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A B S T R A C T

The Foxa1 and Foxa2 transcription factors are essential for mouse development. Here we show that they are
expressed in thymic epithelial cells (TEC) where they regulate TEC development and function, with important
consequences for T-cell development. TEC are essential for T-cell differentiation, lineage decisions and repertoire
selection. Conditional deletion of Foxa1 and Foxa2 from murine TEC led to a smaller thymus with a greater
proportion of TEC and a greater ratio of medullary to cortical TEC. Cell-surface MHCI expression was increased
on cortical TEC in the conditional Foxa1Foxa2 knockout thymus, and MHCII expression was reduced on both
cortical and medullary TEC populations. These changes in TEC differentiation and MHC expression led to a
significant reduction in thymocyte numbers, reduced positive selection of CD4+CD8+ cells to the CD4 lineage,
and increased CD8 cell differentiation. Conditional deletion of Foxa1 and Foxa2 from TEC also caused an in-
crease in the medullary TEC population, and increased expression of Aire, but lower cell surface MHCII ex-
pression on Aire-expressing mTEC, and increased production of regulatory T-cells. Thus, Foxa1 and Foxa2 in TEC
promote positive selection of CD4SP T-cells and modulate regulatory T-cell production and activity, of im-
portance to autoimmunity.

1. Introduction

The thymus is essential for the production of mature T-cells. Signals
provided by thymic epithelial cells (TEC) support the development of T-
cells and determine the T-cell receptor (TCR) repertoire. Two main
populations of TEC, cortical(c) TEC and medullary(m) TEC establish
distinct functional microenvironments to facilitate T-cell development.
These two TEC populations share a common precursor and have been
defined by cell-surface markers and their location in the thymus [1,2].

Cortical TEC (CD45-EpCam1+Ly51+UEA1-) first provide the Notch
ligand DLL4 and IL7 to signal for T-cell fate specification and to support
early T-cell progenitor maturation and expansion. The CD4−CD8−

double negative (DN) thymocyte population then differentiate to be-
come CD4+CD8+ double positive (DP) cells. To differentiate further
into CD4+CD8− (CD4 single positive, CD4SP) or CD8+CD4− (CD8SP)
cells, DP thymocytes must express a TCR to interact with major histo-
compatibility complex (MHC) + peptide complexes on cTEC to induce
positive selection. The outcome of positive selection is determined by
appropriate strength, duration and timing of TCR signal transduction,
and the process ensures that thymocytes that express TCR that interact

with MHCII will become CD4SP, whereas cells that express TCR that
bind to MHCI will differentiation into CD8SP [2,3]. Thus, expression of
cell-surface MHCI and MHCII by cTEC is essential for differentiation to
CD8SP and CD4SP respectively.

Following positive selection, the newly produced single positive
thymocytes migrate to the medulla, where their interactions with mTEC
(CD45-EpCam1+Ly51-UEA1+) are essential for induction of central
tolerance to self. Medullary TEC induce tolerance by providing
MHC+ peptide ligands to trigger clonal deletion of self-reactive clones,
or to drive regulatory T-cell (Treg) maturation. Mature mTEC express
the Aire gene, which enables expression of Tissue Restricted Antigens
(TRA) to induce self-tolerance, and Aire mutation leads to multi-organ
autoimmunity [4]. TCR signal strength is believed to be a determinant
of clonal deletion and Treg selection, so that CD4SP cells that receive
the strongest signals undergo negative selection, but other CD4SP cells
that receive relatively high and persistent TCR signalling express CD25
and give rise to Foxp3+CD25+CD4+ Tregs [5].

Foxa1 and Foxa2 are highly conserved and widely co-expressed
during murine embryogenesis and in adult tissues, where they function
as pioneer transcription factors. Foxa proteins were first discovered by
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their ability to bind to the promoter of hepatocyte-specific genes and
were subsequently shown to regulate metabolic gene expression and
liver development [6–8]. In mouse, expression of Foxa2 is required for
normal mesoderm and endoderm development as early as E6.5, and
constitutive Foxa2 deficiency is embryonic lethal (9–10). Foxa1 is de-
tected at E7.5 in the floorplate, notochord and endoderm, and Foxa1
null mice have defects in the regulation of glucose homeostasis and die
shortly after birth due to hypoglycaemia [9–11]. The highly conversed
DNA-binding domains among the Foxa proteins and the co-expression
of Foxa1 and Foxa2 in various tissues suggested that they play com-
pensatory roles during development and in the regulation of multiple
adult tissues [12]. Foxa1 and Foxa2 are co-expressed in the epithelium
of many tissues, including lung, gut, pancreas and prostate. Analysis of
the impact of individual or combined conditional deletion of Foxa1 and
Foxa2 demonstrated that their expression in epithelial cells is important
for the development and differentiation of these tissues [13–16]. In the
liver, lung and pancreas, conditional deletion of both Foxa1 and Foxa2
resulted in severe tissue-specific defects, whereas conditional ablation
of either Foxa gene alone did not interfere with tissue architecture and
cell differentiation, demonstrating compensatory and over-lapping
functions in these tissues [8,13,17].

Foxa2 is expressed in thymocytes, and a recent study has demon-
strated Foxa1 expression in a new subset of Treg that are important for
immunosuppression of autoimmune diseases in mouse models [18,19].

Here we show that Foxa1 and Foxa2 are also required for normal
TEC differentiation and function, with important consequences for T-
cell development and regulatory T-cell selection.

