt and
produce output q according to (2). At the end of
the period, operating plants draw independent in-
novations (or shocks) � to their specific produc-
tivity, with probabilities given by age-dependent
distributions {	s}. Thus, a plant with organization
capital (A, s) that operates in period t has stochas-
tic organization capital (A�, s � 1) at the begin-
ning of period t � 1.

Consider the process by which a new plant
enters the economy. Before a new plant can
enter in period t, a manager must spend period
t � 1 preparing and adopting a blueprint for
constructing the plant that determines the
plant’s initial specific productivity 
t. Blueprints
adopted in period t � 1 embody the frontier of
knowledge (or frontier blueprint) regarding the
design of plants at that point in time. This
frontier evolves exogenously, according to the
sequence {
t}t�0

� . Thus, a plant built in t � 1
starts period t with initial specific productivity 
t
and organization capital (A, s) � (
t, 0). Be-
cause this level of productivity is built into the
plant at its start, we refer to growth in 
t as
embodied technical change.

We assume that capital and labor are freely
mobile across plants in each period. Thus, for
any plant that operates in period t, the decision
of how much capital and labor to hire is static.
Given a rental rate for capital rt, a wage rate for
labor wt, and a managerial wage wmt, the oper-
ating plant chooses employment of capital and
labor to maximize variable profits

(3) dt �A� � max
p,q,k,l

pq � rtk � wtl

subject to (2) and the static demand function.
Let pt(A), qt(A), kt(A), and lt(A) denote the
solutions to this problem.

The decision whether to operate a plant is
dynamic. This decision problem is described by
the Bellman equation

(4) Vt �A, s� � max�0, dt(A) � wmt

�
pt � 1

pt
�

�

Vt � 1(A�, s � 1)	s � 1(d�)�,

where the sequences {
t, wt, rt, wmt, pt}t � 0
�

are given. The value Vt( A, s) is the expected
discounted stream of returns to the owner of a
plant with organization capital ( A, s). This
value is the maximum of the returns from
closing the plant and those from operating it.
The second term in the brackets on the right
side of (4) is the expected discounted value of
operating a plant of type ( A, s). It consists of
current returns dt( A) � wmt and the dis-
counted value of expected future returns
Vt � 1( A, s). The plant operates only if the
expected returns from operating it are non-
negative.

An owner’s decision whether to hire a man-
ager to prepare a blueprint for a new plant is
also dynamic. In period t, this decision is deter-
mined by Vt

0 � �wmt � pt�1Vt�1�
t�1,0�/pt. The
value Vt

0 is the expected stream of returns to the
owner of a new plant, net of the initial fixed cost
wmt of paying a manager to prepare the blueprint
for the plant. Managers are hired to prepare blue-
prints for new plants only if Vt

0 � 0. Since there
is free entry into the activity of starting new
plants, in equilibrium we require that Vt

0t � 0,
where t is the measure of managers starting
new plants.

Let kt denote the aggregate physical capital
stock. Then the resource constraints for physical
capital and labor are ¥s �A kt(A)�t(dA, s) � kt
and ¥s �A lt(A)�t(dA, s) � 1. The resource
constraint for aggregate output is ct � kt�1 �
yt � (1 � �)kt, where � is the depreciation rate
of capital. The resource constraint for managers
is t � ¥s �A �t(dA, s) � 1.

An equilibrium is defined in the obvious
way. In this equilibrium, in each period t, the
decision to operate a plant is summarized by
an age-dependent cutoff rule A*t(s). In period
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t, plants of age s with specific productivity
A � A*t(s) continue operating, and those with
A � A*t(s) close.

To get a sense of the process for the birth,
growth, and death—or the life cycle—of plants
that our model generates, consider Figure 3. Here
we show the evolution of the specific produc-
tivity of two plants that both enter in period t �
1860. Both of these plants start with productiv-
ity equal to that of the frontier blueprint in 1860,
namely, 
1860. This frontier blueprint grows ex-
ogenously over time at a constant rate, as shown
by the solid straight line labeled log 
t. The two
plants each experience random shocks to their
plant-specific productivity drawn from age-de-
pendent distributions 	s. Plant 1 is relatively
lucky in that it draws especially favorable
shocks to its specific productivity, and plant 2 is
relatively unlucky.

In every period, each plant makes a decision
whether to continue or to close, or exit. This
decision is based on a comparison of the plant’s
current specific productivity At and its future
prospects for learning, determined by the age-
dependent distributions 	s relative to the al-
ternative of exiting and starting a new plant
with the current frontier blueprint. The age-
dependent cutoff rule A*t(s) summarizes the de-
cision. Plant 1 has relatively high specific

productivity; hence, it exits only after operating
30 years. Plant 2 has relatively low specific
productivity and exits much sooner. After these
plants exit, the manager of each plant starts a
new plant with the current frontier blueprint and
begins the process of building up specific pro-
ductivity in the new plant.3

In our model, technologies embodied in
plants diffuse throughout the economy as new
plants embodying these technologies are born
and grow. Figure 3 also illustrates the me-
chanics of this diffusion. In 1863, the man-
ager of plant 2 decides to exit and start a new

3 Since our model has a fixed number of managers and
each manager can either start a new plant or operate an
existing plant, our assumptions imply that on a balanced
growth path, the number of plants is fixed. An alternative
assumption, pursued by Hopenhayn and Rogerson (1993), is
that, instead, what is fixed is the cost in terms of consump-
tion goods of starting a new plant. In that alternative model,
the number of plants grows over time.

We have chosen our specification because it seems to be
a good approximation to the data. Saul S. Sands (1961)
reports that over the 1904–1947 period, the number of
manufacturing plants in the United States grew only 0.5
percent per year, while output per manufacturing establish-
ment grew nearly 3.0 percent per year. Clearly, most of the
growth of output in this period came from more output from
each plant and only a small part from an increase in the
number of plants.

