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Abstract
We demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming
amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype
amorphous (a)-HfO2 insulator obtained from exhaustive photo-depopulation experiments
demonstrate electron states in the energy range of 2–3 eV below the oxide conduction band. These
energy distributions are compared to the results of density functional calculations of a-HfO2 models
of realistic density. The experimental results can be explained by the presence of intrinsic charge
trapping sites formed by under-coordinated Hf cations and elongated Hf–O bonds in a-HfO2. These
charge trapping states can capture up to two electrons, forming polarons and bi-polarons. The
corresponding trapping sites are different from the dangling-bond type defects responsible for
trapping in glass-forming oxides, such as SiO2, in that the traps are formed without bonds being
broken. Furthermore, introduction of hydrogen causes formation of somewhat energetically deeper
electron traps when a proton is immobilized next to the trapped electron bi-polaron. The proposed
novel mechanism of intrinsic charge trapping in a-HfO2 represents a new paradigm for charge
trapping in a broad class of non-glass-forming amorphous insulators.

Keywords: amorphous HfO2, exhaustive photo-depopulation spectroscopy, charge trapping,
DFT calculations, intrinsic electron traps

(Some figures may appear in colour only in the online journal)

1. Introduction

Thin oxide films grown on various surfaces via oxidation and
deposition are ubiquitous in environment and technologies.

Their structure is strongly affected by interfaces, and differs
from that of bulk materials, resulting in a number of unusual
electrical properties [1]. Importantly, such films can grow
(poly)-crystalline or amorphous, depending on the deposition
and annealing conditions. Amorphous oxide films are used in
a broad variety of applications requiring ever reducing oxide
thickness combined with mechanical flexibility and relia-
bility. In particular, few-nanometer thin amorphous oxide
insulators are attracting significant interest due to their
applications enabling electric field control in nano-electronic
devices [2–6]. Unlike the SiO2 traditionally employed in
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opto- and micro-electronic technologies, most oxides, such as
the widely used ZrO2, HfO2, Al2O3, MgO, ZnO, TiO2 and In-
Ga-Zn-O, are non-glass-formers. Few-nm thick films of these
oxides are metastable, and prone to structural changes in the
course of technological processing and operation. However,
little is still known about how their structure affects the key
property of the insulating material required to enable the
electric field control, i.e. the ability of the oxide film to remain
electrically neutral under bias application and carrier injection
conditions. For example, early concerns that leakage current
densities may be higher across polycrystalline dielectrics than
in amorphous films of the same composition because defec-
tive grain boundary regions may enhance electronic conduc-
tion [7, 8] prompted wide applications of amorphous films.

The reduced density and disorder in amorphous oxide
films both lead to a significant fraction of ions having reduced
coordination with respect to bulk crystalline materials [9–13].
Therefore, a much better studied nano-crystalline form of
these oxides can provide a fruitful analogy to draw upon for
clues regarding the behavior of ultra-thin amorphous films.
For example, no electron or hole trapping is observed in the
bulk of non-defective crystalline MgO [14]. However, both
electrons and holes can be captured at low-coordinated corner
and kink sites at surfaces of MgO nano-crystallites, due to the
reduced Madelung potential [15]. Electrons and holes form
shallow polaron states in the bulk of crystalline ZrO2, HfO2

[16, 17] and ZnO [18], but low-coordinated sites at surfaces
of these materials form much deeper trapping states [19, 20].
Can the lower coordination of ions in the amorphous phase of
such oxides also lead to intrinsic electron or hole trapping in
deep states? The results of theoretical calculations of amor-
phous a-HfO2 support this hypothesis [21]. However, proving
the intrinsic nature of electron traps in nm thick amorphous
films is challenging, and requires synergy between theory and
experiment.

Here, we combine experimental (exhaustive photo-
depopulation spectroscopy, EPDS, with improved resolution)
and theoretical (Time-dependent Density Functional Theory,
TD-DFT) methods to demonstrate that electronic gap states
responsible for a deep electron trapping in prototype a-HfO2

insulating films are intrinsic, and originate from lower coor-
dination of ions and elongation of bonds in the amorphous
phase of a-HfO2. HfO2 films are chosen here due to the
availability of synthetic oxide layers of highest purity, which
is vital in studying their intrinsic properties, and due to their
practical importance in microelectronics and in a growing
range of other applications. In particular, HfO2 and HfSixOy

are the primary contenders to replace SiO2 in a variety of
nano-electronic devices, ranging from deep-scaled transistors
to DRAM [5, 6] and non-volatile memory cells [22, 23], and
—in combination with metal gate electrodes—they are
already used in the first generation of such devices [24]. We
propose that the presence of low-coordinated ions in amor-
phous oxides with significant p and d character of electron
states near the conduction band bottom (CBB) can lead to
similar electron trapping and significantly affect character-
istics of nanodevices.

