
Tubulin tyrosine ligase-like 5 (TTLL5; Gene ID: 19963; 
OMIM: 612268) is a 32-exon gene that encodes the largest 
protein of 13 members of the tubulin tyrosine ligase-like 
(TTLL) super-family (Figure 1) [1-4]. TTLL5 was found 
to be expressed in the heart and skeletal muscle [5] but 
shows expression in other tissues, such as the brain [6] and 
the eye (Hs.709609). The TTLL5 protein includes a core 
tubulin tyrosine ligase (TTL) domain in its N-terminus and 
a coactivator interaction domain (CID) followed by three 
receptor interaction domains (RID) at its C-terminus [2,4]. 
Defects in the TTLL5 gene have been reported to affect the 
correct function of sperm flagella [4], as well as trigger 
cone-dominated retinopathy, as cone-rod or cone dystrophy 
(CRD or CD) [7,8]. The latter represents a heterogeneous 
group of inherited retinal diseases characterized by primary 
cone and secondary rod photoreceptor degeneration or no rod 

photoreceptor degeneration involvement leading to progres-
sive loss of central vision associated with photophobia and 
color vision abnormalities in childhood or early adult life, 
due to cone degeneration. Subsequently, patients experience 
dim light vision disturbances and constriction of the periph-
eral visual field, due to rod degeneration leading to a severe 
loss of vision and complete blindness in some cases [9]. In 
contrast, incomplete congenital stationary night blindness 
(icCSNB) is represented largely by nonprogressive functional 
defect, in which the signal transmission from rod and cone 
photoreceptors to the adjacent ON and OFF bipolar cells is 
affected, while the structure of the photoreceptors is glob-
ally maintained [10]. However, due to several overlapping 
clinical features of CRD and icCSNB, these disorders can 
be confounded.

Initially, mainly based on in vitro studies, it was 
hypothesized that TTLL5 plays an important role in the 
polyglutamylation of primary cilia [11-14]. Immunolocaliza-
tion studies performed by Sergouniotis et al. in human and 
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Purpose: To report the clinical and genetic findings of one family with autosomal recessive cone dystrophy (CD) and 
to identify the causative mutation.
Methods: An institutional study of three family members from two generations. The clinical examination included 
best-corrected Snellen visual acuity measurement, fundoscopy, the Farnsworth D-15 color vision test, a full-field elec-
troretinogram (ERG) that incorporated the International Society for Clinical Electrophysiology of Vision standards and 
methodology, fundus autofluorescence (FAF) and infrared (IR), and spectral-domain optical coherence tomography (SD-
OCT). Genetic findings were achieved with DNA analysis using whole exome sequencing (WES) and Sanger sequencing.
Results: The proband, a 9-year-old boy, presented with a condition that appeared to be congenital and stationary. The 
clinical presentation initially reflected incomplete congenital stationary night blindness (icCSNB) because of myopia, 
a decrease in visual acuity, abnormal oscillatory potentials, and reduced amplitudes on the 30 Hz flicker ERG but was 
atypical because there were no clear electronegative responses. However, no disease-causing mutations in the genes 
underlying icCSNB were identified. Following WES analysis of family members, a homozygous splice-site mutation in 
intron 3 of TTLL5 (c.182–3_182–1delinsAA) was found cosegregating within the phenotype in the family.
Conclusions: The distinction between icCSNB and CD phenotypes is not always straightforward in young patients. The 
patient was quite young, which most likely explains why the progression of the CD was not obvious. WES analysis pro-
vided prompt diagnosis for this family; thus, the use of this technique to refine the diagnosis is highlighted in this study.
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murine retinas placed TTLL5 in rods and cones, at the base 
of the connecting cilium, between the basal body and the 
ciliary axoneme (or outer segment). This staining was more 
noteworthy in the cones than in the rods [7]. Furthermore, in 
contrast to rods, cones are characterized by open membrane 
disks that lack the complete sheath of the plasma membrane, 
and in the deficiency of TTLL5, one could foresee more severe 
damage to cones than to rods [7]. However, mice that lacked 
functional TTLL5 showed changes in tubulin glutamylation 
levels only in sperm and no phenotype related to retinal func-
tion [4]. Therefore, disruption of tubulin glutamylation does 
not explain the retinal phenotype. Interestingly, recently, a 
probable connection between TTLL5 and the functional 
variant of the retinitis pigmentosa GTPase regulator (RPGR), 
RPGRORF15, in the photoreceptor cilia was reported [15,16]. It 
was suggested that TTLL5 binds the basic domain (BD) of 
RPGRORF15 with its CID, exclusive to TTLL5 among other 
members of the TTLL super-family. Therefore, TTLL5 is 
most likely responsible for the glutamylation of RPGRORF15 
in its glutamic acid-glycine-rich repetitive region. These find-
ings render TTLL5 a noteworthy disease-causing candidate 
gene of cone-dominated retinal dystrophies. The most recent 
reports associate nine presumed loss-of-function mutations 
in TTLL5 (c.349C>T, p.Gln117*; c.401del, p.Leu134Argfs*45; 
c.1586_1589del, p.Glu529Valfs*2; c.1627G>T, p.Glu543*; 
c.1627G>A, p.Glu543Lys; c.1782del, p.Asp594Glufs*29; 
c.2132_2135dup, p.Met712Ilefs*15; c.2266A>T, p.Ile756Phe; 