2. Methods

2.1. Mice

Foxa1flox/floxFoxa2flox/flox mice provided by S-L Ang [20], and
Foxn1-cre-transgenic mice by G. Holländer [21], were bred and main-
tained in individually ventilated cages on C57BL/6 background at
University College London under Home Office regulations, and crossed
to generate Foxa1flox/floxFoxa2flox/floxFoxn1-cre+ mice (referred to as
Foxa1/2Foxn1cKO), using littermate Foxa1flox/floxFoxa2flox/floxFoxn1-
cre- as control.

2.2. Genotyping

DNA extraction and PCR analysis were as described [22], using
Foxn1-cre primers described [21] and Foxa1 wild type (WT) and floxed
gene: forward 5′CTGTGGATTATGTTCCTGAT3′, reverse 5′GTGTCAGG
ATGCCTATCTGGT3’; Foxa2 WT and floxed gene: forward 5′CCCCTGA
GTTGGCGGTGGT3′, reverse 5′TTGCTCACGGAAGAGTAGCC3’. PCR
conditions were 1min at 94 °C, 1min at 58 °C, and 1min at 72 °C for 35
cycles.

2.3. Quantitative RT-PCR

RNA extraction, cDNA synthesis and QRT-PCR were as described
[23,24], using Gapdh for template quantification and normalisation,
and Quantitect primers (Qiagen).

2.4. Flow cytometry

Thymocytes and TEC were isolated from postnatal (2–4 week old)
mice and stained as described [25,26] using combinations of directly-
conjugated antibodies from BDPharmingen, eBioscience and Biolegend,
acquired on an Accuri™C6 or LSR-II flow cytometer (Becton Dickinson),
and analysed using Flowjo. Data are representative of at least 3 ex-
periments.

2.5. T-cell activation

Splenocytes or naïve CD4 cells from spleen were cultured with
cRPMI with 0.01 μg/mL of anti-CD3 and anti-CD28 at a concentration
of 5× 106 cells/mL in 96-well plates at 37 °C and 5%CO2. Cells were
harvested at 24 h and analysed by LSR-II flow cytometer.

2.6. T-cell proliferation and Treg suppression assay

T-cells were labelled with CFSE as described [27]. CFSE-labelled T
cells (10×104) were cultured for 4 days with anti-CD28 (1 μg/mL) and
rIL2 (20 ng/mL) in the presence or absence of Tregs in 96-well plate
pre-coated with anti-CD3 (5 μg/mL).

2.7. Purification of naïve CD4 cells and Treg

Splenocytes were treated with RBC lysis buffer before CD4 cells
were purified by EasySep Mouse CD4+ TCell Isolation Kit (Stemcell
Technologies) according to the manufacturer's instructions. To obtain
naïve CD4 cells and Tregs, CD4 cells were stained with anti-CD4Alexa
Fluor 700, anti-CD25Pecy7, anti-CD44eFluor 450 and anti-CD62LAPC and
sorted using FACSAria III (BD). For Treg suppression assays, sorted
CD4+CD25− were used as responder T cells, and CD4+CD25+ cells
were used as Tregs. For T-cell activation assay,
CD4+CD25−CD44−CD62L+ cells were obtained and used as naïve CD4
T-cells.

2.8. Histology

Thymus, spleens and lymph nodes were isolated and fixed in
phosphate-buffered formalin (10% vol/vol), paraffin-embedded, and
sectioned for H&E staining, performed by Histopathology, Great
Ormond Street Hospital. Pictures were photographed by Zeiss AxioCam
digital camera with Zeiss Axioplan (NDU) Microscope, 2.5× Objective
lens (Plan-Neofluar/0.075NA) and 10× Objective lens (Plan-Neofluar/
0.3NA) and acquired by software AxioVision v4.8 (Zeiss).

2.9. Microarray data

Publicly available gene-expression microarray datasets from RNA
from purified WT TEC (ArrayExpress accession: E-MEXP-3303) [28]
were analysed as described [23].

2.10. Statistics

Statistical analysis was performed using unpaired two-tailed t-tests
and probabilities considered significant if P < 0.05(*) and
P < 0.01(**).

3. Results

3.1. Deletion of Foxa1 and Foxa2 from TEC influences mTEC maturation
and MHC expression on cTEC and mTEC

Analysis of publically available microarray datasets [28] showed
that both Foxa1 and Foxa2 are expressed in TEC, with Foxa1 expression
higher in mTEC than cTEC, and Foxa2 expressed similarly in both TEC
subsets (Fig. 1A). Therefore, to investigate their role in TEC develop-
ment and function, we used the Cre-loxp system to conditionally delete
from all TEC [21]. Given their over-lapping and compensatory roles in
other tissues, we conditionally deleted both genes, by crossing Fox-
a1flox/floxFoxa2flox/flox mice with Foxn1-cre mice to excise the floxed
alleles from TEC and generate Foxa1/2Foxn1cKO mice. The Foxa1/
2Foxn1cKO mice appeared phenotypically normal and we detected no
differences in survival or gross differences in the architecture of
thymus, spleen and lymph node by haematoxylin and eosin staining
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between control and Foxa1/2Foxn1cKO (Supp Fig. 1). In the Foxa1/
2Foxn1cKO thymus, Foxa1 was below detection by qRT-PCR, indicating
efficient excision from TEC and that overall expression levels of Foxa1
in other cell types in the thymus is very low. Foxa2 expression was
reduced by ∼60% compared to WT (Fig. 1B), consistent with the
finding that Foxa2 is also expressed by thymocytes [18].

