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ABSTRACT

BACKGROUND: Diet quality is associated with brain aging outcomes. However, few studies have explored

in humans the brain structures potentially affected by long-term diet quality. We examined whether cumu-

lative average of the Alternative Healthy Eating Index 2010 (AHEI-2010) score during adult life (an

11-year exposure period) is associated with hippocampal volume.

METHODS: Analyses were based on data from 459 participants of the Whitehall II imaging sub-study

(mean age [standard deviation] (SD) = 59.6 [5.3] years in 2002-2004, 19.2% women). Multimodal mag-

netic resonance imaging examination was performed at the end of follow-up (2015-2016). Structural

images were acquired using a high-resolution 3-dimensional T1-weighted sequence and processed with

Functional Magnetic Resonance Imaging of the Brain Software Library (FSL) tools. An automated model-

based segmentation and registration tool was applied to extract hippocampal volumes.

RESULTS: Higher AHEI-2010 cumulative average score (reflecting long-term healthy diet quality) was

associated with a larger total hippocampal volume. For each 1 SD (SD = 8.7 points) increment in AHEI-

2010 score, an increase of 92.5 mm3 (standard error = 42.0 mm3) in total hippocampal volume was

observed. This association was independent of sociodemographic factors, smoking habits, physical activ-

ity, cardiometabolic health factors, cognitive impairment, and depressive symptoms, and was more pro-

nounced in the left hippocampus than in the right hippocampus. Of the AHEI-2010 components, no or

light alcohol consumption was independently associated with larger hippocampal volume.

CONCLUSIONS: Higher long-term AHEI-2010 scores were associated with larger hippocampal volume.

Accounting for the importance of hippocampal structures in several neuropsychiatric diseases, our findings

reaffirm the need to consider adherence to healthy dietary recommendation in multi-interventional pro-

grams to promote healthy brain aging.

� 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
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INTRODUCTION
Findings from cohort studies suggest that healthy diet (ie, a

diet rich in anti-oxidants and anti-inflammatory com-
CLINICAL SIGNIFICANCE

� Healthy diet is associated with reduced
risk of depression and brain aging out-
comes and periodontium, to the com-
plete loss of teeth.

� Few studies have explored brain struc-
tures in humans potentially affected by
diet.

� None of them examined the impact of
long term diet on hippocampus.

� Long-term adherence to healthy diet
was associated with larger hippocam-
pal volumes

� The key component associated with
larger hippocampus volume is low alco-
hol intake
pounds1 that improve insulin sensi-

tivity and endothelial function) may

also prevent depression and delay

cognitive decline.2-4 In parallel,

research investigating mechanisms

by which overall diet might exert its

protective effects on the brain is

starting to emerge. Indeed, rodent

models have shown that a diet rich

in saturated fat, trans fat, and sugar

adversely affects learning and mem-

ory performances that rely on the

integrity of the hippocampus.5,6

However, few studies have directly

explored brain structures in humans

that are potentially affected by diet

or the extent to which healthy diets

may protect from impairments in

hippocampal structure or functions.7

Given the central role of the hip-

pocampus in several neuropsychiat-

ric diseases such as depression8,9

and cognitive impairment,10 the

hypothesis that a healthy diet may
protect against these conditions by exerting positive effects

on hippocampal structure is plausible. However, to estab-

lish an association between overall diet and specific brain

structure, studies of humans that assess long-term dietary

behaviors and measures of regional brain structure volumes

are needed. To our knowledge, only 1 study has examined

this issue, finding an independent association between

unhealthy dietary patterns and smaller left hippocampal

volumes in 255 Australian older adults.11

Our aim was to determine whether long-term adherence

to healthy diet guidelines, based on recommendations in

the Alternative Healthy Eating Index 2010 (AHEI-2010)12

during adult life is associated with subsequent hippocampal

volume in a much larger sample of community-dwelling

adults, the Whitehall II imaging sub-study. AHEI-2010

assessment performed 3 times over 11 years of follow-up

(1991-1993�2003-2004), to predict brain structure in

2015-2016.
METHODS
Five hundred and fifty people were randomly selected

for the current Whitehall II imaging sub-study (2012-

2015)13 from the Whitehall II cohort study,14 a large-

scale prospective cohort study of 10,308 civil servants

recruited from 1985-1988 (phase 1). Since phase 1, fol-

low-up examinations have taken place approximately

every 5 years (phase 3: 1991-1993, phase 5: 1997-1999,

phase 7: 2003-2004, phase 9: 2007-2009, phase 11:
2011-2012). This study was approved as part of a larger

study (Predicting MRI abnormalities with longitudinal

data of the Whitehall II sub-study; MSD/IDREC/C1/
2011/71) by the University of

Oxford’s Medical Sciences Inter-

divisional Research Ethics Com-

mittee (reference: MSD/ IDREC/

C1/2011/71).

Assessment of Dietary
Intake
Dietary intake was assessed from

1991-1993, 1997-1999, and

2003-2004, with the use of a

semi-quantitative food frequency

questionnaire (FFQ) with 127

food items, as described previ-

ously. Nutrient values were cal-

culated using a computerized

system developed for the White-

hall II dietary data, detailed in

the online Appendix (Text 1).

