
Uncertainty, Risk, and Information Value
in Software Requirements and Architecture

Emmanuel Letier David Stefan Earl T. Barr
Department of Computer Science

University College London
London, United Kingdom

{e.letier, d.stefan, e.barr}@ucl.ac.uk

ABSTRACT
Uncertainty complicates early requirements and architecture de-
cisions and may expose a software project to significant risk. Yet
software architects lack support for evaluating uncertainty, its impact
on risk, and the value of reducing uncertainty before making critical
decisions. We propose to apply decision analysis and multi-objective
optimisation techniques to provide such support. We present a sys-
tematic method allowing software architects to describe uncertainty
about the impact of alternatives on stakeholders’ goals; to calculate
the consequences of uncertainty through Monte-Carlo simulation;
to shortlist candidate architectures based on expected costs, benefits
and risks; and to assess the value of obtaining additional information
before deciding. We demonstrate our method on the design of a
system for coordinating emergency response teams. Our approach
highlights the need for requirements engineering and software cost
estimation methods to disclose uncertainty instead of hiding it.

Categories and Subject Descriptors
D2.11 [Software Engineering]: Software Architectures

General Terms
Design, Economics, Theory

Keywords
Software engineering decision analysis

1. INTRODUCTION
Uncertainty is inevitable in software engineering. It is partic-

ularly present in the early stages of software development when
an organisation needs to make strategic decisions about which IT
projects to fund, or when software architects need to make decisions
about the overall organisation of a software system. In general, these
decisions aim at maximising the benefits that the software system
will bring to its stakeholders, subject to cost and time constraints.
Uncertainty includes uncertainty about stakeholders’ goals and their
priorities, about the impact of alternatives on these goals, about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

the feasibility, cost, and duration of implementing the alternatives,
about future changes in stakeholders’ goals, business context and
technological environments, and finally uncertainty about whether
the right questions about decisions are even being asked and all their
options identified.

In a decision problem, uncertainty is a lack of complete knowl-
edge about the actual consequences of alternatives. For example,
software architects may be uncertain about the cost and performance
impact of a proposed software architecture. Given their current
knowledge, they might estimate the cost to be between £1m to £3m
and the achievable response time to be between 1 and 10 seconds.
A risk exists when the possible consequences of a decision include
undesirable outcomes, like loss or disaster [40]. Continuing the
example, selecting the proposed architecture might carry the risks
of the development costs exceeding £2m and the response time not
achieving the minimally acceptable target of 2 seconds. In software
architecture decisions, the risks include selecting an architecture that
is too expensive to develop, operate, and maintain, that is delivered
too late and, most importantly, that fails to deliver the expected
benefits to its stakeholders. Numerous studies have shown that
these risks are severely underestimated [29]. This is not surprising:
uncertainty and risks are rarely considered explicitly in software
engineering decisions and the software engineering literature offers
no principled approaches to deal with them.

In this paper, we focus on early requirements and architecture
decisions, i.e. decisions about the functionality the software should
provide, the quality requirements it should satisfy, its organisation
into components and connectors, and its deployment topology. We
assume stakeholders’ goals and the alternatives have been identified
using appropriate requirements engineering and software architec-
ture methods [45, 47, 63, 65]. Our objective is to support reasoning
about uncertainty concerning the impact of alternatives on stake-
holders’ goals.

Previous work dealing with uncertainty in early requirements and
architecture decisions [21, 42, 49, 62] suffers important limitations:
they use unreliable methods for eliciting uncertainties (some confuse
group consensus with certainty); they tend to evaluate alternatives
against vague, unfalsifiable criteria; they provide no information
about the risks that accompany uncertainty; and they provide no
support for assessing to what extent obtaining additional information
before making a decision could reduce these risks.

We address these limitations by adapting concepts and techniques
from statistical decision analysis to the problems of early require-
ments and architecture design decisions. Decision analysis is a
discipline aiming at supporting complex decisions under uncertainty
with systematic methods and mathematical tools for understanding,
formalising, analysing, and providing insights about the decision
problem [38]. Decision analysis is used notably in the health care

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195305281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

domain to inform decisions about the cost-effectiveness of new med-
ical treatments based on the results of clinical trials [7]. There are
exceptional uses of these methods in the context of IT investment
decisions [14, 41], but despite their relevance to early requirements
engineering and architecture decisions, they have been largely ig-
nored by the software engineering community.

Our approach to early requirements and architecture decisions
consists in formalising the decision problem in terms domain-specific
measurable goals, to elicit and represent uncertainties as probability
distributions, to simulate the impact of alternatives on goals through
Monte-Carlo (MC) simulations, and to shortlist a set of alternatives
using Pareto-based multi-objective optimisation techniques. We
introduce the software engineering community to the value of in-
formation, a powerful notion from decision analysis, that allows a
decision maker faced with uncertainty to measure those uncertainties
and determine which would be most profitably reduced.

The paper’s main contribution is a systematic method for applying
statistical decision analysis techniques to early requirements and
architecture decision problems (Section 3). By developing this
method, we were also led to make the following contributions:

1. We define novel decision risk metrics tailored for require-
ments and architecture decision problems (Section 3.3);

2. We extend the concept of value of information, tradition-
ally defined in terms of impact of additional information on
expected outcomes only, by considering how additional infor-
mation reduces risk (Section 2.3).

3. We introduce the concept of Pareto-optimal strip, a generali-
sation of a Pareto-optimal front, designed to resist modelling
and measurement errors present in multi-objective decisoin
problem under uncertainty (Section 3.5);

We have developed a tool supporting our approach and have
applied it to data from a real system from the literature [21]. Our
tool and all models discussed in this paper are available at www.cs.
ucl.ac.uk/staff/e.letier/sdda.

2. COST-BENEFIT ANALYSIS
UNDER UNCERTAINTY

Before considering early requirements and architecture decision
problems, we first consider the simpler problem of selecting one
alternative among a set of alternatives based on their costs and
benefits. Such problem assume a model exists to calculate the costs
and benefits of all alternatives in a common unit, which is usually
monetary (e.g. Pound, Euro, Dollar, Yen or Rupee) [7]:
Definition. A cost-benefit decision model comprises a set A of alter-
natives, a set Ω of model parameters, and two functions, cost(a,ω)
and benefit(a,ω), that return the cost and benefit of alternative a
given the parameter values ω . The net benefit of an alternative is
then NB(a,ω) = benefit(a,ω)− cost(a,ω). To simplify the nota-
tion, we sometimes leave the model parameters implicit and write
NB(a) for NB(a,ω), and similarly benefit(a) and cost(a).
Example. An engineering firm is considering replacing an ageing
Computer-Aided Design (CAD) application with a new system. The
set of alternatives is A = {legacy,new}. The CAD application helps
the firm design complicated engineering artefacts (e.g. turbines,
aircraft engines, etc.) that it sells to clients. The benefits associated
with each alternative a ∈ A is a function of several variables such
as the market size, the market share that each alternative might
help achieving, which itself is a function of features of each CAD.
Likewise, the cost associated with each alternative is a function
of several parameters such as the development, maintenance and
operational costs. The cost and benefit functions would typically
also include concerns related to incremental benefit delivery, cash

flow, and discount factors [14, 16]. The model parameters are the
variables in these equations, i.e. those that are not further defined
in terms of other variables. To keep our illustrative example simple,
we will hide the details of the cost and benefit functions and discuss
decisions based on the results of these functions only.

2.1 Computing Expected Net Benefit and Risk
Traditional Cost-Benefit Anlysis (CBA) computes the net benefit

of each alternative using point estimates (exact numbers instead of
ranges) for each of a model’s parameter. Such approaches therefore
ignore the often large uncertainty about parameter values. Uncer-
tainty about cost and benefit exists but is hidden. In a statistical
CBA, uncertainty about the model parameters is modelled explic-
itly as probability distributions and used to compute the probability
distribution of net benefit for each alternative.

Simple, effective methods exist for eliciting the model parameters’
probability distributions from decision makers [52]. These methods
have sound mathematical foundations and are based on significant
empirical studies of how uncertainty can be reliably elicited from
humans. We will not be concerned with these methods in this paper
beyond noting that they can and should be used to elicit reliable
probability distributions from domain experts and decision makers.