2. Methodology

2.1. Experimental

The experimentally studied samples were prepared by ALD
of HfO2 on thermally oxidized (100)Si wafers by production-
grade atomic layer deposition (ALD) process using HfCl4 and
H2O precursors at 300 ◦C. Thicknesses of SiO2 and HfO2

were 7.5 and 20 nm, respectively. Some samples were sub-
sequently annealed for 15 min in N2 (1 atm) at 1000 ◦C.
Metal-oxide−Si (MOS) capacitors were completed by
thermo-resistive evaporation of semi-transparent electrodes
(13 nm Au) of 1 mm2 area on the oxide stack, excluding
exposure of the insulating layers to ionizing radiation.

Energy distribution of trap levels in the HfO2 band gap
was determined by using exhaustive photodepopulation
spectroscopy (EPDS) which is based on the phenomenon of
photoionization (or photodepopulation) of defect states
[25–27]. EPDS employs measurements of the insulator
charge using capacitance−voltage (CV) curves—and, more-
over, allows the photo-depopulation to reach saturation, i.e. to
exhaust all charge carriers available for optical excitation at a
given photon energy hν. By starting from a low photon
energy hν and then increasing it by a small energy step δhν,
the saturation of the de-trapping kinetics within each photon
energy interval [hν; n d+h hν] signifies that there is virtually
no electron left available for optical transitions to the CBB in
this energy window. The amount of charge de-trapped during
the next step will then exactly correspond to the density of
occupied electron states with energy levels within the energy
interval δhν. By performing the EPDS at incremental photon
energies one can find the distribution of the electron states
across the insulator band gap [25–27]. Compared to previous
experiments [28], the modified optical scheme of the excita-
tion source enabled improvement of the energy resolution to
200 meV. As a result, we succeeded in resolving two spectral
components of the trapped electron energy distribution dis-
cussed below.

EPDS measurements were carried out at room temper-
ature in the spectral range of 1.25< n <h 6.5 eV, using an
energy increment δhν of 0.2 eV (with constant wavelength
resolution of 10 nm) under +2 V bias applied to the top metal
electrode [28]. The exposure time per step was 1 h, which
guarantees removal of at least 90% of charge available for de-
trapping at every nh as monitored by 200 kHz CV curve
measurement.

After analyzing an as-fabricated (pristine) MOS capa-
citor, the latter was injected with electrons or holes by
applying a 20-ms long ‘write’ voltage pulse to the metal
electrode. The pulse amplitude Vg was increased in steps of 1
or 2 V to achieve different trapped-charge densities. Electron
injection experiments on the control MOS capacitors with
only one layer of 7.5 nm thick SiO2 insulator (no HfO2) under
the same strength of electric field as in SiO2/HfO2 stacks
indicate that trapping of negative charge in silicon oxide is
negligible. Therefore, the observed electron traps should be
located in HfO2. Upon charging, the capacitors were kept in
darkness for 48 h, to allow for completion of thermal
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de-trapping before exposure to light starting from the lowest
photon energy of 1.25 eV. After each illumination step, the
charge variation in the insulating stack was monitored using
CV curves. The corresponding charge density ΔQstack was
calculated from the shift of the flatband point assuming uni-
form distribution of traps across the HfO2 layer. The latter
assumption is supported by the downscaling of the trapped
electron density with reducing HfO2 thickness, as verified by
experiments on MOS capacitors with 5 nm thick HfO2

overlayers. Finally, the spectral charge density (SCD) was
calculated by normalizing the density of the re-charged cen-
ters to the spectral step width δhν. More detailed description
of the measurements can be found in the literature [25–28].
Importantly, all trapped electrons can be removed from the
HfO2 layer in the course of EPDS, indicating that traps ana-
lyzed in this study represent the dominant source of electron
trapping.