c.3354G>A, Trp1118*) with retinal dystrophies (Figure 1) 
[7,8]. Although missense and truncating mutations were 
linked to an isolated retinal phenotype [7], only truncating 
mutations appear to disrupt the functions of photoreceptors 
and spermatozoa [8], thus rendering no apparent genotype or 
phenotype correlation. Moreover, it was found that Rpgr null 
mice exhibit a similar phenotype compared to Ttll5 mutant 
mice and are characterized by photoreceptor degeneration 
and opsin mislocalization [15,17-20]. Bearing in mind the 
involvement of TTLL5 in CRD and CD and that the respective 
protein interacts with RPGRORF15, it is important to include 
this gene in the molecular study of patients affected with 
retinal dystrophy in general. Here, we identified in a previ-
ously misdiagnosed icCSNB case a splice-site mutation in 
intron 3 of TTLL5 (c.182–3_182–1delinsAA). Reinvestigation 
of the clinical data corrected the diagnosis to CD.

METHODS

Clinical diagnosis and sample collection: Research proce-
dures were conducted in accordance with institutional 
guidelines and the Declaration of Helsinki; institutional 
review board approvals were obtained from the participating 
universities and the national ministry of health of the partici-
pating center. Before genetic testing, informed consent was 
obtained from all family members. Ophthalmic examina-
tions were performed on all subjects. This examination 
included best-corrected Snellen visual acuity measurement, 

Figure 1. TTLL5 gene and reported mutations. A: Schematic drawing of exon organization and the corresponding location of mutations 
in the TTLL5 gene. B: The TTLL5 protein structure shows the predicted consequence of the reported mutations in relation to the domain 
organization, composed of a core tubulin tyrosine ligase-like (TTLL) domain, a multivalent microtubule recognition region (c-MTBD), a 
cofactor interaction domain (CID), and a receptor interaction domain (RID). Black arrows point out the mutations reported in this paper, 
white dots represent missense mutations, and black dots represent nonsense mutations. Amino acids (aa).
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fundoscopy, the Farnsworth D-15 color vision test, a full-field 
electroretinogram (ERG) that incorporated the International 
Society for Clinical Electrophysiology of Vision standards 
and methodology previously described [21-23], fundus auto-
fluorescence (FAF) and infrared (IR), and spectral-domain 
optical coherence tomography (SD-OCT).

Sanger sequencing of icCSNB known and candidate genes: 
The coding exonic and flanking intronic regions of the known 
genes underlying icCSNB (CACNA1F NM_005183.3, OMIM 
300110; CABP4 NM_145200.3, OMIM 608965; CACNA2D4 
NM_172364.4, OMIM 608171) [10,24-27] and the candidate 
genes (ELFN1 NM_001128636.2, OMIM 614964 [28]; GNB3 
NM_001297571.1, OMIM 139130 [29,30]) were directly 
Sanger sequenced on the index patient. PCR conditions are 
available upon request.

