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Abstract

Metacognition refers to the ability to reflect on and monitor one’s cognitive processes, such as perception, memory and
decision-making. Metacognition is often assessed by whether an observer’s confidence ratings are predictive of objective
success, but simple correlations between performance and confidence are susceptible to undesirable influences such as re-
sponse biases. Recently, an alternative approach to measuring metacognition has been developed that characterizes meta-
cognitive sensitivity (meta-d’) by assuming a generative model of confidence within the framework of signal detection the-
ory. However, current estimation routines require an abundance of confidence rating data to recover robust parameters,
and only provide point estimates of meta-d’. In contrast, hierarchical Bayesian estimation methods provide opportunities to
enhance statistical power, incorporate uncertainty in group-level parameter estimates and avoid edge-correction con-
founds. Here I introduce such a method for estimating metacognitive efficiency (meta-d’/d’) from confidence ratings and
demonstrate its application for assessing group differences. A tutorial is provided on both the meta-d’ model and the prepa-
ration of behavioural data for model fitting. Through numerical simulations I show that a hierarchical approach outper-
forms alternative fitting methods in situations where limited data are available, such as when quantifying metacognition in
patient populations. In addition, the model may be flexibly expanded to estimate parameters encoding other influences on
metacognitive efficiency. MATLAB software and documentation for implementing hierarchical meta-d’ estimation (HMeta-
d) can be downloaded at https://github.com/smfleming/HMeta-d.
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Introduction

Metacognition is defined as ‘knowledge of one’s own cognitive
processes’ (Flavell 1979). For example, we can reflect on whether
a particular percept is accurate or inaccurate, and this ability to
‘know that we know’ is a central aspect of conscious experience
(Schooler 2002). Consider blindsight, a neurological condition
that sometimes arises following selective lesions to primary vi-
sual cortex (Weiskrantz et al. 1974). A blindsight patient may
perform a task (e.g. discriminating the location of a stimulus) at
a reasonably high level in the otherwise blind field, and yet lack
insight as to whether they have performed accurately on any
given trial (Persaud et al. 2007). It is plausible that a joint lack of

metacognition and conscious visual experience are both conse-
quences of disruptions to higher-order representations (Lau and
Rosenthal 2011; Ko and Lau 2012). While there are clearly other
drivers of confidence in one’s task performance aside from sen-
sory certainty (such as response requirements; Pouget et al.
2016; Denison 2017), understanding the mechanisms supporting
metacognition may shed light on the putative underpinnings of
conscious experience. Understanding the relationship between
metacognition and perceptual and cognitive processes also has
broader application in work on judgment and decision-making
(Lichtenstein et al. 1982), developmental psychology (Weil et al.
2013; Goupil et al. 2016), social psychology (Heatherton 2011)
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and clinical disorders (David et al. 2012; Moeller and Goldstein
2014).

Metacognitive ‘sensitivity’ can be assessed by the extent to
which an observer’s confidence ratings are predictive of their
actual success. Consider a simple decision task such as whether
a briefly flashed visual stimulus is categorized as being tilted to
the left or right, followed by a confidence rating in being correct.
The task of assessing response accuracy using confidence rat-
ings is often called the ‘type 2 task’ (Clarke et al. 1959; Galvin
et al. 2003) to differentiate it from the ‘type 1 task’ of discrimi-
nating between states of the world (e.g. left or right tilts). If
higher confidence ratings are given after correct judgments and
lower confidence ratings after incorrect judgments, we can as-
cribe high metacognitive sensitivity to the subject. Thus a sim-
ple and intuitive way of assessing metacognitive sensitivity is
to correlate confidence with accuracy (Nelson 1984).

However, confidence–accuracy correlations (e.g. gamma and
phi correlations) are affected by the confounding factors of type
1 performance (d’) and type 2 response bias (overall level of con-
fidence; Masson and Rotello 2009; Fleming and Lau 2014).
Consider two subjects A and B performing the same task but
with different baseline levels of performance. A and B may have
the same underlying metacognitive ability, but their confi-
dence–accuracy correlations may differ due to differing perfor-
mance levels. In this situation, we may erroneously conclude
that A and B have different metacognition, despite their under-
lying metacognitive ability being equal. More generally, an im-
portant lesson from the signal detection theory (SDT) approach
to modelling type 1 and type 2 tasks is that type 1 sensitivity (d’)
and type 1 criterion (c) influence measures of type 2 sensitivity
(Galvin et al. 2003).

Recently, an alternative approach to measuring metacogni-
tive sensitivity has been developed by Maniscalco and Lau
(2012). This approach posits a generative model of confidence
reports within the framework of SDT (Fig. 1A). Fitting the model
to data returns a parameter, meta-d’, that reflects an individ-
ual’s metacognitive sensitivity. Specifically, meta-d’ is the value
of type 1 performance (d’) that would have been predicted to
give rise to the observed confidence rating data assuming an
ideal observer with type 1 d’¼meta-d’. Meta-d’ can then be com-
pared with actual d’ and a relative measure of metacognitive
sensitivity can then be calculated as a ratio (meta-d’/d’) or sub-
traction (meta-d’-d’). Meta-d’/d’ is a measure of ‘metacognitive
efficiency’—given a particular level of task performance, how
efficient is the individual’s metacognition? If meta-d’¼ d’, then
the observer is metacognitively ‘ideal’, using all the information
available for the type 1 task when reporting type 2 confidence.
However, we might find that meta-d’< d’, due to some degree of
noise or imprecision introduced when rating one’s confidence.
Conversely we may find that meta-d’> d’ if subjects are able to
draw on additional information such as hunches (Rausch and
Zehetleitner 2016; Scott et al. 2014) further processing of stimu-
lus information (Rabbitt and Vyas 1981; Charles et al. 2013) or
knowledge of other influences on task performance when mak-
ing their metacognitive judgments (Fleming and Daw 2017).

The properties of the meta-d’ model have been thoroughly
explored in previous articles (Maniscalco and Lau 2012; Barrett
et al. 2013; Fleming and Lau 2014;Maniscalco and Lau 2014). The
goal of the present article is 2-fold. First, I introduce a new
method for estimating meta-d’/d’ from confidence ratings using
hierarchical Bayes, and provide a tutorial on its usage. Second, I
demonstrate the benefits of applying this method to derive
group-level estimates of metacognitive efficiency in situations
where data are limited.