Exit

Log of specific 
productivity 

1863 1890 

New plant 

New plant 

Exit

Time

Plant 1 

Plant 2 

Frontier
blueprint
log t

1860 1864 1891 

log 1860

FIGURE 3. THE LIFE CYCLE OF PLANTS IN THE MODEL

(Productivity of two plants versus that of frontier blueprint over time)
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plant that embodies the frontier blueprint of
1864 and then begins to learn with that new
technology. Likewise, in 1890 the manager of
plant 1 decides to exit and start a new plant
that embodies the frontier blueprint of 1891
and then begins to learn with that new tech-
nology. In this manner, new plants embody-
ing new technologies gradually replace old
ones. Since our model has many such plants,
each with different shocks to specific produc-
tivity, this diffusion of new embodied tech-
nologies occurs smoothly over time.

Formally, we measure the diffusion of em-
bodied technologies as follows. Let lt,s � �A
(lt(A)/lt)�t(dA, s) denote the fraction of labor
employed in plants of age s, and let

(5) Dt,t � k � �
s � 0

k

lt,s

be the fraction of labor employed in plants of
age k and younger. We measure the diffusion in
period t � k of embodied technologies devel-
oped in period t or later by Dt,t�k, which, in the
model, is the fraction of labor employed in
plants using technologies developed in period t
or later.

B. Measuring the Learning Process

In our model, the process governing learning
is a key determinant of the rate at which a new
technology diffuses. In the model, learning at
the plant level is represented by shocks to the
plant’s specific productivity. We argue here that
data on plant size can be used to measure these
shocks.4 We then contrast our approach to mea-
suring learning with the standard approach
taken in the literature on learning.

The Link between Plant Size and Plant-
Specific Productivity.—Our model implies a
tight link between plant size and plant-specific
productivity. Given this link, we can use data on
the relative size of plants to infer the actual
pattern of productivity changes, or learning, at
the plant level.

To see the link between plant size and pro-
ductivity, consider the static problem of allocat-
ing a given amount of capital and labor across
plants at a point in time. For a given distribution
�t of organization capital, it is convenient to
define

(6) nt �A� �
A

A� t

as the size of a plant of type (A, s) in period t,
where A� t � ¥s �A A�t(dA, s) is the aggregate of
the specific productivities across all plants. The
variable nt(A) measures the relative size of the
plant in terms of its capital or labor, in that the
equilibrium allocations are kt(A) � nt(A)kt and
lt(A) � nt(A)lt.

A similar result holds for cohorts of plants.
To see this result, define the aggregate of the
specific productivities of a cohort of plants
of age s as A� t,s � �A A�t(dA, s). Note from (6)
that A� t,s/A� t � �A nt(A)�t(dA, s). We then have
the following proposition.

PROPOSITION: The aggregate of specific
productivities of plants of age s relative to that
of all plants is equal to the share of total em-
ployment in those plants; that is, A� t,s/A� t � lt,s,
where lt,s � �A [lt(A)/lt]�t(dA, s).

Given this proposition, we can use the data
on employment shares by cohorts, lt,s, to infer
the pattern of learning, as measured by A� t,s/
A� t. The data show that employment in a co-
hort of plants grows substantially as the
cohort ages.5 For example, in terms of the4 Our approach differs from that of a large literature

which models specific productivity as endogenous. An ad-
vantage of our approach is that it allows us to match the
process for productivity associated with learning directly to
data on the growth process of plants. Moreover, at least in
a steady state, we need not take a stand on whether this
productivity is derived from active or passive learning,
matching, or ongoing adoption of new technologies in ex-
isting plants. Outside of a steady state, however, we are
implicitly assuming that the learning process does not vary
with the growth rate of the economy.

5 Here and throughout this study, our microeconomic
data are taken from the US Census Bureau LRD on manu-
facturing plants. This dataset is described in Davis et al.
(1996). We use data on employment, job creation, and job
destruction from the 1988 panel of the LRD, which we
obtained from John Haltiwanger’s Web site, http://www.
bsos.umd.edu/econ/haltiwanger.
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cross section, the 1988 panel of the US Cen-
sus Bureau’s Longitudinal Research Database
(LRD) on manufacturing plants shows that
the employment share of plants rises at least
for the first 20 years of a plant’s life and that
the employment share of a cohort of plants
of age 20 is more than 7 times that of the
cohort of brand-new plants. In terms of the
panel evidence, J. Bradford Jensen, Robert H.
McGuckin, and Kevin J. Stiroh (2001) show
that the employment share of a cohort of
plants starts small and grows steadily with
age.

From the perspective of our model, the
LRD data imply that the aggregate of specific
productivities of a cohort of plants grows
faster than aggregate productivity for at least
20 years. Since in the data the employment
share of a cohort of plants of age 20 is more
than 7 times that of brand-new plants, our
model implies that plants that survive 20
years have, at that age, learned so much that
they are not only much more productive than
they were when they were first built, but also
much more productive than plants that are
brand-new in that twentieth year. Thus, for a
relatively long period of time, the ongoing
innovations that occur within an operating
plant are, on average, much larger than the
innovations from the frontier technology. In
this sense, 20-year-old plants are technologi-
cally superior to their contemporary brand-
new plants. We interpret this evidence as
indicating that learning in plants is both sub-
stantial and protracted.

Note that the link between the employment
shares lt,s and relative productivities A� t,s/A� t es-
tablished in the proposition is derived from
static first-order conditions equating the value
marginal product across plants. These first-or-
der conditions hold regardless of any changes or
trends in overall employment lt. Hence, the fact
that the data show trends in manufacturing em-
ployment—increasing in the first part of the
century and decreasing in the second part—has
no bearing on our method of inferring learning
from employment shares.

We use employment shares of plant cohorts
to infer the amount of learning that plants ex-
perience as they age. We also use them to infer
the speed of diffusion of new technologies as
expressed in (5).

A Contrast with the Literature on Learning.—
We have argued that theory implies that
learning manifests itself in the plant-specific,
or organization-specific, component of pro-
ductivity and can be uncovered from data on
the relative size of organizations. This ap-
proach is quite different from that followed in
much of the literature on learning at the or-
ganizational level. (For a survey, see the 1990
work of Linda Argote and Dennis Epple.) In
that literature, learning is measured by data
on the relationship between labor productivity
at the organization level and the age or pro-
duction experience of the organization. This
literature identifies many instances of a very
strong relationship between the labor produc-
tivity of a specific organization and its age or
production experience.

We take a different approach for two reasons.
One is that more comprehensive panel datasets
on manufacturing plants do not reveal a strong
systematic relationship between the labor pro-
ductivity of these plants and their age. The other
reason is that, in the context of models like ours,
such a relationship has no bearing on the extent
of learning.