2.2. Computational modeling

To study charging of a-HfO2 samples, we used the amorphous
structures generated and characterized in our previous work
[21]. These were produced using classical molecular
dynamics and a melt-and-quench procedure. The LAMMPS
package [29] was used with a force-field parametrized in [30].
In particular, cubic periodic cells containing 324 atoms were
initially equilibrated at 300 K. The temperature was then
linearly ramped to 6000 K at constant pressure, and the
structures were stabilized for 500 ps at 6000 K. The systems
were cooled down from 6000 K to 0 K in 8 ns with a cooling
rate of 0.75 K/ps. The Berendsen thermostat and barostat
were used to control the simulations. The partially crystallized
structures were obtained using a similar method with crys-
talline seeds included in the melt, as discussed in more detail
below.

Further optimization of the volume and geometry of
these structures, and calculation of charge trapping sites, were
performed using DFT implemented in the CP2K code [31, 32]
with the nonlocal PBE0-TC-LRC functional and the
exchange cutoff radius of 4.0Å[32]. The CP2K code employs
a Gaussian basis set mixed with an auxiliary plane-wave basis
set [33]. Double-ζ Gaussian basis sets [34] were employed on
all atoms in conjunction with the GTH pseudopotential [35].
The plane-wave cutoff was set to 6530 eV (480 Ry). To
reduce the computational cost of nonlocal functional calcu-
lations, the auxiliary density matrix method (ADMM) was
employed [32]. All geometry optimizations were performed
using the BFGS optimizer to minimize forces on atoms to
within 2.3×10−2 eV Å−1. The trapping energies of excess
electrons and holes were corrected using the method of Lany
and Zunger [36, 37] and a dielectric constant of 22 [38].
Optical transition energies were calculated using the Time-
dependent Density Functional Theory (TD-DFT) method, as
implemented in the CP2K code [39]. Cubic periodic cells
containing 324 atoms were used in all calculations.

3. Results

3.1. Energy distribution of electron traps

Figures 1 and 3 summarize the major experimental findings of
EPDS measurements performed on the pristine and electron-
injected samples with as-deposited 19-nm thick HfO2 insu-
lator (HfCl4+H2O ALD precursor chemistry; for results on
other films see reference [28]). Using the stepwise increase of
photon energy hν and monitoring of the oxide charge by
measuring the shift of flatband voltage (VFB) on 100 kHz
capacitance−voltage curve (figure 1, top panel) the illumi-
nation-induced charge variation can be converted to the
spectral charge density (SCD) (figure 1, bottom panel), which
reflects the contributions of the various electron processes to
the oxide charging.

One can distinguish three spectral ranges with different
electron transitions dominating the charging process [28].
Here, we focus on the spectral region n <h 4 eV, where
electrons are excited from the energy levels Et in the oxide
gap, leading to a slight positive charging in the pristine HfO2

sample or, otherwise, to the removal of electrons captured in
HfO2 upon electron tunneling. Two important features are

Figure 1. Illumination-induced charge variations (top) and the
inferred SCD distributions (bottom) for samples with 19-nm thick
HfO2 insulator in pristine state and after injection of electrons by
tunneling out of silicon by applying the charging voltage pulse of the
indicated amplitude.
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worth noting: (1) In the electron-injected samples, nearly
all the trapped electrons can be de-trapped under illumination
in the spectral range hν<4 eV; 2) The charging spectrum of
the pristine HfO2 layer fits in with that of the electron de-
trapping, suggesting that the apparent positive charging of the
as-deposited a-HfO2 layer is also due to de-trapping of elec-
trons from acceptor states partially filled by electrons during
ALD growth of the oxide. The origin of charge variations
induced by illumination with higher energy photons is dis-
cussed in detail in [28].

The excitation of electrons from the gap states into the
HfO2 CB represents the dominant (dis)-charging mechanism
in the range n <h 4 eV. Thus the SCD shown in the bottom
panel of figure 1 directly reflects the energy distribution of the
initial electron states. The spectral plots in figure 1 clearly
show that there are at least two components of the trapped
electron density—one at 2 eV< <Et 3 eV and another one
deeper, at 3 eV< <E 3.5 eVt , which have not been resolved
previously [28].