AHEI-2010 is based on 11 com-

ponents: 6 components for which

the highest intakes are supposed

to be ideal: vegetables, fruit,

whole grains, nuts and legumes,
long chain omega-3 fats, and polyunsaturated fatty

acids; and 4 components for which avoidance or lowest

intake are supposed to be ideal: sugar-sweetened

drinks and fruit juice, red and processed meat, trans fat,

and sodium.12 In the original score, moderate alcohol

intake was considered to be ideal; however, for brain

related outcomes latest evidence supports to recommend

avoidance or low consumption of alcohol rather than

moderate consumption.15,16 Scoring criteria for AHEI-

2010 and its distribution are described in the online sup-

plementary material (Supplementary Table 1).

We computed the AHEI-2010 scores from FFQ

administered in phase 3 (1991-1993), phase 5 (1997-

1999) and phase 7 (2002-2004). To reduce measurement

errors and to represent long-term dietary intake, we cal-

culated the cumulative average of AHEI-2010 over an

11-years exposure period. To analyze the association of

change in AHEI score with hippocampal volumes,

scores of AHEI at phase 3 and phase 7 were categorized

as high or low according to the median value of AHEI-

2010 score at phase 3 (60 points). Four categories were

defined: participants who maintained a high score (both

phase 3 and phase 7 scores �60.0), those who main-

tained a low score (both phase 3 and phase 7 scores

<60.0), and participants who improved their AHEI

score (phase 3 score <60.0 and phase 7 score �60.0)

and those whose score decreased (phase 3 score �60.0

points and phase 7 score <60.0 points).
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Magnetic Resonance Imaging Acquisition and
Processing and Assessment of Hippocampal
Volume in 2015-2016
Multimodal magnetic resonance imaging (MRI) scans were

acquired at the Oxford Centre for Functional MRI of the

Brain (FMRIB Centre) using a 3-tesla MRI scanner (MAG-

NETOM Verio; Siemens Healthineers, Erlangen, Germany)

with a 32-channel head coil. Details of the imaging protocol

and the analysis pipelines have been published previ-

ously.17 In short, structural images were acquired using a

high-resolution 3-dimensional T1-weighted sequence: repe-

tition time = 2530 ms, echo time = 7.37 ms, flip angle = 78

degrees, field of view = 256 mm, and voxel dimen-

sions = 1.0 mm isotropic. MRI data processing and analysis

was performed using FSL tools (FMRIB Software Library;

FMRIB, Oxford, UK). Structural, T1-weighted images

were processed using fsl_anat (FMRIB). Details on brain

tissue segmentation and hippocampal volume extractions

and normalizations are detailed in the footnotes of

Table 2.17,18
Statistical Analysis
First, linear regression models were performed to esti-

mate the association between AHEI-2010 score and hip-

pocampal volumes. The overall AHEI-2010 score was

analyzed as a continuous standardized variable by using

z score, and models were adjusted for age, sex, and total

energy intake (model 1), then further adjusted for ethnic-

ity, occupational position,14 smoking status, physical

activity,19 health status factors (including coronary heart

diseases, dyslipidemia, type II diabetes, body mass index

[BMI] and hypertension) (model 2), and finally addition-

ally adjusted for cognitive impairment20 and depressive

symptoms21 (model 3). Assessment (2002-2004) and cat-

egorization of the covariates are detailed in the footnotes

of Table 1. We performed supplementary analyses to

assess 1) whether the significant associations between

AHEI-2010 and hippocampal volumes remained in par-

ticipants without cardiometabolic disease, cognitive

impairment, and depressive symptoms and 2) whether

the 11-year change in AHEI-2010 score was associated

with subsequent hippocampal volumes.

Second, linear regression models described above were

repeated for each AHEI-2010 component to identify the

key components of the AHEI-2010 associated with hippo-

campal volumes. To further examine the contribution of

each AHEI-2010 components to the overall AHEI-2010-

hippocampal volumes association, we computed for each

component (component i), a modified AHEI-2010 score

based on the total AHEI-2010 score without the component

i (modified AHEI-2010 score i = total AHEI-2010 score �
score of the component i). All component scores and modi-

fied AHEI-2010 scores were standardized by using z scores.

Analyses were conducted using SAS software, version 9.4

(SAS Institute, Cary, NC).
RESULTS

Participants’ Descriptive Data
Of the 550 Whitehall II imaging sub-study participants,

459 were included in the main analyses. The selection

of participants is detailed in the online supplementary

material (Supplementary Figure 1). Excluded partici-

pants and those included did not substantially differ in

any of the reported characteristics (data available upon

request). Characteristics of the 459 participants are pre-

sented in Table 1.

Distribution of cumulative average AHEI-2010 score

according to the characteristics of participants is also

detailed in Table 1. Means of AHEI-2010 score increased

with age. A significantly lower mean AHEI-2010 score (ie,

less healthy diet) was found in white participants compared

with nonwhite participants and in smokers compared with

former and nonsmokers. AHEI-2010 was inversely associ-

ated with BMI and tended to be lower in participants with

depressive symptoms.

