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Abstract—Many techniques facilitate real-time collision detection against complex models. These typically work by pre-computing
information about the spatial distribution of geometry into a form that can be quickly queried. When models deform though, expensive
pre-computations are impractical. We present radial fields: a variant of distance fields parameterised in cylindrical space, rather than
Cartesian space. This 2D parameterisation significantly reduces the memory and computation requirements of the field, while
introducing minimal overhead in collision detection tests. The interior of the mesh is defined implicitly for the entire domain. Importantly,
it maps well to the hardware rasteriser of the GPU. Radial fields are much more application-specific than traditional distance fields. For
these applications - such as collision detection with articulated characters - however, the benefits are substantial.
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1 INTRODUCTION

Collision detection is fundamental to virtual worlds - to
their physical plausibility and the logical rules by which
they operate [1]. Collision detection is used in both on-
line and offline applications. However, online applications
have the additional constraint that collision detection and
response must be computed in a limited time.

Real-time collision detection techniques compute infor-
mation about the spatial distribution of geometry and store
it in a form that can be quickly queried. For example, a tree
structure that partitions traditional primitives, or an alterna-
tive representation of the geometry itself. These structures
facilitate excellent performance, but the pre-computation
stage can make them impractical when models begin to
deform. Some techniques have been modified to support
deformable models. This is typically done by finding ways
to reduce the computation time required to update the
structures, but real-time performance is still a challenge.

One popular structure is the distance field. A distance
field represents a surface by storing the shortest distances
to it in a regular grid. Distance fields are memory intensive,
and very expensive to compute naı̈vely, even offline. Once
computed however, the distance to a surface can be imme-
diately queried for a point almost instantly, making them
valuable for real-time collision detection. Techniques have
been derived to accelerate the computation and update of
distance fields, and a number of these achieve interactive
rates [2], [3], [4]. However, interactive may still not be fast
enough for applications such as games, that can dedicate
only a fraction of the frame budget to collision detection.

In this paper, we propose a variation of distance fields
with an alternative parameterisation. Radial fields store dis-
tances to a surface, but in 2D cylindrical space, rather
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than 3D Cartesian space. The parameterisation makes as-
sumptions about the geometry, making radial fields more
application specific than distance fields. However it sig-
nificantly reduces their memory and computation require-
ments. Delineation of the mesh interior is automatic, and
the parameterisation maps well to the hardware rasteriser
of a GPU.

Radial fields are only suitable for models that can
be decomposed into relatively well-tessellated star-convex
elements. For suitable models however, such as articu-
lated characters, the performance gains are substantial. We
demonstrate the practicality of our system by implementing
it in a real game engine - Unity 5.4 - and integrating it with
a position-based dynamics cloth simulation. We compare
the performance of radial fields to techniques representing
the state-of-the-art in deformable object collision detection
across a set of simulations of varying complexity. We show
that radial fields outperform traditional distance fields by
more than an order of magnitude, and outperform Spa-
tial Hashing and Bounding Volume Hierarchy accelerated
triangle-based tests by a factor of two.

2 PREVIOUS WORKS

Collision techniques can be separated into two categories:
some operate by clustering primitives to reduce the number
of intersection tests, while others replace the primitives
with data structures on which collision detection can be
performed directly.

2.1 Collision Detection for Deformable Models

Many high-performance collision detection techniques have
been developed, but most are designed for rigid bodies and
include pre-computations that preclude deformable objects.
In this section we review the subset of techniques formu-
lated for deformable models. Teschner et al. [5] provide
a survey of such techniques. We use their classification
and review the latest developments in each area. They
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identify five approaches that fall generally into the two
categories above. Bounding Volumes, Spatial Subdivision &
Stochastic clustering based approaches reduce the number
of intersection tests, while Distance Fields and Image Space
approaches provide alternative representations.

2.1.1 Bounding Volumes
A good overview of Bounding Volume and Spatial Partition-
ing techniques is provided by Ericson [1] and Zachmann
& Langetepe [6]. Bounding Volume techniques partition
primitives into a set of volumes such as boxes or spheres
that support quick intersection tests. This accelerates the
collision detection process by enabling quick culling of large
groups of non-colliding pairs, minimising the number of
expensive per-primitive tests. Bounding Volume Hierarchies
(BVHs) place these volumes into tree structures to accelerate
the process further. The volumes used (e.g. Bounding Boxes
or Spheres) vary as there is a trade-off between fit and the
time taken to compute the volume.

As objects deform BVHs must be updated. Algo-
rithms can be optimised if the temporal behaviour of
the deformable object is predictable. Larsson & Akenine-
Möller’s [7] Dynamic Bounding Volume Hierarchy took
advantage of temporal coherence by dynamically resizing
existing Axis Aligned Bounding Boxes (AABBs). In some
cases BVHs can be constructed for animations ahead of
time [5], [8]. Other techniques rebuild the entire tree in real-
time. Wald [8] presented a Surface Area Heuristic (SAH)
BVH algorithm for use in ray-tracing animated scenes.

For articulated characters, further assumptions can be
made. Mujika et al. [9] used trees of dynamically sized
spheres, assigned using skinning weights. Redon et al. [10]
used swept spheres with trees of Oriented Bounding Boxes.
Easier support for continuous collision detection and self-
intersection are two advantages of BVH approaches over
many alternative representations.

Some authors have mapped construction and refine-
ment to GPUs. Karras & Aila [11] restructured existing
BVHs on GPUs by refactoring isolated tree-lets in parallel.
Lauterbach et al. [12] used space filling (Morton) codes
to quickly sort and cluster primitives on the GPU. He et
al. [13] constructed BVHs on the GPU for models under-
going topological changes (e.g. during crash simulations).
Meister & Bittner [14] applied k-means clustering on the
GPU to build BVHs. This involves iteratively clustering and
merging primitives.