In the data, a large dispersion in average
productivity occurs across plants. However,
average productivity does not seem to vary
systematically with plant age. For example,
Jensen, McGuckin, and Stiroh (2001) study a
large panel of plants and find that once they
include controls for labor quality and capital
intensity, “surviving cohorts regardless of age
or vintage show similar (labor) productivity
levels” (331). Eric J. Bartelsman and Phoebus
J. Dhrymes (1998) find similar results. Bahk
and Gort (1993) run regressions of plant pro-
ductivity on plant experience. Using gross
sales as their measure of plant output, they
find an economically small positive relation-
ship between plant productivity and plant age.
In particular, their regressions imply that la-
bor productivity grows at 15 percent over the
first 15 years of a plant’s life. To see that this
growth is economically small, note that over
this 15-year period, the average surviving
plant has employment and value added grow-
ing by roughly 500 percent. Moreover, even
in Bahk and Gort’s data, there may be no
relationship between plant productivity and
age: when Bahk and Gort use the theoretically
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preferred value-added measure rather than
gross output as a proxy for output, they find
little relation between productivity and age.

Next we show that, consistent with the data,
our model implies that there should be no sys-
tematic relation between the labor productivity
of a plant and its age or production experience.
The model has this implication regardless of the
amount of learning assumed at the plant level.
To show this, we imagine the results we would
get if we applied Bahk and Gort’s approach to
measuring learning to data generated from our
model. Specifically, Bahk and Gort run a regres-
sion of plant output on plant inputs and some
measure of experience, and interpret the coeffi-
cient on the experience variable as measuring
the extent of learning. Unfortunately, this ap-
proach is valid only if the movement in plants’
inputs is essentially unrelated to their specific
productivity. Theory, however, predicts pre-
cisely the opposite, as the following example
makes clear.

Consider running Bahk and Gort’s regression
in a simplified version of our model. In this
simplified model, let all plants be competitive
and make a homogeneous final good (� � 1).
Let the output in plant i in period t be given by
the production function qit � ztAit

1��lit
�, so that

relative employment in this plant is given by
lit/lt � Ait/At, where lt � ¥i lit is aggregate
employment and At � ¥i Ait is the aggregate of
specific productivities of all plants. Hence, tak-
ing logs of the plant production function and
substituting for Ait from lit/lt � Ait/At gives that,
in equilibrium,

(7) log qit � log	zt�At /lt�
1 � �
 � log lit .

We can use (7) to calculate the coefficients in
the following regression, of the form used by
Bahk and Gort:

log qit � �1t � �2log lit � �3xit ,

where xit is some measure of the age or past
production of the plant. This regression neces-
sarily yields estimates of �3 � 0 along with
�1t � log[ zt(At/lt)

1��] and �2 � 1. Bahk and
Gort’s interpretation of �3 � 0 would be that no
learning takes place at the plant level regardless
of how much specific productivity Ait rises with
age.

Notice also that in the equilibrium of the
model, (7) implies that labor productivity is
given by qit/lit � zt( At/lt)

1 � � and, hence, is
constant across all plants, regardless of their
specific productivity Ait. This observation
points to the key difference between the im-
plications for learning by an individual and
that of an organization, which can add vari-
able factors. Individuals who learn increase
their labor productivity. Organizations that
learn grow by adding variable factors in order
to keep their labor productivity constant (at
least with Cobb-Douglas production). Hence,
we argue that the key variable to look at to
determine the amount of learning (that is,
built-up knowledge or organization-specific
capital) is not some measure of either labor or
capital productivity, but rather some measure
of relative size.

C. Quantification

To derive our model’s quantitative implica-
tions for the main features of transition to a new
economy, we need to set both the macro and the
micro parameters. In the model, a period is a
year.

Macro Parameters.—The model’s macro
parameters are few and fairly standard to
quantify. The growth rate of output per hour g
and the depreciation rate � are chosen to
reproduce data on the US manufacturing sec-
tor since World War II. We set g � 3.3
percent to match the growth of manufacturing
output per hour from 1949 to 1969. We let the
plant-level production function be F(k, l ) �
k�l1 � �. Because of imperfect competition,
the share of GDP paid to physical capital is
given by ���. We use data for 1959 –1999
obtained from the US Department of Com-
merce (various dates) national income and
product accounts to set ��� � 19.9 percent
and � � 5.5 percent, based on methodology
described in our earlier work (Atkeson and
Kehoe 2005). We set the discount factor � �
0.993, so that the steady-state interest rate i
defined by 1 � i � (1 � g)/� is 4.1 percent.

Now consider the parameter � � ��. On the
basis of the work of Susanto Basu and John G.
Fernald (1995), Basu (1996), and Basu and

74 THE AMERICAN ECONOMIC REVIEW MARCH 2007



Miles S. Kimball (1997), we choose � � 0.9,
which implies a markup of 11 percent and an
elasticity of demand of 10. The span of control
parameter � measures the degree of diminishing
returns in variable factors at the plant level.
Hundreds of studies have estimated production
functions with micro data. These analyses in-
corporate a wide variety of assumptions about
the form of the production technology and draw
on cross-sectional, panel, and time-series data
from virtually every industry and developed
country. Paul H. Douglas (1948) and Alan A.
Walters (1963) survey many studies. More re-
cent work along these lines has also been done
by Martin Neil Baily, Charles Hulten, and
David Campbell (1992), Bahk and Gort (1993),
G. Steven Olley and Ariel Pakes (1996), and
Bartelsman and Dhrymes (1998). This work
finds that the returns to scale in production are
fairly close to 1.0, with many of the estimates
falling in the range from 0.9 to 1.0. We choose
� � 0.95. This makes � � 0.85. This value of �
is consistent with the discussion of Atkeson,
Aubhik Khan, and Lee Ohanian (1996). (As we
report later, in Section IIIA, we did some sen-
sitivity analysis with respect to � and found that
with � � 0.9 and � � 1.0, we get similar results.)

