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Abstract. Electron impact excitation and electron impact dissociation of CH+ ions

are studied in the framework of the R-matrix method using the diatomic version of

the UK molecular R-matrix codes. A configuration-interaction calculation is first

performed to yield the potential energy curves of the lowest eight singlet and triplet

states of CH+. Scattering calculations are then performed to yield vibrationally-

resolved electronic excitations to the lowest three bound states, namely the a 3Π,

A 1Π and the b 3Σ−. Electron impact dissociation cross sections are obtained from

the assumption that all electronic excitations above the dissociation threshold result

in dissociation. Bound states of CH and resonance positions and widths of Feshbach

resonances in the e-CH+ system are also calculated at the CH+ equilibrium bond

length 2.137 a0.

1. Introduction

Molecular ions are a constituent of many low temperature plasmas and diffuse

interstellar clouds, where collision of these ions with electrons play an important role

governing their chemistry. Hydrocarbon ions, and in particular CH+, are found in the

edge plasmas in those fusion reactors operating with graphite as plasma facing material

(Tawara 1995). CH+ ions also occur in the interstellar medium (ISM) where they were

first detected and studied by Douglas & Herzberg (1941) in interstellar molecular clouds

(see also Douglas & Herzberg (1942)).

Electron collision with CH+ ions can lead to electronic excitation,

e− + CH+ −→ CH+∗ + e− (1)
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where CH+∗ refers to an excited state of the ion, or destruction of the ion either by

dissociation,

e− + CH+ −→ C + H+ + e−

−→ C+ + H + e− (2)

or by dissociative recombination via an intermediate neutral resonant state CH∗∗,

e− + CH+ −→ CH∗∗ −→ C + H. (3)

Collision cross sections for these processes are therefore important for modeling of the

plasma environment and to understand the chemistry of formation and destruction of

CH+ in the ISM (Godard et al 2012, Nagy et al 2013). There has been a long-running

issue that the observed ISM concentration of CH+ is persistently larger than that

predicted by models (Hayden Smith et al 1973), see also Godard & Cernicharo (2013),

Myers et al (2015) and references therein. This issue has recently been considered

at length by Faure et al (2017) who showed that the proper treatment of non-local

thermodynamic equilibrium effects are essential to model the production of CH+ ions

in the ISM.

Several earlier works on the CH+ states have been undertaken of which we report

only a few. Lorquet et al (1971) calculated the potential energy curves of CH+ and

studied its metastable decomposition and predissociation. Molecular constants including

Franck-Condon factors for A 1Π−X 1Σ+ transitions were calculated by Liszt & Hayden

Smith (1972) and Hakalla et al (2006). Tennyson (1988) reported the lowest three

bound states of CH+ while obtaining the bound states of CH and resonances in the

e− CH+ system. Kanzler et al (1991) obtained the lowest seven CH+ states of singlet

and triplet symmetry. They also gave the dipole moments, transition moments, oscillator

strengths and radiative lifetimes computed by quasi-degenerate many body perturbation

theory. Better calculations were performed by Kowalski & Piecuch (2001) and Barinvos

& van Hemert (2004) though both were restricted to the singlet states only. Sauer

& S̆pirko (2013) obtained potential energy curves of the ground and several excited

states of CH+ which reproduced available spectroscopic data with high accuracy. More

recently, a comprehensive set of CH+ curves of singlet, triplet and quintet symmetries

were obtained by Biglari et al (2014) using the multi-reference conguration interaction

(MRCI) method with large basis sets. They also obtained transition dipole moments

which were then used to calculate average lifetimes of excited state vibrational levels.

Empirical potential energy curves for the X 1Σ+ and A 1Π states were obtained by Cho

& Le Roy (2016) using an analysis of all available spectroscopic and photodissociation

data; nuclear motion calculations using these curves reproduced all data within their

range of uncertainties.