While these offer significant improvement over equiv-
alent CPU based approaches, most of them are designed
for ray-tracing applications, and none claim to support
real-time interaction. Lauterbach et al. [15] extended their
hybrid space filling technique, supporting tighter Oriented
Bounding Boxes for collision and distance queries in surgery
simulations. Tang et al. [16] reformulate the problem as
one of stream compaction (removing non-colliding elements
from a set), which maps well to GPUs and achieves interac-
tive rates for inter and intra-object collision detection for
deformable models.

2.1.2 Spatial Subdivision
Spatial partitioning is similar to bounding volumes, but par-
titions space itself, rather than primitives. Space is divided

using schemes such as Octree or Binary Space Partitioning
trees, hashing, or simple grids. Again there is a trade-off, this
time between traversal complexity, memory and cell size.

Teschner et al. [17] used spatial hashing functions for
real-time collision detection. They achieved performance
approaching that of uniform grids but with a reduced
memory footprint. An advantage of uniform subdivisions
for deformable objects is that they are independent of the
underlying geometric complexity [5]. If the distribution of
geometry is uneven enough however, non-uniform subdi-
visions can be more efficient. Wong et al. [18] presented a
GPU implementation for constructing an adaptive octree
grid that achieved interactive rates. Taking advantage of
the limited deformation of articulated models, Rumman et
al. [19] presented a technique to perform differential updates
of a uniform subdivision using spatial hashing.

2.1.3 Stochastic Methods

Stochastic methods augment existing techniques by elim-
inating tests that have a low probability of success. They
are based on the observation that to the human eye, plau-
sible collision responses are qualitatively indistinguishable
from exact. These approaches can never support exact or
physically correct collision detection without effectively dis-
abling them [5]. While many techniques are not exact, non-
deterministic accuracy is a problem for applications such as
cloth simulation, as penetration artefacts are highly salient
and frame-to-frame differences in collision response can
result in oscillations.

2.1.4 Image Space

Image space techniques project geometry to accelerate either
the broad-phase or narrow-phase collision detection stages.
Teschner at el. [5] list many examples that project geometry
into image space to form depth maps. These maps can
be used for interference testing. Use cases for both stages
have undergone continued development. Faure et al. [20]
projected layers of complex models in three orthogonal axes
to determine overlaps. Jang et al. [21] used the GPU to
quickly cull potentially intersecting pairs of triangles in the
overlapping regions of AABBs computed by the CPU.

Rodriguez-Navarro et al. [22] used the depth maps
to directly resolve collisions between cloth particles and
an articulated character. Multiple viewpoints were placed
around the body to produce depth maps against which
particles were directly tested. This is similar to Vassilev et
al. [23], who used whole body depth maps. The avatars were
animated, but the pose was such that body parts did not
occlude each other.

Image space techniques provide some independence
from underlying object complexity. There is also the po-
tential for improved performance utilising the rasterisation
hardware of a GPU. What is most interesting for deformable
objects however is that these techniques do not require a
pre-processing stage. Our technique is similar to Rodriguez-
Navarro et al.’s. However we use field space rather than
local-image space to gain the advantages of distance fields
and avoid the depth-complexity artefacts present in image
space techniques.
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2.1.5 Distance Fields

A popular volumetric data structure is the Distance Field.
Distance fields store the shortest distances to a surface in
a Cartesian grid [6]. Originally used for rendering [24],
[25], Jones et al. [26] describe many applications of distance
fields from morphology of erosion, to visualisation, and
boolean modelling operations. The advantages of distance
fields over traditional boundary representations is that they
define both the interior and exterior of the space in which
the object sits. This allows the distance of a point to an object
to be rapidly queried, independent of the complexity of the
original geometry [27].

As a variant of voxelisation, distance fields are mem-
ory intensive, especially compared to other volumetric
approaches such as sphere packing (e.g. [28], [29]). As
a corollary, computing the field is both bandwidth and
compute intensive. The naı̈ve way - determining the min-
imum distance between every cell and primitive in turn -
is prohibitively expensive even as a pre-processing stage,
therefore a number of techniques have been developed to
accelerate it. Examples include hierarchical techniques on
the original geometry, various transforms that calculate the
distance of voxels/cells from their neighbours, or propagate
distances like wavefronts. Jones et al.’s survey [26] provides
a comprehensive history of distance fields and a discussion
of field computation techniques for rigid bodies.

Distance fields also have significant advantages how-
ever. They are independent of the original geometry and
allow the collision response to be easily computed along
with detection. Importantly queries are not only fast, but
deterministic. Fuhrmann et al. [30] noted how this could be
advantageous to collision detection, and applied distance
fields for this purpose in particle-based physics simulations.

These advantages have seen authors persist in finding
ways to support deformable models. Fisher & Lin [4] pre-
sented a technique for partial-updates of distance fields
using bounding boxes around local deformations. Updating
distance fields is essentially a 3D rasterisation. Accordingly
a number of techniques have taken advantage of the GPU.
Pantaleoni [31] introduced VoxelPipe - a GPU accelerated
triangle voxelisation pipeline. Gascon et al. [32] used tetra-
hedral mesh rasterisation to update voxel grids during
deformations of volumetric objects. ElBadrawy et al. [33]
introduce a novel alternative called inclusion fields that store
whether a cell is inside or outside the mesh, rather than
the absolute distance. This allows the field to be updated
quickly with a 3D rasterisation, but requires more work to
compute a collision response. McAdams et al. [34] use the
field as an acceleration structure: the nearest surface point is
found in undeformed space, then projected into deformed
space. This avoids re-computation, but introduces potential
error proportional to deformation.

2.2 Radial parameterisations

Volumetric structures are traditionally memory intensive.
Detailed geometry requires high resolution grids for ac-
curate discretization. Adaptive resolutions [2] can improve
memory efficiency, but make dynamic updates even harder.
Like BVH techniques that take advantage of an object’s

topological or skeletal structure, alternative parameterisa-
tions can reduce memory usage [35]. Matching the shape
of an embedded coordinate system to that of the object
being represented uses the parameterisation itself to store
geometric information. Like us, a number of authors have
done this using radial or spherical parameterisations.