Once the model parameters probability distributions have been
estimated, one needs to compute the probability distributions for the
cost, benefit and net benefit of each alternative. It is generally not
possible to compute these probability distributions analytically be-
cause the model equations and parameters’ probability distributions
can be arbitrarily complicated. Monte-Carlo (MC) simulations can,
however, compute good approximations. The underlying principle
is to sample a large number of simulation scenarios generated by
model parameter values drawn from their probability distributions
and use them to compute the net benefit in that scenario. The result
of a MC simulation of a cost-benefit decision model is a M×N
matrix N̂B where M is the number of simulated scenarios and N is
the number of alternatives in A. The element N̂B[i, j] denotes the
net benefit for alternative j in the ith scenario.

From the result of a MC simulation, one can, for each alterna-
tive, estimate measures of interest to decision makers such as the
expected net benefit (ENB), loss probability (LP), and probable loss
magnitude (PLM), defined as follows:

ENB(a) = E[NB(a)]

LP(a) = P(NB(a)< 0)
PLM(a) = E[NB(a)|NB(a)< 0]

where E[X] denotes the expectation of a random variable X .

Example. Figure 1 shows the results of a statistical CBA for
our illustrative example. We assume cost and benefit have a normal
distribution truncated at zero. Figure 1a shows the mean and 90%
confidence interval of these distributions. A 90% confidence interval
means that decision makers believe there is a 90% chance that the
actual costs and benefits will fall within these ranges. Figure 1b
shows the resulting expected net benefit, loss probability, and proba-
ble loss magnitude of each alternative. It shows developing the new
CAD has a high expected net benefit but also high risks in terms of
loss probability and probable loss magnitude. In a traditional CBA,
these risks would not have been quantified and would, most likely,
have been underestimated if not entirely ignored.

2.2 The Expected Value of Information
If, before making a decision, decision makers could pay someone

to obtain additional information that reduce uncertainty about the
cost and benefits of alternatives, how much would that information

www.cs.ucl.ac.uk/staff/e.letier/sdda
www.cs.ucl.ac.uk/staff/e.letier/sdda

mean 90% CI

benefit(new) £5m [£1m–£9m]
cost(new) £3m [£1m–£5m]
benefit(legacy) £1m [£0.9m–£1.1m]
cost(legacy) 0 [0m–0m]

(a) Mean and 90% Confidence Intervals (CI).

new legacy

ENB £2m £1m
LP 23% 0%
PLM £1.4m 0

(b) Expected Net Benefit (ENB), Loss Probability
(LP), and Probable Loss Magnitude (PLM).

EVPPI ∆PPI(LP)

bene f it(new) £0.54m 8%
cost(new) £0.14m 4%
bene f it(legacy) £0 0%
cost(legacy) £0 0%

(c) Information Value Analysis. The value of total
perfect information (EV T PI) is £0.64m.

Figure 1: Statistical Cost-Benefit Analysis for deciding whether to replace a legacy application by a new system.

be worth to them? It is possible to answer this question by computing
the expected value of information [37]. Intuitively, information that
reduces uncertainty may lead decision makers to select an other
alternative with highest expected net benefit than the alternative they
would select without additional information. The expected value of
information is the expected gain in net benefit between the selected
alternatives with and without the additional information.

The expected value of information for the different model vari-
ables tells decision makers to focus on reducing uncertainty about
information with high expected value and to avoid wasting effort
reducing uncertainty about information with low expected value (or
at least not pay more for information than its expected value). Com-
puting the expected value of information can yield surprising results.
Hubbard reports he has applied information value theory to 20 IT
project business cases (each having between 40 to 80 variables) and
observed the following pattern: (1) the majority of variables had an
information value of zero; (2) the variables that had high information
value were routinely those that the client never measured; (3) the
variables that clients used to spend the most time measuring were
usually those with a very low (even zero) information value [41].
The contrast between the second and third observations constitutes
what Hubbard has called the IT measurement inversion paradox [39].
He cites the large effort spent by one of his clients on function point
analysis [4] — a popular software development productivity and
cost estimation method — as an example of measurement with very
low information value because its cost estimation were not more
accurate or precise than the project managers’ initial estimates.

The expected value of information is defined with respect to an
outcome to be maximised and assumes a default decision strategy
of maximising expected outcome. In this section, the outcome to
be maximised is the net benefit NB but the definition applies to any
other outcome, e.g. maximising software reliability. Information is
valued in the same units as the outcome that it measures. This makes
measuring information value with respect to net benefit particularly
attractive as it assigns a financial value to information.

The expected value of total perfect information (EVTPI) is the
expected gain in net benefit from using perfect information about
all model parameters:

EVTPI = E[max
a∈A

NB(a,ω)]−max
a∈A

E[NB(a,ω)].

In this definition, the second term denotes the highest expected net
benefit given the current uncertainty about the model parameters Ω,
and the first term the expectation over all possible values ω for the
parameters Ω of the highest net benefit when the parameter values
are ω (in other words, the expected net benefit from obtaining perfect
information). Observe how the two terms invert the application of
the expectation and maximisation operators. It can be shown that
EVTPI is always positive or zero. The EVTPI can be estimated from
the output N̂B of a MC simulation:

EVTPI = mean
i:1..N

max
j:1..M

N̂B[i, j]− max
j:1..M

mean
i:1..N

N̂B[i, j].

As an illustration, Figure 2 shows how EVTPI is computed from

a small MC simulation with 5 scenarios (the actual MC simulation
used to produce the results in Figure 1 consists of 104 scenarios).

Information value theory also defines the expected value of partial
perfect information, i.e. perfect information about a subset of the
model parameters [25, 58], and the expected value of (partial or total)
imperfect information, i.e. information that reduces uncertainty but
without completely eliminating it [41]. In this paper, we only use
the expected value of perfect information either in total, over all
parameters, or about a single model parameter. The expected value
of imperfect information and of perfect information about sets of
parameters are harder to compute, and they may not yield substantial
practical benefits over simpler information value analysis.

The expected value of partial perfect information about a single
model parameter Θ, noted EVPPI(Θ), is the expected gain in net
benefit from using perfect information about Θ:

EVPPI(Θ) = E[max
a∈A

f (a,θ)]−max
a∈A

E[NB(a,ω)],

where f (a,θ) = EΩ−ΘNB(a,ω) is the expected NB of alternative
a, conditioned on the parameter Θ fixed at θ , and EΩ−Θ denotes
the expectation with respect to all model parameters in Ω except
Θ [58]. The intuition of this definition is similar to that of EVTPI.
As EVTPI, it can be shown that EVPPI is always positive or zero.

Computing EVPPI(Θ) is harder than computing EVTPI. In this
paper, we rely on a recent efficient algorithm that computes EVPPI
by taking as input only the pair 〈Θ̂, N̂B〉 of simulations for the model
parameter Θ and the corresponding matrix of NB simulations gener-
ated by the MC simulation [58]. This algorithm first finds a suitable
segmentation of values in Θ̂ such that, within each segment, the dif-
ferences in maximal expected NB remain small. For each segment,
it computes the average gain in NB from knowing θ , then averages
these average gains weighted by the proportion of simulation that
falls into each segment.

Note that EVTPI and EVPPI compute the expected value of infor-
mation about some parameters before the value for these parameters
are revealed. Once the actual values are revealed, they may increase
or decrease expected net benefit. The EVTPI and EVPPI merely
compute how much the expected net benefit will change on average.
It is these averages that are always positive or zero. The revelation
of new information can also both increase or decrease uncertainty
about the parameters’ true values. When this happens, an increase
of uncertainty is most likely caused by a failure to mitigate over-
confidence biases during the elicitation of probability distributions.
For example, decision makers with overconfidence biases will ex-
press 90% confidence intervals that are narrower than their true
uncertainty. Overconfidence bias is a serious problem because the
computations of expected net benefit, risk, and information value
all assume the initial probability distributions are accurate. This ob-
servation reinforces the importance of using appropriate uncertainty
elicitation techniques designed to reduce the effects of overconfi-
dence and other biases [52].

Measuring expected information value is an alternative to sen-
sitivity analysis. There are several variants of sensitivity analysis.

Scenarios N̂B(new) N̂B(legacy) Max

1 £1.33m £1.03m £1.33m
2 £0.13m £0.96m £0.96m
3 £4.05m £1.00m £4.05m
4 £6.13m £1.06m £6.13m
5 -£1.39m £1.07m £1.07m

Mean £2.05m £1.02m £2.71m

Figure 2: Illustration of a MC simulation and computation of EVTPI. The
second and third columns show the N̂B for the new and legacy applications
in 5 random scenarios. Over these five scenarios, the new application has
the highest expected net benefit (£2.05m). The fourth column show the
maximal possible net benefit in each scenario and its mean value over all five
scenarios (£2.71m). We thus have EVTPI = £2.71m - £2.05m = £0.66m.