Distributions of hippocampal volumes (total, right, and

left) as a function of participants’ characteristics are pre-

sented in Table 2. Advanced age was associated with lower

hippocampal volumes. Participants with type II diabetes

and those with hypertension were more likely to have lower

hippocampal volumes. No significant differences in hippo-

campal volumes were observed for other baseline charac-

teristics.
Long-Term Overall Diet Quality and
Hippocampal Volume
Linear regression models were performed to estimate the

association between long-term dietary intake assessed by

the cumulative average of AHEI-2010 scores over the

exposure period of 11 years (between 1991-1993 and 2002-

2004) and normalized hippocampal volumes assessed 13

years later (2015-2016). After adjustment for age, sex, and

total energy intake, higher AHEI-2010 score was found to

be significantly associated with larger hippocampal vol-

umes (Figure 1). Further adjustment for occupational grade,

physical activity, smoking status, and cardiometabolic dis-

orders (model 2), cognitive impairment and depressive

symptoms (model 3) confirmed the significant association

between higher AHEI-2010 scores and larger hippocampal

volume (Figure 1). Each increment of 1 standard deviation

of AHEI was associated with an increase of 90.1 mm3

(SE = 36.7 mm3) and 92.5 mm3 (SE = 42.0 mm3) larger hip-

pocampal volume for models 2 and 3, respectively.

We further assessed the association between the AHEI-

2010 score and hippocampal volume by considering sepa-

rately the 2 hemispheres and showed that the association

was more pronounced in the left hemisphere than in the

right one (Figure 1). In the full adjusted model, each incre-

ment of 1 standard deviation in AHEI-2010 score was asso-

ciated with an increase of 56.3 mm3 (SE = 23.0 mm3) in left

http://FMRIB


Table 1 Characteristics of the 459 Participants of the Whitehall II Imaging Sub-Study

Characteristics of Participants
from 2002-2004*

Description of Whitehall
II Imaging Sub-Study
Participants

Distribution of AHEI-2010y

Sociodemographic Factors N
% or
mean (SD)

r or
mean (SD) Pz

Age, years 459 59.6 (5.3) 0.14 .005
Sex Men 371 80.8 54.9 (8.3) .23

Women 88 57.9 (9.5)
Ethnicity White 432 94.1 54.9 (8.4) .0002

Nonwhite 27 63.7 (10.5)
Socioeconomic status Low/mid 187 41.1 55.7 (8.9) .45

High 272 55.1 (8.6)
Health behavior factors
Smoking status Non/former 436 94.8 55.8 (8.6) .0004

Current 23 48.5 (8.2)
Physical activity Inactive /

moderately
active

181 23.7 54.8 (9.1) .21

Active 278 55.9 (8.5)
Total energy intake (kcal/d) 459 2190 (557) -0.062 .18
Health status factors
Antecedent of CHD Yes 18 3.9 58.9 (7.3) .35

No 441 55.3 (8.8)
Type II diabetes Yes 38 8.2 57.2 (9.5) .35

No 421 55.3 (8.7)
Hypertension Yes 138 30.2 56.0 (8.6) .41

No 321 55.2 (8.8)
BMI kg/m2 459 26.4 (3.8) -0.077 .10
Dyslipidemia Yes 74 16.2 55.2 (8.0) .75

No 385 55.5 (8.9)
Cognitive impairment Yes 41 9.2 55.7 (9.9) .85

No 403 55.4 (8.6)
Depressive symptoms Yes 63 14.7 53.5 (8.1) .08

No 366 55.6 (8.8)

BMI = body mass index; CHD = coronary heart disease; SD = standard deviation.

*Assessment of covariates: When possible covariates were obtained from the 2002-2004 study phase. Sociodemographic factors included sex, age, eth-

nicity (white/nonwhite) and occupational position, categorized into 3 groups: high (administrative), intermediate (professional or executive) and low

(clerical or support). This measure is a comprehensive marker of socioeconomic circumstances in the Whitehall II study being related to education, sal-

ary, social status and level of responsibility at work.14

Health behaviors consisted of smoking status (self-reported and classified as “current smoker” or “noncurrent smoker” [including former smokers]),

total energy intake (estimated from a food frequency questionnaire), and physical activity, assessed by a questionnaire including 20 items on fre-

quency and duration of participation in different physical activities (eg, walking, cycling, and sports) that were used to compute hours per week at

each intensity level. Participants were classified as “active” (>2.5 hours per week of moderate physical activity or >1 hour per week of vigorous phys-

ical activity), “inactive” (<1 hour per week of moderate physical activity and <1 hour per week of vigorous physical activity), or “moderately active”

(if neither active nor inactive).19

Health status factors included prevalent CHD (denoted by clinically verified nonfatal myocardial infarction or definite angina); hypertension

(defined by systolic/diastolic blood pressure �140 /90 mm Hg, respectively, or use of antihypertensive drugs); BMI; type II diabetes (diagnosed

according to the World Health Organization definition); dyslipidemia (defined by high-density lipoprotein cholesterol <1.04 mmol/l and <1.29

mmol/l in men and women, respectively, or use of lipid-lowering drugs); cognitive impairment defined by a score �27 in the Mini-Mental State

Exam20; and depressive symptoms defined by a score in the Center for Epidemiologic Studies Depression Scale21 �16, or being under antidepressant
treatment. When there was a missing value for a covariate assessed at phase 7 (2002-2004), we imputed the value available at previous phases.