Fünfzig et al. [36] used a hierarchy of bounding boxes in
spherical space to partition general models. Wong et al. [37]
performed radial view tests of primitive clusters from ob-
server points on a skeleton. These were designed to filter
potentially colliding primitives in a CPU broadphase test
however, whereas our technique is an entirely alternative
geometric representation.

Carr et al. [38] represented geometry by fitting signed-
distance functions to imperfect 3D scanner data for interpo-
lation and extrapolation, while Koschier et al. [35] fit poly-
nomials piecewise to spatially subdivided Signed Distance
Fields. These representations are highly efficient and have
the nice property of being differentiable anywhere. Fitting
the functions however is non-trivial making the approaches
unsuitable for deformable models.

Moustakas et al. [39] used analytical surfaces (in this case
superquadrics) combined with sampled distances to reduce
the effects of fitting error. The technique was extended by
Vogiannou et al. [40] with multi-layered depth maps, and
spheres in place of superquadrics. Theirs is most similar
of all to ours. Sampled distances make these approaches
more amenable to quick updates than purely analytical
representations. These works however did not explore dy-
namic updates, GPU implementations, or compare their
performance with existing collision detection techniques.

Our exact parameterisation itself may not be new. Kuri-
hara et al. [41] alluded to a cylindrical distance field rep-
resenting the head and shoulders of a human for quick
collision queries in hair simulation. Kurihara et al. however
did not provide any implementation details or performance
comparisons. In this work we explore how a representation
based on this parameterisation can be GPU accelerated in or-
der to support deformable models, and how its performance
compares with existing collision detection techniques.

3 OVERVIEW

We propose that radial fields (distance fields in cylindri-
cal space) can provide the benefits of radial parameteri-
sations, while also being amenable to fast updates on the
GPU, making them suitable for collision detection with
deformable models.

A radial field is defined by an axis in 3D space, divided
into a set of uniform cells across its circumference and
length. The field is computed by transforming faces of a
polygon-soup mesh into 2D cylindrical space around the
axis and rasterising them as if rendering to a traditional
frame buffer. Each cell in the space is ‘rendered’ with the
distance between the face’s plane and the axis. An intersec-
tion is detected by identifying the cell containing a point,
and comparing the distance of this point to the axis with
the stored distance. If smaller than the distance, the point is
inside the mesh, otherwise it is outside.

Objects must be generally cylindrically shaped, or there
will be discontinuities in field resolution across the mesh.
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There is also limited support for non star-convex geometry.
For many assets these limitations will be prohibitive. For
particular assets though, such as humans, animals and some
machines, they are inconsequential while the benefits could
justify an application-specific data structure.

In our expected use-case, a set of radial fields are applied
coincident with the bones of an articulated avatar. The fields
overlap, creating a closed approximation of the surface.
The fields are updated every frame, or when the surface
is expected to have deformed. Together the fields support
fast particle collision detection as shown in Sections 6 & 10.

4 RADIAL FIELDS

We first describe how radial fields are defined and how
to transform between the pertinent coordinate systems in
Section 4. We then describe how the rasterisation pipeline is
re-purposed in Section 5. Finally we describe how collision
detection is performed and how a collision response may be
computed in Section 6.

4.1 Field Definition
A field is defined by an axis (w) in 3D space between two
points A and B (Figure 1b). This axis should follow the
principal 3D component of the mesh to ensure an even
distribution of samples across the surface. Where a mesh is
closed around the end (e.g. the tips of digits or the head) the
axis should pass just beyond this. As will be seen, polygons
perpendicular to the axis are not supported but are handled
gracefully so they do not result in artefacts. In addition to w,
orthogonal normal (u) and tangent (v) vectors are defined.
These vectors synchronise the phase of the polar coordinate
with the Cartesian system.

We define two coordinate systems for radial fields, field
space and cylindrical space. Field space refers to the Cartesian
coordinate system defined by (u, v, w) above. Imagine the
coordinate system such that the z-axis lies along the field
vector (w), the y-axis along the normal vector (u) and
the x-axis along the tangent (v) (Figure 1c). World-space
coordinates can be converted to this space with a typical
transform matrix. From this space they can be converted
into cylindrical space (Equation 1b). Cylindrical space is
defined by two normalised parameters: z, the offset along
the axis, and θ the angle around the axis, from the normal
vector (Figure 1d) (Equation 2).

4.2 Coordinate Transformation
To convert from world-space to cylindrical-space, coordi-
nates are transformed so they align with the basis vectors
defining the cylindrical space (Figure 1a to Figure 1c).
(u, v, w) form the basis vectors for this space, and so a
change of basis matrix (B′) can be defined the typical way.
To convert to field space from object space, first the offset
A is subtracted and the resulting points transformed by the
change of basis matrix.

Fields may be attached to a moving object (Figure 1a).
This must be taken into account when rasterising world-
space geometry (Section 4.3) or detecting collisions with
world-space particles by first removing its transform (Equa-
tion 1a). The final transforms then, to and from world-space,
are given by Equation 1b and Equation 1a, respectively.

TtoF ieldSpace = B′ · TTranslate(−A) · Tobject−1 (1a)

TtoWorldSpace = Tobject · TTranslate(A) ·B (1b)

Once the points are in field space, they can be converted
to and from cylindrical space (Equation 2 and Equation 3).

d =
√
x2 + y2

θ =
1

2π

{
arctan2(y, x) + 2π, if arctan2(y, x) ≤ 0

arctan2(y, x), otherwise

z = z

(2)

x = d cos(θ)

y = d sin(θ)

z = z

(3)

4.3 Articulated Meshes

For articulated meshes, fields are defined coincident with an
avatar’s bones. That is, Tobject in Figure 1 is the bone’s world
transform. On each frame the mesh is baked into world-
space. When the field space transform (Equation 1a) is
calculated during rasterisation it includes the inverse of the
bone transform, removing any deformations due to the bone
itself and leaving only those due to adjacent bones. This
approach is independent of the actual skinning method,
so long as the application maintains an animated skeleton.
Further, it implicitly supports deformations from any other
sources, so long as they can be baked into the mesh.