Possibly the most common in software engineering consists in mea-
suring, for each model parameter taken individually, the change of
NB (or other objective of interest) for a selected alternative when the
parameter varies between some low and high value [49]. A parame-
ter is then said to have high sensitivity if the changes in NB are high.
The expected value of information differs from sensitivity analysis
in that it takes into account the probability of changes in parameters’
values and possible changes of alternatives to optimise net benefit.
These differences have important implications: a parameter with
high sensitivity may have low information value if it has a low prob-
ability of change; and vice-versa, a parameter with low sensitivity
may have high information value if a highly probable change for
this parameter leads to selecting a different alternative with much
higher NB. Felli and Hazen provide a more detailed analysis of the
benefits of measuring expected value of perfect information over
sensitivity analysis [25].

2.3 The Impact of Information on Risk
Using additional information to maximise expected NB impacts

risk, sometimes favourably, as when selecting an alternative with
highest expected NB also reduces risk, or unfavourably, as when
selecting an alternative with highest NB increases risk. Measuring
this impact gives decision makers additional information about the
value of seeking additional information.

We have thus defined a new measure of the expected impact of
perfect information on risk. In our cost-benefit analysis, risk is
measured by the loss probability and the probable loss magnitude.
To keep the exposition simple, we define the impact of perfect infor-
mation on risk with respect the a risk measure Risk(a) = P(F(a,ω))
where F(a,ω) is true when alternative a fails when parameter val-
ues are ω . For example, for LP(a), F(a,ω) is NB(a,ω) < 0. Our
definition can easily be extended to risk measures, such as PLM,
defined over real-valued rather than boolean F functions.

Let a? be an alternative that maximises expected NB. If there is
more than one alternative with equal highest expected NB, a? is one
with minimal risk. Let a?(ω) and a?(θ) be alternatives that max-
imise NB when Ω = ω or Θ = θ , respectively. The expected impact
of total (respectively, partial) perfect information on Risk is the ex-
pected difference between Risk(a?(ω)) (respectively, Risk(a?(θ)))
and Risk(a?):

∆TPI(Risk) = E[Risk(a?(ω))]−Risk(a?)

∆PPI(Θ)(Risk) = E[Risk(a?(θ))]−Risk(a?).

The ∆TPI(Risk) can be estimated from matrices N̂B and F̂ gener-

ated during the Monte-Carlo simulation:

∆TPI(Risk) = mean
i:1..N

[F̂(which.max j:1..MN̂B[i, j])]

−mean
i:1..N

[0 > N̂B[i,a?]].

where which.max j:1..MN̂B[i, j] denotes the column indices of the
alternative with highest benefit in row i.

To compute ∆PPI(Θ)(Risk), we have extended the algorithm for

computing EVPPI from the Monte-Carlo simulation data 〈Θ̂, N̂B, F̂〉.
Our extension applies the same principle as the one used to compute
∆TPI(Risk)) to compute the ∆ in Risk in each segment of Θ values,
then returns the weighted average of those ∆ over all segments.

Example Figure 1-c shows the expected value of information in our
illustrative example. The EVTPI is £0.64m, 32% of expected net
benefit. Measuring EVPPI shows that reducing uncertainty about
the new application’s benefits has high value and reduces most of
the risks, whereas reducing uncertainty about its cost has almost no
value and little impact in reducing loss probability.

3. SOFTWARE DESIGN DECISIONS
UNDER UNCERTAINTY

Software design decisions are usually more complex than the
simple cost-benefit decision problems of the previous section. Com-
plexity arises in the solution space, in the objective space, and in the
models that relate the two.

In the solution space, instead of involving the selection of one
alternative from a set, they typically involve a multitude of inter-
related design decisions concerning choices among alternative ar-
chitectural styles, design patterns, technologies, and responsibility
assignments [63, 65]. This leads to an exponential increase in the
number of candidate solutions; for example, if the problem involves
10 design decisions with 3 options each, the number of candidate
architectures is 310 (around 60,000). The solution space for software
design decisions is therefore several orders of magnitudes larger
than the solution spaces of other domains applying decision analysis
techniques — for example, in healthcare economics the solution
space rarely exceeds 5 different treatment options [7].

In the objective space, software design decisions typically involve
multiple goals that are generally conflicting, hard to define precisely,
and not easily comparable (unlike cost and benefit, they have differ-
ent units of measure). Examples of goals include concerns related to
security, performance, reliability, usability, and the improved busi-
ness outcomes generated by the software. Clarifying these goals and
understanding their trade-offs is a significant part of supporting soft-
ware design decisions. The goals in healthcare decision problems
are at least as complex as software design decision goals. There has,
however, been a much greater effort at defining these goals and their
trade-offs than for software engineering problems. This has resulted
in measures such as the quality-adjusted life year used to compare
alternative treatment options [7].

The models relating the design decision options to stakeholders’
goals are often hard to build, validate, and include a very large
number of parameters. They are typically composed of models of the
software system (to evaluate the impact of software design decisions
on software qualities such as its performance and reliability) and
models of the application domain (to evaluate the impact of software
and system design decisions on stakeholders goals).

To deal with this complexity, we propose the following process:
1. Defining the architecture decision model
2. Defining a cost-benefit decision model
3. Defining the decision risks

4. Eliciting parameters values
5. Shortlisting candidate architectures
6. Identifying closed and open design decisions
7. Computing expected information value
Steps 1 and 2 correspond to standard model elaboration activ-

ities performed notably in the ATAM [45] and CBAM [42, 49]
approaches. Steps 3 and 4 are specific to architecture decisions
under uncertainty. Step 5 extends Pareto-based muliobjective opti-
misation techniques to decisions under uncertainty. Step 6 identifies
closed and open design decisions from this shortlist. Step 7 com-
putes expected information values. At the end of these steps, if
some model parameters or variables have high expected information
value, software architects may choose to elicit further information
and refine corresponding parts of their models to improve their deci-
sions and reduce their risks. In practice, some of these steps may
be intertwined. For example, the elaboration of the architecture
decision model and the cost benefit model in steps 1 and 2 are likely
to be interleaved rather than performed sequentially [51].

SAS Case Study. We apply our method on a case study of soft-
ware architecture decisions presented at ICSE 2013 [21].

The software to be designed is a Situational Awarness System
(SAS) whose purpose is to support the deployment of personnel
in emergency response scenarios such as natural disasters or large
scale riots. SAS applications would run on Android devices carried
by emergency crews and would allow them to share and obtain an
assessment of the situation in real-time (e.g., interactive overlay on
maps), and to coordinate with one another (e.g., send reports, chat,
and share video streams).

A team of academics and engineers from a government agency
previously identified a set of design decisions, options and goals to
be achieved by this system (see Figure 3). They also defined models
for computing the impact of options on the goals and documented
uncertainty about model parameters using three point estimates, a
method commonly used by engineers and project managers that
consists in eliciting a pessimistic, most likely, and optimistic value
for each model parameter. They then applied a fuzzy-logic based
approach, called GuideArch, to support design decisions under
uncertainty [21].

To facilitate comparison between the approaches, we will ap-
ply our method on the same model and data as those used by the
GuideArch method [20].

3.1 Defining the Architecture Decision Model
The first step consists in identifying the decisions to be taken

together with their options, defining the goals against which to
evaluate the decisions, and developing a decision model relating
alternative options to the goals [35, 45]. The result is a multi-
objective architecture decision model (MOADM).

Definition. A multi-objective architecture decision model is a
tuple (D,C,Ω,G,v), where
• D is a set of design decisions where each decision d ∈ D has

several options Od ; a candidate architecture is a function
a : D→∪d∈DOd that maps each decision d to a single option
in Od ; the set of all candidate architectures is noted A1;
• C is a set predicates capturing dependency constraints be-

tween design decisions such as prerequisite, mutual exclusion,
and mutual inclusion relations [59, 69]);
• Ω is a set of model parameters;
• G is a set of optimisation goals, partitioned into G+ and G-

1Throughout the paper, we use the term option to denote an alter-
native for a design decision and the term alternative to denote an
alternative candidate architecture in the design space A.

Decisions Options
Location
Finding

GPS
Radio Triangulation

File Sharing OpenIntents
In house

Report Syncing Explicit
Implicit

Chat Protocol XMPP (Open Fire)
In house

Map Access
On demand (Google)
Cached on server
Preloaded (ESRI)

Hardware
Platform

Nexus I (HTC)
Droid (Motorola)

Connectivity
Wi-FI
3G on Nexus I
3G on Droid
Bluetooth

Database MySQL
sqLite

Architectural
Pattern

Facade
Peer-to-peer
Push-based

Data Exchange
Format

XML
Compressed XML
Unformatted data

Goals
Battery Usage
Response Time
Reliability
Ramp Up Time
Cost
Development Time
Deployment Time

Figure 3: Overview of the SAS Case Study [21].

denoting goals to be maximised and minimized, respectively;
• v is a goal evaluation function such that v(g,a,ω) is a real

value denoting the level of attainment of goal g by candidate
architecture a when the model parameters have the concrete
values ω .