Previously meta-d’ has been fitted using gradient ascent on
the likelihood [maximum likelihood estimation (MLE)],
minimization of sum-of-squared error (SSE) or using analytic
approximation (Maniscalco and Lau 2012; Barrett et al. 2013).
However, several factors make a Bayesian approach attractive
for typical metacognition studies:

1. Point estimates of meta-d’ are inevitably noisy. Several pa-
rameters must be estimated in the signal detection model,
including multiple type 2 criteria [specifically, k� 1ð Þ � 2,
where k ¼ number of confidence ratings available]. One com-
mon issue in cognitive neuroscience is that trial numbers
per condition are also low (e.g. in patient studies, or tasks
conducted in conjunction with neuroimaging), and fre-
quentist estimates of hit and false-alarm rates fail to ac-
count for uncertainty about these rates that is a
consequence of finite data. A Bayesian analysis incorporates
such uncertainty into parameter estimates.

2. A hierarchical Bayesian approach is the correct way to com-
bine information about within- and between-subject uncer-
tainty. In a typical study, the metacognitive sensitivities of
two groups (e.g. patients and controls) are compared. Single-
subject maximum likelihood fits are carried out, and the fit-
ted meta-d’ parameters are entered into an independent
samples t-test. Any information about the uncertainty in
each subject’s parameter fits is discarded in this procedure.
In contrast, using hierarchical Bayes, information about un-
certainty is retained, such that group-level parameters are
less influenced by single-subject fits that have a high degree
of uncertainty. In turn, hierarchical model fits are able to
capitalize on the statistical strength offered by the degree to
which subjects are similar with respect to one or more
model parameters, mutually constraining the subject-level
model fits.

3. In fitting SDT models to data, padding (edge correction) is of-
ten applied to avoid zero counts of confidence ratings in par-
ticular cells [e.g. high confidence error trials; Hautus (1995);
Macmillan and Creelman (2005)]. This padding may bias
subject-specific parameter estimates particularly when the
overall trial number is low. A Bayesian approach avoids the
need for edge correction as the generative multinomial
model naturally handles zero cell counts, and a hierarchical
specification pools data over subjects (Lee 2008).

4. A hierarchical model makes testing group-level hypotheses
natural and straightforward. For example, say we are inter-
ested in testing whether a particular patient group has lower
metacognitive sensitivity compared with controls.
Hierarchical Bayes allows us to directly estimate the poste-
rior distribution of a parameter that characterizes the differ-
ences between groups, and provides a principled framework
for hypothesis testing. Finally, a Bayesian framework for
cognitive modelling enjoys other advantages that have been
outlined in detailed elsewhere (Kruschke 2014; Lee and
Wagenmakers 2014). Briefly, they include the ability to gain
evidence in favour of the null hypothesis as well as against
it; the ability to combine prior information (e.g. a prior on
the distribution of metacognitive sensitivity in a healthy
population) with new data; and the flexible extension of the
model to estimate subject- and trial-level influences on
metacognition.

The basics of Bayesian estimation of cognitive models are in-
tuitive. First, prior information is specified in the form of proba-
bility distributions over model parameters, and observed data
are used to update beliefs to construct a posterior distribution
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or belief in a particular parameter. The ‘hierarchical’ component
of hierarchical Bayes simply indicates that multiple instances of
a particular parameter (e.g. across different subjects) are esti-
mated in the same model. The development of efficient sam-
pling routines for arbitrary models such as Markov chain Monte
Carlo (MCMC), their inclusion in freely available software pack-
ages such as JAGS (http://mcmc-jags.sourceforge.net; last ac-
cessed 31st August 2016) and STAN (http://mc-stan.org; last
accessed 31st August 2016) and advances in computing power
means that Bayesian estimation of arbitrary models is now
straightforward to implement in practice (Kruschke 2014).

In this article, I briefly introduce the meta-d’ model and its
hierarchical Bayesian variant [further details of the model can
be found in the Appendix and in Maniscalco and Lau (2014)].
I then provide a step-by-step MATLAB tutorial for fitting meta-
d’ to single-subject and group data. Finally, I conduct parameter
recovery simulations to compare hierarchical Bayesian and
standard estimation routines. These results show that, particu-
larly when data are limited, the new HMeta-d method outper-
forms traditional fitting procedures and provides appropriate

control over false positives. Model code and examples are freely
available online at https://github.com/smfleming/HMeta-d (last
accessed 4th January 2017).

Methods
Outline of the meta-d’ model

The meta-d’ model is summarized in graphical form in Fig. 1A.
The raw data for the model fit is the observed distribution of
confidence ratings conditional on whether a decision is correct
or incorrect. Intuitively, if a subject has greater metacognitive
sensitivity, they are able to monitor their decision performance
by providing higher confidence ratings when they are correct,
and lower ratings when incorrect, and these distributions will
only weakly overlap (solid lines). Conversely, a subject with
poorer metacognitive sensitivity will show greater overlap be-
tween these distributions (dotted lines). The overlap between
distributions can be calculated through type 2 receiver operat-
ing characteristic (ROC) analysis. The conditional probability

A

B

Figure 1. The meta-d’ model. (A) The right-hand panel shows schematic confidence-rating distributions conditional on correct and incorrect de-
cisions. A subject with good metacognitive sensitivity will provide higher confidence ratings when they are correct, and lower ratings when in-
correct, and these distributions will only weakly overlap (solid lines). Conversely a subject with poorer metacognitive sensitivity will show
greater overlap between these distributions (dotted lines). These theoretical correct/error distributions are obtained by ‘folding’ a type 1 SDT
model around the criterion [see Galvin et al. (2003), for further details], and normalizing such that the area under each curve sums to 1. The
overlap between distributions can be calculated through type 2 ROC analysis (middle panel). The theoretical type 2 ROC is completely deter-
mined by an equal-variance Gaussian SDT model; we can therefore invert the model to determine the type 1 d’ that best fits the observed confi-
dence rating data, which is labelled meta-d’. Meta-d’ can be directly compared with the type 1 d’ calculated from the subject’s decisions—if
meta-d’ is equal to d’, then the subject approximates the ideal SDT prediction of metacognitive sensitivity. (B) Simulated data from a SDT
model with d’¼ 2. The y-axis plots the conditional probability of a particular rating given the first-order response is correct (green) or incorrect
(red). In the right-hand panel, Gaussian noise has been added to the internal state underpinning the confidence rating (but not the decision)
leading to a blurring of the correct/incorrect distributions. Open circles show fits of the meta-d’ model to each simulated dataset.
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P(confidence¼ y j accuracy) is calculated for each confidence
level; cumulating these conditional probabilities and plotting
them against each other produces the type 2 ROC function.
A type 2 ROC that bows sharply upwards indicates a high degree
of sensitivity to correct/incorrect decisions; a type 2 ROC closer
to the major diagonal indicates weaker metacognitive
sensitivity.