5 IMPLEMENTATION

5.1 Rasterisation

Updating a field is a 2D rasteriastion problem, only with
a non-traditional projection from 3D to 2D. The GPU’s
hardware rasteriser can be re-purposed for this. A dedicated
shader updates the fields by rasterising the geometry into
cells and computing a new distance value for each fragment.
A set of indices are prepared with each one containing the
vertex id and the field id to which it belongs. Vertices may
appear in multiple fields, with a different relative position
in each, through being referenced by multiple indices. We
assign vertices to fields based on skinning weights.

For each field, Equation 1a is computed. This along
with the indices and vertices are passed to the distance
shader to begin updating the fields. The vertex shader trans-
forms the vertices into field space (Section 4.2). A geometry
shader transforms these into cylindrical coordinates (Sec-
tion 4.2), performing wrapping and filtering as appropriate
(Sections 5.1.1, 5.2.2), before passing them to the rasteriser,
which renders the distances (Section 5.2).
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(a) World-space. Tobject the
transform of the object the
field is defined relative to.

(b) Object-space. A & B are
points defining the start and
end of the field axis. u, v, w are
basis vectors.

(c) Field-space. z has been nor-
malised during change of ba-
sis.

(d) Cylindrical space

Fig. 1: Illustration of how the radial field exists and is parameterised within pertinent coordinate systems.

5.1.1 Wrapping
A complication of spherical coordinate systems is that un-
like Cartesian systems, one or more axes will wrap around.
While in most cases this does not present a problem, it may
for the triangle filling algorithm. The rasteriser on a typical
GPU is not designed to wrap around, and if a triangle
crosses the ‘seam’ (an edge of the rasteriser’s coordinate
system) will rasterise in the wrong direction. To facilitate
a wrap we use the technique described by Tarini [42], to
whom we refer the reader for a more detailed explanation
of this problem.

We say the device coordinates used by the rasteriser
are (θ1, z1). These are θ and z, respectively as described in
Section 4.2. We also add two additional parameters (θ2, z2),
to store the coordinates on the cylinder. Typically, (θ1, z1)
and (θ2, z2) will be identical. If a primitive crosses a seam
however, we apply the following operations (Equation 4) to
θ1 and z1 of all the primitive’s coordinates.

θ1 = frac(θ1 + 0.5)

θ2 = frac(θ2 + 0.5)− 0.5
(4)

This has the effect of shifting all θ1 by 180o so that
the hardware rasteriser will fill the triangles in the correct
direction. θ2 however has been transformed such that the co-
ordinate system is now defined between −0.5 and 0.5, with
the seam at 0. The hardware rasteriser correctly interpolates
(θ2, z2) between negative and positive, so the final step is to
check if θ2 < 0 in the fragment shader, and if so convert it
back into [0, 1] with the operation θ2 = frac(θ2 + 1).

5.2 Distance Computation
The rasteriser will linearly interpolate the vertex parameters
for each fragment. The distance cannot be interpolated this
way however because in the embedded polar coordinate
system it is equivalent to interpolating across the arc con-
necting the two sample points, not the straight line between
them. Instead, for each fragment we compute the distance
value using a ray-plane intersection. The test is performed
in field space, with o = (0, 0, z) and dir = (x, y, 0). (x, y, z)
being recovered as per Section 4.2. The origin and normal of
the triangle plane are computed in the geometry shader and
passed to each fragment.

5.2.1 Non-Convex Geometry
If multiple primitives overlap when viewed from the field
axis, they will be projected into the same cell. We do not
support this. To do so would make the method more compli-
cated, while character meshes rarely have non star-convex
geometry that must be represented in a single field. Instead
we use depth-masking to store only the closest geometry.
This is based on the assumption that all geometry represents
the surface of the mesh, and so all but the nearest over-
lapping primitives must represent the surface of another
element that will have its own field.

5.2.2 Quantisation Artefacts
One of the problems resulting from not interpolating dis-
tance values are artefacts resulting from quantisation in the
ray-plane distance test. The quantisation in this case is not
in the computation itself, but rather in the rasterisation. If
a face is almost perpendicular to the axis normal, small
changes as a result of quantisation to the resolution of
the field can result in large distances. To avoid this we
filter distances per-fragment based on the exact distances
computed at the three face vertices.

If a triangle crosses the axis of the field, there is no way
to rasterise it correctly and it is culled. This is done by the
geometry shader by projecting the vertices into the XY plane
in field space, then checking the face against the origin using
edge functions. Since the origin is (0, 0), we only have to
compute the constant terms of the edge functions. Triangles
that are back-facing or almost perpendicular are culled as
well, based on a dot product with the axis.

5.3 Erasing the fields
The fields must be erased each frame. While they are over-
ridden, there is no guarantee that a particular cell will be
occupied from one frame to the next as the mesh deforms.
If the field is not erased, old samples may be left behind.

6 COLLISION DETECTION AND RESPONSE

The collision detection and response algorithm will depend
on the physics simulation. We expect the main applica-
tion to be cloth and particle simulations, so demonstrate
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particle collision detection and response. We designed our
collision detection system to work with the cloth simulation
described in Section 8. This is a position based dynamics
system. That is, the collision detection system receives a
set of current (q) and predicted (q1) particle positions. The
predicted positions being where the particles would be at
the end of the time-step if there were no collisions. The
collision detection system updates the predicted positions
to account for any collisions, and returns them to the simu-
lation. The response involves moving the positions in order
to resolve any intersections. Other systems, such as force-
based systems, may compute a force or impulse instead.

6.1 Broadphase

We implemented a broadphase stage where each radial
field was approximated by a cylinder, with the radius set
at design time. The broad-phase stage had no radial-field
specific functionality and could be swapped out for any
other implementation.