We have done this for all covariates at exception of cognitive impairment and depressive symptoms.

yCumulative average of Alternative Healthy Eating Index 2010 score over the 11-year exposure period (1991-1993�2002-2004).

zMeans (m § SD) of cumulative average of Alternative Healthy Eating Index 2010 score according to characteristics of participants were compared

using the Student t test for categorized variables and Pearson correlation coefficients (r) were computed for quantitative variables.
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hippocampal volume vs 36.2 mm3 (SE = 22.7 mm3) in right

hippocampal volume.

Cardiometabolic disorders, cognitive impairment, and

depressive symptoms were considered as potential
confounders in the main analyses, but they can also be

viewed as potential mediators of the diet-hippocampal

volume relationship. In sensitivity analyses excluding

participants with cardiometabolic disorder, cognitive



Table 2 Hippocampal Volumes According to Characteristics of Whitehall II Imaging Sub-study Participants

Hippocampal Volumes*

Total Right Left

Mean (SD) 6839 (779) 3468 (416) 3371 (433)
Characteristics r or Mean (SD) Py r or Mean (SD) Py r or Mean (SD) Py

Age Year ¡0.31 <.001 ¡0.28 <.001 ¡0.29 <.001
Sex Men 6839 (809) .98 3470 (434) .80 3369 (445) .83

Women 6838 (642) 3457 (331) 3380 (381)
Ethnicity White 6846 (660) .40 3392 (314) .33 3374 (435) .56

Nonwhite 6716 (660) 3472 (421) 3325 (403)
Socioeconomic position Low/mid 6783 (833) .20 3444 (454) .30 3339 (452) .19

High 6877 (739) 3484 (389) 3393 (419)
Smoking status Non/former 6849 (779) .25 3469 (420) .81 3380 (428) .06

Current 6660 (773) 3447 (346) 3213 (501)
Physical activity Inactive 6835 (851) .97 3456 (440) .80 3382 (472) .97

Moderately active 6822 (681) 3450 (375) 3369 (374)
Active 6845 (775) 3477 (417) 3369 (433)

Total energy intake kcal/d 0.009 .84 ¡0.025 .59 0.085 .37
Type II diabetes No 6864 (787) .02 3480 (423) .007 3385 (434) .02

Yes 6552 (623) 3332 (297) 3220 (390)
CHD No 6847 (784) .26 3472 (418) .27 3375 (437) .33

Yes 6637 (605) 3361 (355) 3275 (315)
Hypertension No 6897 (795) .01 3496 (427) .02 3402 (438) .02

Yes 6702 (724) 3402 (383) 3300 (417)
BMI kg/m2 0.009 .83 ¡0.025 .58 0.04 .37
Dyslipidemia No 6839 (800) .97 3471 (427) .65 3368 (440) .74

Yes 6836 (661) 3450 (352) 3386 (395)
Cognitive impairment No 6841 (788) .63 3467 (421) .75 3374 (437) .57

Yes 6779 (783) 3445 (397) 3334 (453)
Depressive symptoms No 6832 (770) .90 3470 (416) .75 3362 (425) .60

Yes 6846 (912) 3453 (473) 3393 (493)
Brain volumes
Total intracranial volumes cm3 0.003 .95 ¡0.002 .96 0.007 .87
Total hippocampal volume mm3 / / 0.91 <.001 0.92 <.001
Right hippocampal volume mm3 / / / / 0.68 <.001

BMI = body mass index; CHD = coronary heart disease; SD = standard deviation.

*MRI data processing and analysis used FSL tools (FMRIB Software Library, Oxford, UK). Structural, T1-weighted images were processed using fsl_anat

(FMRIB). Brain tissues were segmented using FAST (FMRIB’s Automated Segmentation Tool) that allows extracting measures of total gray matter, white

matter, and cerebrospinal fluid, which were summed to calculate intracranial volume (ICV). FIRST (FMRIB),17 an automated model-based segmentation/

registration tool, was applied to extract hippocampal volumes. Brain tissues and subcortical regions were visually inspected to ensure an accurate seg-

mentation, and manually edited if required. Hippocampal volumes were normalized using a residual approach, which involves using a linear regression

between the hippocampal volume and ICV to predict the ICV adjusted volumes.18 The formula: Voladj = vol � b£ (ICV � mean ICV), where b is the

regression coefficient of hippocampal volumes on ICV. All normalized hippocampal volumes and intracranial volumes were subsequently scaled to SD

units by computing z scores.

yStudent t test and analysis of variance for categorized variables and Pearson correlation coefficients (r) for quantitative variables.
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impairment, or depressive symptoms, the associations

between AHEI and hippocampal volume did not materi-

ally differ from those in the main analysis (Supplemen-

tary Table 2, available online), making it unlikely that

the results are attributable to these conditions.