On the collisional aspects, photodissociation studies on CH+ were reported by

Barinvos & van Hemert (2004) and Boukaline et al (2005). Electron impact rotational

excitation and de-excitation was reported by Lim et al (1999) using the R-matrix

method. A second R-matrix calculation for rotational excitation of CH+, together
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with HeH+ and ArH+ was reported by Hamilton et al (2016) where they claimed

an improvement of the rate coefficients for CH+ over those of Lim et al (1999).

Some theoretical and experimental studies on the dissociative recombination and

of rotational excitation of CH+ also exist. A Multi Channel Quantum Defect Theory

(MQDT) study of dissociative recombination of CH+ and its isotopologue CD+ was

reported by Carata et al (2000) which were not in very good quantitative agreement

with an earlier experimental study reported by Amitay et al (1996). Bannister et al

(2003) reported an experimental study of the electron impact dissociation of CH+ to the

asymptotic states C+(2P ) + H(2S). They measured absolute cross sections for electron

impact dissociation of CH+ ions producing C+ ions. However, as discussed below, the

initial distribution of CH+ ions in these experiments, in which neither the vibrational

nor electronic states of the ions involved were well-characterised, makes these results

hard to use in plasma models.

In this article, we present electron impact excitation cross sections of CH+ to some

of its low-lying states and cross sections for electron impact dissociation to the lowest

C+(2P ) + H(2S) and C(3P ) + H+ asymptotes. To the best of our knowledge, there

exist no previous ab initio theoretical study on these aspects.

2. Calculations

2.1. Method

Our calculations are done using the R-matrix method, see reviews by Burke (2011)

and Tennyson (2010). The starting point of such a calculation is the division of the

configuration space into an inner region, here a sphere of radius 11 a0, centred at the

molecular centre-of-mass, which encloses the N -electron target CH+ ion.

In the inner region, the wave function of the (N+1)-electron system (CH+ + e−)

is written as a close coupling (CC) expansion,

Ψk = A
∑

i,j

ai,j,kΦi(1, . . . , N)Fi,j(N+1) +
∑

i

bi,kχi(1, . . . , N+1) , (4)

where A is the antisymmetrisation operator, Φi is the n-electron wave function of the ith

target state, Fi,j are continuum orbitals and χi are two-centre L2 functions constructed

by making all (N + 1)-electrons occupy the target molecular orbitals (MOs), and takes

into account the polarization of the N -electron target wave function in presence of the

projectile electron.

Once a suitable target model is fixed, several scattering models can be constructed

by choosing different expansions for the target wave function Φi. Simple approximations,

for example, static exchange (SE) and static exchange with polarization (SEP) models

use only the target ground state represented by a Hartree-Fock (HF) self consistent field

(SCF) wave function. Using the SE model, one can represent only shape resonances,

while Feshbach resonances can be described with the SEP models, though these are

not well represented without the inclusion of their parent electronic states. More
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sophisticated models, like the CC model used here, can include several target states

and therefore are very suitable for representing Feshbach resonances and calculating

electron impact cross sections.

The inner region wave function is used to build an R-matrix at the boundary of

the R-matrix sphere and the R-matrix is then propagated to asymptotic distances and

matched with known asymptotic functions (Noble & Nesbet 1984). The matching yields

the K-matrix from which all scattering observables can be extracted.

For diatomic targets Slater type orbitals (STOs) are known to provide a better

target representation. Hence the diatomic version of the UK molecular R-matrix codes

(Morgan et al 1998) which uses STOs were used. The continuum (Tennyson &

Morgan 1999) was represented by numerical orbitals in a partial wave expansion about

the molecular centre of mass. These numerical orbitals were obtained as a solution of the

radial Schrödinger equation with an isotropic Coulomb potential. A Buttle correction

(Buttle 1967) was also used to allow for the arbitrary fixed boundary conditions imposed

on the continuum basis orbitals.