Whole exome sequencing: Exons of genomic DNA samples 
were captured using Agilent in-solution enrichment meth-
odology (SureSelect SureSelect XT Clinical Research 
Exome, Agilent, Massy, France) with their biotinylated 
oligonucleotides probes library (SureSelect XT Clinical 
Research Exome - 54 Mb, Agilent), followed by paired-end 
75 bases massively parallel sequencing on the Illumina 
HiSeq 4000 system (Illumina, San Diego, CA) [31]. Base 
calling was achieved using the Illumina Real-Time Analysis 
software sequence pipeline (2.7.3) with default parameters. 

Bioinformatics analysis of the resultant sequencing data was 
done using the IntegraGen constitutional DNA pipeline V2 
(IntegraGen, Evry, France).

To rapidly identify the pathogenic variant, WES was 
applied to all three members of this consanguineous family 
(Figure 2). Filtering approaches were subsequently applied 
to identify candidate mutation(s). Referenced variants that 
occurred homozygously or heterozygously with a minor allele 
frequency (MAF) >0.005 in dbSNP137, HapMap [32], 1000 
Genomes [33], and the NHLBI Exome Sequencing Project 
Exome Variant Server (EVS) [34] were removed [35-37].

Molecular validation of the candidate variants: The novel 
mutation in the TTLL5 gene (c.182–3_182–1delinsAA) was 
validated using conventional Sanger sequencing according to 
the manufacturer’s protocols (3730 DNA Analyzer, Applied 
Biosystems, Weiterstadt, Germany) and tested for cosegrega-
tion of the phenotype within the family. However, given that 
consanguinity among parents was reported for this family, 
homozygous variants represent the most likely candidate, 
although this does not completely exclude underlying caus-
ative compound-heterozygous mutations [38].

Figure 2. Novel disease-causing 
var iants in TTLL5  in cone 
dystrophy: Pedigree of the index 
patient with disease-causing 
variants in TTLL5 and coseg-
regation analysis. The index 
patient, the proband, is the 
individual II-3, marked with an 
ar row. Square symbol=male, 
round symbol=female, f il led 
s y mb ol= a f fe c t e d ,  u n f i l l e d 
sy mbol= u naf fec ted ,  double 
line=consanguinity. Underneath 
the symbols, the sequence elec-
tropherograms of the disease-
causing variant in TTLL5 is found 
homozygously in the proband and 
heterozygously in the parents. The 
underlined letters correspond to 
the modifications of the sequence 
induced by this disease-causing 
variant.
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RESULTS

Phenotype and clinical investigations of the affected 
patient: The index patient was a 9-year-old boy (Figure 2, 
II-3), corrected for myopia since 3 years of age, who always 
had difficulty watching television and reading. He never 
complained of night blindness, peripheral vision loss, and 
dyschromatopsia, but he had moderate photophobia and 
wore photochromic glasses. The disease course seemed 
not progressive. Visual acuity was 20/30 in both eyes with 
−1.75(−2.25)40° oculus dexter (OD) and −6.25(−1.50)5° 
oculus sinister (OS). The anterior segments were normal, and 
the lenses were transparent. The fundus showed a moderate 
overall depigmentation, absence of the foveal reflex with a 
slight narrowing of the retinal vessels, and moderate pallor 
of the optic disc but no atrophy or pigment deposits, which 
was also confirmed with infrared reflectance images (Figure 
3A,B). The retinal autofluorescence images were almost 
normal except a moderate perifoveal hyperautofluores-
cence (Figure 3C). Optical coherence tomography (OCT) 
showed a normal peripheral retina, but we noted bilaterally 
moderate macular thinning with the ellipsoid zone moder-
ately decreased in the thickness in the temporal part of the 
fovea (Figure 3D). Color vision testing with Lanthony D-15 
HUE color tests showed a bilateral moderate blue-yellow 
axis of color confusion (not shown). In mixed kinetic and 
static perimetry, the peripheral isopter IIIc was normal on 
each side, 90° in temporal and 45° in nasal, but there was a 
medium decrease in the retinal sensitivity of the central 30°, 
including in the macular area (Figure 3E). On the ISCEV 
ERG, the amplitude of the scotopic responses was normal 
(Figure 3F). However, the photopic responses to a single 
flash were reduced and showed a moderate electronegative 
aspect. The 30 Hz flicker responses were reduced to about 
30% of the normal value. In the oscillatory potentials (OP), 
OP1 was absent; in the others, OPs were present but dimin-
ished in amplitude (not shown). Due to the reduced photopic 
responses, the decreased visual acuity, presence of myopia, 
no obvious disease progression, and absence of night blind-
ness, it was concluded that the patient had an atypical type of 
icCSNB. Although the name incomplete CSNB is misleading, 
patients with this disease often reveal the absence of night 
blindness [10]. Two older sisters had no particular visual diffi-
culties. His parents, both unaffected, were second cousins 
of Swiss origin. There was no history of this disease in the 
family. Therefore, the patient was an isolated case, which, 
given the parental consanguinity, suggested an autosomal 
recessive mode of inheritance. X-linked heredity could not 
be excluded, but as the mother had five unaffected brothers, 
this mode of inheritance was not supported.