6.2 Pseudo-Continuous Collision Detection

Continuous Collision Detection (CCD) refers to techniques
designed to detect collisions with sub-timestep accuracy
in order to prevent artefacts such as tunnelling. CCD on
distance fields is difficult because they contain no inherent
information about the nature of the geometry. A naı̈ve
implementation would compute the motion of a particle
relative to the field during a timestep, and check each
intersecting cell. For non-trivial resolutions this is band-
width intensive. Xu and Barbic [43] presented an algorithm
accelerating CCD for distance fields using hierarchical data
structures. The equivalent for our field would be a mip-
map. These need to be computed ahead of time and so are
not applicable here.

We perform Pseudo-Continuous Collision Detection
(pCCD) by approximating the relative motion between a
particle and a field. The vector (Vf ) is defined in field
space, from the current particle position (q) relative to the
previous field transform, to the predicted particle position
(q1) relative to the current field transform (see Figure 2). This
includes the motion of both the particle and the field. We
walk the vector from start to end in n substeps, performing
an intersection test at each point. The point of the first inter-
section is considered to be where the particle penetrates the
field and is used for subsequent collision response compu-
tations. Another possibility would be to use a line-drawing
algorithm in cylindrical space. The discretization artefacts
that prevent our pCCD implementation from being true
CCD come from the linearisation of rigid body rotations,
and from marching the trajectory in discrete steps.

6.3 Collision Response

To detect collisions, we approximate the surface at a sample
point in field space, and compute the signed point-plane
distance. If the point is under the plane, it is intersecting.
The normal of the surface approximation is used to compute
the response.

Fig. 2: pCCD is performed in field space. The relative
particle positions include both rigid radial field transforms
and particle motion.

Fig. 3: Diagram of a radial field cell, showing how the
normal is computed for each region, and how those regions
are defined with respect to sample point q. v0, v1, v2, v4 are
the positions of the sample points at the corners of the cell
in whatever space the surface is being approximated. q is
defined in cylindrical space relative to the cell origin.

6.3.1 Surface Approximation

Fuhrmann et al. [30] used a trilinear interpolation of 8 corner
cells to approximate the surface at any location in their
field. We approximate the surface by implicitly bisecting
each cell into two triangles. The triangle containing the
sample point is identified by comparing on which side of
the line x = y the point sits. The vertices for that triangle
are retrieved and the plane computed from its edges, as
shown in Figure 3. While character meshes are typically
closed, on a per-field basis the surfaces may be open. To
avoid introducing artefacts at the edges, if any of the vertices
have a depth of zero the entire cell is considered empty.

The surface could be approximated in any space by
transforming v1, v2, v3, v4 into that space (Section 4.2) be-
fore taking the cross-product. If the transformation is done
in field space, the normal will be deformed when it is
transformed back into world space however, due to the scale
in the field space transform. We compute and pass a dedi-
cated matrix to transform the normals to world space for
the purposes of surface reconstruction: TnormalToWorldSpace

which is given by TtoWorldSpace
−1T . In theory, this is a

requirement whenever normals are transformed in any sys-
tem, but it is more likely to be of consequence in radial
field implementations because they typically include non-
uniform scales.
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6.3.2 Response
Our collision response is based on that of Fuhrmann et
al. [30], modified slightly to support pCCD. The motion
below surface (Vp) is determined by the pCCD stage (Equa-
tion 5, where p is the intersection point computed from the
distance field). This is decomposed into components normal
and tangential to the surface (Equations 5 & 7). The normal
component Vn moves the particle to the surface, while the
tangential component Vt emulates friction with coefficient µ.

Vt cannot be simply subtracted from the particle motion.
This is because the penetration point p is approximate, with
quantisation error introduced both in the pCCD stage and
by the sampling of the field. Vt therefore may have a greater
magnitude than Vq where Vq = q1 − q, moving a particle
farther than its predicted motion even when the collider is
stationary. To avoid this, we calculate a new value ptrue
along Vq that is either (a) at the intersection of Vq with
the surface, or (b) the original length of Vq if Vq does
not intersect the surface (e.g. q starts below the surface)
(Equation 9). With this new point we can calculate a Vt that
is limited to the particle’s true motion below the surface
(Equation 10). The response is applied to q1 to update the
predicted position (Equation 11) and this is passed back to
the cloth simulation.

Vp = q1 − p (5)

Vn = −n 〈Vp|n〉 (6)

Vt = µ · (Vp − Vn) (7)

dp =
〈n|o− q〉〈
n|V̂q

〉 (8)

ptrue = q + V̂q ·max(0,min(dp, ‖Vq‖)) (9)

Vt = u · V̂t · ‖(q1 − ptrue)− 〈q1 − ptrue|n〉 · n‖ (10)

q1 = q1 + Vn + Vt (11)

As Vp includes the predicted particle motion, this ap-
proach both prevents penetrations and corrects existing
ones. Where a particle crosses the surface during a timestep,
the functionality is the same as the repulsion-based tech-
nique described by Bridson et al. [44] and Bender and
Schmitt [45]. While we have adapted Fuhrmann et al.’s
response for pCCD, there is nothing specific to radial fields
and the response could be modified or replaced as necessary.

7 IMPLEMENTATION DETAILS

We demonstrate the practicality of our technique by imple-
menting it in Unity 5.4 and integrating it with a GPU accel-
erated cloth simulation. Our implementation uses compute
shaders to bake skinning deformations into world space.
The fields are cleared by compute shaders. We use the
image-rasterisation pipeline, rather than our own algorithm
in a compute shader, although that would also be feasible.

Our implementation targets SM 5.0. The shaders are
written in HLSL within Unity’s ShaderLab syntax. The field
is stored in a 32-bit Compute Buffer and initialised to 232

each frame. To perform the depth-masking described in
Section 5.2.1, the buffer is written in the pixel shader using
atomic InterlockedMin() operations. The buffer is bound as
a UINT Unordered Access View. Since d is always positive,
the floating point representation will interoperate with the
atomic’s integer comparators, so InterlockedMin() can oper-
ate on the field directly after calling asuint() on the depth
values. The buffer is bound as a floating point resource to
the Compute Shaders for collision detection and response.