Optimisation goals include software quality attributes such as per-
formance, reliability, etc. and stakeholders goals such as the number
of lives saved and property damage avoided during an emergency
response. Software quality evaluation models (e.g. performance and
reliability models) and quantitative goal-oriented requirements mod-
els [35, 47] are typical examples of goal evaluation functions. These
models have parameters, such as the reliability of each component
in a reliability block diagram or the likelihoods of different types of
events requiring a coordinated emergency response in a quantitative
goal model. In the standard use of these models, each parameter
is assigned a point-based estimate. In step 4 of our method, the
parameters are assigned probability distributions.

In goal-oriented requirements models [35, 47], candidate archi-
tectures describe socio-technical systems, i.e. systems for which
components include human agents and hardware devices, as well
as software components. The design decisions include decisions
about alternative goal refinements, alternative assignments of goals
to agents, and alternative resolutions of conflicts and obstacles [65].

SAS Case Study. The SAS design team identified the design deci-
sions, options and optimisation goals shown in Figure 3. Following
an approach similar to that used in many goal-oriented decision
models [3, 5, 24, 32, 64], they defined the goal evaluation func-
tions as the sum of the contributions of each option composing an
architecture:

v(g,a,ω) = ∑
d∈D

contrib(g,a(d))

where contrib(g,o) are model parameters denoting the contribution

of option o to goal g. For example, contrib(BatteryUsage,GPS)
denotes the contribution of GPS to battery usage. Since the model
has 25 options and 7 goals, we have 25 × 7 (175) parameters.

Like all models, this model is imperfect. For example, evaluating
the response time of an architecture by summing up the response
time of its individual component is a basic performance model that
will only give a rough approximation of an architecture response
time. Evaluating the reliability of an architecture by summing
the reliability of its components is most likely to be an inaccurate
measure of the true reliability. Another significant problem with this
model is that the goals have no clear definition. For example, what
is meant by reliability and battery usage?. Similarly, the levels of
contribution of each option to each goal have no clear semantics (for
example, what does the contribution of the GPS to battery usage,
contrib(BatteryUsage,GPS), actually measure?).

In order to separate issues concerning the validity of the SAS de-
cision model from discussions concerning the benefits of alternative
decision support methods, we temporarily assume this MOADM to
be valid. We revisit this assumption after having compared the two
decision methods on the same model.

3.2 Defining the Cost-Benefit Model
Multi-objective decision problems increase in difficulty as the

number of objectives increases [34]. Since a MOADM could have a
large number of optimisation goals, one way to simplify the prob-
lem is to convert the MOADM into a simpler cost-benefit decision
model [42, 49]. The cost-benefit model allows software architects
to relate design decisions and levels of goal satisfaction to financial
goals of direct interest to the project clients and stakeholders.

The set of alternatives of the cost-benefit decision model is the set
of candidate architectures in A satisfying the constraints in C. Soft-
ware architects, in collaboration with project stakeholders, define
the cost and benefit functions. The parameters of the cost-benefit
decision model include the parameters Ω of the architecture deci-
sion model plus additional parameters involved in the definition of
the cost and benefit functions. The cost function would typically
include software development, deployment, operation and mainte-
nance costs but possibly also other costs incurred in the application
domain such as salary, material, legal, environmental, and reputation
costs. The benefit function would model estimated financial values
associated with achieved levels of goal attainment.

A problem with many cost-benefit models is that they exclude
from their equations costs and benefits that are perceived to be too
hard to quantify and measure. For example, they omit the cost and
benefit related to security, usability, company reputation, etc. To
be useful, cost-benefit models should include the hard-to-measure
factors that are important to the decision so that their uncertainty
can be assessed and analysed instead of being ignored. Systematic
methods for transforming vague qualitative goals into meaningful
measurable objectives exist and have been used successfully in many
industrial projects [1, 31, 41].

Many other projects however ignore these methods. A popular
alternative is to compute for each alternative a utility score defined
as the weighted sum of the stakeholders’ preferences for each goal:

U(a,ω) = ∑
g∈G

w(g)×Pref g(v(g,a,ω))

where the goal weights w(g) and preferences functions Pref g(x) are
elicited from stakeholders using appropriate techniques [61]. The
goal preference values Pref g(x) are real numbers in [0,1] denoting
the level of preference stakeholders associate with a value x for
goal g. A preference of 1 denotes the highest possible stakeholders’
satisfaction, a preference of 0 denotes the worst. For example, if g

is the response time of a web application, a preference of 1 may be
given to an average response time of 1 second or less and of 0 to an
average response time of 10 seconds or above. Preference functions
are often constructed as linear or s-shape functions between the goal
attainments corresponding to the lowest and highest preference [56].
This approach, or a close variant, is found in many requirements
engineering methods [3, 5, 24, 32, 64].

An advantage of defining utility as a weighted sums of goal prefer-
ences is that it is extremely easy to apply. Its biggest inconvenience,
however, is that the utility scores correspond to no physical char-
acteristics in the application domain making them hard to interpret
and impossible to validate empirically. In other words, the utility
functions are not falsifiable [55]. In contrast, in other domains,
e.g. in healthcare economics, utility functions are not restricted to
weighted sums and they denote domain-specific measures — such
as the quality-adjusted life year — making it possible to refute and
improve them based on empirical evidences [7].

When a utility function exists, whether the utility is falsifiable or
not, it is possible to convert a utility score into financial units using
a willingness-to-pay ratio K such that the benefit of an alternative is
the product of its utility and K [7]: benefit(a,ω) = K×U(a,omega)
This approach allows us to apply our statistical cost-benefit analysis
method on any requirements and architecture models developed
using a utility-based approach.

SAS Case Study. The GuideArch method uses the equivalent of
a weighted sum approach to define a utility score for each candidate
architecture2. The goal preferences are defined as linear functions
where the preference 0 and 1 are associated to the lowest and high-
est possible values for that goal among all candidate architectures
and all possible parameters’ values. Therefore, instead of defining
the goal preference functions in terms of stakeholder’s preferences,
the GuideArch model views these functions as normalisation func-
tions expressing the percentage of goal attainment relative to the
highest attainment achievable within the model. The SAS model
utility score mixes both cost and benefit factors. For our experi-
ment, we have thus assumed this utility score corresponds to the net
benefit of our cost-benefit model, i.e. NB(a,ω) =U(a,ω), without
distinguishing the cost and benefit parts of the utility function.

3.3 Defining Design Decision Risks
Software design decisions should take into consideration the risks

associated to each candidate architecture.
In a cost-benefit model, these risks can be measured using the

loss probability and probable loss magnitude introduced in Section
2. Decision makers can introduce additional risk measures related
to net benefits, for example measuring the probability that the net
benefit or return-on-investment (i.e. the ratio between net benefit
and cost) are below some thresholds.

In addition to risk measures related to net benefits, software
architects may be interested in risks relative to the goals of the
multi-objective architecture decision model:

Goal Failure Risks. The risk for an architecture a to fail to
satisfy a goal g, noted GRisk(g,a) is the probability that a fails to
achieve some minimum level of goal attainment:

GRisk(g,a) = P(v(g,a,ω)< must(g))

2The GuideArch approach assigns to each architecture a a score s(a)
to be minimized rather than maximised. To facilitate exposition and
relation to other work, we convert the GuideArch score to a utility
score to be maximised. We have reproduced the GuideArch method
on the SAS case study and verified our change did not affect the
results; our findings are available at www.cs.ucl.ac.uk/staff/
e.letier/sdda.

www.cs.ucl.ac.uk/staff/e.letier/sdda
www.cs.ucl.ac.uk/staff/e.letier/sdda

where must(g) is the level of goal attainment below which stake-
holders would consider the goal to be unrealized. This definition
assumes g is to be maximised; a symmetric definition can be given
for goals to be minimized. Eliciting the must(g) values is part of
many requirements engineering methods [31, 47, 56]).

Project Failure Risk. The risk for an architecture a to fail the
whole project, noted PRisk(a) is defined as the risk of failing to sat-
isfy at least one of its goals. If the goals are statistically independent,
we have

PRisk(a) = 1−∏
g∈G

(1−GRisk(g,a)).