Genotype assessment and mutation cosegregation in the 
family: Mutation screening showed that none of the known 
genes underlying icCSNB and the other CSNB candidate 
genes presented any disease-causing variant. Therefore, WES 
was performed for the trio, and sequence filtration isolated 
15 putative variants (Appendix 1) from 194 insertions/dele-
tions (InDels) and 1,597 single nucleotide variants (SNVs), 
as the splice-site mutation in intron 3 of the TTLL5 gene, 
c.182–3_182–1delinsAA (Appendix 2) selected for further 
cosegregation studies. For all subjects, the overall sequencing 
coverage of the captured regions was 92% and 88% for 10X 
and 25X depth of coverage, respectively, resulting in a mean 
sequencing depth of 109X per base (Appendix 3). Both unaf-
fected parents were found to be heterozygous for this variant, 
at 40% and 48% in the mother and father, respectively, and 
the proband was homozygous for this variant, at 99%. The 
sequencing depth at this position was 132X and 124X in the 
mother and father, respectively, and 141X for the proband 
(Appendix 2). This c.182–3_182–1delinsAA mutation in 
TTLL5 was validated in the index patient and the unaffected 
parents with direct Sanger sequencing (Figure 2).

DISCUSSION

The patient studied, a 9-year-old boy, presented with a 
condition that appeared to be congenital and stationary. The 
clinical presentation initially reflected icCSNB because of 
myopia, a decrease in visual acuity, abnormal oscillatory 
potentials, and reduced amplitudes on the 30 Hz flicker ERG 
but was atypical because there were no clear electronegative 
responses. However, the subsequent genetic analysis excluded 
any disease-causing mutations in known genes underlying 
icCSNB (CACNA1F, CABP4, and CACNA2D4), as well in 
other candidate CSNB genes (ELFN1 and GNB3). Following 
WES analysis of the family, a homozygous splice-site muta-
tion in intron 3 of TTLL5 (c.182–3_182–1delinsAA) was found 
cosegregating within the phenotype in the family. Splice-site 
prediction software (BDGP: Splice Site Prediction by Neural 
Network) forecasts the loss of the constitutive acceptor site 
(c.182–2_182–1) and predicts an alternative constituent 
acceptor site (nucleotides AG at position c.203_204), with 
a score of 0.9 by BDGP), which would lead to a truncating 
mutation p.(Glu61Aspfs*19) or alternatively nonsense medi-
ated mRNA decay (Appendix 4, Figure 1). This will most 
likely lead to the absence of RPGRORF15 glutamylation and 
thus lead to the retinal phenotype [15]. Moreover, although 
in relation to retinal degeneration and pathogenic variants in 
TTLL5 no strong genotype or phenotype correlation exists 
(CRD versus CD), patients who present truncating mutations 
seemed to have a higher probability of reduced fertility [8]. 
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Figure 3. Clinical investigations of the patient with a homozygous mutation in TTLL5. A: Fundus photographs of the right (left side) and 
left (right side). There is no macular atrophy or pigment deposits. B, C: The infrared reflectance images (B) and fundus autofluorescence 
(C) show a moderate increase in perifoveal autofluorescence. D: Optical coherence tomography of the right (up) and left (down) eyes with a 
selection of peripheral (left) and macular (right) slices for each side show that the periphery is normal while there are subtle changes in the 
perifoveal area with attenuation of the ellipsoid zone. E: The kinetic (peripheral isopter) and static visual field shows a normal peripheral 
visual field with a general decrease in retinal sensitivity in the central 30° in accordance with cone dysfunction. F: The International Society 
for Clinical Electrophysiology of Vision (ISCEV) electroretinogram (ERG) indicates a normal rod function (dark-adapted ERG) while the 
amplitude values of the cone function (light-adapted ERG) corresponded to 30% of the normal values.
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Thus, as the index patient is a boy who possesses a truncating 
mutation, which is predicted to abolish all functional domains 
when the mutant protein is formed, it is likely that he will 
have reduced fertility. This finding may lead to appropriate 
information provided to the patient at adult age that can even-
tually be addressed at a fertility clinic.