8 CLOTH SIMULATION

To demonstrate the utility of our technique, we integrated
it into a cloth simulation system. Unity has cloth simulation
abilities but they are limited and not accessible for modi-
fication. We therefore built a new cloth simulation system
based on Position Based Dynamics (PBD) [46]. PBD systems
operate on the positions of particles directly, rather than
their forces or velocities. During a simulation step, particle
positions are predicted independently based on external
forces and inertia. The system then finds the nearest con-
figuration that solves the constraints on the particles. In our
system, collision constraints are then solved next. Finally
new velocities are computed for each particle based on the
change in position during the time-step. The approach is
fast and unconditionally stable. Good surveys of PBD are
available, for example Bender et al. [47], [48].

There are different approaches to find the configuration
that best solves the constraints. We project each particle
into a rest state for each constraint individually, based on
constraint weights and strain [49]. We then perform “smart
averaging” between them. This is based on the approach of
Bouaziz et al. [50] and Weiler et al. [51]. Our cloth system
operates entirely on the GPU using compute shaders.

Our cloth simulation is not as optimised as mature
systems (e.g. NVidia’s FleX). As can be seen in Section 6
however, the interface between the radial field system and
the simulation is narrow and we would expect the technique
to integrate easily with other particle-based simulations.

9 PERFORMANCE COMPARISON

We compared our implementation with popular techniques
for deformable object collision detection (Section 2.1). Three
GPU-accelerated techniques were implemented based on
the state-of-the-art and profiled against the radial fields
implementation.

Real-time collision detection operates in two stages, a
filtering stage in which potentially colliding primitives are
enumerated (broadphase) and a second stage in which exact
intersection tests are performed and the responses com-
puted (narrowphase) [52]. The distribution of computational
load between the them can vary dramatically depending
on the data structure. For example, triangle based collision
detection requires a point-triangle narrowphase test with a
highly efficient broadphase, due to the typically high num-
ber of triangles. Distance fields support the narrowphase
directly, and due to their low number can have very simple
or no broadphase (Section 6.1).
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Since the stages cannot be decoupled when comparing
heterogeneous narrowphases, we show the total collision
detection and response times in Table 1. When considering
point-triangle intersections, there are many trade-offs in
robustness and performance. For the partitioning schemes
(spatial hashing and BVH), we opted for a simple discrete
point-triangle test, with a response similar to that described
in 6.3.2. It is not robust enough to be used in practice, but it
presents the best case scenario for these techniques in terms
of performance.

9.1 Bounding Volume Hierarchies

Many works use GPUs to accelerate BVH construction [12],
[14] and traversal [53]. We base our implementation on
Lauterbach et al. [15] and Tang et al. [16], as these are
concerned with deformable objects. We use agglomerative
clustering [54], [55] to compute a binary-tree of AABBs.
We then flatten this into an 8-ary tree [15] of uniform
depth. On each frame, the AABBs are re-fitted. A single
Compute Shader updates the whole tree bottom-up using
for-loops, thread-masking and global memory synchronisa-
tion calls. Traversal is facilitated by work-queues based on
Append/Consume buffers. For collision detection, jobs are
created for every particle and the first node in the tree. A
job consists of checking one particle against one volume. If
penetrating, jobs are added for that particle and all child
nodes, to be processed in a subsequent invocation. A single
call processes all jobs for each level. The depth of the tree
is known, so the CPU can make a fixed number of dispatch
calls resulting in a queue that contains only leaf nodes. For
these, a different shader performs vertex-triangle intersec-
tion tests and the collision response. Dispatch parameters
are computed in Compute Shaders and used for indirect
dispatch calls, allowing the implementation to run entirely
on the GPU.

9.2 Spatial Hashing

Our spatial hashing implementation is based on that of
Rumman et al. [19]. We use a triangle-parallel 26-separating
computational voxelisation algorithm [56], [57] to write the
spatial hash for each primitive on each frame. Rumman et al.
perform only self-intersection and so can rely on temporal
masking. We cannot make the same assumptions and so
instead clear the cell-counts on each frame.

9.3 Distance Fields

Our Distance Field implementation is based on that of
Fisher & Lin [4], updating a narrow band around an ob-
jects surface. We do this by computing an AABB around
each primitive and performing a brute-force closest-point
computation, such as for Yin et al’s. [58] type-1 points. A
depth-mask is used to select the closest distances for each
cell, and it is cleared each frame. An ostensible optimisation
would be to use voronoi regions such as prisms to update
only changed cells. We attempted this but found that the
volumes leaked, and are unaware of any works that have
successfully taken this approach with deformable triangular
meshes.

Fig. 4: Avatar and Cloth Models (not to scale) used during
profiling. For each avatar Low, Medium and High detail
versions were used.

9.4 Models and Configuration
The test models are shown in Figure 4. The models were
optimised and subdivided to create configurations of vary-
ing complexity. Radial Fields, Distance Fields and Spatial
Hashing had a spatial resolution of 1 cm, with the ex-
ception of Distance Fields in conditions 9 & 10, which
had a resolution of 3.5 cm. The Male and Female Human
avatars were derived from the same base model and so have
identical topologies, differing only in shape. Radial Fields
and Distance Fields were applied per-bone, while Spatial
Hashing and BVHs operate directly in avatar object or world
space. Avatars were equipped with typical game bone rigs
consisting of 50-60 bones. The Human models were ∼1.6m
tall, while the Ogre was ∼4m tall.

Radial Fields and Distance fields were fitted to the
bones automatically, such that they encompassed all vertices
skinned to their bone. The spatial hash had a table size of
2564327 and a cell size of 20 based on manual tuning to
avoid overflowing cells.

9.5 Profiling
Measurements were taken with the Unity Editor profiler and
include only the time spent in functionality exclusive to the
techniques. For example, skinning time was not included.
Profiling was performed on a Windows 7 PC with a 3.4 GHz
i7 and an NVidia GTX1080.

All tests used the same animation sequence, lasting ∼10
seconds and consisting of some extreme locomotion and
gymnastic motions that may be encountered in a typical 3D
video game. For consistency and stability, extensive use of
attachment points were made. These were implemented as
soft constraints however, so all such particles still partici-
pated fully in collision detection and response. Our results
are shown in Table 1.