2.2. CH+ target calcultions

We have used the STOs of Cade & Huo (1967) which consisted of 5 s-type, 4 p-type, 2

d -type and 1 f -type STOs centered on the C atom and, 3 s-type and 1 p-type STOs

centered on the H atom. These STOs were used to build a basis of 28 molecular orbitals

comprising of 16 σ, 8 π, 3 δ and 1 φ orbitals. These were then used in an initial SCF

calculation on the X 1Σ+ state of CH+. Finally, 16 σ, 8 π and 3 δ SCF orbitals were

used in a complete active space (CAS) configuration interaction (CI) calculation.

We have tested different target models, a summary of which is presented in Table

1. Finally, target model 5 with an extended (1σ)2(2 − 8σ, 1 − 3π, 1δ)4 CAS was chosen

as it gave the best agreement in terms of excitation energies and dipole moments with

the coupled cluster singles doubles and triples (CCSDT) calculations of Kowalski &

Piecuch (2001) and the multi reference configuration interaction (MRCI) calculation of

Biglari et al (2014). Figure 1 shows the behaviour of the lowest 9 CH+ target potential

energy curves (PECs). Shown also are the corresponding PECs obtained by Biglari et

al (2014). In Figure 1 we have shifted the R-matrix curves down by 1.28 eV so that the

two sets of curves have the same minima of the X 1Σ+ ground state. We find general

good agreement between the two sets of curves, though there are some deviations in the

higher lying curves of b 1∆, c 1Σ+ and the d 1Π symmetries.

2.3. The scattering model

Our scattering calculations used 12 CH+ SCF orbitals and a target CAS defined in

Section 2.2. These were supplemented by continuum orbitals Fij needed to describe

the scattering electron. These were obtained as a truncated partial wave expansion

around the centre of mass and partial waves with l ≤ 6 and m ≤ 2 were retained in

the calculation as these range of values of l and m gave converged results with respect
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Table 1. Comparison of the ground state energy (in Hartree), and excitation energies

(in eV) from the ground states to 9 low lying states of CH+ for different target models.

Shown also are a comparison of the ground state dipole moment (in au). Absolute

values of our dipole moments are presented since they differ in sign from those of

Biglari et al (2014) due to differences in convention. The target models used are the

following:

Model 1: (1 − 6σ, 1 − 2π)6

Model 2: (1σ)2(2 − 6σ, 1 − 2π)4

Model 3: (1σ)2(2 − 8σ, 1 − 2π, 1δ)4

Model 4: (1σ)2(2 − 6σ, 1 − 3π)6

Model 5: (1σ)2(2 − 8σ, 1 − 3π, 1δ)4

Model 6: (1σ)2(2 − 10σ, 1 − 3π, 1δ)4.

Target state Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Theory

X 1Σ+ -37.9626 -37.9623 -37.9755 -37.9689 -37.9816 -37.9912 -38.0196a

B 1Σ+ 8.79 8.79 8.84 8.52 8.57 8.70 8.549a

C 1Σ+ 15.03 15.03 14.75 14.91 14.63 14.61 13.525a

A 1Π 3.67 3.67 3.45 3.49 3.25 3.23 3.23a

B 1Π 14.66 14.66 14.17 14.60 14.10 14.15 14.127a

A 1∆ 7.50 7.50 7.35 7.27 7.14 7.32 6.964a

B 1∆ 17.88 17.88 17.08 17.40 16.64 16.71 16.833a

a 3Π 1.30 1.29 1.25 1.19 1.14 1.21 1.16496b

b 3Σ− 5.18 5.18 5.13 4.96 4.89 5.05 4.64268b

Dipole moment 0.6227 0.7051 0.6860 0.6867 0.6308 0.6812 0.6501a

a Kowalski & Piecuch (2001)
b Biglari et al (2014)

to bound state energies and resonance positions. The radial Coulomb functions were

generated as numerical solutions of an isotropic Coulomb potential and solutions with

an energy below 10 Ryd were retained. An R-matrix radius of 11 a0 was used and this

produced 175 (70σ, 58π, 47δ) continuum functions which were Schmidt orthogonalised

to the target SCF orbitals. Scattering calculations were then performed using the

(1σ)2(2 − 8σ, 1 − 3π, 1δ)4 CAS-CI target wave function for a single geometry, namely

the CH+ equilibrium geometry Re = 2.137 a0.