Micro Parameters.—We use the method de-
scribed in our 2005 work to set the micro pa-
rameters governing plant-specific productivity.
We rewrite the model so that the problem of
choosing the learning parameters governing
plant-specific productivity is equivalent to di-
rectly choosing parameters governing shocks to
size. We assume that the shocks to size have a
lognormal distribution, so that log �s � N(ms,
�s

2). We choose the means and standard devia-
tions of these distributions to be smoothly de-
clining functions of s. In particular, we set ms �
�1 � �2(S � s/S)2 for s � S and ms � �1
otherwise, and �s � �3 � �4(S � s/S)2 for s �
S and �s � �3 otherwise. With this parameter-
ization, the shocks for plants of age S or older
are drawn from a single distribution. Thus,
shocks to plant size are parameterized by
{�i}i�1

4 and age S.
We choose the parameters governing these

shocks so that the model matches data on the
fraction of the labor force employed in plants of
different age groups, as well as data on job
creation and job destruction in plants of differ-

ent age groups. We use these job statistics to set
the means and variances of shocks to produc-
tivity. The data are from the 1988 panel of the
US Census Bureau LRD, which has the most
extensive breakdown of plants by age available.

More formally, we use the relevant statistics
defined by Steven J. Davis, John C. Haltiwan-
ger, and Scott Schuh (1996): employment in a
plant in year t is (lt � lt�1)/2, where lt is the
labor force in year t; job creation in a plant in
year t is lt � lt�1 if lt � lt�1 and zero otherwise;
job destruction in a plant in year t is lt�1 � lt if
lt � lt�1 and zero otherwise. In Figure 4, we
report for each age category these three statis-
tics for US manufacturing plants in 1988 for all
plants in that category relative to the total em-
ployment in all plants. This gives us a total of
26 statistics from the data that we use to sum-
marize the life cycle of plants.

We set the parameter S � 150 and choose the
four parameters {�i}i�1

4 to minimize the sum of
the squared errors between the corresponding
26 statistics computed from the model and those
in the data. The resulting model statistics are
also plotted in Figure 4. The parameters that
generate these shocks are S � 150, �1 �
�0.1829, �2 � 0.2520, �3 � exp(�1.7289),
and �4 � exp(�7.0134).

In Figure 4A, we see that our model
matches the employment shares fairly well. In
Figures 4B and 4C, we see that our model
implies a bit more job creation and job destruc-
tion on average than are observed in the data.
To get some perspective on this, note that the
implied statistics for the overall job creation and
destruction rates are 8.3 percent and 8.4 percent
for the data and are both 9.7 percent for the
model. Note also that in annual data during the
1972–1993 period, the standard deviations of
the overall job creation and job destruction rates
are 2.0 and 2.7 percentage points. Together,
then, these data reveal that the overall job cre-
ation and job destruction rates in our model are
reasonably good estimates—within one stan-
dard deviation—of the time-series fluctuations
in these rates observed in the data.

III. Reproducing the Transition after the
Second Industrial Revolution

Now we ask whether our quantitative model,
built to capture the historians’ hypotheses about
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the constraints facing US manufacturers in the
Second Industrial Revolution, can reproduce the
three main features of the transition after that
revolution we documented in Section I. To an-
swer this question, we use the model to simulate
a transition to a new economy with a perma-
nently faster pace of technical change, driven by
faster growth in the frontier blueprints for new
plants. In this simulation, the faster growth as-
signed to the frontier blueprints is meant to
capture the faster pace of technical change em-
bodied in US plant design after the development
of electric power.

Our transition experiment is stark: we assume
that the transition to a new economy starts with
a sudden, unanticipated, and permanent increase

in the pace of embodied technical change. We
make this assumption in order to give a stark
picture of the transition dynamics implied by our
model. We also view this assumption in the
spirit of the work of historians Devine (1983),
David (1990), David and Gavin Wright (1999),
and others who document a substantial acceler-
ation in the pace of technical change during the
Second Industrial Revolution.

In this experiment, we find that the model
reproduces the three main features of the tran-
sition after the Second Industrial Revolution very
well. We follow that experiment with two others,
designed to investigate whether the details of the
learning process are key quantitatively in generat-
ing these results. We find that they are.
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A. The Transition Experiment

Again, we model the Second Industrial Rev-
olution as a permanent increase in the pace of
technical change. Specifically, consider an
economy that is initially on a balanced growth
path with steady growth in the frontier blue-
prints causing output per hour to grow 1.6 per-
cent per year. This growth rate is the trend
growth rate of output per hour in US manufac-
turing from 1869 to 1899. We denote this initial
growth rate of the frontier blueprints by g


old. In
our experiment, we suppose that at the begin-
ning of the period labeled 1869, agents learn
that the growth rate of the frontier blueprints
increases once and for all, so that on the new
balanced growth path, output per hour grows
3.3 percent per year (as in the US data for
1949–1969), an increase of 1.7 percentage
points. We denote this new growth rate of the
frontier blueprints by g


new. We refer to these
two balanced growth paths as the old economy
and the new economy, respectively. We then
compute the transition path of our model econ-
omy from the old economy to the new economy
in response to this exogenous increase in the
pace of embodied technical change.

In our experiment, we must set some initial
conditions. We set the initial physical capital-
output ratio and the distribution of organization
capital across plants to be those from the bal-
anced growth path of the old economy. In set-
ting this initial distribution of organization
capital, we assume that the distributions of the
shocks to specific productivity are the same as
those we used to match the US micro data for
1988. Thus, in this experiment, the stochastic
process for specific productivities is held
fixed, whereas the growth rates of the frontier
blueprints are varied. This amounts to assum-
ing that the process of learning about any
particular embodied technology does not de-
pend on the rate at which new embodied tech-
nologies appear.

Now consider our model’s implications for
the three main features of the transition we
documented in Section I: a productivity para-
dox, a slow diffusion of new technologies, and
ongoing investment in old technologies.

Begin with the model’s implications for the
path of productivity, measured as output per
hour. Figure 5 shows these implications for the

1869–1969 period, together with the actual data
for this period (as seen in Figure 1). The model
clearly produces a productivity paradox. In the
model, as in the data, the growth in output per
hour gradually accelerates. Over the 1869–1899
period, the trend growth rate in output per hour
is 1.6 percent in both the model and the data.
Over the 1899–1929 period, the trend growth
rate in output per hour is 2.3 percent in the
model and 2.6 percent in the data. In the model,
as in the data, the growth rate in output per hour
reaches its new steady state of 3.3 percent by
the mid-1940s.