The Foxa1/2Foxn1cKO thymus was smaller than control littermate
thymus and contained fewer cells (Fig. 1C). We isolated TEC
(CD45-EpCam+) and analysed cTEC and mTEC populations, by cell
surface Ly51 expression and UEA1-binding. The Foxa1/2Foxn1cKO
thymus contained a significantly greater proportion of TEC overall
(CD45-EpCam1+), and of mTEC (UEA1+Ly51-), and the ratio of
mTEC:cTEC was significantly increased compared to littermate control
(Fig. 1D–F). Given this, we investigated the proliferation status of the
TEC populations by intracellular-Ki67 staining. The proportion of
Ki67+ mTEC was significantly greater in the Foxa1/2Foxn1cKO thymus
compared to control, whereas there was no difference in cTEC, con-
sistent with the expansion of the mTEC population (Fig. 2A–B).

Cell-surface expression of MHC molecules on TEC is essential for T-
cell repertoire selection and T-cell lineage decisions [3]. Interestingly,
cell-surface MHCII expression was significantly reduced in both cTEC
and mTEC populations in Foxa1/2Foxn1cKO compared to control

(Fig. 2C–D). The mean fluorescence intensity (MFI) of MHCI, however,
was significantly increased in the Foxa1/2Foxn1cKO cTEC population
(Fig. 2E–F).

3.2. Foxa1 and Foxa2 are required for normal positive selection and
differentiation to CD4SP

We then investigated if the changes in TEC development and MHC
expression in the Foxa1/2Foxn1cKO thymus influenced T-cell devel-
opment. We first examined if the levels of cell surface MHC expression
on cTEC affected positive selection and CD4/8 lineage choice. The
number of DP and CD4SP thymocytes were significantly reduced in the
Foxa1/2Foxn1cKO thymus compared to control, and the ratio of
CD4SP:CD8SP was decreased (Fig. 3A–B), indicating that the reduction
in MHCII expression and increase in MHCI expression in the Foxa1/
2Foxn1cKO cTEC population favoured differentiation to CD8SP, and
reduced positive selection of CD4SP cells. Gating on CD3hi confirmed
that there was a significant reduction in the proportion of mature
CD3hiCD4SP cells and increase in the proportion of mature CD3hiCD8SP
cells (Fig. 3C). Furthermore, there was a significant reduction in the
proportion of CD69+ cells in the Foxa1/2Foxn1cKO DP population
compared to control, indicating that fewer DP thymocytes were

Fig. 1. TEC-specific ablation of Foxa1 and Foxa2 impairs TEC development. (A) Expression of Foxa1 and Foxa2 assessed by microarray in sorted cTEC and mTEC
purified from WT thymus. (B) Relative expression of Foxa1(left) and Foxa2(right) in control and Foxa1/2Foxn1cKO thymus assessed by qRT-PCR. (C) Bar chart shows
mean ± SEM cell number of control (n= 6) and Foxa1/2Foxn1cKO (n=6) thymus. Photograph represents typical thymus from control and Foxa1/2Foxn1cKO
mice. (D–F) Flow cytometry analysis of TEC populations isolated from control (n=6) and Foxa1/2Foxn1cKO (n= 6) thymus. Scatter plots show mean ± SEM. Each
point represents thymus from an individual mouse. (D) Dot plot shows anti-CD45 and anti-EpCam1 staining. Gates show percentage of TEC (CD45-EpCam1+). Scatter
plot shows percentage of TEC in live gate. (E) Dot plots show anti-Ly51 (Ly51+UEA1-, cTEC) and UEA1-binding (UEA1+Ly51-, mTEC) staining gated on TEC
(CD45-EpCam1+). Scatter plots show percentage of mTEC and cTEC. (F) Scatter plot shows ratio of mTEC:cTEC.
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entering the selection process [29]. To dissect further the dynamics of
the selection process in the DP population, thymocytes were stained
with anti-TCRβ and anti-CD69 to identify four DP thymocyte subsets at
different stages of positive selection: TCRβloCD69- (pre-selection),
TCRβintCD69+ (selecting), TCRβhiCD69+ (post-positive selection) and
TCRβhiCD69- (mature) [30]. This analysis revealed that the number of
selecting (TCRβ-CD69+) and post-positive selection (TCRβ+CD69+)
DP cells were reduced in Foxa1/2Foxn1cKO mice compared to control
(Fig. 3E) confirming that Foxa1 and Foxa2 expression in TEC is required
for efficient positive selection. We detected no significant changes in
the proportion of cells that stained positive with AnnexinV in any
thymocyte population examined, and likewise no differences in levels
of cell-surface CD5 expression and intracellular staining against Nur77
in CD3hiDP, CD3hiCD4SP and CD3hiCD8SP between the two genotypes
(Fig. 3F–H). As intensity of CD5 and Nur77 expression correlates with
TCR signal strength [31], this suggested that after initiation of positive
selection, there was no difference in TCR signal strength between
genotypes.

Thus, the reduction in positive selection to CD4SP was likely the
direct result of a reduction in the proportion of cells that entered po-
sitive selection as a consequence of binding MHCII on cTEC, rather than
a reduction in TCR signal strength in individual thymocytes, or a thy-
mocyte-intrinsic distortion of TCR signalling as a result of another
functional change in TEC [25,32–35]. The development of γδT-cells
does not require cTEC for MHC-dependent selection processes, and we
found no difference in the proportion of γδT-cells between Foxa1/
2Foxn1cKO and control thymus (Fig. 3I).