The project failure risk is defined with respect to goals are defined
in the multi-objective architecture decision model. These goals may
include concerns related to development costs and schedule.

SAS Case Study. The original SAS model has no definition
of risk and does not specify must values for any of its goals. We
thus decided to define the must(g) values relative to the goal level
attainment of some baseline architecture whose goal attainments
would be equal to those of the existing system. The new system has
to be at least as good as the current system on all goals, otherwise
the project would be viewed as failed. We have selected the baseline
architecture to be the lowest among the top 5% in terms of expected
net benefits.

3.4 Eliciting Parameters Values
The following step consists in eliciting probability distributions

(or single value in case a parameter is known with certainty) for
all parameters in the architecture and cost benefit decision mod-
els. As mentioned in Section 2, simple, reliable methods exist for
performing this elicitation [52].

SAS Case Study. The SAS design team elicited uncertainty for
all 175 model parameters through a three-point estimation method
that consist in eliciting for each parameter its most likely, lowest
and highest values. They interpreted these three points estimates
as triangular fuzzy value functions which are equivalent to triangu-
lar probability distributions. They also elicited point-based values
for each of the 7 goal weights parameters (unlike our approach,
GuideArch does not allow these weights to be uncertain).

3.5 Shortlisting Candidate Architectures
The next step consists in shortlisting candidate architectures to

be presented to software architects for the final decision and for
computing expected information value.

For this step, software architects have to decide what shortlisting
criteria to use. The default is to shortlist candidate architectures
that maximise expected net benefit and minimise project failure
risk. Software architects may, however, select other risk-related
criteria such as the probabilities that the project costs and schedule
exceed some threshold, or that the loss probability or probable
loss magnitude do. Software architects may select any number of
criteria. However, keeping the number of criteria below 3 facilities
the generation and visualisation of the shortlist.

Software architects may also specify for each criteria a resolution
margin to resist against specious differentiation when comparing
alternatives. For example, setting the resolution margins for financial
objectives such as expected net benefits and costs to £10,000 means
that the shortlisting process will ignore any differences of less then
£10,000 when comparing candidate architectures net benefits. These
resolutions margins make our shortlisting process robust against
statistical errors due to the MC simulation and modelling errors due
to simplifications in the model equations. Without such resolutions
margins, shortlisting candidate architectures based on strict Pareto-

optimality may result in a priori rejecting candidate architectures
based on insignificant differences in objective attainment levels.

Our tool then computes the shortlist as the set of Pareto-optimal
candidature architectures for the chosen criteria and resolution mar-
gins. More precisely, a candidate architecture a is shortlisted if there
is no other candidate architecture a′ that outperforms a by the reso-
lution margins on all criteria. If the MOADM includes a non-empty
set C of dependency constraints between design decisions, any ar-
chitecture that violates these constraints is automatically excluded.
Our shortlisting approach is an extension of the standard notion
of Pareto-optimality [34] used to deal with optimisation problems
involving uncertainty. In the objective space, the outcomes of each
candidate architecture for each criteria forms a Pareto-optimal strip,
or a Pareto-optimal front with margins.

Our implementation identifies the Pareto-optimal alternatives
through an exhaustive exploration of the design space. It first com-
putes the N̂B matrix for the full design space using MC simulation
then uses a classic algorithm for extracting Pareto-optimal sets [46]
that we have extended to deal with resolution margins. Our imple-
mentation is in R, an interpreted programming language for statisti-
cal computing.

For the SAS model, on a standard laptop, the MC simulations of
all 6912 alternatives takes around 5 minutes (for a MC simulation
with 104 scenarios) and the identification of the Pareto-optimal strip
less than a second. Other industrial architecture decision problems
have a design space whose size is similar or smaller to that of
the SAS [9, 43, 44]. For example, the application of CBAM to
NASA Earth Observation Core System (ECS) [43] involves 10
binary decisions (thus 1024 alternative architectures against 6912
for the SAS). Our exhaustive search approach is thus likely to be
applicable to most architecture decision problems.

The scalability bottleneck of our approach is more likely to be
related to the elaboration of the decision models (steps 1 and 2) and
the number of parameters to be elicited from stakeholders (step 3)
than to the automated shortlisting step. If, however, a need to in-
crease the performance and scalability of our shortlisting technique
appears, one could port our implementation to a faster complied
programming language and use evolutionary algorithms commonly
used in search-based software engineering [33] such as NSGA2 [15]
to deal with much larger design spaces (but at the cost of losing the
guarantee of finding the true Pareto-optimal strip).

SAS Case Study. Figure 4 shows the Pareto-optimal strip for
the SAS candidate architectures evaluated with respect to expected
net benefit and project failure risk. The resolution margins for each
criteria are set at 0.1 and 1%, respectively. The red crosses show the
9 architectures shortlisted by our approach, the blue squares the top
10 architectures of the GuideArch approach, and the grey circles all
other candidate architectures. In our shortlist, 5 out of 9 candidate
architectures are in the Pareto-strip but not on the Pareto-front; they
would have groundlessly been excluded from the shortlist if we
had followed the traditional approach of retaining solutions in the
Pareto-optimal front only.

We observe important differences between our shortlist and top 10
architectures GuideArch identifies: our shortlists identifies candidate
architectures with slightly higher expected net benefit and much
lower project risk than GuideArch’s top 10 architectures. We explain
the difference between the two shortlists as follows. GuideArch
did not consider project failure risk as we defined it in Section 3.3
(or any other risk) in their architecture evaluations. It is therefore
not surprising that its top 10 architectures perform weakly with
respect to this criterion. Instead of evaluating criteria against their
expected net benefit (or equivalently their utility score) and some
measure of risk, GuideArch ranks candidate architectures according

0.0 0.2 0.4 0.6 0.8 1.0

12
14

16
18

20

Project Failure risk

E
xp

ec
te

d
N

et
 B

en
ef

it

Figure 4: Comparing our shortlisted architectures (red crosses) against
GuideArch top 10 (blue triangles). The grey circles denote all other candidate
architectures.

to a single criterion corresponding to an uncertainty-adjusted score
defined as the weighted sum of an architecture’s pessimistic, most
likely, and optimistic net benefit in fuzzy logic. The weights in the
uncertainty-adjusted score capture the importance decision makers
give to pessimistic, most likely, and optimistic outcomes. In other
words, GuideArch scores architectures by taking into account the
most likely net benefits (in probabilistic terms, the mode of the
distribution) and what its authors call the positive and negative
consequences of uncertainty. In our probabilistic approach, both
types of consequences are already taken into account by computing
the expected net benefit. We argue our shortlisting approach has
two advantages over the GuideArch uncertainty-adjusted scores: (1)
it informs decision makers of both expected net benefit and risks;
and (2) it does not require decision makers to specify uncertainty-
adjusting weights whose impacts on the architectures ranking are
difficult to interpret.

3.6 Open and Closed Design Decisions
Shortlisting a set of candidate architectures may conclude a set

of design decisions. A design decision is closed if all shortlisted
architectures agree on the option to be selected for this decision;
a design decision is open if the shortlisted architecture contains
alternative options for that option. Presenting the open and closed
design decisions gives decision makers a useful view of the short-
listed architectures. If the shortlist is large, it can also be organised
into clusters based on design decisions similarities [66].

SAS Case Study. Figure 5 shows the open and closed design
decisions in our shortlisted candidate architectures.

3.7 Computing Information Value
The last step consists in computing the expected value of perfect

information and its impact on risks. The expected value of total
perfect information and its impact on risk, EVTPI and ERITPI,
give upper bounds on the value that additional information could
bring to the decision. If EVTPI is small and the impact on risk low,
there is little value in reducing model parameters uncertainty. The
expected value of partial perfect information about a single model
parameter Θ and its impact on risk, EVPPI(Θ) and ERIPPI(Θ), help
software architects to distinguish model parameters with high and
low expected information value. We also found it useful to measure
the expected value of partial perfect information about the level
of attainment of each goal and its impact on risk, EVPPI(v(g,a))
and ERIPPI(v(g,a)). This gives software architects a mean of

Open Decisions Options

File Sharing OpenIntents In house
Chat XMPP (Open File) In house

Connectivity 3G on Nexus 1 3G on Droid
Architectural Pattern Facade Psuh-based

Closed Decisions Option

Location Finding Radio
Hardware Platform Nexus 1

Report Syncing Explicit
Map Access Preloaded (ESRI)

Database MySQL
Data Exchange Format Unformatted Data

Figure 5: Open and closed decisions in our shortlisted architectures.