We further assessed the association between

change in AHEI-2010 score over the 11-year expo-

sure period and hippocampal volume. Participants

who improved their diet or maintained a high AHEI-

2010 score had larger hippocampal volume compared

with those who had a low AHEI 2010 score over the

exposure period (Supplementary Table 3, available

online).
Dietary Components and Hippocampal Volume
We further examined which of the 11 components of the

AHEI-2010 were most strongly associated with hippocam-

pal volume. Linear regression models were performed to

examine the association of cumulative average score of

each AHEI-2010 component with total and lateral hippo-

campal volumes. In an analysis adjusted for sex, age, and

total energy intake (Table 3), alcohol consumption was

associated with larger hippocampal volumes (total, right,

and left), and fruit and red and processed meat components

were associated with left hippocampal volume. Only the

association between the alcohol component and hippocam-

pal volume persisted in fully adjusted models (Figure 2).

http://FMRIB
http://FMRIB


Table 3 Association of Components of AHEI-2010 with Hippocampal Volume

Hippocampal Volume

AHEI-2010 components* Total Right Left

Score Beta 95 % CI P Beta 95 % CI P Beta 95 % CI P
Vegetables ¡0.05 ¡0.14 to 0.04 .32 ¡0.06 ¡0.14 to 0.04 .30 ¡0.04 ¡0.13 to 0.06 .43
Fruits 0.09 0.0001 to 0.18 .05 0.06 ¡0.03 to 0.15 .23 0.11 0.02 to 0.20 .02
Whole grains 0.05 ¡0.04 to 0.14 .30 0.04 ¡0.05 to 0.14 .37 0.05 ¡0.05 to 0.14 .31
Soda and fruit juice 0.01 ¡0.08 to 0.10 .80 0.04 ¡0.06 to 0.13 .43 ¡0.01 ¡0.11 to 0.08 .77
Nuts and legumes 0.05 ¡0.03 to 0.14 .33 0.05 ¡0.04 to 0.14 .28 0.03 ¡0.06 to 0.13 .49
Red and processed meat 0.06 ¡0.03 to 0.16 .17 0.02 ¡0.08 to 0.11 .70 0.10 0.005 to 0.19 .04
Trans fat 0.02 ¡0.08 to 0.12 .69 0.003 ¡0.10 to 0.11 .95 0.03 ¡0.07 to 0.14 .51
Long-chain (n-3) fats 0.03 ¡0.09 to 0.14 .53 0.05 ¡0.06 to 0.17 .29 ¡0.01 ¡0.12 to 0.11 .91
Polyunsaturated fatty acids 0.02 ¡0.09 to 0.12 .77 0.02 ¡0.08 to 0.13 .68 0.01 ¡0.10 to 0.11 .90
Sodium ¡0.05 ¡0.18 to 0.07 .39 ¡0.08 ¡0.21 to 0.04 .19 ¡0.02 ¡0.14 to 0.11 .79
Alcohol 0.15 0.06 to 0.23 .001 0.12 0.03 to 0.21 .01 0.15 0.07 to 0.24 .001

CI = confidence interval.

*Separate linear regression models adjusted for age, sex, and total energy intake with standardized cumulative average of Alternative Healthy Eating

Index 2010 component score over the 11-year exposure period as independent variable.

Model 1

Model 2

Model 3

Linear regression coefficient β for each increment 
of 1 SD of AHEI-2010 score  

Le� + Right H

Right H

Le� H

Le� + Right H

Right H

Le� H

Le� + Right H

Right H

Le� H

0.10 ( 0.01 to 0.19)       459

0.07 (-0.02 to 0.16)        

0.11 ( 0.02 to 0.20)

0.11  ( 0.02 to 0.20)      459

0.09  (-0.01 to 0.18)  

0.11  ( 0.03 to 0.22)        

0.11 ( 0.02 to 0.21)      414

0.08 (-0.02 to 0.18)         

0.12 ( 0.02 to 0.22)         

β (95% CI)                          N

Figure 1 Association between cumulative average of Alternative Healthy Eating

Index 2010 over 11-year exposure period (1991�1993�2002�2004) and hippocampal

volumes. M1: Model adjusted for age, sex, and total energy intake. M2: M1+ occupa-

tional grade, ethnicity, smoking habits, physical activity, cardiometabolic factors,

including body mass index, antecedent of coronary heart diseases, hypertension, type II

diabetes, and dyslipidemia. M3: M2 + depressive symptoms and cognitive deficit. Hip-

pocampal volumes were normalized using the formula Voladj = vol � b£ (intracranial

volume � mean intracranial volume ), where b is the regression coefficient of hippo-

campal volume on intracranial volume, and subsequently scaled to standard deviation

units by computing z score.
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Vegetable

Fruit 

Whole grain

Soda and juice fruit

Nuts and legume

Processed/Red Meat

Trans Fat 

Long chain (n-3) fats

PUFA 

Sodium

Alcohol

AHEI-2010 score

Score without alcohol component

AHEI-2010 components score

Original AHEI-2010 score

-0.10  (-0.19 ; 0.01)