3.3. Foxa1 and Foxa2 in TEC modulate regulatory T cell maturation

As mTEC were increased in the Foxa1/2Foxn1cKO thymus and
mTEC play a primary role in Foxp3+ Treg selection [36], we in-
vestigated Treg populations. The proportion of Tregs in the CD4SP
population was significantly increased in Foxa1/2Foxn1cKO compared
with control (Fig. 4A), but there was no difference in Ki67 expression in
these cells, indicating that the increase was not due to increased Treg
proliferation after their selection (Fig. 4B). Treg selection is pre-
dominantly Aire-dependent [37,38], so we examined Aire expression in

mTEC. Gating on the UEA1+ (mTEC) population, the percentage of
Aire+ cells was significantly increased in the Foxa1/2Foxn1cKO
thymus (Fig. 4C). However, expression of cell-surface MHCII was sig-
nificantly lower on Foxa1/2Foxn1cKO Aire+mTEC (Fig. 4D), indicating
that although these cells have capacity to express TRA, they would
express MHCII + TRA at lower cell-surface density than the control,
potentially favouring Treg selection over negative selection.

3.4. Influence of conditional deletion of Foxa1 and Foxa2 from TEC on
peripheral T-cell population

Analysis of the impact of conditional deletion of Foxa1 and Foxa2
from TEC on peripheral T-cell populations in the spleen showed that
although the number of cells in spleen was similar between groups, the
proportion of CD4 T-cells in the Foxa1/2Foxn1cKO spleen was sig-
nificantly reduced compared to control (Fig. 5A–B). The proportion of
naïve (CD62L+CD44−) cells in the CD4 population was not sig-
nificantly different between genotypes, and we found no significant
differences in the proportions of B-cells and marginal zone
(CD21hiCD23−) and follicular (CD21−+CD23+) B cell populations
(Fig. 5C–D). Interestingly, the CD4+CD25+Foxp3+Treg population
was significantly increased in the Foxa1/2Foxn1cKO spleen compared
to control (Fig. 5E). This increase in the Treg population may account
for the reduction in CD4 T-cells in the spleen in Foxa1/2Foxn1cKO
mice.

Therefore, to test this hypothesis and examine the possible me-
chanisms that might account for the reduction in the CD4 T-cell po-
pulation in the Foxa1/2Foxn1cKO spleen, we measured the prolifera-
tion of activated CD4 T-cells from Foxa1/2Foxn1cKO and control
spleen and compared the suppressive capacity of Tregs. We found there
was no significant difference in cell proliferation between CD4 T-cells
from control and Foxa1/2Foxn1cKO (Fig. 5F). In contrast, the pro-
liferation of CD4 T-cells was significantly reduced in the presence of
Foxa1/2Foxn1cKO Tregs at a 1:1 ratio (Treg cells:T conventional cells)
compared to control Tregs (Fig. 5G), whereas at a ratio of 1:4 (Treg
cells:T conventional cells) there was no significant difference in the
level of suppression by Foxa1/2Foxn1cKO Tregs compared to control
Tregs (data not shown).

Fig. 2. Influence of TEC-specific ablation of Foxa1 and Foxa2 on mTEC proliferation and MHC expression on TEC. (A) Histograms show intracellular staining of anti-
Ki67 in cTEC and mTEC, giving the percentage of positive cells in the marker shown. (B) Scatter plot shows percentage of Ki67+ cells, gated on cTEC and mTEC.
Histograms show cell surface expression of MHCII (C) and MHCI (E) on cTEC and mTEC. Scatter plots show mean ± SEMMFI of MHCII (D) and MHCI (F) expression
on cTEC and mTEC. Each point in scatter plots represents an individual mouse.
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Fig. 3. TEC-specific ablation of Foxa1 and Foxa2 impairs T-cell development. Flow cytometry analysis of thymocytes. Unless otherwise stated data are from control
(n=6) and Foxa1/2Foxn1cKO (n=6). (A) Dot plots show CD4 and CD8 expression, giving percentage in region shown. Bar charts show mean ± SEM percentage
and number of DP, CD4SP and CD8SP thymocytes. (B) Mean ± SEM ratio of CD4:CD8. (C) Mature CD4SP and CD8SP populations were identified by staining of anti-
CD4 against anti-CD8, gated on CD3hi cells, giving percentage in region shown. Bar chart shows mean ± SEM percentage of CD4SP and CD8SP within the CD3hi

gate. (D) Expression of CD69 on DP thymocytes, giving percentage in region shown. Bar chart shows mean ± SEM percentage of CD69+ cells in DP population. (E)
Dot plots show TCRβ versus CD69 expression of CD4+CD8+ thymocyte subsets. Four distinctive DP population were identified, TCRβloCD69- (pre-selection),
TCRβintCD69+ (Selecting), TCRβhiCD69+ (post-positive selection) and TCRβhiCD69- (mature). Bar chart shows absolute number of each of DP population subsets. (F)
Bar chart shows mean ± SEM percentage of Annexin V+ cells in each thymocyte subsets population for control (n= 4) and Foxa1/2Foxn1cKO (n=4). (G)
Histograms show anti-CD5 staining on thymocytes, gated on CD3hi, giving MFI. Bar chart shows mean ± SEM MFI of anti-CD5 staining gated on CD3hi for control
(n=4) and Foxa1/2Foxn1cKO (n=4) mice. (H) Dot plots show anti-Nur77 intracellular staining on DP, CD4SP and CD8SP thymocytes. Bar chart shows
mean ± SEM percentage of anti-Nur77 intracellular staining. (I) CD3 and γδTCR staining in thymus, giving percentage of cells in the CD3+γδ+ region shown. Bar
chart shows mean ± SEM percentage of γδ T-cells for control (n= 3) and Foxa1/2Foxn1cKO (n=3).
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To investigate activation of CD4 T-cells from Foxa1/2Foxn1cKO
spleen, both total splenocytes and FACS-sorted naïve CD4 T-cells from
control and Foxa1/2Foxn1cKO spleen were stimulated with anti-CD3/
28 for 24 h and expression levels of the activation marker CD69 were
assessed. Interestingly, there was no significant difference in CD69
expression between control and Foxa1/2Foxn1cKO CD4 T-cells when
naïve T-cells were cultured and stimulated alone (Fig. 5H), whereas
CD69 expression on CD4 T-cells was significantly decreased in Foxa1/
2Foxn1cKO spleen compared to control when unfractionated spleen cell
populations were cultured and stimulated with anti-CD3/28 (Fig. 5I).
These results suggest that T-cell activation in Foxa1/2Foxn1cKO spleen
was restricted only when APCs and Tregs were present in the culture.
Analysis of expression of Glucocorticoid-induced tumour necrosis factor
receptor-related protein (GITR), further confirmed that Foxa1/
2Foxn1cKO Tregs had a more active phenotype than control Tregs, as
both the MFI and percentage of GITR+ staining were significantly in-
creased in the Foxa1/2Foxn1cKO Treg population (Fig. 5J).