To yield further insight into the origin of these electron
traps in HfO2, we examined the effect of annealing which
leads to partial crystallization of HfO2. The structure of
annealed samples is discussed in detail in supplementary
material and below. Figure 2 compares the SCD spectra
obtained on the as-deposited sample and the one subjected to
15 min anneal in N2 at 1000

◦C. Spectral dependence of the
photo-conductivity (PC) yield, defined as the photo-current
normalized to the incident photon flux, are shown in figure 3

for the as-deposited and annealed HfO2 films. These curves
indicate the spectral threshold of =E 5.6 eVg corresponding
to the monoclinic phase of HfO2 after applying the high-
temperature anneal [40]. It should be noted, however, that
electron microscopy study (see the supplemental material)
demonstrates that the annealed films still contain significant
volume fraction of amorphous hafnia. The corresponding
photoexcitation threshold (at around 5.9–6.0 eV—see the PC
spectra of a-HfO2 layers on Si3N4 [41]) or with admixture of
Al, which prevents crystallization [42], can hardly be dis-
tinguished on the photo-conductivity spectra shown in
figure 3 because it is energetically above that of the crystal-
lized m-HfO2 PC onset at 5.6 eV. In turn, from the SCD
distributions shown in figure 2 one may conclude that the
shallow component of the electron trap spectrum is strongly
attenuated upon annealing of a-HfO2. By contrast, deep traps
with optical depth of about 3.0 eV remain preserved.

3.2. Theoretical simulations of trapped charge

3.2.1. Geometric structure of a-HfO2. To understand the
origin of the observed charging and SCD distributions, we
modeled intrinsic charge trapping in a-HfO2. Using NPT
classical molecular dynamics simulations, we produced thirty
a-HfO2 structures with densities of about 9.0 g cm−3, which
exhibit wide distributions of bond lengths and atomic
coordinations and the existence of two-coordinated O and
five-coordinated Hf ions [21]. The atomic structures further
optimized using DFT have higher densities, in the range of
9.2–9.9 g cm−3, averaging at 9.6 g cm−3. The average Hf–O
bond length is 2.1Å (ranging from 1.95 to 2.35Å), very close
to the Hf–O bond lengths in m-HfO2 (around 2.1Å). In
further calculations we study the characteristics of excess

Figure 2. Top panel shows the results of theoretical calculations of
polaron and bi-polaron excitation energies to the mobility edge,
indicated by hollow circles. Bottom panel compares inferred SCD
distribution in the as-deposited sample and in the structure with
HfO2 layer crystallized by a 15 min anneal in N2 at 1000

◦C.

Figure 3. Photo-current yield spectra in the vicinity of the oxide
photo-conductivity threshold measured in the as-deposited sample
and after a 15 min anneal in N2 at 1000

◦C. The inset illustrates
determination of the oxide band gap Eg from the (Yield)

1
2 -hv plot.
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electrons in ten 324 atom structures with densities in the
narrow range of 9.5–9.75 g cm−3.

3.2.2. Electronic structure of a-HfO2. States at both the top of
the valence band and the bottom of the conduction band of
a-HfO2 are characterized by the partial localization onto
oxygen 2p and hafnium 5d electronic states, respectively (see
figure 4). The degree of localization of these states was further
analyzed by calculating the inverse participation ratio (IPR)
spectrum. This method takes advantage of the atom-centered
basis set used in CP2K to quantify the degree of localization
of each eigenvector. It has often been used to characterize
localization of vibrational and electronic states in amorphous
solids (see e.g. [43–47]). Specifically, if the Kohn−Sham
(KS) states are linear combinations of atom-centered basis
functions, y f= å( ) ( )cr rn i

N
ni i , where fi are the basis

functions, the IPR can be calculated as:

y =
å

å( )
( ) ( )

c

c
IPR . 1n

i
N

ni

i
N

ni

4

2 2

The IPR was calculated for each KS state in the valence
band and conduction band. In this definition, IPR ranges
between 0 and 1, and is very small for a delocalized KS
orbital. For example, for a state fully delocalized across all
basis functions with all of the coefficients of its basis
functions equal to one another, the IPR will be y =( )IPR n N

1 ,
N being the total number of basis functions. Alternatively,
localized KS orbitals will have high-valued IPRs.

A typical IPR spectrum of a-HfO2 is shown in figure 5.
One can see that there are localized states both at the CBB
and at the top of the valence band of a-HfO2. The latter lead to

hole trapping, as discussed in reference [21]. The IPR for
delocalized states in the valence band has a value between
0.003 and 0.0035. This corresponds to delocalization over
approximately 300 basis functions. The delocalized states in
the conduction band have a slightly higher IPR value of
0.004, due to the lower number of Hf ions in the system.