0.07  (-0.03 ; 0.17)

0.05  (-0.05; 0.15)

0.01 (-0.09 ; 0.11)

0.08  (-0.02 ; 0.19)

0.06  (-0.05 ; 0.16)

-0.01  (-0.12 ; 0.09)

0.06  (-0.07 ; 0.19)

0.03  (-0.08 ; 0.15)

-0.08  (-0.21 ; 0.05)

0.15  (0.06 ; 0.25)

0.12  ( 0.02 ; 0.22)

0.06  (-0.05 ; 0.16)

β (95 %, CI)

Linear regression * es�ma�ng  increase in hippocampal volume † 
associated with increment of 1 SD of AHEI-2010 component score  

Figure 2 Association between Alternative Healthy Eating Index 2010 (AHEI-2010) component scores

and hippocampal volumes.

Separate linear regression models were performed, in which each cumulative average of AHEI-2010 com-

ponent score was included. All component AHEI-2010 scores were standardized by using z-scores

(mean = 0, standard deviation = 1).

Models were adjusted for age, sex, total energy intake, occupational grade, ethnicity, smoking habits,

physical activity, cardiometabolic factors, including body mass index, antecedent of coronary heart dis-

eases, hypertension, type II diabetes, dyslipidemia, depressive symptoms, and cognitive deficit.

Hippocampal volume was normalized using the formula Voladj = vol � b£ (intracranial volume � mean

intracranial volume), where b is the regression coefficient of hippocampal volume on ICV and subse-

quently scaled to standard deviation units by computing the z-score. P < .05 P � .05.
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The substantial attenuation of the association between the

modified AHEI-2010 scores computed without the alcohol

component and hippocampal volume suggests that other

components contributed little to the association (Figure 2

and Supplementary Figure 2 [available online]).
DISCUSSION
This large observational cohort study examined whether

high long-term adherence to dietary guidelines, as assessed

with the AHEI-2010 during middle age, was associated

with hippocampal volumes 13 years later. Higher cumula-

tive average AHEI-2010 score (reflecting healthy diet)

aggregated across repeated measurements was linked to a

larger hippocampal volume. This specific association was
found to be independent of sociodemographic factors,

smoking habits, physical activity, cardiometabolic health

factors, cognitive impairment, and depressive symptoms.

We further identified low alcohol intake as the key compo-

nent of AHEI-2010 score independently associated with

larger hippocampal volume.

Very few studies have examined whether overall diet is

associated with MRI biomarkers in nonclinical study popu-

lations. In most of these studies diet quality was assessed

by Mediterranean diet score, and higher scores (ie, healthier

diet) were found to be associated with larger cortical thick-

ness,22-24 lower white matter hyperintensity burden,25 and

preserved white matter microstructure.26 Two studies

examined the association between adherence to Mediterra-

nean diet and total brain volumes and provided
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inconclusive answers. In the first study, carried out on 194

elderly adults living in Sweden, no association was found27

while in a study of 674 elderly, multi-ethnic, urban-dwell-

ing residents of North Manhattan, New York, high adher-

ence to the Mediterranean diet was associated with larger

total brain volume.22 In the present study, we report a spe-

cific association between healthy diet (assessed by good

adherence to AHEI-2010 recommendations) and hippocam-

pal volumes, with a stronger association in left hippocampal

volume than in right hippocampal volume. Our findings are

in accordance with results from a recent study11 in which

associations between dietary patterns and hippocampal vol-

umes were assessed in a cohort of 255 Australian older

adults. Very similar to our observations, each standard

deviation increment in healthy “prudent” dietary pattern

(characterized by the consumption of fresh vegetables,

fruit, and grilled fish) was found to be associated with a

45.7 mm3 larger left hippocampal volume.

Our findings support the hypothesis that a healthy diet

may afford protection to the brain by reinforcing hippocam-

pus structures and functions.28 This hypothesis was origi-

nally formulated based on experimental animal models that

suggested a high-energy diet rich in saturated fats and

refined sugars adversely affect neuronal plasticity and func-

tion. Animals maintained on a high-energy diet rich in fat

and sugar showed lower performances in hippocampus-

dependent spatial learning,6,29,30 object recognition,31

reduced hippocampus levels of brain-derived neurotrophic

factor,30 impaired in blood-brain barrier integrity7 and

increase the hippocampal neurogenesis.32

The finding that diet-hippocampus volume association

was stronger in the left hippocampus than in the right hip-

pocampus remains an intriguing observation. This specific

lateral effect of diet on the brain was also reported in other

studies.11,23 A meta-analysis designed to evaluate the asym-

metry of hippocampal volume in control patients with mild

cognitive impairment and Alzheimer disease showed a con-

sistent left-smaller-than-right asymmetrical pattern.33 How-

ever, the underlying mechanisms for this hippocampus

asymmetry are largely unknown. Although consistent with

other studies, we cannot exclude that this lateral-specific

effect of diet on brain structure stems from chance finding.