Recently, defects in the TTLL5 gene were associated 
with retinal dystrophies that affect primarily cones, leading 
to either moderate cone dystrophies with onset at adult stages 
or cone rod dystrophies that start earlier. In total, 14 patients 
from 11 families have been reported with TTLL5 mutations 
[7,8]. The following clinical signs were described for some 
or all of the patients: a variable degree of myopia, dyschro-
matopsia, reduced visual acuity, high-density concentric 
perifoveal rings surrounding irregular foveal autofluores-
cence or hypoautofluorescent patches in the fovea and para-
fovea combined with irregular autofluorescence outside 
the foveal region upon fundus autofluorescence imaging, 
optical coherence tomography abnormalities consistent with 
photoreceptor loss confined to the foveal region or observed 
throughout the scan, and mainly altered severely reduced 
photopic responses due to the cone defect with some patients 
showing altered scotopic responses due to rod involvement. In 
contrast, icCSNB is a nonprogressive retinal disorder mainly 
characterized by the presence or absence of night blindness, 
decreased visual acuity, photophobia with reduced scotopic 
b-wave responses and reduced photopic responses, and often 
high myopia. Due to the reduced photopic responses, the 
decreased visual acuity, the presence of myopia, no obvious 
disease progression, and the absence of night blindness, it 
was concluded that the patient in the study had an atypical 
type of icCSNB. However, detailed clinical investigation 
of this patient showed moderate overall depigmentation, a 
slight narrowing of the retinal vessels, moderate pallor of the 
optic disc, moderate perifoveal hyperautofluorescence, and 
bilateral macular thinning with the ellipsoid zone moderately 
decreased in thickness in the temporal area of the fovea.

Most of the clinical documentation of the previously 
described patients with TTLL5 mutations was presented for 
patients older than 30 years old with a progressive disease. 
In this study, the observation of a young patient (9 years) led 
to the misdiagnosis of a stationary disease, pointing out the 
difficulty of making the correct clinical diagnosis of a TTLL5 
dystrophy at an early stage without the help of molecular 
testing. In the present study, WES analysis provided prompt 
diagnosis for this family; thus, the use of this technique to 
refine the diagnosis is highlighted. In addition, sequencing 
of exomes of trios should become an early part of the diag-
nostic workup of retinal dystrophy. An alternative, rapid, 

and less bioinformatically demanding method would have 
been to investigate the patient before WES was performed 
with targeted next-generation sequencing covering all genes 
underlying inherited retinal disorders [9].

APPENDIX 1.

To access the data, click or select the words “Appendix 1.” 
Insertions/deletions (InDels) and single nucleotide variants 
(SNVs) identified by whole-exome sequencing after filtering 
dbSNP, single-nucleotide polymorphism database; MAF, 
minor allele frequency; EVS, exome variant server; Eur.
Am., European American; Afr.Am., African American; 
ExAC, exome aggregation consortium; AFR, African; AMR, 
American; EAS, East Asian; SAS, South Asian; NFE, Non-
Finnish European; FIN, Finnish; OTH, Other; SIFT, Sorting 
Intolerant from Tolerant; UCSC, UCSC Genome Browser.

APPENDIX 2.

To access the data, click or select the words “Appendix 
2.” Novel disease-causing variant identified in TTLL5 
(NM_015072.4) by whole-exome sequencing after filtering. 
HOM_mut, homozygous mutated; HTZ, heterozygous 
mutated.

APPENDIX 3. QUALITY CONTROL OF THE 
WHOLE-EXOME SEQUENCING.

To access the data, click or select the words “Appendix 3.”

APPENDIX 4. PREDICTED WILT-TYPE CODING 
SEQUENCE.

To access the data, click or select the words “Appendix 4.”
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