A convenient summary measure of the speed
of transition in our model is the number of years
the growth rate of output per hour takes to rise
by one percentage point relative to the growth
rate of the old economy. Here it takes 50 years.

Next, consider the model’s implications
for the diffusion of new technologies. Fig-
ure 6 shows this diffusion in the model and in
the data during the 1869–1939 period. For new
technologies, we make the following compari-
son between model and data. For the model, we
graph the percentage of output produced in
plants with blueprints dated 1869 and later. This
percentage is also the percentage of physical
capital and labor employed in plants with these
blueprints. For the data, we graph the percent-
age of total horsepower in US manufacturing
establishments provided by electric motors over
the same period. In this comparison, we are
assuming that, in the data, plants that are driven
by electric motors were built in and after 1869
and those driven by steam and water were built
before 1869. With this interpretation, our model
predicts a slow pace of diffusion of new tech-
nologies quite similar to that for electric motors
in the data. In the model, technologies dated
1869 and later take 46 years to diffuse to 50
percent; in the data, electric motors take about
50 years.

Of course, in measuring diffusion rates, the
choice of initial dates in the data is somewhat
arbitrary. To make a comparison of diffusion
rates in the model and the data that is not so
dependent on initial dates, consider a statistic
that is often used in the diffusion literature: the
time it takes for diffusion to go from 5 percent
to 50 percent. This time is roughly 20 years
(1899–1919) for electric motors in the data; it is
19 years for new technologies in the model.
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Thus, either way we measure it, the diffusion in
the model is similar to that in the data.

Note in Figure 6 that our model produces an
S-shaped diffusion curve for new embodied
technologies. It does so because of the hetero-

geneity across existing plants in the knowledge
that they have built up about their old embod-
ied technologies. Plants that have little such
knowledge exit in favor of new plants early in
the transition, while plants with substantial

FIGURES 5–7. The Model’s Reproduction of the Gradual Transition to a New Economy
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knowledge exit only later in the transition. That
the diffusion curve is S-shaped is a quantitative
result. The shape of the curve reflects the dis-
tribution of knowledge across plants implied by
the parameters of our learning process.

Finally, consider our model’s implication for
the extent of ongoing investment in old tech-
nologies. We have data on two old technologies,
water and steam. So for the model, we consider
two types of old technologies: those used in
plants built before 1802, which we identify with
waterpower, and those used in plants built be-
tween 1802 and 1869, which we identify with
steam power. This dating of technologies in our
model is consistent with the work of Atack,
Bateman, and Weiss (1980). Their work sug-
gests that the diffusion of steam power in the
United States started some time between 1800
and 1810. We choose to date steam as starting
in 1802 so that our model is consistent with the
data on the diffusion of steam power in 1869.
That is, in 1869, roughly 67 years after it began
to diffuse, steam power accounts for 50 percent
of output in the model and 50 percent of horse-
power in the data.

In Figure 7, we graph our model’s predictions
for the percentages of output produced in plants
using these old technologies from 1869 to 1939
implied by our dating scheme. We also repro-

duce the US data seen earlier, in Figure 2, on the
fractions of horsepower derived from water and
steam power over this same time period.
Clearly, in those data the fraction derived from
waterpower declined steadily from 1869 to
1939, while the fraction of horsepower derived
from steam initially increased from 50 percent
to 80 percent between 1869 and 1899 and then
declined. Our model reproduces both these pat-
terns very well.

These results imply that the model has con-
siderable ongoing investment in old technolo-
gies for at least the first 30 years of the
transition to a new economy. To understand this
implication, note that in the model, by assump-
tion, no new plants are built using either of the
old technologies during this time period. Hence,
all of the increase in output accounted for by
these old technologies is coming from existing
plants that are growing larger by adding capital
and labor. This growth is driven by continued
learning about these old technologies.

Most of the parameters of our model are
standard. However, the span of control param-
eter, �, and the parameters of the learning pro-
cess are not. We ask, therefore, how sensitive
our results are to these parameters.

We find that they are not very sensitive to the
value of the span of control parameter. We redid
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our transition experiments with � � 0.9 and
� � 1.0 so that � � �� equals 0.81 and 0.9,
respectively. (Recall that our initial values were
� � 0.95 and � � 0.85.) These changes led to
only slight differences in the speed of transition.
For example, with � � 0.9, the transition is
slightly faster: it takes 45 years instead of 50
years for the growth rate of output to increase
one percentage point, and 41 years instead of 46
years for diffusion to reach 50 percent. With
� � 1, the transition is slightly slower: it takes
61 years before the growth rate of output in-
creases one percentage point and 58 years for
diffusion to reach 50 percent.

B. Learning Experiments

Our model reproduces well the three main
features of the transition to a new economy after
the Second Industrial Revolution. We find this
result remarkable because the parameters of the
learning process were not chosen to match any
of these three features. With our approach to
measuring learning, we have found a learning
process that is both substantial and protracted.
Here, we conduct two experiments to determine
whether this finding is key quantitatively in
generating our results. We find that it is. In our
first experiment, we consider a model in which,
on average, there is no learning. In our second
experiment, we consider a learning process
suggested by other researchers on the basis of
an alternative method for measuring learning.
In neither of these experiments does our
model reproduce the three main features of
the transition.

In our first experiment, we set average learn-
ing to zero by setting the model’s age-depen-
dent means of the shocks to plant-specific
productivity to one (which, with A� � A�, sets
the expected growth rate of A to zero). To get
the transition to converge in this experiment, we
increase the standard deviation of the produc-
tivity shocks by a factor of five.6 With these
parameters, the model’s features of the transi-

tion to the new economy are quite different
from those seen after the Second Industrial Rev-
olution. Productivity and diffusion move swiftly
instead of slowly, and there is no ongoing in-
vestment in old technologies. It takes just five
years for the growth rate of output per hour to
increase by one percentage point and only four
years for technologies dated 1869 and later to
diffuse to 50 percent. In this experiment, with
our dating scheme, the percentage of output
produced using old technologies corresponding
to steam (those dated 1802–1869) starts at more
than 99 percent at the beginning of the transition
and falls to less than 1 percent over the next 30
years.