Low alcohol intake was independently associated with

larger hippocampal volumes. This result suggests that the

diet-hippocampus structure association was shaped primar-

ily by this component. Our findings corroborate previous

findings on Whitehall II demonstrating that alcohol con-

sumption is associated with adverse brain outcomes.15

These findings are in line with the literature showing the

major deleterious impact of binge drinking and regular

intensive drinking on brain34,35 and suggest that no or low

consumption alcohol intake behavior, compared with high

regular alcohol intake, is beneficial in terms of hippocampal

volume.

The main strength of this study is the use of a large pop-

ulation-based sample whose participants were administered

a comprehensive dietary assessment and who underwent a
structural MRI examination 13 years later to acquire

detailed data on brain structure. Dietary data were collected

using a semi-quantitative FFQ. This method is less precise

than those based on weighted records, but it nevertheless

covers a range of specific foods and is feasible for large-

scale cohort studies such as ours. The validity of FFQs has

been criticized36 but appears to be reasonable in assessing

associations of nutrients and food consumption with out-

comes, at least in the UK context.37,38 We have shown, for

example, that nutrient intakes estimated by the FFQ method

are correlated with biomarker concentrations and intake

estimates from the 7-day diary. Although the FFQ is open

to measurement errors common to all self-reported dietary

assessments,39 it remains one of the main methods in ana-

lytical epidemiological studies.36 Indeed, many of the cur-

rent dietary recommendations and policies to reduce

disease burden (eg, obesity, type II diabetes, and cardiovas-

cular disease) rely on evidence from studies using an

FFQ.40,41 We assessed healthy diet with AHEI-2010 score,

which is based on a set of specific and limited food groups.

The measure is assumed to cover all aspects of a “healthy”

diet although it may not be adapted to the dietary habits of

all populations. The previous findings from the Whitehall II

study suggesting that high adherence to AHEI or AHEI-

2010 is associated with reduced risk of all-cause and car-

diovascular mortality,42,43 long-term inflammation,44 and

reduced odds of subsequent recurrent depressive symp-

toms,45 support the relevance of using AHEI in the present

analysis. Although the dietary assessment preceded brain

imaging by several years, and despite adjustment for cogni-

tive impairments and depressive symptoms at the time of

the dietary exposure, we cannot exclude the possibility of

reverse causation and therefore we are unable to conclude

the direction of the association between healthy diet and

larger left hippocampal volume. Lastly, we adjusted analy-

ses for many potential confounders and mediators, but with

an epidemiological observational framework, our observa-

tions may still be explained partly by unmeasured factors,

such as cognitive reserve during childhood and adulthood.

Further research is also needed to identify mechanisms

underlying the observed associations of diet and brain

structure, such as changes in metabolic, inflammation, and

vascular systems.

In conclusion, our findings lend support for the hypothe-

sis that overall diet may affect brain structures with a spe-

cific impact on hippocampal volume. Accounting for the

importance of the hippocampus in long-term, declarative,

episodic memory, and for flexible cognition network, our

findings reaffirm the need to recognize diet and nutrition as

potential determinants of cognition, mental health, and

social behavior.
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Model 1

Model 2

Model 3

Linear regression coefficient β for each increment 
of 1 SD of AHEI-2010 score  

Right H

Right H

Right H

0.10 ( 0.01 to 0.19)       459

0.07 (-0.02 to 0.16)        

0.11 ( 0.02 to 0.20)

0.11  ( 0.02 to 0.20)      459

0.09  (-0.01 to 0.18)  

0.11  ( 0.03 to 0.22)        

0.11 ( 0.02 to 0.21)      414

0.08 (-0.02 to 0.18)         

0.12 ( 0.02 to 0.22)         

β (95% CI)                          N

Supplementary Figure 1 Flow chart diagram mapping the selection of par-

ticipants.
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Vegetable

Fruit 

Whole grain

Soda and juice fruit

Nuts and legume

Processed/Red Meat

Trans Fat 

Long chain (n-3) fats

PUFA 

Sodium

Alcohol

AHEI-2010 score

Score without alcohol component

AHEI-2010 components score

Original AHEI-2010 score

-0.10  (-0.19 ; 0.01)

0.07  (-0.03 ; 0.17)

0.05  (-0.05; 0.15)

0.01 (-0.09 ; 0.11)

0.08  (-0.02 ; 0.19)

0.06  (-0.05 ; 0.16)

-0.01  (-0.12 ; 0.09)

0.06  (-0.07 ; 0.19)

0.03  (-0.08 ; 0.15)

-0.08  (-0.21 ; 0.05)

0.15  (0.06 ; 0.25)

0.12  ( 0.02 ; 0.22)

0.06  (-0.05 ; 0.16)

β (95 %, CI)

associated with increment of 1 SD of AHEI-2010 component score  

Supplementary Figure 2 Association between modified AHEI-2010 scores and hippocampal volume.