Overall, these experiments suggest conditional deletion of Foxa1
and Foxa2 from TEC did not modify the cell-intrinsic proliferation of
CD4 T-cells in the spleen, however, the suppressive activity of Tregs
were enhanced and this most likely led to a reduction in the proportion
of CD4 T-cells in the spleen and also affected CD4 T-cell activation.

In summary, our study shows that the pioneer transcription factors
Foxa1 and Foxa2 regulate mTEC differentiation and the levels of cell
surface MHCI and MHCII in TEC. Conditional deletion of Foxa1 and
Foxa2 from TEC thus influenced thymocyte number, positive selection,
CD4SP/CD8SP lineage commitment and Treg development in the
thymus, and led to an increase in Tregs but reduction in CD4 T-cells in
the spleen.

4. Discussion

The thymic microenvironment is essential for the development of T-
cells, where the interaction between TEC and developing thymocytes
supports T-cell development and governs the outcome of TCR repertoire
selection. In this study, we presented a novel function for the tran-
scription factors Foxa1 and Foxa2. We showed that their expression in

TEC is required for normal TEC development and function, and thereby
for the maintenance of T-cell development and homeostasis of thymic
and spleen Treg populations.

Our data demonstrated that Foxa1 and Foxa2 are required for
normal TEC differentiation and for physiological levels of cell-surface
MHC expression on TEC. As conditional deletion of Foxa1 and Foxa2
from TEC led to reduced positive selection and differentiation to CD4 T-
cell, we hypothesized that the reduction in the proportion of cTEC and
in levels of MHCII cell-surface expression may influence the outcome of
TCR repertoire selection by leading to fewer developing thymocytes
being able to bind the MHCII + peptide ligands on cTEC, required for
positive selection. Examination of the DP populations at the transition
from DP to SP thymocyte, confirmed that fewer DP cells were entering
the selection process in the Foxa1/2Foxn1cKO thymus, resulting in a
reduction in the CD4SP population. Analysis of expression of CD5 and
Nur77 showed that the TCR signal strength was not altered in thymo-
cytes from the Foxa1/2Foxn1cKO thymus, thus indicating that the
distorted positive selection was not the result of a thymocyte-intrinsic
change in TCR signal strength.

mTEC play a key role in establishing self-tolerance, both by induc-
tion of clonal deletion of autoreactive T-cells and by supporting Treg
differentiation. These processes require expression of Aire [39,40]. In
human, Aire mutation results in loss of immune tolerance and devel-
opment of autoimmune disease, and likewise in Aire−/− mice tolerance
is compromised and Treg populations are significantly reduced, leading
to profound autoimmunity [41,42]. Our data showed that Foxa1 and
Foxa2 are required for normal Aire+ mTEC differentiation. As a result
of conditional deletion of Foxa1 and Foxa2 in TEC, Treg selection was
increased in the thymus, and the proportion of Tregs were also in-
creased in the Foxa1/2Foxn1cKO spleen. It would in the future be in-
teresting to assess the consequences of increased Treg in Foxa1/
2Foxn1cKO mice model on induction of autoimmunity and to in-
vestigate the clinical significance of the function of FOXA1 and FOXA2
in human TEC. A previous study has shown that Foxa1 is expressed in
some T-cells and that Foxa1+CD4+ T-cells represent a distinct subset of
Treg which play an immunosuppressive role in the central nervous
system in a mouse model of multiple sclerosis [19]. Thus, the Foxa1 and

Fig. 4. Increased proportion of Treg in Foxa1/2Foxn1cKO thymus. (A) CD25 and intracellular-Foxp3 staining, gated on CD4SP, giving percentage in region shown.
Bar chart shows mean ± SEM percentage of Tregs for control (n= 6) and Foxa1/2Foxn1cKO (n= 6). (B) Histograms show intracellular-Ki67 staining, gated on
Tregs (CD4+CD25+Foxp3+). Bar chart shows mean ± SEM percentage of Ki67+ cells in Treg population for control (n= 6) and Foxa1/2Foxn1cKO (n= 6). (C) Dot
plots show UEA1-binding against intracellular Aire staining, gated on CD45-Epcam1+ (TEC), giving the percentage of Aire+UEA1+ mTEC in the region shown.
Scatter plots show mean ± SEM percentage of Aire+UEA1+ mTEC. (D) Histograms show MHCII expression, gated on Aire+UEA1+ mTEC for control (n=3, grey
solid) and Foxa1/2Foxn1cKO (n=3, black line). Scatter plots show mean ± SEM MFI of MHCII gated on Aire+UEA1+ mTEC. Each point represents an individual
mouse.
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Foxa2 transcription factors are important to our understanding of au-
toimmunity through their roles both in TEC and Treg function.