Now we turn to our second experiment. Re-
call that we follow Hopenhayn and Rogerson
(1993) in using data on the size of US manu-
facturing plants over their life cycle to infer the
learning process. With this procedure, we have
found that learning is both substantial and pro-
tracted. Other researchers have not used these
data to infer learning, but rather have inferred it
by using regression estimates of the productiv-
ity of plants by age. (See, for example, the work
of Jovanovic and Yaw Nyarko 1995; Hornstein
and Krusell 1996; Thomas F. Cooley, Green-
wood, and Yorukoglu 1997; and Greenwood
and Yorukoglu 1997, who rely on estimates of
productivity at the plant level made by Bahk
and Gort 1993.) As we have discussed above,
there is not much evidence of a systematic re-
lationship between plant age and plant produc-
tivity. Hence, it is not surprising that the
learning processes used by these researchers
imply that learning is much less substantial and
protracted than our procedure implies.

In our second experiment, we consider the
implications of our model for transition when
plants have the learning process discussed by
Cooley, Greenwood, and Yorukoglu (1997).
We do so by setting the age-dependent means
so that, on average, A1 � � grows at 1 percent
a year for the first 14 years and is then con-
stant. (See the discussion of the Bahk-Gort
learning process in the work of Cooley,
Greenwood, and Yorukoglu 1997, 476.) Also,
in order to get the transition to converge, we
again increase the standard deviation of the
productivity shocks by a factor of five. In this
experiment, the model’s transition to a new
economy is also fast: it takes only eight years

6 We need to increase the standard deviation in order to
generate a smooth transition. If the standard deviation is too
small, the distribution of organization capital across plants
becomes lumpy during the transition, and that introduces
oscillatory dynamics.
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for the growth rate of output per hour to in-
crease by one percentage point and only six
years for technologies dated 1869 and later to
diffuse to 50 percent. The percentage of output
produced using old technologies corresponding to
steam also starts at more than 99 percent at the
beginning of the transition and falls to less than 1
percent over the next 30 years.

The results of both of these experiments are
consistent with the idea that the details of our
particular learning process are primarily respon-
sible for this particular model’s ability to repro-
duce the main features of the transition to a new
economy after the Second Industrial Revolution.

IV. Lessons for Other Technological
Revolutions

We have built an abstract model of transition
that can be applied to a variety of technological
revolutions. To apply our model to the transi-
tion after the Second Industrial Revolution, we
used data on growth rates in the late 1800s to set
initial conditions and data on manufacturing
plants to set the parameters of the learning pro-
cess. We found that, with these initial condi-
tions and this learning process, our model could
reproduce the transition after the Second Indus-
trial Revolution remarkably well.

David (1990, 1991) and others have argued
that the transition after that revolution is a
useful paradigm for guiding research on the
study of the transition following the more
recent IT Revolution. Here we examine what
our model can tell us about that idea. Basi-
cally, we learn that it is questionable. Instead,
the model suggests that the features of a tran-
sition after any technological revolution de-
pend on the historical context in which the
revolution occurs.

To begin our analysis of the IT Revolution,
we discuss how to reinterpret the elements of
our model so that it might be applied to that
revolution. Here we follow David (1990),
Bresnahan, Brynjolfsson, and Hitt (2002),
Brynjolfsson, Hitt, and Shinkyu Yang (2002),
and others in shifting our interpretation of the
basic unit of production from a manufacturing
plant to a business organization and our inter-
pretation of blueprints from new manufacturing
technologies based on electricity to new busi-
ness practices based on information technology.

While the two revolutions clearly have some
qualitative parallels, they are also likely to have
some quantitative differences that will shape the
nature of their particular transition to a new
economy. Specifically, our model predicts a
slow transition after a technological revolution
only if agents have accumulated a large stock of
built-up knowledge of old technologies before
the transition begins. For the Second Industrial
Revolution, we argued, agents did have a large
stock of built-up knowledge about plants based
on steam and waterpower. For the IT Revolu-
tion, then, our model will likely predict a slow
transition only if, at the start of that revolution,
agents had a large stock of built-up knowledge
about business practices based on old informa-
tion technologies.

Due to the lack of adequate data about the IT
Revolution, we cannot use our model to evalu-
ate that period in the same way we did the
earlier period. Instead, we conduct two experi-
ments with our model to examine which factors
determine the extent of built-up knowledge in
equilibrium. In the first experiment, we learn
that the faster the pace of technical change in
the old economy, the smaller is the extent of
built-up knowledge and, hence, the faster the tran-
sition after a technological revolution. In the sec-
ond experiment, we learn that the more substantial
and protracted the learning process, the larger is
the extent of built-up knowledge and the slower
the transition after a technological revolution.

Our experiments suggest, then, that the extent
to which the transition after the Second Indus-
trial Revolution is a paradigm for the transition
after the IT Revolution depends heavily on the
extent of knowledge about business practices
that business organizations had built up before
the IT Revolution. Currently there is little direct
evidence on the extent of that built-up knowl-
edge. Our model does, however, suggest data
from which it might be measured.

A. Reinterpreting the Model

Our model can be reinterpreted for the IT
Revolution by shifting the basic unit of produc-
tion from a manufacturing plant to a business
organization. We assume that each new busi-
ness organization starts with a set of business
practices that embody the current frontier of
such practices and then learns to become more
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productive with these practices over time. Spe-
cifically, we reinterpret our three main techno-
logical assumptions as follows:

● New business organizations embody new
business practices. This assumption is mo-
tivated by the work of Bresnahan, Brynjolf-
sson, and Hitt (2002) and Brynjolfsson,
Hitt, and Yang (2002), who argue that the
effective use of new information technol-
ogy requires a redesign of the business or-
ganization.

● Improvements in the design of business prac-
tices are ongoing. This assumption is moti-
vated by the observation that increases in
computing and networking capability have
led to an increasing array of new types of
business practices and is consistent with the
observation of Michael S. Scott Morton
(1991).

● New organizations improve their practices
through a period of learning. This assumption
is consistent with the work of Brynjolfsson,
Amy Austin Renshaw, and Marshall Van Al-
styne (1997) and Brynjolfsson, Hitt, and
Yang (2002), who argue that the process of
improving an organization structure may in-
volve a protracted period of learning before
the payoffs from this investment are fully
realized.