3.2.3. Polaron states. Structural disorder serves as a source
of ‘precursors’ for the formation of deep electron states [21].
Precursor sites are associated with the already-localized
molecular orbitals at the band edges (as plotted in figure 5).
The high IPR valued molecular orbitals are found to be
localized onto certain structural motifs, e.g. under-coordinated
Hf ions or Hf ions with elongated Hf−O bonds, both of which
are associated with a lowering of the electrostatic potential
(for an electron). This is shown in figure 6 by plotting the
Hartree potential as a function of the radial distance, R, from
precursor and normal (non-precursor) Hf ions. The potential
is represented at each distance R by averaging over the
surface of a sphere of radius R, centered on the respective ion.
This is repeated for a sample of precursor ions and a sample
of normal ions, and an average is taken for each. As one can
see in figure 6, the Hartree potential experienced by an
electron near precursor sites is on average deeper than at
‘regular’ Hf sites in a-HfO2, which makes them more
favorable for electron localization. The calculation shows
that injected electrons trap onto these precursor sites without
needing to overcome an activation barrier. We call these
trapped-charge states ‘polarons’ for brevity, and in analogy
with electron polarons in m-HfO2 which are trapped only by
the lattice polarization. In a-HfO2, however, the electron
trapping is facilitated by precursor sites and relaxation of their
local environment. In an electron polaron, a single electron is
strongly localized over 2 or 3 Hf ions (figure 7). Upon polaron

Figure 4. Geometric structure of a disordered periodic cell and iso-
surface of the square modulus of the KS state forming the bottom of
the conduction band or LUMO state. As can be seen, the LUMO is
partially localized.

Figure 5. Typical IPR spectrum of the a-HfO2 valence and
conduction bands. The spectrum is taken from a typical cell with an
electron bi-polaron. Large IPR values at the band edges indicate
localization of the state, and small IPR values correspond to
delocalized states. The mobility edge position is estimated from the
IPR spectrum. The position of the defect band of polarons and
bi-polarons is also shown.
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formation, the Hf_O bonds of these Hf ions are stretched
outwards by 0.12Å averaged over ten configurations. Multiple
configurations of polarons were analyzed, and the occupied KS
states were found to be distributed between 1.6 and 2.5 eV
below the bottom of the conduction band. These states can trap
a second electron to form bi-polaron states (figure 8). The
second electron is trapped over the same Hf ions, and so the bi-
polarons show a similar distribution of electron density to the
polarons. The bi-polaron formation is associated with further Hf
−O bond stretching of, on average, 0.09Å. Polaron and bi-
polaron states form a band of KS states, as shown in figure 5.
The width of this band is determined by the distribution of local
environments of precursor sites in the samples of similar
density.

3.2.4. Calculated spectral charge density. The electrons photo-
ionized from the trap states in the gap are collected at the gate

electrode, and should be mobile. Therefore, to compare with the
experimental SCD data shown in figure 2, one needs to
calculate a distribution of optical transition energies from
polaron and bi-polaron states into the states at or above the
electron mobility edge (ME) in the conduction band of a-HfO2,
as illustrated in figure 5. The mobility edge is usually defined as
a critical point where there is a transition between localized
states—which do not contribute to the electrical conductivity of
the system, and extended states—which can contribute to the
electrical conductivity in disordered systems [48–50]. Using
IPR analysis, one can define ME as the onset of states with an
IPR corresponding to delocalized states. At room temperature,
this definition is inevitably blurred by thermal activation of
conductivity in partially localized states at the edge [49, 50]. We
find the ME for electrons in the conduction band to be
approximately 0.5 eV above the LUMO KS state (figure 5). It
may be expected, given that the transition from localised to
delocalized states is gradual, that there is some degree of
arbitrariness in placing the mobility edge. We find that the onset
of the delocalized states could be plausibly placed 0.1 eV either
way, and that this does not significantly affect our results.
Further, partially localized states which sometimes appear
beyond the mobility edge are usually isolated, and do not affect
our definition of ME.