10 RESULTS

10.1 Computation Time
We consider total computation time to be the sum of the
structure update and collision detection & response times.
By this metric, we can see from Table 1 that radial fields
match or exceed all other techniques. Radial fields offer an
average speed-up of 27x compared to traditional distance
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fields with narrow-band updates, and 2.9x & 4.5x compared
to per-primitive tests accelerated with BVHs and spatial
hashing, respectively.

Each technique however has different dependencies, and
therefore will scale differently. For example, Distance Fields
and Radial Fields are highly dependent on the volume of
the avatar and spatial resolution. This is because they are
bound by the time to ‘render’ the cells, and the cell count
is dependent on these parameters. This can be seen most
clearly in Conditions 1 & 2 for Distance Fields, where a
reduced number of triangles results in a longer computation
time, as their larger size means a less efficient approximation
of the narrow band. Distance Field’s memory and compu-
tation times increase severely with resolution or volume. In
Conditions 9 & 10 we had to reduce the spatial resolution of
the distance field to 3.5 cm in order to keep the simulation
stable. As can be seen, radial fields are also sensitive to
these parameters, but their demands increase at a lower
rate. BVHs on the other hand depend only on the triangle
count. This can be seen in Conditions 9 & 10 vs. 7 & 8,
where the metric trajectories with respect to triangle count
are inverted. We expect that BVHs would quickly begin
to outperform the other techniques as spatial resolution
increased. The proportion of the time spent clearing the
Distance Field mask was < 0.5% of the total computation
time in every condition.

Spatial Hashing should in theory have similar perfor-
mance to Radial Fields with a constant offset for the point-
triangle tests, since it voxelises only the surface with a
subdivision resulting in a similar number of cells. In practice
the performance is poorer. This is likely due to the 3D raster-
isation being less efficient than the 2D rasterisation. Radial
Fields take advantage of the GPU’s hardware rasteriser
which will have many optimisations, such as hierarchical
region testing, that improve performance [59]. For interests
sake, it took 4-5x longer to rasterise the faces of the model
to the radial fields, than it took to render them to the screen.

All techniques run entirely on the GPU. Though with
the exception of BVHs, all techniques require transforms
to be extracted from the scene graph and sent to the GPU
each frame. Radial Fields and Distance Fields, which are
assigned per bone, are therefore more CPU intensive than
Spatial Hashing (with only one pair of transforms) or BVHs
(with none). We do not report these times because there is no
technique specific functionality involved and the overhead
is trivial.

10.2 Collision Detection

Our Distance Field implementation (Section 9.3) used a
uniformly-sampled linear signed distance field, updated
based on the AABBs of deforming primitives. That is, the
entire grid was initialised even though only a narrow-
band was updated each frame. This implementation, like
Radial Fields, completely decouples the intersection tests
from the underlying model - as can be seen from the
collision detection times which are directly proportional
to the particle counts. Spatial Hashing Collision Detection
(CD) times depend on the probability of a hash collision,
and therefore on model complexity, spatial resolution and
table properties. BVHs CD depends on the tree itself and

the number of particles, and so is loosely coupled to model
complexity.

Distance Field intersection tests are the least computa-
tionally intensive and this is reflected in the CD times. They
are the most bandwidth intensive however needing 8 sam-
ples per tri-linear interpolation for surface reconstruction.
Radial Fields require fewer - 3 - memory reads per recon-
struction, but converting the samples into Cartesian space
is more expensive than Distance Field’s direct interpolation.
Both techniques spend less time in the CD stage than Spatial
Hashing or BVHs. Radial Fields and Distance Fields, due to
their regular access patterns, scale more predictably with
particle count than do Spatial Hashing or BVHs. However,
BVHs can cull large numbers of potential tests early on,
resulting in improved performance in larger simulations.
Compare BVH Condition 10 to 9, which is only fractionally
longer despite processing 3x the number of particles.

10.3 Memory
Spatial Hashing is the most memory intensive technique.
The table size and cell size must be sufficiently large to avoid
cell overflows, or collisions may be missed. Expanding cells
on demand is straightforward on the CPU, but not the
GPU. The other techniques have comparable requirements.
BVHs have an advantage with larger, but lower resolution
models. For smaller models however the distance field
based approaches outperform BVHs. The fields have many
more elements than BVHs do nodes, but the nodes are
larger. Distance fields scale poorly with volume. Readers
should recall that we had to decrease the resolution for
Distance Fields in Conditions 9 & 10. If they remained at
1 cm like the other techniques, the fields would be over
124 Mb, compared to Radial Field’s 3.16 Mb. While there
are more efficient adaptive representations, these would
prevent dynamic updates.

11 DISCUSSION

11.1 Traditional Distance Fields
We expected distance fields to be outperformed, but were
surprised by the extent. Since Fisher & Lin [4], authors
have worked to improve initialisation times and memory
requirements [2], [60], but with the exception of Gascon
et al.’s [32] technique for tetrahedral meshes, there are
no fundamentally new, real-time techniques for deforming
them. We suggest this is due to the lack of a reliable voronoi
technique for deforming triangular mesh models. While
there are techniques for conservative-voxelisation [61], these
typically involve over-scanning in some sense, meaning
implementations must fall back on a depth mask. Tech-
niques such as fast-marching [62] improve performance of
the closest-point computation itself, but at a cost of accuracy.