Supplementary Table 1 Construction of AHEI- 2010 Scores in 464 Participants of the Whitehall II Brain Imaging Substudy in 2002/04

Components
Criteria for
min.scores

Criteria for
max. scores

Cumulative average
of AHEI-2010 score
over 11-y exposure
period (1991/93-2002/04)
Mean (sd) Median

Vegetable (serving/day) 0 �5 5.6 (2.1) 5.7
Fruit (serving/day) 0 �4 5.7 (2.7) 5.7
Whole grains (serving/day) Men 0 5 5.5 (2.2) 5.5

Women 0 6
Soda and fruit juice (serving/day) �1 0 3.4 (3.0) 2.7
Nuts and legumes (serving/day) 0 1 4.9 (2.6) 5.0
Processed/Red Meat �1.5 0 4.6 (2.5) 4.7
Trans Fat (% of energy ) Highest decile Lowest decile 4.8 (2.6) 4.7
Long-chain (n-3) fats, mg/d 0 250 7.9 (2.3) 8.7
PUFA*, % of energy �2 �10 5.0 (2.5) 5.0
Sodium, mg/d Highest decile Lowest decile 4.9 (2.5) 5.0
Alcohol serving/day Men �3.5 <1.5 7.5 (3.3) 9.7

Women �2.5 <1.0
Total Score 60.0 (9.0) 59.7

*PUFA (Polyunsaturated fatty acids) does not include n-3 PUFA.

Each AHEI component contributed from 0 to 10 points to the total AHEI-2010 score. A score of 10 indicates that the recommendations were fully met,

whereas a score of 0 represents the least healthy dietary behavior. Intermediate intakes were scored proportionately between 0 and 10. All the compo-

nent scores are summed to obtain the total AHEI-2010 score

Supplementary Table 2 Associations Between AHEI-2010 Z-Score and Total Hippocampal Volume after Excluding Participants with Car-
diometabolic Disorders, Cognitive impairment, and Depressive Symptoms

Results of linear regression estimating total hippocampus volume* increase per each increment of
1 SD of AHEI-2010 score

N analyses by SE 95% IC

Excluding participants with:
CHD 399 0.11 0.05 0.006 ; 0.21
Type 2 diabete 382 0.15 0.05 0.05 ; 0.26
HTA 295 0.10 0.06 ¡0.02 ; 0.23
BMI �30 345 0.13 0.06 0.02 ; 0.24
Dyslipidemia 345 0.11 0.06 0.0005 ; 0.23
Depressive symptoms 351 0.14 0.05 0.04 ; 0.25
Cognitive impairment 374 0.13 0.05 0.02 ; 0.23

*Hippocampal volumes were normalized using the formula Voladj = vol � b£ (ICV � mean ICV). where b is the regression coefficient of hippocampal

volumes on ICV. and subsequently scaled to SD units by computing z-score.

yLinear regression models were adjusted for sex. age. total energy intake. occupational grade. ethnicity. smoking status. physical activity and health

status factors listed in the table.
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Supplementary Table 3 Association Between 11-year Change in AHEI-2010 Score and Hippocampal Volume

Total Hippocampal volume Right hippocampal volume Left hippocampal volume

10-y change category in AHEI n Beta 95% CI Beta 95% CI Beta 95% CI

Maintaining a high AHEI score
(Phases 3 and 7 scores � 60.0)

151 0.18 ¡0.04 ; 0.40 0.14 ¡0.08 ; 0.36 0.19 ¡0.04 ; 0.41

vs. low score (Phase 7 and
Phase 3 scores < 60.0)

140 ref ref ref

Improving AHEI score (Phase 3
score<60.0 and
Phase 7 score�60.0)

75 0.13 ¡ 0.16 ; 0.42 0.04 ¡0.25 ; 0.32 0.20 ¡ 0.09 ; 0.49

vs. maintaining low score 140 ref ref ref
Decreasing AHEI score (Phase 3
score�60.0 and
Phase 7 score<60.0)

80 ¡0.06 ¡0.29 ; 0.18 ¡ 0.03 ¡0.27 ; 0.22 ¡ 0.07 ¡0.32 ; 0.17

vs. maintaining high score 151 ref ref ref
Maintaining a high AHEI score
or improving AHEI score

226 0.17 ¡0.03 ; 0.37 0.11 ¡0.09 ; 0.31 0.20 ¡0.005 ; 0.40

vs. low score (Phase 7 and
Phase 3 scores<60.0 )

140 ref ref Ref

To analyze the 10-y change in AHEI score, scores of AHEI at phases 3 and 7 were categorized as high or low according to the median value of AHEI-2010

score at phase 3 equal to 60 points. Four categories in 10-y change of AHEI-2010 were then defined: participants who maintained a high score (Phase 3

and 7 scores �60.0), those who maintained a low score over the 10-y exposure period (Phase 3 and 7 scores <60.0), participants who improved their AHEI

score (Phase 3 score <60.0 and Phase 7 score �60.0) and those who decreased their score (Phase 3 score �60.0 points and Phase 7 score<60.0 points).

Separate linear regression models adjusted for age, sex and total energy intake differences between phase 7 and phase 3 were performed, in which each

category of 10-y change of AHEI-2010 was included. Hippocampal volumes were normalized using the formula Voladj = vol � b£ (ICV � mean ICV), where

b is the regression coefficient of hippocampal volume on ICV, and subsequently scaled to SD units by computing z-score.
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