Extensive tests were made with different scattering models by varying the number

and nature of the target states used. Our final scattering models for the different CH

states, and the number and nature of the targets states used are shown in Table 2. These

were chosen so as to give the lowest energy of X 2Π ground state of CH and the best

vertical excitation energies compared to existing works of van Dishoeck (1987), Song et

al (2008) and experiments where available .
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Figure 1. Potential energy curves of the CH+ target states used in the calculation.

Continuous curves: Present calculation shifted down by 1.28 eV. Dashed curves with

symbols: Biglari et al (2014).

Table 2. Symmetry and number of states used in the close coupling equation 4. The

target states of lowest energy were used in each case.

Symmetry Number Target states coupled

2Π 8 two 1Σ+, one each of 1Π, 1∆, 3Σ+ 3Σ− and two 3Π
2Σ+ 7 two 1Σ+, one each of 1Π, 1∆, 3Σ+ and two 3Π
2Σ− 5 one each of 1Σ−, 1Π, 1∆ and two 3Π
2∆ 7 one each of 1Σ+, 1Π, 1∆, 3Σ+, 3Σ− and two 3Π
4Π 5 one each of 3Σ+, 3Σ−, 3∆ and two 3Π

4Σ+ 3 one 3Σ− and two 3Π
4∆ 4 one each of 3Σ+, 3Σ− and two 3Π
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3. Results

In this section we report our calculation for the bound states of CH, cross sections for

electronic excitation from the CH+ X 1Σ+ ground state and electron impact dissociation

at the CH+ equilibrium geometry Re = 2.137 a0.

3.1. Bound states

An R-matrix was constructed at the boundary using the inner region solutions obtained

as outlined above. In the outer region, the potential was given by the diagonal and

off-diagonal dipole and quadrupole moments of the CH+ target states in addition to

the Coulomb potential. The outer region bound wave functions were propagated in this

potential to 40 a0 using the improved Runge-Kutta-Nystrom procedure implemented

by Zhang et al (2011) to the asymptotic region, where they were matched with

asymptotic solutions obtained from a Gailitis expansion (Noble & Nesbet 1984). Bound

states were then found using the searching algorithm of Sarpal et al (1991) with the

improved nonlinear, quantum defect based grid of Rabadán & Tennyson (1996). These

calculations were performed at the CH equilibrium geometry Re = 2.116 a0 as this

facilitates direct comparison with other studies.

Table 3 shows the vertical excitation energies from the CH X 2Π ground state.

Shown also are the results from van Dishoeck (1987), Song et al (2008) and the

experimental values given by Herzberg & Johns (1969). Our excitations energies are

within 0.2 eV of the corresponding energies of other reported calculations presented in

the table.

The ionization potential (IP) of CH has been reported by some authors. For the

X 2Π ground state, Tennyson (1988) reported an ionization potential of 10.83 eV which

agreed reasonably with the 10.64 eV measurement of Herzberg & Johns (1969). Our

estimate for the ionization potential at Re = 2.116 a0 is about 10.43 eV and is 2% from

the experimental value of Herzberg & Johns (1969).

3.2. Resonances

It is well known that in an adiabatic fixed nuclei calculation, diabatic neutral states

lying in the continuum above the ion appear as resonances having finite widths that are

inversely proportional to their lifetimes. These states play an important role in several

collision processes such as vibrational excitation and dissociative recombination. Here

we try to estimate the position and widths of the resonant states at a single geometry,

Re = 2.137 a0.

For calculation of resonances, the R-matrix were propagated (Morgan 1984) to

70 a0, as tests showed that this produced stable results. It was then matched with

asymptotic Coulomb functions (Barnett 1982) obtained using the Gailitis expansion

procedure of Noble & Nesbet (1984). Resonances were detected and fitted to a Breit-

Wigner profile to obtain their energy (E) and width (Γ) using the RESON program
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Table 3. Vertical excitation energies (in eV) from the X 2Π ground states of the CH

molecule at CH equilibrium bond lenght R = 2.116 a0.