The area under the type 2 ROC (AUROC2) is itself a useful
non-parametric measure of metacognitive sensitivity, indicat-
ing how well an observer’s ratings discriminate between correct
and incorrect decisions. However, as outlined in the introduc-
tion, AUROC2 is affected by type 1 performance. In other words,
a change in task performance (d’ or criterion) is expected, a pri-
ori, to lead to changes in AUROC2 despite endogenous metacog-
nitive efficiency remaining unchanged. By explicitly modelling
the connection between performance and metacognition we
can appropriately handle this confound. The core idea behind
the meta-d’ approach is that a single theoretical type 2 ROC is
completely determined by an equal-variance Gaussian SDT
model with parameters d’, criterion c and confidence criteria c2

(the arrow going from left to right in Fig. 1A). The converse is
therefore also true: an observed type 2 ROC implies a particular
type 1 d’ (the arrow going from right to left in Fig. 1A), condi-
tional on fixing the type 1 criterion c, which in the meta-d’
model is typically set to the observed value. We can then invert
the model to determine the type 1 d’ that best fits the observed
confidence rating data. As this pseudo-d’ is fit only to confi-
dence rating data, and not the subject’s decisions, we label it
meta-d’. Meta-d’ can be directly compared with the type 1 d’ cal-
culated from the subject’s decisions—if meta-d’ is equal to d’,
then the subject approximates the ideal SDT prediction of meta-
cognitive sensitivity. The relative values of d’ and meta-d’ thus
quantify the relative sensitivity of decisions and confidence rat-
ings respectively. A ratio of these quantities (meta-d’/d’) pro-
vides a summary measure of ‘metacognitive efficiency’.

Figure 1B provides a concrete example. The data in both pan-
els are simulated from a SDT model with d’¼ 2 and symmetric
flanking confidence criteria positioned such that stronger inter-
nal signals lead to higher confidence ratings on a 1–4 scale. The
y-axis plots the conditional probability of a particular rating
given the first-order response is correct (green) or incorrect
(red). In both panels, the simulations return higher confidence
ratings more often on correct trials and lower confidence more
often on incorrect trials. However, in the right-hand panel,
Gaussian noise has been added to the internal state underpin-
ning the confidence rating (but not the decision). This leads to a
blurring of the correct/incorrect distributions, such that higher
confidence ratings are used even when the decision is incorrect.
The open circles show fits of the meta-d’ model to each simu-
lated dataset. While both fits return type 1 d’ values of 2.0, the
meta-d’ value in the right-hand panel is much lower than on
the left, leading to a meta-d’/d’ ratio of �64% of optimal. Notably
meta-d’ in the left panel is similar to d’, as expected if confi-
dence ratings are generated from an ideal observer model with-
out any additional noise. This example illustrates how meta-d’
can appropriately recover changes in the fidelity of confidence
ratings independently of changes in performance.

Single-subject optimization of meta-d’

I first briefly review the standard meta-d’ model and the maxi-
mum likelihood method for obtaining single-subject parameter
estimates. The model contains free parameters for meta-d’ and
the positions of the k� 1ð Þ � 2 confidence criteria, where

k¼number of confidence ratings available. These criteria are
response-conditional, with k � 1 criteria following an S1 re-
sponse and k � 1 criteria following an S2 response (c2; “S1” and
c2; “S2”). The raw data comprise counts of confidence ratings con-
ditional on both the stimulus category (S1 or S2) and the re-
sponse (S1 or S2). Type 1 criterion c and sensitivity d’ are
estimated from the data using standard formulae (Macmillan
and Creelman 2005) (In HMeta-d there is also a user option for
jointly estimating both d’ and meta-d’ in a hierarchical
framework).

The fitting of meta-d’ rests on calculating the likelihood of
the confidence rating data given a particular type 2 ROC gener-
ated by systematic variation of type 1 SDT parameters d’ and c,
and type 2 criteria c2. By convention, the prefix ‘meta-’ is added
to each type 1 SDT parameter to indicate that the parameter is
being used to fit type 2 ROC curves. Thus, the type 1 SDT param-
eters d’, c and c2, when used to characterize type 2 ROC curves,
are named meta-d’, meta-c and meta-c2. Describing the ob-
served type 2 ROC in terms of these type 1 SDT parameters un-
derpins the meta-d’ model.

The Appendix contains equations for deriving type 2 proba-
bilities from the type 1 SDT model for both S1 and S2 responses.
Given a particular setting of the parameters meta-d’, meta-c and
meta-c2 these equations specify a multinomial probability dis-
tribution P conf ¼ yð j stim ¼ i; resp ¼ jÞ over observed confi-
dence counts. The likelihood of the type 2 confidence data for a
particular setting of parameters h can be characterized using
the multinomial model as:

L hjdatað Þ /
Y
y;i;j

Ph conf ¼ yð j stim ¼ i; resp ¼ jÞndataðconf¼yjstim¼i; resp¼jÞ

Best-fitting parameters are then obtained by finding param-
eter settings that maximize the likelihood of the data:

h� ¼ arg max
h

L h jdatað Þ; subject to : metac0 ¼ c
0
; c metacascending

� �

where c metacascending

� �
is a Boolean function which returns a

value of ‘true’ only if the type 1 and type 2 criteria stand in ap-
propriate ordinal relationships, i.e. each element in cascending is
at least as large as the previous element, and c’ is a measure of
type 1 response bias.