Authorship contributions

Conceptualization: C-IL and TC; Investigation: C-IL, DCY, EP, AS,
JIS, TC; Writing: C-IL and TC; Supervision, project administration and
funding acquisition: TC.

Disclosure of conflicts of interest

The authors report no conflict of interest.

Acknowledgements

We thank S-L Ang and G. Holländer for genetically modified mice,
Ayad Eddaoudi (UCL Great Ormond Street Institute of Child Health

(caption on next page)

C.-I. Lau et al. Journal of Autoimmunity 93 (2018) 131–138

137



Flow Cytometry Core Facility) for cell sorting, and Great Ormond Street
Hospital Histopathology for histology. This work was funded by the
MRC, BBSRC, Great Ormond Street Hospital Children's Charity and
supported by the NIHR BRC at Great Ormond Street Hospital and UCL.
DCY was supported by a fellowship from the National Secretariat for
Higher Education, Science, Technology and Innovation of Ecuador
(SENESCYT).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://
doi.org/10.1016/j.jaut.2018.07.009.

References

[1] A. Ucar, O. Ucar, P. Klug, S. Matt, F. Brunk, T.G. Hofmann, et al., Adult thymus
contains FoxN1(-) epithelial stem cells that are bipotent for medullary and cortical
thymic epithelial lineages, Immunity 41 (2014) 257–269.

[2] G. Anderson, Y. Takahama, Thymic epithelial cells: working class heroes for T cell
development and repertoire selection, Trends Immunol. 33 (2012) 256–263.

[3] J. Abramson, G. Anderson, Thymic epithelial cells, Annu. Rev. Immunol. 35 (2017)
85–118.

[4] O. Ucar, K. Rattay, Promiscuous gene expression in the thymus: a matter of epi-
genetics, miRNA, and more? Front. Immunol. 6 (2015) 93.

[5] A. Huynh, R. Zhang, L.A. Turka, Signals and pathways controlling regulatory T
cells, Immunol. Rev. 258 (2014) 117–131.

[6] R.H. Costa, D.R. Grayson, J.E. Darnell Jr., Multiple hepatocyte-enriched nuclear
factors function in the regulation of transthyretin and alpha 1-antitrypsin genes,
Mol. Cell Biol. 9 (1989) 1415–1425.

[7] K.H. Kaestner, The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in meta-
bolism, Trends Endocrinol. Metabol. 11 (2000) 281–285.

[8] C.S. Lee, J.R. Friedman, J.T. Fulmer, K.H. Kaestner, The initiation of liver devel-
opment is dependent on Foxa transcription factors, Nature 435 (2005) 944–947.

[9] H. Sasaki, B.L. Hogan, Differential expression of multiple fork head related genes
during gastrulation and axial pattern formation in the mouse embryo, Development
118 (1993) 47–59.

[10] I. Burtscher, H. Lickert, Foxa2 regulates polarity and epithelialization in the en-
doderm germ layer of the mouse embryo, Development 136 (2009) 1029–1038.

[11] D.Q. Shih, M.A. Navas, S. Kuwajima, S.A. Duncan, M. Stoffel, Impaired glucose
homeostasis and neonatal mortality in hepatocyte nuclear factor 3 alpha-deficient
mice, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 10152–10157.

[12] J.R. Friedman, K.H. Kaestner, The Foxa family of transcription factors in develop-
ment and metabolism, Cell. Mol. Life Sci. 63 (2006) 2317–2328.

[13] H. Wan, S. Dingle, Y. Xu, V. Besnard, K.H. Kaestner, S.L. Ang, et al., Compensatory
roles of Foxa1 and Foxa2 during lung morphogenesis, J. Biol. Chem. 280 (2005)
13809–13816.

[14] D.Z. Ye, K.H. Kaestner, Foxa1 and Foxa2 control the differentiation of goblet and
enteroendocrine L- and D-cells in mice, Gastroenterology 137 (2009) 2052–2062.

[15] Y. Song, M.K. Washington, H.C. Crawford, Loss of FOXA1/2 is essential for the
epithelial-to-mesenchymal transition in pancreatic cancer, Cancer Res. 70 (2010)
2115–2125.

[16] N. Gao, K. Ishii, J. Mirosevich, S. Kuwajima, S.R. Oppenheimer, R.L. Roberts, et al.,
Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial
cell maturation, Development 132 (2005) 3431–3443.

[17] N. Gao, J. LeLay, M.Z. Vatamaniuk, S. Rieck, J.R. Friedman, K.H. Kaestner,
Dynamic regulation of Pdx 1 enhancers by Foxa1 and Foxa2 is essential for pancreas
development, Genes Dev. 22 (2008) 3435–3448.

[18] N.J. Rowbotham, A.L. Hager-Theodorides, A.L. Furmanski, S.E. Ross, S.V. Outram,
J.T. Dessens, et al., Sonic hedgehog negatively regulates pre-TCR-induced differ-
entiation by a Gli 2-dependent mechanism, Blood 113 (2009) 5144–5156.

[19] Y. Liu, R. Carlsson, M. Comabella, J. Wang, M. Kosicki, B. Carrion, et al., FoxA1
directs the lineage and immunosuppressive properties of a novel regulatory T cell
population in EAE and MS, Nat. Med. 20 (2014) 272–282.

[20] A.L. Ferri, W. Lin, Y.E. Mavromatakis, J.C. Wang, H. Sasaki, J.A. Whitsett, et al.,

Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron de-
velopment in a dosage-dependent manner, Development 134 (2007) 2761–2769.