CH state This work van Dishoecka Song et al b Experimentc

X 2Π 0.0 0.0 0.0 0.0

a 4Σ− 0.60 0.71 0.67 0.74

A 2∆ 3.04 3.00 2.91 2.88

B 2Σ− 3.33 3.24 3.17 3.19

C 2Σ+ 4.06 4.02 3.89 3.94

2 2Σ+ 6.42 6.39

2 2Π 7.52 7.43 7.31

3 2Π 7.72* 7.94 7.96

3 2Σ+ 7.92 7.96 8.00

1 4Π 7.50 7.55

4 2Σ+ 8.59 8.63

2 2∆ 8.87 8.93 9.05

4 2Π 8.87 8.05

2 4Π 8.83 8.90

2 2Σ− 9.04 9.06

1 4∆ 9.05 9.10

5 2Π 9.13 9.04

3 2∆ 9.36 9.39
avan Dishoeck (1987)
bSong et al (2008)
cHerzberg & Johns (1969)
∗ Estimated from the corresponding R-matrix pole.

(Tennyson & Noble 1984) with an energy grid 0.5 × 10−3 Ryd. The magnitudes of the

complex quantum defects µ = α+ iβ were obtained using the relations (Tennyson 1988)

Er = Et −
1

ν2
, Γ =

2β

ν3
(5)

where the effective quantum number ν equals n−α and Et is the energy of the threshold

to which the Rydberg series converges.

Tables 4 and 5 shows some of the resonances, their widths and effective quantum

numbers for CH at Re = 2.137 a0 for doublet and quartet states, respectively. The

resonances are presented in terms their CH+ parent electronic state. The effective

quantum numbers are calculated assuming the resonances can be associated with this

parent state. Many of the resonances in the tables are seen to form a series with respect

to their effective quantum numbers. The behaviour of these resonance series and their

widths are the starting point for the construction of dissociative states and electronic

couplings that are the basis for dissociative recombination (Little et al 2014, Mezei et

al 2016, Laporta et al 2017).
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Table 4. Resonance positions and widths (in Ryd) and effective quantum numbers at

R = 2.137 a0 for some doublet states of the e−-CH+ system below the first two CH+

excited states. Numbers within brackets indicate power of 10.

Below a 3Π state Below A 1Π state

Position Width ν Position Width ν
2Π

0.0134 0.6872(-03) 3.7743 0.0933 0.1333(-01) 2.6222

0.0199 0.3979(-04) 3.9639 0.1281 0.5984(-03) 3.0060

0.0317 0.1137(-02) 4.3889 0.1481 0.3994(-02) 3.3207

0.0383 0.1585(-03) 4.6973 0.1606 0.4663(-02) 3.5770

0.0430 0.2552(-04) 4.9626 0.1739 0.1945(-03) 3.9247

0.0464 0.4230(-03) 5.1885 0.1854 0.1790(-02) 4.3279

0.0514 0.1004(-03) 5.5727 0.1908 0.2025(-02) 4.5646

0.0600 0.2141(-03) 6.5166 0.1984 0.1376(-03) 4.9755

0.0619 0.2913(-03) 6.7941 0.2019 0.6828(-03) 5.2058
2Σ−

0.0370 0.5528(-03) 2.9086 0.3324 0.6312(-03) 3.0324

0.0675 0.6537(-03) 3.3773 0.3796 0.1938(-03) 4.0312

0.0894 0.2046(-03) 3.8998 0.4015 0.1053(-03) 5.0267

0.1030 0.1655(-03) 4.3774 0.4136 0.6336(-04) 6.0237

0.1134 0.7511(-04) 4.8935

0.1206 0.5528(-04) 5.3753

0.1306 0.2767(-04) 6.3729

0.1341 0.1847(-04) 6.8853
2∆

0.0319 0.2427(-04) 4.4005 0.1044 0.1741(-01) 2.7280

0.0496 0.1137(-03) 5.4221 0.1382 0.2415(-01) 3.1527

0.0595 0.7277(-03) 6.4447 0.1465 0.2844(-04) 3.2913

0.0657 0.1682(-03) 7.4813 0.1666 0.5492(-05) 3.7212

3.3. Electron impact excitation

Figure 2 shows the vibrationally-resolved electronic-excitation cross sections from the