EVPPI/EVTPI ∆PPIP/T PI(Risk)

Ramp up time (1) 10% 5%
Battery Usage (1) 10% 5%

Ramp up time (14) 10% 5%
Battery Usage (20) 10% 4%
Ramp up time(11) 10% 4%
Ramp up time(20) 10% 4%

Battery Usage (11) 10% 5%
Development Time (20) 9% 5%

Development Time (1) 4% 5%
Development Time (14) 3% 5%
Development Time (11) 3% 5%

Figure 6: Expected Value of Partial Perfect Information.

separating high and low information value at the levels of goals
instead of individual parameters which can be too numerous (the
SAS model has 175 parameters) and fine-grained.

To ease computations of expected information values, we limit the
alternatives to those in the shortlist. In our case study, this reduces
the N̂B matrix from which EVTPI and EVPPI are computed from
a size of 6912 by 104 (the number of alternatives by the number of
simulation scenarios) to a size of 9 by 104.

One should be careful in interpreting EVTPI and EVPPI values
to remember that their accuracy is conditional on the validity of the
decision model. They only measure the value of reducing uncer-
tainty about model parameters, not about the model equations. We
come back to this issue below.

SAS Case Study. Using the shortlisted architectures identified in
Section 3.5 and N̂B matrix for those architectures, we compute that
EVTPI is 0.05 which represents only 0.25% of the highest expected
net benefit. EIRTPI is 9% which is the full project failure risk of
the highest benefit architecture in our shortlist. This means that the
impact of perfect information is to reduce project failure risk to zero.
Figure 6 shows all non-zero EVPPI for all goals and architectures.
Since these EVPPI are small, the table shows the ratio of EVPPI to
EVTPI instead of absolute values. The ramp up time and battery
usage of 4 of the 9 shortlisted architectures are shown to have, in
relative terms, much higher information value than other goals and
architectures. However, in absolute terms, these values remain low.

In order to experiment with the use of EVTPI and EVPPI, we have
artificially extended uncertainty in the SAS model and observed the
effect on EVTPI and EVPPI. We have for example given uncertainty
to the goal weights in the definition of the utility function. We have
assumed that the SAS design team is likely to have overestimated

the goal weights and have therefore replaced their constant value by
a triangular distribution of parameters (0,w(g),w(g)) where w(g)
is the initial goal weight estimated by the SAS design team. This
distribution resulting in a linearly decreasing probability distribution
function from w(g) to 0. We observed that this uncertainty roughly
doubled EVTPI. However, in our all experiments, EVTPI remains
small. This is mostly due to the small differences in net benefit
that exist among the shortlisted architectures even when most of the
model parameters uncertainties are increased.

If we had confidence in the validity of the model utility function,
this result would mean that, for this particular decision problem,
there is no value in reducing uncertainty before deciding among
the shortlisted architectures. However, we have identified important
limitations in the SAS MOADM and utility models that severely
question their validity, the most important problem being that these
models are not falsifiable, making it impossible to validate and
improve them based on empirical evidence. The project client should
thus be sceptical of the choice of architecture, risk assessment, and
information value generated using these models whatever decision
support method is used.

In order to deal with such difficulties, it would be desirable to
be able to explicitly describe and reason not only about parameters
uncertainty, but also about model uncertainty (also called structural
uncertainty) [17]. Requirements and architecture decision problems
would especially benefit from this capability. It would enable an
incremental approach where software architects could start from an
inexpensive, coarse-grained decision model with large uncertainty,
then use expected information value about model uncertainty to
decide whether and where to reduce uncertainty by refining parts
of the model. They could for example start with a coarse-grained
software performance model similar to the one used in the SAS case
study, estimate their uncertainty about the model error (the deviation
between its predicted performance and the software’s actual per-
formance) and compute the expected value of perfect information
about this error to decide whether to refine this model into a more
fine-grained performance model. We have started exploring how to
extend our method to deal with model uncertainty by converting it
to parameter uncertainty, but the approach is still tentative and our
method does not currently supports this.

4. EVALUATION AND FUTURE WORK
Evaluating decision support methods is hard. Often, authors argue

that their method is systematic, liked by its users, triggers useful
discussions and generates insights into the decision problem [21, 34,
49]. None of these claims, however, consider whether a decision
method is correct and produces better outcomes than another method,
or even than no method at all (i.e.. decisions based on intuition
alone). The popular AHP method [57], for example, is criticised by
decision experts for its mathematical flaws [8, 10, 53] and lack of
evidence that it leads to better decisions than intuition alone [40].

Evaluation of software engineering decision methods should go
beyond vague claims of usefulness. In this section, we propose to
evaluate software engineering decision support methods according
to their correctness, performance and scalability, applicability, and
cost-effectiveness. Inspired by an adaptation of Moslow’s pyramid
of human needs to software quality [2], we visualize these criteria in
a pyramid where the lower-level criteria are necessary foundations
for higher-level ones. We discuss the extent to which we can claim
our method meets these criteria and outline a roadmap of future
research to extend our evaluation and improve our method against
those criteria.

1. Correctness. The first level is to establish what correctness
properties can be claimed of the method. One must distinguish

correctness of the decision method from correctness of the decision
models to which the method is applied. Our method is correct
in the sense that its produces correct estimations of the candidate
architectures expected net benefits, risks, and expected information
value assuming validity of the decision models and accuracy of the
parameters’ probability distributions3. Not all decision methods
can make this correctness claim. For example, GuideArch computes
for each architecture a score that, unlike our expected net benefit
and risk, makes no falsifiable predictions about the architecture and
has therefore no notion of correctness.

The lack of validity and falsifiability of the decision model we
used in the SAS case study is an important weakness of our evalua-
tion. All models are wrong, but some are useful [13]. Unfortunately,
today no scientific method exists to help software architects evaluate
how useful a model actually is to inform decisions. As mentioned
in the closing of the previous section, we intend to address this
shortcoming by extending our approach to deal with model uncer-
tainty so as the be able to estimate modelling errors, their impact on
decisions, and support an incremental modelling process guided by
information value analysis.

Our method assumes it is possible to elicit accurate probabil-
ity distributions for all model parameters. Such elicitation can be
hampered by important cognitive biases. For example, software
estimations have been shown to be affected by anchoring [6]. Sig-
nificant research in uncertainty elicitation has show it is possible to
counter the effects of such biases using appropriate methods [52].
However, these methods have to our knowledge not yet been ap-
plied in a software engineering context and further evaluation is thus
required in this area.

2. Performance and scalability. With the SAS case study, we
have shown our method is fast enough to analyse a real software
design decision problem whose size and complexity is similar to
those of other published industrial architecture decision problems [9,
43, 44]. The manual steps of elaborating the decision models and
eliciting all parameters probability distributions will most likely
be the first scalability bottleneck of applying our method to more
complex problems. If our automated shortlisting step becomes a
bottleneck, its performance and scalability can be improved notably
by using by using evolutionary search-based algorithms to reduce
the number of candidate architectures to evaluate. In the near future,
we intend to conduct a systematic scalability analysis [19] of the
whole approach on real case studies before attempting to improve
its performance.

3. Applicability. The next evaluation criteria is to show the
method is applicable by its intended users (not just the method de-
signers) in actual software engineering projects. We distinguish
technical applicability, the extent to which the method is under-
standable and applicable by software architects in an ideal (fictive)
project where actors do not intentionally or unintentionally game the
decision making process, from contextual applicability, the extent to
which the method is applicable in the context of real projects where
the project governance, incentives, and political relations might
affect the decision making process and reporting of uncertainty.

At the moment, we see no critical threats to the technical appli-
cability of our method. Our method takes as input decision models
that correspond to those already produced by other requirements
engineering and architecture methods [22, 45, 47, 49]. The only
other required inputs are probability distributions modelling the deci-

3Our approach actually computes these quantities using MC sim-
ulation which introduces bounded and measurable simulations er-
rors [48, 54]. In our case study, with simulations of 105 scenarios,
these errors are negligible, particularly when compared to the much
wider modelling and parameter uncertainty.

sion makers uncertainty about the model parameters. As mentioned
earlier, simple, reliable methods exist to elicit such probability distri-
butions [52]. Our analysis outputs need to be easily interpretable by
decision makers. Although the concepts of risk, Pareto-optimality
and information value can be misunderstood, we see no insurmount-
able obstacle here.

Even if the method is technically applicable, the political context
and governance structure of a project may create obstacles to the
accurate reporting of uncertainty and analysis of risks [40, 50].
Important research in this area will be needed to identify incentives
and governance structures that are favourable to sound decision
making under uncertainty.