[21] S. Zuklys, J. Gill, M.P. Keller, M. Hauri-Hohl, S. Zhanybekova, G. Balciunaite, et al.,
Stabilized beta-catenin in thymic epithelial cells blocks thymus development and
function, J. Immunol. 182 (2009) 2997–3007.

[22] C.I. Lau, S.V. Outram, J.I. Saldana, A.L. Furmanski, J.T. Dessens, T. Crompton,
Regulation of murine normal and stress-induced erythropoiesis by Desert
Hedgehog, Blood 119 (2012) 4741–4751.

[23] C.I. Lau, A. Barbarulo, A. Solanki, J.I. Saldana, T. Crompton, The kinesin motor
protein Kif7 is required for T-cell development and normal MHC expression on
thymic epithelial cells (TEC) in the thymus, Oncotarget 8 (2017) 24163–24176.

[24] A.L. Hager-Theodorides, J.T. Dessens, S.V. Outram, T. Crompton, The transcription
factor Gli3 regulates differentiation of fetal CD4- CD8- double-negative thymocytes,
Blood 106 (2005) 1296–1304.

[25] J.I. Saldana, A. Solanki, C.I. Lau, H. Sahni, S. Ross, A.L. Furmanski, et al., Sonic
Hedgehog regulates thymic epithelial cell differentiation, J. Autoimmun. 68 (2016)
86–97.

[26] A.L. Hager-Theodorides, A.L. Furmanski, S.E. Ross, S.V. Outram, N.J. Rowbotham,
T. Crompton, The Gli3 transcription factor expressed in the thymus stroma controls
thymocyte negative selection via Hedgehog-dependent and -independent mechan-
isms, J. Immunol. 183 (2009) 3023–3032.

[27] A.L. Furmanski, A. Barbarulo, A. Solanki, C.I. Lau, H. Sahni, J.I. Saldana, et al., The
transcriptional activator Gli 2 modulates T-cell receptor signalling through at-
tenuation of AP-1 and NFkappaB activity, J. Cell Sci. 128 (2015) 2085–2095.

[28] S. Zuklys, C.E. Mayer, S. Zhanybekova, H.E. Stefanski, G. Nusspaumer, J. Gill, et al.,
MicroRNAs control the maintenance of thymic epithelia and their competence for T
lineage commitment and thymocyte selection, J. Immunol. 189 (2012) 3894–3904.

[29] K.A. Hogquist, Y. Xing, F.C. Hsu, V.S. Shapiro, T cell adolescence: maturation events
beyond positive selection, J. Immunol. 195 (2015) 1351–1357.

[30] Q. Hu, S.A. Nicol, A.Y. Suen, T.A. Baldwin, Examination of thymic positive and
negative selection by flow cytometry, J. Vis. Exp. 68 (2012) 4269, https://doi.org/
10.3791/4269.

[31] H.S. Azzam, A. Grinberg, K. Lui, H. Shen, E.W. Shores, P.E. Love, CD5 expression is
developmentally regulated by T cell receptor (TCR) signals and TCR avidity, J. Exp.
Med. 188 (1998) 2301–2311.

[32] A. Solanki, D.C. Yanez, S. Ross, C.I. Lau, E. Papaioannou, J.W. Li, et al., Gli3 in fetal
thymic epithelial cells promotes thymocyte positive selection and differentiation by
repression of Shh, Development (2018) 145.

[33] N.J. Rowbotham, A.L. Hager-Theodorides, M. Cebecauer, D.K. Shah,
E. Drakopoulou, J. Dyson, et al., Activation of the Hedgehog signaling pathway in
T-lineage cells inhibits TCR repertoire selection in the thymus and peripheral T-cell
activation, Blood 109 (2007) 3757–3766.

[34] A. Barbarulo, C.I. Lau, K. Mengrelis, S. Ross, A. Solanki, J.I. Saldana, et al.,
Hedgehog signalling in the embryonic mouse thymus, J. Dev. Biol. 4 (2016) 22.

[35] A.L. Furmanski, J.I. Saldana, N.J. Rowbotham, S.E. Ross, T. Crompton, Role of
Hedgehog signalling at the transition from double-positive to single-positive thy-
mocyte, Eur. J. Immunol. 42 (2012) 489–499.

[36] J.E. Cowan, S.M. Parnell, K. Nakamura, J.H. Caamano, P.J. Lane, E.J. Jenkinson,
et al., The thymic medulla is required for Foxp3+ regulatory but not conventional
CD4+ thymocyte development, J. Exp. Med. 210 (2013) 675–681.

[37] C.S. Hsieh, H.M. Lee, C.W. Lio, Selection of regulatory T cells in the thymus, Nat.
Rev. Immunol. 12 (2012) 157–167.

[38] J. Lin, L. Yang, H.M. Silva, A. Trzeciak, Y. Choi, S.R. Schwab, et al., Increased
generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in
the thymus, Nat. Commun. 7 (2016) 10562.

[39] K.A. Hogquist, T.A. Baldwin, S.C. Jameson, Central tolerance: learning self-control
in the thymus, Nat. Rev. Immunol. 5 (2005) 772–782.

[40] H. Nishijima, T. Kajimoto, Y. Matsuoka, Y. Mouri, J. Morimoto, M. Matsumoto,
et al., Paradoxical development of polymyositis-like autoimmunity through aug-
mented expression of autoimmune regulator (AIRE), J. Autoimmun. 86 (2018)
75–92.

[41] J.K. Abbott, Y.S. Huoh, P.R. Reynolds, L.P. Yu, M. Rewers, M. Reddy, et al.,
Dominant-negative loss of function arises from a second, more frequent variant
within the SAND domain of autoimmune regulator (AIRE), J. Autoimmun. 88
(2018) 114–120.