Hierarchical Bayesian estimation of meta-d’

In hierarchical Bayesian estimation of meta-d’ (HMeta-d), the
model is similar except group-level prior densities are specified
over each of the subject-level parameters referred to in the pre-
vious section. A further difference between HMeta-d and single-
subject estimation is that the group-level parameter of interest
is the ratio of meta-d’/d’ rather than meta-d’ itself. The rationale
for this modelling choice is that while each subject or group
may differ in type 1 d’, our parameter of interest is metacogni-
tive efficiency at the group level, not meta-d’ (which itself will
be influenced by subject- or group-level variability in d’). Thus d’
is treated as a subject-level nuisance parameter. (Alternative es-
timation schemes are possible; for instance, calculating the ra-
tio of hierarchical nodes independently encoding meta-d’ and
d’. I chose the ‘nuisance parameter’ scheme as it stays closest to
the standard MLE approach.) An advantage of this scheme is
that group-level inference is carried out directly on metacogni-
tive efficiency rather than a transformed parameter. I specified
model parameters such that the prior on log(meta-d’/d’)
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encompassed 167 MLE parameter estimates aggregated from
previous behavioural studies of metacognition of perceptual
decision-making in our laboratory (Fleming et al. 2010; Fleming
et al. 2012; Weil et al. 2013; Palmer et al. 2014; Fig. 2B). This prior
was chosen to roughly capture the shape of the empirical distri-
bution, while allowing additional variance to relax its influence
on posterior estimates. The priors on both log(meta-d’/d’) and
type 2 criteria weakly constrain parameter values to sensible
ranges, and can be easily changed by the user in the model
specification files. A log-normal prior is appropriate for a ratio
parameter, ensuring that increases and decreases relative to
the expected value of 1 are given equal weight (Keene 1995;
Howell 2009).

Dependencies between nodes in the HMeta-d model are il-
lustrated as a probabilistic graphical model in Fig. 2A. The box
encloses participant-level parameters subscripted with s. Each
node is specified as follows [where M denotes log(meta-d’/d’)]:

lc2 � N 0; 10ð Þ

rc2 � HNð10Þ

lM � Nð0; 1Þ

rM ¼ jnMj � ds

nM � Betað1; 1Þ

rd � HNð1Þ

cs
2; “S1”½1 : k� 1� � Nð�lc2; rc2Þ

cs
2; “S2”½1 : k� 1� � Nðlc2; rc2Þ

ds � Nð0; rdÞ

log Msð Þ ¼ lM þ nM � ds:

N represents a normal distribution parmeterized by mean
and standard deviation; HN represents a positive-only, half-
normal parameterized by standard deviation. l and r represent
the group-level prior means and standard deviations of subject-
level parameters. Thus lc2 and rc2 refer to the mean and SD of
the type 2 criteria, and lM and rM to the mean and SD of
log(meta-d’/d’). During model development, it was observed
that the hierarchical variance parameter rM occasionally be-
came ‘trapped’ near zero during sampling. This problem is
fairly common in hierarchical models, and one solution is pa-
rameter expansion, whereby the original model is augmented
by redundant multiplicative parameters that introduce an ad-
ditional random component in the sampling process (Gelman
and Hill 2007; Lee and Wagenmakers 2014). Here I employ the
scheme suggested by Matzke et al. (2014), such that the mean
and variance of log Msð Þ are scaled by a redundant multiplica-
tive parameter nM. The posterior on rM can then be recovered
by adjusting for the influence of this additional random
component.

Figure 2. The hierarchical meta-d’ model. (A) Probabilistic graphical model for estimating metacognitive efficiency using hierarchical Bayes
(HMeta-d). The nodes represent all the relevant variables for parameter estimation, and the graph structure is used to indicate dependencies
between the variables as indicated by directed arrows. As is convention, unobserved variables are represented without shading and observed
variables (in this case, confidence rating counts) are represented with shading. Point estimates for type 1 d’ and criterion are represented as
black dots, and the box encloses participant-level parameters subscripted with s. The main text contains a description of each node and its
prior distribution. Figure created using the Daft package in Python (http://daft-pgm.org; last accessed 31st August 2016). (B) Prior over the
group-level estimate of log(meta-d’/d’) (lM). The solid line shows a kernel density estimate of samples from the prior; the histogram represents
empirical meta-d’/d’ estimates obtained from 167 subjects (see main text for details).
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The HMeta-d toolbox uses MCMC sampling as implemented
in JAGS (Plummer 2003) to estimate the joint posterior distribu-
tion of all model parameters, given the model specification and
the data. This estimation takes the form of samples from the
posterior, with the entire sequence of samples known as a
chain. It is important to check that these samples approximate
the ‘stationary distribution’ of the posterior; i.e. that they are
not affected by the starting point of the chain(s), and the sam-
pling behaviour is roughly constant over time without slow
drifts or autocorrelation. The default settings of the toolbox dis-
card early samples to avoid sensitivity to initial values and run
multiple chains, allowing the user to diagnose convergence
problems as described below.

Preparing confidence rating data

Fitting of group-level data in the HMeta-d toolbox requires simi-
lar data preparation to that required when obtaining single-
subject fits using MLE or SSE in Maniscalco and Lau’s MATLAB
code (available at http://www.columbia.edu/�bsm2105/
type2sdt/; last accessed 31st August 2016). I therefore start with
a short tutorial on preparing data for estimating single-subject
meta-d’, before explaining how to input data from a group of
subjects into the hierarchical model.

Data from each subject need to be coerced into two vectors,
nR_S1 and nR_S2, which contain confidence-rating counts for
when the ‘stimulus’ was S1 and S2, respectively. Each vector
has length k� 2, where k is the number of ratings available.
Confidence counts are entered such that the first entry refers to
counts of maximum confidence in an S1 response, and the last
entry to maximum confidence in an S2 response. For example,
if three levels of confidence rating were available and
nR_S1¼[100 50 20 10 5 1], this corresponds to the following
rating counts following S1 presentation:

responded S1, rating¼ 3: 100 times
responded S1, rating¼ 2: 50 times
responded S1, rating¼ 1: 20 times
responded S2, rating¼ 1: 10 times
responded S2, rating¼ 2: 5 times
responded S2, rating¼ 3: 1 time
This pattern of responses corresponds to responding ‘high

confidence, S1’ most often following S1 presentations, and least
often with ‘high confidence, S2’. A mirror image of this vector
would be expected for nR_S2. For example, nR_S2¼[3 7 8 12 27
89] corresponds to the following rating counts following S2
presentation:

responded S1, rating¼ 3: 3 times
responded S1, rating¼ 2: 7 times
responded S1, rating¼ 1: 8 times
responded S2, rating¼ 1: 12 times
responded S2, rating¼ 2: 27 times
responded S2, rating¼ 3: 89 times
Together these vectors specify the confidence� stimu-

lus� response matrix that is the basis of the meta-d’ fit, and can
be passed directly into Maniscalco and Lau’s fit_meta_d_MLE

function to estimate meta-d’ on a subject-by-subject basis.