4. Cost-effectiveness The next evaluation stage is to demonstrate
the cost-effectiveness of decision analysis methods in requirements
and architecture decisions. A method can be applicable without be-
ing cost-effective. Showing cost-effectiveness of a decision method
dealing with uncertainty is hard. One must distinguish a good de-
cision from a good outcome. A good decision may by the effect
of chance lead to a bad outcome, and vice-versa a bad decision
may also by the effect of chance lead to a good outcome. How-
ever, when analysed over many decisions, a good decision support
method should on average lead to better outcomes, which for soft-
ware engineering projects means higher business benefits from IT
projects and less costly project failures. We believe that by setting
expected benefits and risks as explicit decision criteria and by using
falsifiable models that can be incrementally improved from empir-
ical evidence, our method has a better chance of achieving these
goals than other methods relying on unfalsifiable models and utility
scores not clearly related to benefits and risks.

5. RELATED WORK
Most requirements and architecture decision methods ignore un-

certainty and rely on point-based estimates of their models param-
eters [5, 22, 24, 32, 47, 64, 68]. By simply replacing point-based
estimates by probability distributions, our method can be directly ap-
plied to any previous decision model because the MC simulations at
the heart of the method merely consist of evaluating the point-based
models on many different possible parameters values.

Our method builds on previous methods for dealing the uncer-
tainty in software architecture decisions, notably CBAM [42, 49]
and GuideArch [21].

The first two steps of our method are equivalent to the model
elaboration steps in CBAM. Our method differs from CBAM in that
it relies on sound, reliable techniques for eliciting probability distri-
butions; it includes explicit definition of risks with respect to which
alternatives are evaluated; it shortlists candidate architectures based
on multiple objectives (e.g. ENB and Risk) instead of assuming a
single ranking criteria; and it measures expected information value
whereas CBAM uses deterministic sensitivity analysis whose limita-
tions were described in Section 2.2. Elaborating on the first point,
CBAM infers probability distributions from divergences between
stakeholders’ single-point estimates; this confuses consensus about
the most likely value with uncertainty about the possible ranges of
values.

Our method differs from GuideArch in the following ways. In step
1 and 2, our method allows decision makers to elaborate problem-
specific decision models whereas GuideArch relies on fixed equa-
tions for computing a score for each candidate architecture. The
GuideArch equations are not falsifiable and therefore not amenable
to empirical validation. Likewise, unlike step 3 of our method,
GuideArch does not allow decision makers to define domain-specific
measures of risks. In step 4, we model uncertainty about parameters’
values as probability distributions for which sound uncertainty elic-

itation techniques exist [52] whereas GuideArch uses fuzzy logic
values that cannot be empirically validated and calibrated. In step 5,
we allow decision makers to shortlist candidate architecture based
on expected net benefit and risks whereas GuideArch ranks archi-
tecture using a single risk-adjusted score whose interpretation is
problematic. Finally, GuideArch has no support for assessing the
value of information. Because GuideArch does not require the elab-
oration of problem-specific models, it may be simpler to apply than
CBAM and our approach; however, the lack of validity of the fixed
equations used to score alternatives should raise concerns regarding
the validity of the rankings it produces.

Our decision support method deals with design time knowledge
uncertainty and should not be confused with the large body of
software engineering research dealing with run-time physical un-
certainty (e.g. [30, 35, 36, 47]). Philosophers and statisticians use
the terms epistemic and aleatory uncertainty, respectively [52]. A
probabilistic transition system may for example describe variations
in the response time of a web service as an exponential distribution
with a mean λ . This models a run-time physical uncertainty. Such
probabilistic model could be part of a decision model where the
mean λ is an uncertain model parameter. The decision makers’
uncertainty about λ is a knowledge uncertainty.

Other software engineering research streams are concerned with
uncertainty during the elaboration of partial models [23] and uncer-
tainty in requirements definitions for adaptive systems [67]. These
are different concerns and meanings of uncertainty than those stud-
ied in this paper.

Graphical decision-theoretic models [18] and Bayesian networks
[28] provide general tools for decision making under uncertainty.
They have supported software decisions regarding development
resources, costs, and safety risks [26, 27] but not requirements and
architecture decisions. We did not used these tools to support our
method because they deal with discrete variables only; their use
would have required transforming our continuous variables such as
cost, benefit and goal attainment levels into discrete variables.

Boehm’s seminal book on software engineering economics de-
votes a chapter to statistical decision theory and the value of infor-
mation [11]. The chapter illustrates the expected information value
on a simple example of deciding between two alternative develop-
ment strategies. To our knowledge, this is the only reference to
information value in the software engineering literature, including
in Boehm’s subsequent work. This concept thus appears to have
been forgotten by our community.

Software cost estimation methods [4, 12, 26, 60] could be used
to provide inputs to our decision method. Many already rely on sta-
tistical and Bayesian methods to provide cost estimates; they could
easily generate cost estimates in the form of probability distributions
instead of point-based estimates.

6. CONCLUSION
Requirements and architecture decisions are essentially decisions

under uncertainty. We have argued that modelling uncertainty and
mathematically analysing its consequences leads to better decisions
than either hiding uncertainty behind point-based estimates or treat-
ing uncertainty qualitatively as an inherently uncontrollable aspect
of software development. We believe that statistical decision analy-
sis provide the right set of tools to manage uncertainty in complex
requirements and architecture decisions. These tools may be useful
to other areas of software engineering, e.g. testing, where critical
decisions must be made by analysing risks arising out of incomplete
knowledge. In future work, we intend to validate and refine our
method on a series of industrial case studies and address the problem
of reasoning about model uncertainty.

7. REFERENCES
[1] G. Adzic. Impact Mapping: Making a big impact with

software products and projects. Provoking Thoughts, 2012.
[2] G. Adzic. Redefining software quality. http://gojko.net/

2012/05/08/redefining-software-quality, 2012.
Last Accessed: 28 Feb 2014.

[3] Y. Akao. Quality function deployment: integrating customer
requirements into product design. Productivity Press, 1990.

[4] A. J. Albrecht. Measuring application development
productivity. In Proceedings of the Joint SHARE/GUIDE/IBM
Application Development Symposium, volume 10, pages
83–92, 1979.

[5] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher,
L. Peyton, and E. Yu. Evaluating goal models within the
goal-oriented requirement language. International Journal of
Intelligent Systems, 25(8):841–877, 2010.

[6] J. Aranda and S. Easterbrook. Anchoring and adjustment in
software estimation. In Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pages 346–355. ACM,
2005.

[7] G. Baio. Bayesian Methods in Health Economics. CRC Press,
2012.

[8] C. A. Bana e Costa and J.-C. Vansnick. A critical analysis of
the eigenvalue method used to derive priorities in AHP.
European Journal of Operational Research,
187(3):1422–1428, 2008.

[9] L. Bass, P. Clements, and R. Kazman. Software architecture in
practice. Addison-Wesley Professional, 2003.

[10] V. Belton and T. Gear. On a short-coming of saaty’s method of
analytic hierarchies. Omega, 11(3):228–230, 1983.

[11] B. W. Boehm. Software Engineering Economics. Prentice
Hall, Englewood Cliffs, NJ, 1981.

[12] B. W. Boehm, R. Madachy, B. Steece, et al. Software Cost
Estimation with Cocomo II. Prentice Hall PTR, 2000.

[13] G. E. Box and N. R. Draper. Empirical model-building and
response surfaces. John Wiley & Sons, 1987.

[14] M. Cantor. Calculating and improving ROI in software and
system programs. Commun. ACM, 54(9):121–130, Sept. 2011.

[15] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: Nsga-II. Lecture notes in computer science,
1917:849–858, 2000.

[16] M. Denne and J. Cleland-Huang. The incremental funding
method: Data-driven software development. IEEE Software,
21(3):39–47, 2004.

[17] D. Draper. Assessment and propagation of model uncertainty.
Journal of the Royal Statistical Society. Series B
(Methodological), pages 45–97, 1995.

[18] M. J. Druzdzel. Smile: Structural modeling, inference, and
learning engine and genie: a development environment for
graphical decision-theoretic models. In AAAI/IAAI, pages
902–903, 1999.

[19] L. Duboc, E. Letier, and D. S. Rosenblum. Systematic
elaboration of scalability requirements through goal-obstacle
analysis. IEEE Transactions on Software Engineering,
39(1):119–140, 2013.

[20] N. Esfahani and S. Malek. Guided exploration of the
architectural solution space in the face of uncertainty.
Technical report, 2011.