Optical transitions from the charge trapping states into
the conduction band were calculated using the TD-DFT
method as implemented in the CP2K code [39]. Calculating
transitions for polaron configurations in all a-HfO2 structures
is too computationally expensive. Therefore, we first
performed TD-DFT calculations for single and bi-polaron
configurations in three such structures. These include
transitions into the localized states at the bottom of the CB
and into the delocalized states above the ME. The TD-DFT
calculations show that the energies of electron transitions into
the localized states at the bottom of the conduction band are
about 0.5 eV smaller than the corresponding KS energy
differences due to the electron−hole interaction. However,
those into the delocalized states at and above ME are similar
to the differences between the corresponding KS energies.
This is characteristic of transitions into delocalized states (see

Figure 6. Hartree potential (electrons + ions) as a function of radial
distance from Hf ions. The potential shown is the potential as
experienced by an electron and shows that precursor Hf ions have a
lower (more negative) interaction potential. This helps to localize
injected electrons onto precursor sites.

Figure 7. The electron polaron. Blue iso-surfaces indicate the
electron density of the polaron state. Red spheres indicate oxygen
ions and cyan spheres indicate hafnium ions. Black arrows show the
directions of ionic displacements; their values are given in Å.

Figure 8. The electron bi-polaron. Blue iso-surfaces indicate the
electron density of the bi-polaron state. Red spheres indicate oxygen
ions and cyan spheres indicate hafnium ions. Black arrows show the
directions of ionic displacements; their values are given in Å.
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e.g. [51]). Therefore, the optical transitions for other a-HfO2

structures can be approximated by KS energy differences
between the occupied trap state and ME. The mobility edge is
calculated for each a-HfO2 structureu, and is typically found
to be around 0.5 eV above the CBB. The distribution of
energies shown in figure 2 corresponds to that of KS polaron
and bi-polaron states with respect to the corresponding ME,
and agrees very well with the experimental spectrum. The
intensities of the experimental peaks are determined mainly
by the population of the corresponding trap states, which our
statistics does not provide.

The agreement of the distribution of the calculated
depopulation energies with the experimental SCD suggests
that polarons and bi-polarons are likely candidates to explain
the negative charging of a-HfO2 films. To check the
consistency of this model with other experimental data, we
investigated how thermal annealing affects the behavior of
these traps.

3.3. Modeling the annealed samples

A detailed description of experimental observations of the
structure of annealed samples is given in the supplementary
material. A combination of transmission and scanning elec-
tron microscopies and grazing incidence x-ray diffraction on
test structures of 25 nm thick oxide layers annealed at 1000 ◦C
shows that the amorphous phase most probably remains pre-
sent in HfO2 films in significant volume fraction after the
anneal. We should note that thinner HfO2 layers or those
deposited using carbon-containing precursors are more resis-
tant to crystallization, and may remain amorphous even at
higher thermal budgets. For example, sub-2 nm layers are
commonly used as gate insulators in devices attempting to
attain the equivalent oxide thickness below 0.5 nm [6].

3.3.1. Modeling partially crystallized HfO2 samples. To create
partially crystallized (pc) structures, we used the same
procedure as described above, but a small part of the
structure was frozen at perfect cubic HfO2 lattice sites during
both melt and quench (see the supplementary material). For
smaller nuclei sizes, a significant part of the structure remains
amorphous, and the rest is crystallized (see figure 9). The
topology of pc-HfO2 models obtained using classical MD
simulations does not change significantly after full
optimization with DFT. They have higher densities than the
a-HfO2 structures, ranging from 9.8 to 10.2 g cm−3. One
structure of each density has been chosen to perform further
calculations. These structures are described in more detail in
the supplementary material. The band gap of pc-HfO2

structures does not contain localized states due to the under-
coordinated atoms and is equal to 6.0 eV on average. The IPR
spectrum (see the supplementary material) is similar to that of
the a-HfO2 cells, and exhibits localization at the band edges
and a conduction band ME approximately 0.5 eV above
the CBB.

As in the case of a-HfO2, we observe spontaneous
localization of polarons and bi-polarons in deep states in each
of the considered systems. However, the number of precursor

sites is reduced, as they are confined to the disordered regions
in the structure. Further DFT calculations show that the
crystal phases of HfO2 either have very shallow polarons
(monoclinic, tetragonal), or do not facilitate trapping at all
(e.g. bulk cubic). The formation of relatively shallow electron
polarons has been predicted in monoclinic HfO2 in refer-
ence [16].