B. The Transition Experiments

We now conduct two experiments to investi-
gate how important the stock of built-up knowl-
edge is for the speed of transition and how this
stock varies with the model parameters.

A First Experiment.—Our first experiment
demonstrates how our model’s implications for
the three main features of transition depend on
the initial pace of technical change and, hence,
the growth rate in the old economy. We then
explain that this dependency arises because the
stock of built-up knowledge varies with the
pace of technical change.

In the experiment, we simulate the model re-
peatedly, varying the growth rate in the old econ-
omy, but holding fixed the assumption that growth
is 1.7 percentage points higher in the new econ-
omy than in the old. Each time, we also hold fixed
all other parameters of the model, including the

learning parameters. Implicitly, here we are as-
suming that the learning process is the same as we
found for manufacturing plants.

We summarize the results of these simula-
tions in Figure 8A. This figure shows the
number of years that pass before the growth
of measured productivity has risen by one
percentage point, as well as the number of
years until technologies that are new at the
start of the transition have diffused to 50
percent. Clearly, as the growth rate in the old
economy increases, two of the key features of
the transition after the Second Industrial Rev-
olution disappear: the extent of the productiv-
ity paradox decreases, and new technologies
diffuse more rapidly.

The third feature disappears as well: accord-
ing to the model, as the initial growth rate in the
old economy increases, less ongoing investment
in old technologies occurs during the transition
to a new economy. Recall that after the Second
Industrial Revolution, the percentage of output
produced using old technologies corresponding
to steam power rose from 50 percent to 80
percent in the first 30 years of the transition.
Here, to make our analysis of old technologies
parallel to that of steam after the Second Indus-
trial Revolution, we report on the percentage of
output produced using technologies that are up
to 67 years old at the start of each simulated
transition, as well as the fraction of output pro-
duced using these same technologies 30 years
later. The model implies that when the initial
growth rate is 1.5 percent, the percentage of
output accounted for by old technologies rises
from 42 percent to 78 percent in the first 30
years of transition. In contrast, when the initial
growth rate is 3.5 percent, the percentage of
output accounted for by old technologies falls
from 97 percent to 1 percent in the first 30 years
of transition.

Why does the model produce such different
results for these transitions, when all that
differs is the economy’s initial growth rate?
The answer lies in the extent of built-up
knowledge that exists in the old economy. In
the model, as we increase the initial growth
rate, the diffusion rate of new technologies in
the old economy also increases. Hence, the
stock of built-up knowledge that agents have
about existing technologies in the old econ-
omy naturally decreases. With less built-up
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knowledge at the start of the transition, agents
are more willing to abandon old technologies
in favor of new ones.

In our model, the stock of built-up knowledge
is characterized by the distribution of organiza-
tion capital across productive units. A conve-
nient aggregate measure of this stock of built-up

knowledge, relative to the frontier blueprints, is
(A� t/
t)

1��. Note that the ratio A� t/
t is the average
of the specific productivity across productive
units relative to the frontier blueprints available
to new productive units. The exponent 1 � �
expresses this ratio in units of the Solow resid-
ual of a standard growth model.

0

10

20

30

40

50

60

1.5 2.0 2.5 3.0 3.5

Growth rate in the old economy (%)

Years

Years until productivity up 1% point

Years until diffusion reaches 50%

FIGURE 8. INITIAL GROWTH RATES MATTER

A. FOR THE SPEED OF TRANSITION ...
(Model’s predictions, with various initial steady-state growth rates, for the time until

productivity growth increases 1% point and the time until diffusion reaches 50%)

 0

.5

1.0

1.5

2.0

2.5

1.5 2.0 2.5 3.0 3.5

Growth rate in the old economy (%)

In old steady state

In new steady state

( /

B. ... AND THE STOCK OF BUILT-UP KNOWLEDGE

(Model’s predictions, with various initial steady-state growth rates, for the amount
of built-up knowledge, (A� /
)1��, in the old and new steady states)

83VOL. 97 NO. 1 ATKESON AND KEHOE: MODELING THE TRANSITION TO A NEW ECONOMY



How this ratio changes with growth rates can
be demonstrated by the model. For example, in
our transition experiment corresponding to the
Second Industrial Revolution, this ratio was
2.23 in the old economy and only 1.25 in the
new. Thus, built-up knowledge was nearly 80
percent higher in the old economy than in the
new. In that transition, the initial growth rate in
the old economy was 1.6 percent. In contrast,
suppose that the initial growth rate had been 3.5
percent. Then, the model implies that these ra-
tios would have been 1.17 in the old economy
and 1.03 in the new, so that built-up knowledge
would have been only about 14 percent higher
in the old economy than in the new.

More generally, Figure 8B shows the model’s
predictions for the stock of built-up knowledge
in the old and new economies as a function of
the growth rate in the old economy. Note that
the stock of built-up knowledge in both econo-
mies declines as the growth rate in the old econ-
omy rises. Comparing Figures 8B and 8A, then,
we see the close link between the stock of built-up
knowledge and the subsequent speed of transition.

A Second Experiment.—Our first experiment
thus indicates that our model does not produce
a slow transition after a technological revolu-
tion unless agents have a large amount of
built-up knowledge about old technologies at
the start of the transition. It further indicates that
an economy does not have much built-up
knowledge if the initial growth rate is fast. We
now find that in order to get a slow transition
when the initial growth rate is high, we need
learning to be extremely substantial and pro-
tracted, much more so, for example, than we
found from data on US manufacturing plants in
1988.

To demonstrate this point, we conduct a final
transition experiment in which we increase the
amount of learning in organizations by increas-
ing the means of the idiosyncratic shocks to
organization-specific productivity by a constant
factor independent of age. Recall that these
shocks have a lognormal distribution, so that
log �s � N(ms, �s

2). Specifically, we increase the
mean of these shocks to m�s � ms �  with  �
0.1133. With this change in parameters, the
learning process is much more substantial and
protracted than that seen in data on US manu-
facturing plants.