Fitting a hierarchical model

Estimating a group-level model using HMeta-d requires very lit-
tle extra work. In HMeta-d, the nR_S1 and nR_S2 variables are
cell arrays of vectors, with each entry in the cell containing con-
fidence counts for a single subject. For example, to specify the

confidence counts following S1 presentation listed above for
subject 1, one would enter in MATLAB:

nR_S1{1}¼[10050201051]

and so on for each subject in the dataset. These cell arrays then
contain confidence counts for all subjects, and are passed in
one step to the main HMeta-d function:

fit¼fit_meta_d_mcmc_group(nR_S1, nR_S2)

An optional third argument to this function is mcmc_params

which is a structure containing fields for choosing different
model variants, and for specifying the details of the MCMC rou-
tine. If omitted reasonable default settings are chosen.

The call to fit_meta_d_mcmc_group returns a ‘fit’ structure
with several subfields. The key parameter of interest is
fit.mu_logMratio, which is the mean of the posterior distribu-
tion of the group-level log(meta-d’/d’). fit.mcmc contains the
samples of each parameter, which can be plotted with the
helper function plotSamples. For instance to plot the MCMC
samples of lM, one would enter:

plotSamples(exp(fit.mcmc.samples.mu_logMratio))

Note the ‘exp’ to allow plotting of meta-d’/d’ rather than
log(meta-d’/d’). The exampleFit_ scripts in the toolbox provide
other examples, such as how to set up response-conditional
models and to visualize subject-level fits.

An important step in model fitting is checking that the
MCMC chains have converged to a stationary distribution.
While there is no way to guarantee convergence for a given
number of MCMC samples, some heuristics can help identify
problems. By using plotSamples, we can visualize the traces to
check that there are no drifts or jumps and that each chain
occupies a similar position in parameter space. Another useful
statistic is Gelman and Rubin’s scale-reduction statistic R̂,
which is stored in the field fit.mcmc.Rhat for each parameter
(Gelman and Rubin 1992). This provides a formal test of conver-
gence that compares within-chain and between-chain variance
of different runs of the same model, and will be close to 1 if the
samples of the different chains are similar. Large values of R̂ in-
dicate convergence problems and values < 1.1 suggest
convergence.

As well as obtaining an estimate for group-level meta-d’/d’,
we are often interested in our certainty in this parameter value.
This can be estimated by computing the symmetric 95% credible
interval (CI), which is the interval bounded by the 2.5% and
97.5% percentiles of MCMC samples. An alternative formulation
is the 95% highest-density interval (HDI), which is the shortest
possible interval containing 95% of the MCMC samples, and is
not necessarily symmetric (Kruschke 2014). The helper func-
tions calc_CI and calc_HDI take as input a vector of samples
and return the 95% CI/HDI:

calc_CI(exp(fit.mcmc.samples.mu_logMratio(:))

The colon in the brackets selects all samples in the array regard-
less of their chain of origin. As HMeta-d uses Bayesian estima-
tion it is straightforward to use the group-level posterior
density for hypothesis testing. For instance, if the question is
whether one group of subjects has greater metacognitive effi-
ciency than a second group, we can ask whether the CI/HDI of
the difference overlaps with zero (see ‘Empirical examples’
Section for an example of this). However, note that it is incorrect
to use the subject-level parameters estimated as part of the hi-
erarchical model in a frequentist test (e.g. a t-test); this violates
the independence assumption.
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In addition to enabling inference on individual parameter
distributions, there may be circumstances in which we wish to
compare models of different complexity (see ‘Discussion’
Section). To enable this, JAGS returns the deviance information
criteria (DIC) for each model which is a summary measure of
goodness of fit, while penalizing for model complexity
(Spiegelhalter et al. 2002; lower is better). While DIC is known to
be somewhat biased towards models with greater complexity, it
is a common metric for assessing model fit in hierarchical mod-
els. In HMeta-d the DIC for each model can be obtained in
fit.mcmc.dic.

Simulations

To assess properties of the model fit and compare alternative
fitting procedures, simulated confidence rating data were gen-
erated for pre-specified levels of metacognitive efficiency. Type
2 probabilities P conf ¼ yjvstim; respð Þ were computed from the
equations in the Appendix for particular settings of meta-d’, c
and c2. These probabilities were then used to generate multino-
mial response counts using the function mnrnd in MATLAB,
where the sample size of each type 1 response class (hits, false
alarms, correct rejections and misses) was obtained from a
standard type 1 SDT model with criterion c and d’. This allowed
for independent control over d’ (i.e. the number of hits and false
alarms) and meta-d’ (the response-conditional distribution of
confidence ratings). After determining the value of d’ for each
simulation, the relevant value of meta-d’ could then be chosen
to ensure a particular target meta-d’/d’ level. This procedure is
implemented in the MATLAB function metad_sim included as
part of the toolbox.

Results
Example fit

Figure 3A shows the output of a typical call to HMeta-d and the
resultant posterior samples of the population-level estimate of
metacognitive efficiency, lmeta�d0 =d0 , plotted with plotSamples.
The data were generated as 20 simulated subjects, each with
400 trials and 4 possible confidence levels (confidence criteria
c2 ¼ 6½0:5 1 1:5�; type 1 criterion c ¼ 0). For each subject, type 1
d’ was sampled from a normal distribution Nð2; 0:2Þ, and meta-

d’/d’ was fixed at 0.8. The chains show excellent mixing with a
modest number of samples (10 000 per chain; R̂ ¼ 1.000) and the
posterior is centred around the ground truth simulated value.

Parameter recovery

To further validate the model, a parameter recovery exer-
cise was carried out in which data were simulated from 7 groups
of 20 subjects with different levels of meta-d’/
d’¼ [0.5 0.75 1.0 1.25 1.5 1.75 2]. All other settings were as de-
scribed in the previous section. Figure 3B plots the fitted
group-level lmeta�d0 =d0 and its associated 95% CI for each of the
simulated datasets against the empirical ground truth, demon-
strating robust parameter recovery.

Empirical examples

To illustrate the practical application of HMeta-d I fit data from
a recent experiment that examined metacognitive sensitivity in
perceptual and mnemonic tasks in patients with post-surgical
lesions and controls (Fleming et al. 2014). This study found (us-
ing single-subject estimates of meta-d’/d’) that metacognitive
efficiency in patients with lesions to anterior prefrontal cortex
(aPFC) was selectively compromised on a visual perceptual task
but unaffected on a memory task, suggesting that the neural ar-
chitecture supporting metacognition may comprise domain-
specific components differentially affected by neurological
insult.