The extra electron(s) in pc-HfO2 localize on the Hf atoms
with six or seven O coordination. Among these, at least three
oxygen neighbors have Hf−O distances longer than 2.16Å.
Extra electron(s) can also be localized on five-coordinated Hf
atoms, which have longer Hf−O bonds. The average position
of the KS level for the electron polaron in these structures is
2.4 eV below the bottom of the conduction band, whereas for
bi-polarons it is 2.3 eV below the bottom of the conduction
band. More than 90% of the electron spin density is localized
on two Hf ions. The TD-DFT calculations of electronic
excitations for several bi-electron structures show similar
excitation energies to those reported in figure 2. Thus, the
anneal changes the SCD by reducing the number of available
electron trapping sites.

In addition, annealing can release hydrogen present at the
interface as a result of the growth method, and also from
metal electrodes. This hydrogen can interact with electron
traps, or create further traps [52]. Experimentally, the electron
injection is performed after the anneal, which can promote
proton diffusion into pc-HfO2. Therefore, we first considered
five−seven different configurations of protons near the
electron trapping precursor sites in the amorphous part of
pc-HfO2 structures, and optimized their geometries. Extra
electrons were then localized at precursor sites, to simulate
single and bi-electron trapping. The neutral extra electron +
proton configurations were not observed experimentally, as
only negatively charged states were monitored. Similarly to

Figure 9. Geometric structure of a partially crystallized disordered
periodic cell of HfO2.
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reference [52], we observed that in some configurations the
proton reacted spontaneously with trapped electron(s),
forming an interstitial H0 atom or H− ion. In metastable
configurations of a proton near a bi-electron trap, the KS level
is shifted by about 0.1 eV. Thus, release of protons from the
interface can further reduce the charge density, but does not
significantly affect the energies of trapped electrons.

4. Discussion and conclusions

To summarize, our experimental and theoretical results pro-
vide the first significant evidence of intrinsic electron trapping
in amorphous oxide films. Using ultra-pure HfO2 films, we
demonstrate that electron injection leads to formation of
localized states with energies about 2–3.5 eV below the
mobility edge in the conduction band. The DFT calculations
demonstrate that single and bi-electrons trapped at structural
precursor sites in a-HfO2 are likely candidates to explain the
charge trapping. High-temperature annealing of the films
leads to their partial crystallization, but amorphous regions
still remain. DFT calculations demonstrate that electrons
trapped in these regions have similar properties to those in
amorphous samples, albeit a lower number of precursor sites.
The interaction of trapped electrons with protons, which can
be released from the interface during annealing, further
reduces the number of traps. These results consistently
explain the nature of charge trapping in HfO2 films revealed
by EPDS spectra. The agreement of the experimental spectra
with theoretical models suggests that low-coordinated ions in
amorphous oxides can serve as deep electron traps in
oxide films.

Developing reliable methods to identify and analyze
electron traps in thin films is of utmost importance in elim-
inating or limiting their impact on the performance of a
growing range of HfO2 based devices. For example, it has
recently been suggested that ferroelectricity of both doped
[53, 54] and pure [55] HfO2 may offer paths to further
applications of HfO2 films, including memories [56] and high
sub-threshold slope transistors [57]. However, the positive
bias-temperature instability driven by electron injection into
oxide films limits the gate oxide scaling in metal−HfO2−Si
transistors [24, 58–60]. Furthermore, in flash cells, electron
trapping in the integrated HfO2 insulator degrades the pro-
gram/erase window, retention and endurance [61, 62].

Besides their importance in improving the performance
of a-HfO2 films, our results should be seen in a broader
context, because variability of the cation coordination repre-
sents an intrinsic property of many other amorphous oxides
[9–13], as well as nano-crystallites widely used in photo-
catalysis. In particular, electrons in oxides with p and d
character of CBB often have low dispersion, and are parti-
cularly prone to charge localization. But electrons and
holes can behave very differently in the bulk and at sur-
faces of these materials. A good example is TiO2, where
electron polarons are very shallow in the bulk [63] but
much deeper at surfaces and in nanocrystals, where the
atomic coordination is lower and bonds are strained

[64, 65]. Therefore, one may expect this mechanism of
electron trapping to be relevant to a broad variety of other
non-glass-forming insulating oxides. By contrast, electrons
in s states (e.g. ZnO [66] and Al2O3 [67]) have higher
dispersion, and are likely to remain mobile even in the
amorphous phase [68].
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