X 1Σ+ vibrational ground states to the a 3Π, A 1Π and b 3Σ− excited states, the

vibrational state ν ′ being indicated in each panel. To calculate the vibrationally resolved

cross sections we first calculated Franck-Condon factors corresponding to the transitions

from the a 3Π, A 1Π and b 3Σ− states to the X 1Σ+ state with the potential energy

curves of Biglari et al (2014) using Le Roy’s LEVEL program (Le Roy 2017), and these

are presented in Table 6. At least for the A 1Π → X1Σ+ transitions, these are in good

agreement to within 10% of the Franck-Condon factors computed with more accurate

potential energy curves (Hakalla et al 2006). We did not use the Franck-Condon factors

computed with our CI curves of Figure 1 since these were not as accurate as the Franck-
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Table 5. Resonance positions and widths (in Ryd) and effective quantum numbers at

R = 2.137 a0 for some quartet states of the e−c H+ system below the first two CH+

excited states. Numbers within brackets indicate power of 10.

Below a 3Π state Below A 1Π state

Position Width ν Position Width ν
4Π

0.0980 0.3412(-02) 2.3684 0.5263 0.4887(-01) 2.0909

0.1598 0.7635(-03) 2.9298 0.5917 0.7974(-02) 2.4744

0.1886 0.5668(-03) 3.3765 0.6399 0.1414(-02) 2.9467

0.2111 0.3134(-03) 3.9170 0.6704 0.2675(-02) 3.4371

0.2242 0.2237(-03) 4.3805 0.6900 0.5549(-03) 3.9192

0.2348 0.1597(-03) 4.9118 0.7036 0.8360(-03) 4.4093

0.2417 0.1132(-03) 5.3825 0.7135 0.2518(-03) 4.9069

0.2476 0.9161(-04) 5.9091 0.7207 0.3149(-03) 5.3900
4Σ−

0.0840 0.6302(-02) 2.2806

0.1363 0.5288(-02) 2.6726

0.1600 0.5792(-03) 2.9325

0.1848 0.1741(-02) 3.3074

0.1999 0.1882(-02) 3.6195

0.2118 0.2072(-03) 3.9399

0.2225 0.7533(-03) 4.3142

0.2291 0.8264(-03) 4.6022
4∆

0.1665 0.7112(-04) 3.0178 0.5747 0.6877(-02) 2.3543

0.2137 0.5385(-04) 3.9987 0.6409 0.7390(-03) 2.9595

0.6907 0.2092(-03) 3.9426

0.7267 0.5190(-04) 5.9343

Condon factors of Biglari et al (2014) for the A 1Π → X1Σ+ transitions.

To get the vibrationally resolved cross sections, subsequently the cross sections were

scaled with the Franck-Condon factor corresponding to the Γ(ν ′ = j) → X1Σ+(ν ′′ = 0)

transitions, where Γ is one of the excited states mentioned above and j = 0, 1, 2 or 3.

The cross sections show numerous oscillations due to the resonance structure

associated with excited Rydberg states of CH. A full treatment of the vibrational motion

would tend to smooth these out. Noteworthy is also the X 1Σ+(ν ′′ = 0) → a 3Π(ν ′ = 0)

cross section, which is 2−3 orders of magnitude higher than all others indicating that in

the energy range considered almost all the electronic transitions are to the a 3Π(ν ′ = 0)

state.
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Table 6. Franck-Condon factors used to get the vibrationally resolved cross sections

in Figure 2 using the curves of Biglari et al (2014). ν′ and ν′′ label the vibrational

levels of the upper states and the X 1Σ+ ground state respectively. The quantities in

the brackets are the corresponding Franck-Condon factors of Hakalla et al (2006).