[42] R. Aricha, T. Feferman, H.S. Scott, M.C. Souroujon, S. Berrih-Aknin, S. Fuchs, The
susceptibility of Aire(-/-) mice to experimental myasthenia gravis involves altera-
tions in regulatory T cells, J. Autoimmun. 36 (2011) 16–24.

Fig. 5. TEC-specific ablation of Foxa1 and Foxa2 impairs peripheral T-cell development. Flow cytometry analysis of spleen T-cells and B-cells. Unless otherwise stated
data are from control (n=5) and Foxa1/2Foxn1cKO (n= 5). (A) Bar chart shows mean ± SEM cell number of control and Foxa1/2Foxn1cKO spleen. (B) Dot plots
show CD4 and CD8 expression. Bar chart shows mean ± SEM percentage of CD4 and CD8 T-cells in spleen. (C) Dot plots show CD62L expression, gated on
CD4+CD44− T-cells. Bar chart shows mean ± SEM percentage of CD4+CD44−CD62L+ (naïve) CD4 T-cells. (D, left panel) Dot plots show B220+ expression, giving
percentage in region shown. Bar charts show mean ± SEM percentage B220+ splenocytes for control (n= 4) and Foxa1/2Foxn1cKO (n= 4). (D, right panel) Dot
plots show CD21 versus CD23 expression, gated on B220+IgM+ population, follicular (FO) (CD21+CD23+) and marginal zone (MZ) (CD21hiCD23-) B-cells were
identified. Bar chart shows mean ± SEM of percentage of follicular B-cells and marginal zone B-cell for control (n=4) and Foxa1/2Foxn1cKO (n=4) spleen. (E)
Dot plots show staining of anti-CD25 against intracellular anti-Foxp3, gated on CD4 T-cells. Bar chart shows mean ± SEM percentage of Tregs in spleen. (F)
Histograms show representative CFSE staining on control and Foxa1/2Foxn1cKO CD4 T-cells cultured for 4 days. (G) Histograms show representative CFSE staining
on CD4 T-cells with control or Foxa1/2Foxn1cKO Tregs were added to Tcon at a 1:1 ratio for suppression assays. (F,G) The bar chart shows percentage of cells that
have undergone the indicated numbers of cell divisions for control (n= 4) and Foxa1/2Foxn1cKO (n=4). (H,I) Dot plots show facs profiles of CD69 staining on
CD4+ T-cells in culture of whole spleen cell suspension (I) and FACS-sorted naïve CD4 T-cells (H), stimulated with anti-CD3 and anti-CD28 for 24 h. (J) Histograms
show anti-GITR staining on CD4+CD25+Foxp3+ (Treg) cells, giving MFI. Bar chart shows mean ± SEM percentage of GITRhi and MFI of anti-GITR for control
(n=4) and Foxa1/2Foxn1cKO (n=4) spleen.

C.-I. Lau et al. Journal of Autoimmunity 93 (2018) 131–138

138

https://doi.org/10.1016/j.jaut.2018.07.009
https://doi.org/10.1016/j.jaut.2018.07.009
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref1
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref1
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref1
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref2
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref2
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref3
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref3
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref4
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref4
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref5
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref5
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref6
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref6
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref6
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref7
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref7
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref8
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref8
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref9
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref9
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref9
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref10
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref10
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref11
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref11
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref11
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref12
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref12
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref13
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref13
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref13
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref14
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref14
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref15
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref15
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref15
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref16
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref16
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref16
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref17
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref17
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref17
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref18
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref18
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref18
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref19
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref19
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref19
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref20
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref20
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref20
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref21
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref21
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref21
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref22
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref22
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref22
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref23
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref23
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref23
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref24
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref24
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref24
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref25
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref25
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref25
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref26
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref26
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref26
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref26
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref27
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref27
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref27
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref28
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref28
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref28
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref29
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref29
https://doi.org/10.3791/4269
https://doi.org/10.3791/4269
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref31
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref31
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref31
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref32
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref32
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref32
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref33
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref33
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref33
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref33
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref34
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref34
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref35
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref35
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref35
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref36
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref36
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref36
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref37
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref37
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref38
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref38
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref38
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref39
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref39
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref40
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref40
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref40
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref40
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref41
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref41
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref41
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref41
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref42
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref42
http://refhub.elsevier.com/S0896-8411(18)30245-2/sref42

	Foxa1 and Foxa2 in thymic epithelial cells (TEC) regulate medullary TEC and regulatory T-cell maturation
	Introduction
	Methods
	Mice
	Genotyping
	Quantitative RT-PCR
	Flow cytometry
	T-cell activation
	T-cell proliferation and Treg suppression assay
	Purification of naïve CD4 cells and Treg
	Histology
	Microarray data
	Statistics

	Results
	Deletion of Foxa1 and Foxa2 from TEC influences mTEC maturation and MHC expression on cTEC and mTEC
	Foxa1 and Foxa2 are required for normal positive selection and differentiation to CD4SP
	Foxa1 and Foxa2 in TEC modulate regulatory T cell maturation
	Influence of conditional deletion of Foxa1 and Foxa2 from TEC on peripheral T-cell population

	Discussion
	Authorship contributions
	Disclosure of conflicts of interest
	Acknowledgements
	Supplementary data
	References