With this change in the learning process, we
conduct the following transition experiment.
We suppose that the old economy starts with a
relatively high growth rate of 3.3 percent and
then agents suddenly learn that the growth of
frontier blueprints has increased once and for
all, so that the economy grows 5 percent per year
on the new balanced growth path. The transition
in this experiment is now very similar to the one
we found after the Second Industrial Revolution:
it takes 49 years for the growth rate of output per
hour to rise one percentage point and 46 years for
new technologies to diffuse to 50 percent. In
terms of ongoing investment in old technolo-
gies, we find that technologies up to 67 years
old account for 51 percent of output at the start of
the transition and that these same technologies
account for 81 percent of output 30 years later.

Inferring the Extent of Built-Up Knowledge.—
By the preceding experiments, we have shown
that, in our model, the extent of built-up knowl-
edge is critical for generating a slow transition
and that this extent of knowledge varies with the
initial growth rate assumed in the old economy.
While we cannot yet measure built-up knowl-
edge directly, we can ask what variables in the
model vary with the initial growth rate and how
these variables might be used to infer the exist-
ing extent of built-up knowledge. Theory sug-
gests that two variables in the old economy are
particularly relevant: the speed of the diffusion
of technologies and the life cycle of the relevant
productive units (plants or business organiza-
tions).

In our model, the speed of diffusion of tech-
nologies in the old economy, before the transi-
tion even begins, increases with the initial
growth rate. For example, in our model, in the
old economy, technologies take 72 years to dif-
fuse to 50 percent if the initial growth rate is 1.5
percent, but only 21 years if the initial growth
rate is 3.5 percent. In our Second Industrial
Revolution experiment, the growth rate in the
old economy is 1.6 percent, and in that old
economy, technologies take 67 years to diffuse
to 50 percent. This slow diffusion of steam is
consistent with the work of Atack, Bateman,
and Weiss (1980), who suggest that steam took
roughly 70 years to diffuse to 50 percent. In the
context of our model, this slow diffusion im-
plies that agents had built up a large stock of
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knowledge about old technologies before the
Second Industrial Revolution.

In our model, the life cycle of productive
units in the old economy also varies with the
initial growth rate. As the growth rate in the old
economy increases, the fraction of the labor
force employed in productive units with older
technologies shrinks and the fraction employed
in those with the newest technology increases.
For example, in our simulations underlying Fig-
ure 8, in the old economy, when the initial
growth rate is 1.5 percent, over 98 percent of the
labor force is employed in productive units at
least 25 years old and only 0.02 percent in those
using the newest technologies. In contrast,
when the initial growth rate is 3.5 percent, 45
percent of the labor force is employed in pro-
ductive units at least 25 years old and 2.8 per-
cent in those using the newest technologies. (In
terms of entry and exit, note that the fraction
employed with the newest technology is the
employment-weighted rate, which, at least
along a balanced growth path, is also the em-
ployment-weighted exit rate.)

In our second learning experiment, we found
that our model could generate a slow transition
starting from a high initial growth rate, if learn-
ing is much more substantial and protracted

than we found for US manufacturing plants. To
give a feel for the implications of the learning
process we discussed above (where we in-
creased the mean of these shocks by  �
0.1133), in Figure 9 we show the distribution of
employment across productive units of different
ages implied by the model at the start of that
transition, along with the actual data for US
manufacturing plants. We see in this figure that,
in the model, employment is concentrated in
productive units using very old technologies.
Here, over 50 percent of employment is in pro-
ductive units that use technologies that are at
least 67 years old. This is clearly not consistent
with the learning process measured at US plants
in 1988. Moreover, the model’s relatively more
substantial and protracted learning process im-
plies a very slow diffusion rate of new technol-
ogies: it takes 67 years for a new technology to
diffuse to 50 percent.

These results indicate a final lesson from our
model. The transition to a new economy after
the Second Industrial Revolution can legiti-
mately be viewed as a paradigm for the transi-
tion after the IT Revolution only if, before the
revolution, organizations had substantially more
built-up knowledge about business practices
than manufacturing plants had about production
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processes in the recent data. That level of
built-up knowledge would correspond to a life
cycle of business practices much longer than the
life cycle of US manufacturing plants.

V. Conclusion

Many historians and economists view the pe-
riod after the Second Industrial Revolution as a
paradigmatic example of a slow transition to a
new economy after a technological revolution.
We have presented a quantitative model of that
transition, which generates what many see as
the three main features of that paradigm: a pro-
ductivity paradox, a slow diffusion of old tech-
nologies, and ongoing investment in old
technologies after the revolution. We find that
two characteristics of the model are particularly
important in generating this result: learning
must be substantial and protracted, and built-up
knowledge in the old economy must be large.
We use data on the life cycle of US manufac-
turing plants to argue that learning about plant-
specific technologies is indeed substantial and
protracted. And we point to the slow diffusion
of steam before the Second Industrial Revolu-
tion as indirect evidence consistent with the
historians’ claim that manufacturers had built
up a large stock of knowledge with existing
technologies before that revolution.

The paradigm may not fit all transitions, how-
ever. We are not able to apply the model in the
same way to the effects of the more recent IT
Revolution because of the lack of data needed to
measure learning and built-up knowledge in
business organizations, the type of productive
unit that faced the choice of adopting the new
technology. But our model has provided some
insight into how the recent transition may differ
from that after the Second Industrial Revolu-
tion. Our experiments suggest that a transition
to a new economy after a major, sustained in-
crease in the pace of technical change will not
always be slow, as it was after the Second
Industrial Revolution. The speed of the transi-
tion will depend on the existing pace of techni-
cal change. When that pace is quite fast, the
transition will be also.

Clearly, then, no simple analogy exists be-
tween the transition after the Second Industrial
Revolution and the transition that we should
expect after the IT Revolution. Instead, the main

lesson from this analysis is that the nature of the
transition after any technological revolution de-
pends in an important way on its historical
context. The Second Industrial Revolution hap-
pened to come at a time when the pace of
embodied technical change was relatively slow.

Of course, before any definitive analysis of
the impact of the IT Revolution can be fleshed
out in a quantitative model such as ours, some
questions must be answered. Where are the new
technologies embodied? How long is the period
of learning after they are adopted? And how
much built-up knowledge do existing organiza-
tions have with their current technologies? (For
discussion of these questions, see the work of
Brynjolfsson and Hitt 2000.) With regard to
information technologies, questions like these
are not easy to answer quantitatively, but we
have suggested how theory can be used to guide
the search for these answers.
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