For didactic purposes here I restrict comparison of metacog-
nition in the aPFC patients (N¼ 7) and healthy controls (HC;
N¼ 19) on the perceptual task. The task required a two-choice
discrimination as to which of the two briefly presented patches
contained a greater number of small white dots, followed by a
continuous confidence rating on a sliding scale from 1 (low con-
fidence) to 6 (high confidence). For analysis these confidence
ratings were binned into four quantiles. For each subject confi-
dence rating data (levels 1–4) were sorted according to the posi-
tion of the target stimulus (L/R) and the subject’s response (L/R),
thereby specifying the two nR_S1 and nR_S2 arrays required for
estimating meta-d’.

For each group I constructed cell arrays of confidence counts
and estimated lmeta�d0 =d0 with the default settings in HMeta-d.
The resultant posterior distributions are plotted in the left panel

Figure 3. HMeta-d output. (A) Example output from HMeta-d fit to simulated data with ground truth meta-d’/d’ fixed at 0.8 for 20 subjects. The
left panel shows the first 1000 samples from each of three MCMC chains for parameter lmeta�d0 =d0 ; the right panel shows all samples aggregated
in a histogram. (B) Parameter recovery exercise using HMeta-d to fit data simulated from 7 groups of 20 subjects with different levels of meta-
d’/d’¼ [0.5 0.75 1.0 1.25 1.5 1.75 2]. Error bars denote 95% CI.
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of Fig. 4A, and the posterior distribution of the difference is
shown in the right panel. Several features are evident from
these outputs. First, there is a reduced metacognitive efficiency
in the aPFC group compared with controls, as revealed by the
95% CI of the difference being greater than zero (right-hand
panel). Second, the posterior distribution of metacognitive effi-
ciency in the healthy controls is overlapping with the optimal
estimate of 1. Finally, for the aPFC group, which compromises
fewer subjects, there is a higher degree of uncertainty about the
true metacognitive efficiency—the width of the posterior distri-
bution is greater. This is due to the parameter estimate being
constrained by fewer data points and is a natural consequence
of the Bayesian approach.

Comparison of fitting procedures

To compare the quality of the fit of the hierarchical Bayesian
method against MLE and SSE point-estimate approaches, I ran a
series of simulation experiments to investigate parameter re-
covery of known meta-d’/d’ ratios for different d’ and type 2 cri-
teria placements across a range of trial counts.

In each experiment, I simulated confidence rating data for
groups of N¼ 20 subjects while manipulating the number of tri-
als (20, 50, 100, 200, 400). In the first set of experiments, type 1 d’

was selected from the set (0.5, 1, 2), and two type 2 criteria were
specified such that 6 c2

d0
¼ 1. The generated data thus consisted

of a 2 (stimulus)�2 (responses)�2 (high/low confidence) matrix
of response counts. In the second set of experiments type 1 d’
was kept constant at 1, and the type 2 criteria were selected
from the set 6 c2

d0
¼ 0:5; 1; 2ð Þ. Generative meta-d’/d’ was fixed at

1, and type 1 criterion was fixed at 0.
Each simulated subject’s data was fit using the MLE and SSE

routines available from http://www.columbia.edu/�bsm2105/
type2sdt/, correcting for zero response counts by adding 0.25 to
all cells [a generalization of the log-linear correction typically
applied when estimating type 1 d’, as recommended by Hautus
(1995)]. For each group of 20 subjects the mean meta-d’/d’ ratio
and the output of a one-sample t-test against the null value of 1
was stored. The same data (without padding) were entered into
the hierarchical Bayesian estimation routine as described above
and the posterior mean stored. A false positive was recorded if a
one-sample t-test against the null value (meta-d’/d’¼ 1) was sig-
nificant (P< 0.05) for the MLE/SSE approaches, or if the symmet-
ric 95% credible interval excluded 1 for the hierarchical
Bayesian approach. This procedure was repeated 100 times for
each setting of trial counts and parameters.

Figure 5A and B shows the results of Experiments 1 and 2,
respectively, for medium levels of metacognitive efficiency

Figure 4. Empirical applications of HMeta-d. (A) HMeta-d fits to data from the perceptual metacognition task reported in Fleming et al. (2014).
Each histogram represents posterior densities of lmeta�d0 =d0 for two groups of subjects: HC¼healthy controls; aPFC¼anterior prefrontal cortex
lesion patients. The right panel shows the difference (in log units) between the group posteriors. The white bar indicates the 95% CI which ex-
cludes zero. (B) Example of extending the HMeta-d model to estimate the correlation coefficient q between metacognitive efficiencies in two
domains. The dotted line shows the ground-truth correlation between pairs of meta-d’/d’ values for 100 simulated subjects.
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(meta-d’/d’¼ 1). For intermediate values of d’ and criteria (mid-
dle panels), all methods perform similarly, and recover the true
meta-d’/d’ ratio. However when d’ is low, or criteria are extreme,
the MLE and SSE methods tend to misestimate metacognitive
efficiency when the number of trials per subject is< 100, leading
to high false positive rates. These misestimations are similar to
the effect of zero cell-count corrections on recovery of type 1 d’
(Hautus 1995). In contrast, HMeta-d provides accurate parame-
ter recovery in the majority of cases.

Why does HMeta-d outperform classical estimation proce-
dures in this case? There are two possible explanations. First,
HMeta-d may be more efficient at retrieving true parameter

values, even when trial counts are low, by avoiding padding and
capitalizing on the hierarchical structure of the model to mutu-
ally constrain subject-level fits. Alternatively, HMeta-d may rely
more on the prior when data are scarce, thus shrinking group
estimates to the prior mean. The second explanation predicts
that HMeta-d would become less accurate when true metacog-
nitive efficiency deviates from the prior mean (meta-d’/d’ � 1).

To adjudicate between these explanations I repeated the
simulations at low (meta-d’/d’¼ 0.5) and high (meta-d’/d’¼ 1.5)
metacognitive efficiency (Figs 6 and 7). These results show that
HMeta-d is able to retrieve the true meta-d’/d’ even when meta-
cognitive efficiency is appreciably less than or greater than 1

Figure 5. Simulation experiments—medium metacognitive efficiency (meta-d’/d’¼ 1). (A and B) Estimated meta-d’/d’ ratio for different fitting
procedures while varying (A) d’ values or (B) type 2 criteria placements. Each data point reflects the average of 100 simulations each with N¼ 20
subjects. Error bars reflect standard errors of the mean. The ground truth value of meta-d’/d’ is shown by the dotted line.