ν ′ = 0 ν ′ = 1 ν ′ = 2 ν ′ = 3

A 1Π − X1Σ+

ν ′′ = 0 0.6066 0.2644 0.0845 0.0259

(0.6343) (0.2580) (0.0769) (0.0217)

a 3Π − X1Σ+

ν ′′ = 0 0.9968 0.0031 0.0001 0.0

b 3Σ− − X1Σ+

ν ′′ = 0 0.6205 0.2690 0.0808 0.0217
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Figure 2. Excitation cross sections from the X 1Σ+ ground state of the CH+ molecule

to the excited states with vibrational quantum number ν′ as indicated in each panel

at R = 2.137 a0.

3.4. Electron impact dissociation

To the best of our knowledge, no theoretical calculation of the electron impact

dissociation of CH+ have ever been reported. Figure 1 shows the dissociation limits
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Figure 3. Electron impact dissociation of the CH+ molecule Curves as indicated in

the panel. Experiment: Bannister et al (2003).

for some the PECs included in this calculation. The X 1Σ+, a 3Π, A 1Π and c 3Σ+

states dissociate to the fragments C+(2P ) + H(2S), while the b 3Σ− and d 3Π states

dissociate into the fragments C(3P ) + H+. Experiments measuring the absolute cross

sections for electron impact dissociation of CH+ ions producing C+ ions were reported

by Bannister et al (2003). Figure 3 shows the results of Bannister et al (2003) together

with our theoretical results for the dissociation to the asymptotic states C+(2P ) + H(2S)

(thick curve), C(3P ) + H+ (thin curve) and their sum (topmost curve). Our results were

calculated with the assumption that all excitations from the X 1Σ+ ground state to the

states, dissociating to a particular asymptote, above the corresponding dissociation

threshold result in dissociation. Even at these energies, however, such excitation

cross sections would include both dissociation and electronic excitation cross sections,

as electronic excitation to the core excited bound states competes with dissociation.

The contribution of cross sections corresponding to ’pure’ electronic excitation were

estimated using Franck-Condon factors and these were then subtracted out to get the

dissociation cross sections.

Our results agree reasonably well with the measurements of Bannister et al (2003)

from the threshold (10 eV) to about 18 eV and are within 20% of the measured values.

Above this we would expect our results underestimate the cross section due to neglect of

higher lying states which were not included in our calculations. However, the appearance

of agreement of the summed cross section (top most curve in Figure 3) may be largely

coincidental. The experiments were performed on a hot sample of CH+ whose state

distribution was not determined. This leads to significant measured cross sections from

below threshold to dissociation for the X 1Σ+(ν = 0) ground state. This may well be

due to the presence of a significant population of CH+ ions in their a 3Π metastable

state (Bannister et al 2003). Without knowledge of the experimental state distribution
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it is not possible to make a proper comparison with our results.

4. Conclusions

In this paper we report R-matrix calculations on electron collision with CH+. An

initial CI calculation was done for the CH+ target states, which were then used

in a scattering calculation to yield bound and resonant states of CH at a single

geometry. The CH bound states agreed well with earlier calculations. We have

also calculated cross sections for vibrationally resolved electron impact excitation, and

electron impact dissociation of CH+ ions. Our electron impact dissociation cross sections

are in reasonable agreement with the only available experimental measurement and

do not deviate from the experimental values by more than 20%. However, given the

experimental conditions it is not clear if this represents a like-for-like comparison. To

the best of our knowledge, this is the only available ab initio theoretical calculation of

the dissociation process.

5. Supplementary data

The vibrationally resolved electronic excitation and dissociation cross sections presented

in this work are available in electronic form as supplementary data.
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