11.2 Continuous Collision Detection
Collision detection techniques vary not only in performance,
but also in feature-set. Spatial Hashing is one of the fastest
techniques, but is one of the most difficult with which to
support CCD. The band of voxels that are occupied is nar-
row compared to distance fields. A reliable implementation
would need to rasterise the prism of a deforming triangle,
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GPU Computation Times (ms) and Memory (Mb)
Models Radial Fields Distance Fields Spatial Hashing BVHs

C. Avatar Cloth Triangles Particles Structure CD Structure CD Structure CD Structure CDMem. Upd. Mem. Upd. Mem. Upd. Mem. Upd.
1 Male Low Trouser & Top Low 10827 1297 0.21 0.06 0.04 2.37 5.18 0.03 205.42 0.93 0.08 0.95 0.03 0.19
2 Male Low Trouser & Top Med 10827 4825 0.21 0.07 0.09 2.37 5.18 0.05 205.42 0.86 0.12 0.95 0.03 0.34
3 Male Med Trouser & Top Low 37744 1297 0.21 0.06 0.04 1.31 2.60 0.02 205.42 0.26 0.11 3.96 0.11 0.24
4 Male Med Trouser & Top Med 37744 4825 0.21 0.06 0.08 1.31 2.54 0.04 205.42 0.26 0.16 3.96 0.10 0.42
5 Female Med Overcoat Med 37744 5118 0.21 0.05 0.07 1.01 2.95 0.06 205.42 0.23 0.11 3.96 0.10 0.32
6 Female Med Overcoat High 37744 13090 0.21 0.05 0.16 1.01 2.94 0.11 205.42 0.23 0.14 3.96 0.09 0.61
7 Female High Overcoat Med 64176 5118 0.20 0.08 0.07 1.31 3.83 0.05 205.42 0.23 0.14 6.55 0.15 0.36
8 Female High Overcoat High 64176 13090 0.20 0.08 0.17 1.31 3.84 0.12 205.42 0.23 0.14 6.55 0.15 0.75
9 Ogre Cape Med 17211 8562 3.16 0.10 0.11 3.01 9.35 0.07 205.42 1.74 0.10 1.38 0.04 0.27

10 Ogre Cape High 17211 29737 3.16 0.11 0.31 3.01 9.20 0.21 205.42 1.77 0.22 1.38 0.03 0.49

TABLE 1: Memory requirements (Mem.) and execution times of the structure update (Upd.) and collision detection &
response (CD), for the 10 test conditions (C.).

and then march along the particle motion through the grid.
BVHs can perform continuous intersection tests against
their volumes, and the underlying primitives in one step.
Of the techniques that require marching, radial fields have
the best approximation because they implicitly delineate the
object interior, reducing the likelihood of tunneling.

11.3 Ease of Implementation
Ease of implementation is subjective, but broadly, the num-
ber of heterogeneous functionalities required to implement
radial fields is lower than BVHs but higher than distance
fields and equivalent to spatial hashing. The unambiguous
delineation of the mesh interior is a significant benefit
when writing collision detection algorithms. Narrow-band
distance fields are the only other technique to offer this, and
they do so with caveats - for example, samples may become
outdated. With regards to tunable parameters, Radial Fields
and Distance Fields have only resolution to select, which is
physically based. BVHs have no tunable parameters. Spatial
Hashing does not need to be configured per-bone like Radial
Fields and Distance Fields, but requires deeper knowledge
in order to choose optimal table parameters.

11.4 Limitations
Radial fields trade off generality of techniques such as hp-
adaptive distance fields [35], in favour of GPU accelera-
tion, but this imposes limitations. Radial fields can only
support star-convex geometry. For some elements, such as
non-articulated hands, or a character’s ears, a single field
could approximate a convex hull. In most cases though
overlapping geometry must be covered with multiple fields.
Radial fields introduce quantisation noise. This is dependent
on the resolution of the field. Previous analyses of distance
field fidelity are directly applicable here. Radial fields, like
other grid based structures, have difficulty with continuous
collision detection. We present pCCD, which does not guar-
antee robustness. A robust CCD implementation is possible
with a marching algorithm that visits every cell, but at a cost
of performance.

12 FUTURE WORKS

Radial field implementations are complicated by
workarounds for the vulnerability in the ray-plane distance

test to rasterisation quantisation error. An alternative
to the ray-plane distance test would be to compute the
distance using the polar straight line equation, which can
be derived from the Cartesian line equation (y = mx + c)
and Equation 3. The coefficients for this could be computed
in the geometry shader and passed to the fragment shader.
However, because the triangles are defined by three edges,
the system would need to interpolate between three sets of
coefficients, and how this would be done is not clear.

13 CONCLUSION

We have presented Radial Fields, distance fields parame-
terised in 2D cylindrical space rather than 3D Cartesian
space. Radial fields are more application-specific than tra-
ditional distance fields, but for these applications they offer
substantial benefits. We profiled our radial field imple-
mentation across a number of models, demonstrating sub-
millisecond computation, collision detection and response
times for simulations with a range of complexities.

Radial fields outperform traditional distance fields by
over an order of magnitude. They also outperform triangle-
based tests with broadphase stages based on the state-of-
the-art in GPU-based spatial hashing and bounding volume
hierarchies. Radial fields scale differently to these tech-
niques however, and which is most suitable will depend
much on the application. Radial fields use the hardware
rasteriser of the GPU, making them easy to implement by
taking advantage of the existing, highly optimised, raster-
isation pipeline. Radial fields implicitly define the mesh
interior, making them a cost-effective way of describing
volumes. This simplifies collision detection and response
algorithms, and makes them more robust to large time-
steps. While the implicit volumetric representation reduces
the likelihood of tunneling compared to discrete triangle-
based tests, achieving robustness comparable to continuous
triangle-based tests could become very bandwidth intensive
depending on field resolution.

To demonstrate the practicality of radial fields in real
applications, we created our test implementation in Unity
5.4 and integrated it with a position-based dynamics cloth
simulation. In the future, radial fields could be improved
by replacing the ray-plane distance test in the rasterisation
stage with the polar straight line equation, making imple-
mentations more robust to rasterisation quantisation and
even simpler to implement.
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[61] Hasselgren, Akenine-Möller, and Ohlsson, “Conservative Raster-
ization,” in GPU Gems 2. Reading, MA: Addison-Wesley, 2005,
pp. 677–690.

[62] Marchal, Aubert, and Chaillou, “Collision between deformable
objects using fast-marching on tetrahedral models,” Proceedings
of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation - SCA ’04, vol. i, no. January, p. 121, 2004.