[21] N. Esfahani, S. Malek, and K. Razavi. GuideArch: guiding the

exploration of architectural solution space under uncertainty.
In Proceedings of the 2013 International Conference on
Software Engineering, pages 43–52. IEEE Press, 2013.

[22] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten.
Decision-making techniques for software architecture design:
A comparative survey. ACM Computing Surveys (CSUR),
43(4):33, 2011.

[23] M. Famelis, R. Salay, and M. Chechik. Partial models:
Towards modeling and reasoning with uncertainty. In 34th
International Conference on Software Engineering (ICSE
2012), pages 573–583. IEEE, 2012.

[24] M. S. Feather and S. L. Cornford. Quantitative risk-based
requirements reasoning. Requirements Engineering,
8(4):248–265, 2003.

[25] J. C. Felli, G. B. Hazen, P. D, and P. D. Sensitivity analysis
and expected value of perfect information. Medical Decision
Making, 18:95–109, 1997.

[26] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and
M. Tailor. Making resource decisions for software projects. In
26th International Conference on Software Engineering (ICSE
2004), pages 397–406. IEEE, 2004.

[27] N. Fenton and M. Neil. Making decisions: using bayesian nets
and MCDA. Knowledge-Based Systems, 14(7):307–325, 2001.

[28] N. Fenton and M. Neil. Risk Assessment and Decision
Analysis with Bayesian Networks. CRC Press, 2012.

[29] B. Flyvbjerg and A. Budzier. Why your IT project may be
riskier than you think. Harvard Business Review, 89(9):23–25,
2011.

[30] C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli.
Managing non-functional uncertainty via model-driven
adaptivity. In 35th International Conference on Software
Engineering (ICSE 2013), pages 33–42. IEEE Press, 2013.

[31] T. Gilb. Competitive engineering: : A handbook for systems
engineering, requirements engineering, and software
engineering using Planguage. Butterworth-Heinemann Ltd,
2005.

[32] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani.
Reasoning with goal models. In Conceptual Modeling – ER
2002, pages 167–181. Springer, 2002.

[33] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based
software engineering: Trends, techniques and applications.
ACM Computing Surveys, 45(1):11, 2012.

[34] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo. Search
based software engineering: Techniques, taxonomy, tutorial.
In Empirical Software Engineering and Verification, pages
1–59. Springer, 2012.

[35] W. Heaven and E. Letier. Simulating and optimising design
decisions in quantitative goal models. In 19th IEEE
International Requirements Engineering Conference (RE
2011), pages 79–88. IEEE, 2011.

[36] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 441–444. Springer, 2006.

[37] R. Howard. Information value theory. IEEE Transactions on
Systems Science and Cybernetics, 2(1):22–26, 1966.

[38] R. A. Howard. Readings on the principles and applications of
decision analysis, volume 1. Strategic Decisions Group, 1983.

[39] D. Hubbard. The IT measurement inversion. CIO Enterprise
Magazine, 1999.

[40] D. Hubbard. The Failure of Risk Management: Why It’s

http://gojko.net/2012/05/08/redefining-software-quality
http://gojko.net/2012/05/08/redefining-software-quality

Broken and How to Fix It. Wiley, 2009.
[41] D. Hubbard. How to measure anything: Finding the value of

intangibles in business. Wiley, 2010.
[42] R. Kazman, J. Asundi, and M. Klein. Quantifying the costs

and benefits of architectural decisions. In 23rd International
Conference on Software Engineering (ICSE 2001), pages
297–306. IEEE Computer Society, 2001.

[43] R. Kazman, J. Asundi, and M. Klien. Making architecture
design decisions: An economic approach. Technical report,
DTIC Document, 2002.

[44] R. Kazman, M. Barbacci, M. Klein, S. Jeromy Carriere, and
S. G. Woods. Experience with performing architecture
tradeoff analysis. In 21st International Conference on
Software Engineering (ICSE 1999), pages 54–63. IEEE, 1999.

[45] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and J. Carriere. The architecture tradeoff analysis method. In
Fourth IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’98), pages 68–78.
IEEE, 1998.

[46] H.-T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. Journal of the ACM,
22(4):469–476, 1975.

[47] E. Letier and A. van Lamsweerde. Reasoning about partial
goal satisfaction for requirements and design engineering. In
12th International Symposium on the Foundation of Software
Engineering (FSE 2004), volume 29, pages 53–62. ACM,
2004.

[48] D. Lunn, C. Jackson, D. J. Spiegelhalter, N. Best, and
A. Thomas. The BUGS book: A practical introduction to
Bayesian analysis, volume 98. CRC Press, 2012.

[49] M. Moore, R. Kazman, M. Klein, and J. Asundi. Quantifying
the value of architecture design decisions: lessons from the
field. In 25th International Conference on Software
Engineering (ICSE 2003), pages 557–562, 2003.

[50] National Audit Office. Over-optimism in government projects,
2013.

[51] B. Nuseibeh. Weaving together requirements and
architectures. IEEE Computer, 34(3):115–119, 2001.

[52] A. O’Hagan, C. Buck, A. Daneshkhah, J. Eiser, P. Garthwaite,
D. Jenkinson, J. Oakley, and T. Rakow. Uncertain Judgements:
Eliciting Experts’ Probabilities. Statistics in Practice. Wiley,
2006.

[53] J. Pérez, J. L. Jimeno, and E. Mokotoff. Another potential
shortcoming of AHP. Top, 14(1):99–111, 2006.

[54] M. Plummer. Jags: A program for analysis of bayesian
graphical models using Gibbs sampling. In Proceedings of the
3rd International Workshop on Distributed Statistical
Computing (DSC 2003). March, pages 20–22, 2003.

[55] K. Popper. The logic of scientific discovery. Routledge, 1959.

[56] B. Regnell, R. B. Svensson, and T. Olsson. Supporting
roadmapping of quality requirements. IEEE Software,
25(2):42–47, 2008.

[57] T. L. Saaty. How to make a decision: the analytic hierarchy
process. European journal of operational research,
48(1):9–26, 1990.

[58] M. Sadatsafavi, N. Bansback, Z. Zafari, M. Najafzadeh, and
C. Marra. Need for speed: an efficient algorithm for
calculation of single-parameter expected value of partial
perfect information. Value in Health, 2013.

[59] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature
diagrams: A survey and a formal semantics. In 14th IEEE
International Requirements Engineering Conference (RE
2006), pages 139–148. IEEE, 2006.

[60] M. Shepperd. Software project economics: a roadmap. In
Future of Software Engineering, 2007. FOSE’07, pages
304–315. IEEE, 2007.

[61] T. J. Stewart. Dealing with uncertainties in MCDA. In
Multiple criteria decision analysis: State of the art surveys,
pages 445–466. Springer, 2005.

[62] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson. A
quality-driven decision-support method for identifying
software architecture candidates. International Journal of
Software Engineering and Knowledge Engineering,
13(5):547–573, 2003.

[63] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
architecture: foundations, theory, and practice. Wiley, 2009.

[64] A. van Lamsweerde. Reasoning about alternative
requirements options. In Conceptual Modeling: Foundations
and Applications, pages 380–397. Springer, 2009.

[65] A. van Lamsweerde. Requirements engineering: from system
goals to UML models to software specifications. Wiley, 2009.

[66] V. Veerappa and E. Letier. Understanding clusters of optimal
solutions in multi-objective decision problems. In 19th IEEE
International Requirements Engineering Conference (RE
2011), pages 89–98. IEEE, 2011.

[67] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M.
Bruel. Relax: Incorporating uncertainty into the specification
of self-adaptive systems. In 17th IEEE International
Requirements Engineering Conference (RE 2009), pages
79–88. IEEE, 2009.

[68] Y. Zhang, A. Finkelstein, and M. Harman. Search based
requirements optimisation: Existing work and challenges. In
Requirements Engineering: Foundation for Software Quality,
pages 88–94. Springer, 2008.

[69] Y. Zhang and M. Harman. Search based optimization of
requirements interaction management. In Second
International Symposium on Search Based Software
Engineering (SSBSE 2010), pages 47–56, 2010.

	Introduction
	Cost-Benefit AnalysisUnder Uncertainty
	Computing Expected Net Benefit and Risk
	The Expected Value of Information
	The Impact of Information on Risk

	Software Design Decisions Under Uncertainty
	Defining the Architecture Decision Model
	Defining the Cost-Benefit Model
	Defining Design Decision Risks
	Eliciting Parameters Values
	Shortlisting Candidate Architectures
	Open and Closed Design Decisions
	Computing Information Value

	Evaluation and Future Work
	Related Work
	Conclusion
	References