Figure 6. Simulation experiments—low metacognitive efficiency (meta-d’/d’¼ 0.5). For legend see Fig. 5.
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(see also Fig. 3B), consistent with the prior exerting limited in-
fluence on the results. One notable exception is found when
type 1 d’ is high, and trial counts are very low (�20 per subject);
in this case (upper right-hand panels), all fitting methods tend
to overestimate metacognitive efficiency.

Figure 8 provides a summary of false positive rates recorded
across all experiments for the three methods. Point-estimate
approaches (SSE and MLE) return unacceptably high false posi-
tive rates when trial counts are less than �200 per subject, due
to consistent over- or underestimation of metacognitive effi-
ciency. In contrast, HMeta-d provides good control of the false
positive rate in all cases except when trial counts are very low
(<50 per subject).

Flexible extensions of the basic model

An advantage of working with Bayesian graphical models is
that they are easily extendable to estimate other influences on
metacognitive efficiency in the context of the same model (Lee
and Wagenmakers 2014). For instance, one question of interest
is whether metacognitive ability in one domain, such as percep-
tion, is predictive of metacognitive ability in another domain,
such as memory. Evidence pertaining to this question is mixed:
some studies have found evidence for a modest correlation in
metacognitive efficiency across domains (McCurdy et al. 2013;
Ais et al. 2016), whereas others have reported a lack of correla-
tion (Kelemen et al. 2000; Baird et al. 2013). One critical issue in
testing this hypothesis is that uncertainty in the model’s esti-
mate of meta-d’ should be incorporated into an assessment of
any correlation between the two domains. This is naturally ac-
commodated by embedding an estimate of the correlation coef-
ficient in a hierarchical estimation of metacognitive efficiency.

To expand the model, each subject’s metacognitive efficien-
cies in the two domains (M1, M2) are specified as draws from a
bivariate Gaussian (Note parameter expansion is omitted here
for clarity):

½log M1sð Þ logðM2sÞ� � N
lM1

lM2

" #
;

r2
M1 qrM1rM2

qrM1rM2 r2
M2

" # !
:

Priors were specified as follows:

l1
M; l

2
M � N 0; 1ð Þ

rM1; rM2 � InvSqrtGammað0:001; 0:001Þ

q � Uniform �1; 1ð Þ:

To demonstrate the application of this expanded model I
simulated 100 subjects’ confidence data from the type 2 SDT
model in two ‘tasks’. Each task’s generative meta-d’/d’ was

Figure 7. Simulation experiments—high metacognitive efficiency (meta-d’/d’¼ 1.5). For legend see Fig. 5.

Figure 8. Observed false positive rates for each fitting procedure.
Average false positive rates for hypothesis tests against ground truth
meta-d’/d’ values from the simulations in Figs 5–7. Individual data
points reflect single experiments (the false positive rate for a partic-
ular combination of metacognitive efficiency level, parameters and
trial count). Error bars reflect standard errors of the mean. For trial
counts< 200, MLE or SSE methods result in unacceptably high false
positive rates due to consistent over- or underestimation of meta-
cognitive efficiency.
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drawn from a bivariate Gaussian with mean¼ lM1 ¼ lM2 ¼ 0:8
and standard deviations rM1 ¼ rM2 ¼ 0:5. Type 1 d’ was gener-
ated separately for each task from a Nð2; 0:2Þ distribution. The
generative correlation coefficient q was set to 0.6. Data from
both domains are then passed into the model simultaneously,
and a group-level posterior distribution on the correlation coef-
ficient q is returned. Figure 4B shows this posterior together
with the 95% CI, which encompasses the generative correlation
coefficient.

Discussion

The quantification of metacognition from confidence ratings is
a question with application in several subfields of psychology
and neuroscience, including consciousness, decision-making,
memory, education, aging and psychiatric disorders. There are
now several tools in the psychologist’s armoury for estimating
how closely subjective reports track task performance (Fleming
and Lau 2014). An important advance is the recognition that
simple correlation coefficients are affected by fluctuations in
performance and confidence bias, and the meta-d’ model was
developed to allow correction of metacognitive sensitivity for
these potential confounds (Maniscalco and Lau 2012).

The hierarchical Bayesian approach to estimating metacog-
nitive efficiency introduced here enjoys several advantages. It
naturally incorporates variable uncertainty about finite hit and
false-alarm rates; it is the correct way to incorporate informa-
tion about within- and between-subject uncertainty; it avoids
the need for edge correction or data modification, and provides
a flexible framework for hypothesis testing and model expan-
sion. The toolbox provides a simple MATLAB implementation
that harnesses the MCMC sampler JAGS to return posterior dis-
tributions over group-level model parameters. The tutorial out-
lined how data preparation is identical to that required for the
existing maximum-likelihood routines, allowing the user to
easily apply both approaches once data are in the correct for-
mat. In simulation experiments, the hierarchical approach re-
covered more accurate parameter estimates than commonly
used alternatives (MLE and SSE), and this benefit was greatest
when there are limited numbers of trials per subject (Fig. 5). It is
notable that the point-estimate approaches severely underesti-
mate average meta-d’/d’ ratios for low d’ and trial numbers
<�100 per subject, leading to a high false positive rate. Given
that low (type 1) d’ is commonplace in psychophysical studies of
conscious awareness and metacognition, such biases may lead
to erroneous conclusions that metacognitive efficiency is below
the ideal observer prediction. In contrast, over-estimations
were observed when d’ was high.

Practical recommendations for quantifying
metacognition

If group-level estimates of meta-d’/d’ are of primary interest,
HMeta-d allows direct, unbiased inference at this upper level of
the hierarchy while appropriately handling participant-level
uncertainty. The HMeta-d toolbox also allows Bayesian estima-
tion of single-subject meta-d’, but if single-subject estimates are
of primary interest, the MLE approach may be simpler and com-
putationally less expensive. However, advantages of using a
Bayesian approach are obtained even in this case: uncertainty
in parameter estimates can be easily quantified (as the posterior
credible interval), with such uncertainty appropriately reducing
as trial count increases, and edge correction confounds are
avoided.

More generally, whether one should use metacognitive sen-
sitivity (e.g. meta-d’ or AUROC2) or metacognitive efficiency
(meta-d’/d’) as a measure of metacognition depends on the goal
of an analysis. For example, if we are interested in establishing
the presence or absence of metacognition in a particular condi-
tion, such as when performance is particularly low (Scott et al.
2014) or in particular subject groups such as human infants
(Goupil et al. 2016), computing metacognitive sensitivity alone
may be sufficient. However, when comparing experimental con-
ditions or groups which may differ systematically in perfor-
mance, estimating metacognitive efficiency appropriately
controls for confounds introduced by type 1 performance and
response biases. Note however there are also limitations in the
applicability of the meta-d’ model. First and foremost, the task
should be amenable to analysis in a two-choice SDT framework,
as fitting meta-d’ requires specification of a 2 (stimulus)�2
(response)�N (confidence rating) matrix. If a task does not con-
form to these specifications (such as one with N alternative re-
sponses) then employing an alternative non-parametric
measure of metacognitive sensitivity such as the area under the
type 2 ROC (AUROC2) may be preferable (Fleming and Lau 2014).
In addition, like all analysis approaches, meta-d’ assumes a par-
ticular generative model of the confidence data that is at best
incomplete, and untenable in certain circumstances. For in-
stance, equal variance is specified for S1 and S2 distributions
and stable confidence criteria are assumed which may be at
odds with the findings of serial adjustments in criteria
(Treisman 1984; Rahnev et al. 2015; Norton et al. 2017).
(Maniscalco and Lau’s fit_meta_d_MLE code allows setting the
ratio of S1 and S2 variances as a free parameter; it would be pos-
sible to incorporate a similar parameter in future versions of
HMeta-d. However as described by Maniscalco and Lau (2014)
there is ambiguity between changes in response-specific meta-
cognitive efficiency and the variance ratio, and therefore we
recommend users employ the equal-variance model unless
they have access to independent estimates of the variance
inequality).

More broadly, meta-d’ is primarily a tool for estimating
metacognitive sensitivity, and additional considerations are
needed when developing a complete model of confidence
(Pouget et al. 2016; Fleming and Daw 2017). Recent modelling
work has sought to explicitly characterize type 1 and type 2 pro-
cesses (Jang et al. 2012; Maniscalco and Lau 2016; Fleming and
Daw 2017), permitting flexible modelling of relationships be-
tween performance and metacognition. For instance, in
Fleming and Daw’s ‘second-order’ model, an underlying genera-
tive model of action is specified, and confidence is formulated
as an inference on the model’s probability of being correct, con-
ditioned on both internal states and self-action. These frame-
works allow for multiple drivers of metacognitive sensitivity, in
contrast to the meta-d’ model which describes sensitivity only
relative to type 1 performance. It is thus useful to view meta-d’
as complementary to these modelling efforts. Just as d’ provides
a bias-free measure of perceptual sensitivity that may be ex-
plained by a number of contributing factors, meta-d’ provides a
bias-free metric for metacognitive sensitivity without commit-
ment to a particular processing architecture.

Future directions

The HMeta-d model code can be flexibly extended to allow esti-
mation of other influences on metacognitive sensitivity. Here
one simple example is explored, the specification of a
population-level correlation coefficient relating metacognitive
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efficiencies across domains. More broadly, it may be possible to
specify flexible general linear models linking trial- or subject-
level variables to meta-d’ (Kruschke 2014). Currently this re-
quires bespoke model specification, but in future work we hope
to provide a flexible user interface for the specification of arbi-
trary models (cf. Wiecki et al. 2013). Estimation of single-trial in-
fluences on metacognitive efficiency, such as attentional state
or brain activity, is a particularly intriguing proposition.
Currently, estimation of meta-d’ requires many trials, restrict-
ing studies of the neural basis of metacognitive efficiency to
between-condition or between-subject analyses. Extending the
HMeta-d framework to estimate trial-level effects on meta-d’
may therefore accelerate our understanding of the neural basis
of metacognitive efficiency.

Also naturally accommodated in a hierarchical framework is
the comparison of different model structures for metacognition
within and across tasks. A currently open question is whether
metacognition relies on common or distinct processes across
different domains, such as perception or memory (Baird et al.
2013; McCurdy et al. 2013; Fleming et al. 2014; Ais et al. 2016). One
approach to addressing this question is to specify variants of
the HMeta-d model in which different parameters are shared
across domains, such as meta-d’ and/or the confidence criteria.
Through model comparison, one could then obtain the model
that best accounted for the relationship between metacognitive
performance across different domains, and shed light on the
common and distinct components.

Conclusions

This article introduces a hierarchical Bayesian approach to esti-
mating metacognitive efficiency. This approach has several
methodological advantages in comparison to current methods
that focus on single-subject point estimates, and may prove
particularly beneficial for studies of metacognition in patient
populations and cognitive neuroscience experiments where of-
ten only limited data are available. More broadly, this frame-
work can be flexibly extended to specify and compare different
models of meta-d’ within a common scheme, thereby advanc-
ing our understanding of the neural and computational basis of
self-evaluation.
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Appendix
Type 2 SDT model equations

For a discrete confidence scale ranging from 1 to k, k – 1 type 2
criteria are required to rate confidence for each response type.
We define type 2 confidence criteria for S1 and S2 responses as:

c2;“S1” ¼ c; cconf¼2
2;“S1” ; cconf¼3

2;“S1” ; . . . ; cconf¼k
2;“S1” ;�1

� �

c2;“S2” ¼ c; cconf¼2
2;“S2” ; cconf¼3

2;“S2” ; . . . ; cconf¼k
2;“S2” ;1

� �

And

cascending¼ cconf¼k
2;“S1” ; cconf¼k�1

2;“S1” ; ...;cconf¼1
2;“S1” ; c; cconf¼1

2;“S2” ;cconf¼2
2;“S2” ; ...;cconf¼k

2;“S2”

� �

Then the probabilities of each confidence rating conditional
on a given stimulus and response are as follows:

Prob conf ¼ yð j stim ¼ S1; resp ¼ “S1”Þ

¼
/ c2;“S1” yð Þ;� d0

2

� �
� / c2;“S1” yþ 1ð Þ;� d0

2

� �
/ c;� d0

2

� �

Prob conf ¼ yð j stim ¼ S2; resp ¼ “S1”Þ

¼
/ c2;“S1” yð Þ; d0

2

� �
� / c2;“S1” yþ 1ð Þ; d0

2

� �
/ c; d0

2

� �

Prob conf ¼ yð j stim ¼ S1; resp ¼ “S2”Þ

¼
/ c2;“S2” yþ 1ð Þ;� d0

2

� �
� / c2;“S2” yð Þ;� d0

2

� �
1� / c;� d0

2

� �

Prob conf ¼ yð j stim ¼ S2; resp ¼ “S2”Þ

¼
/ c2;“S2” yþ 1ð Þ; d

0

2

� �
� / c2;“S2” yð Þ; d

0

2

� �
1� / c; d0

2

� � ;

where /ðÞ is the cumulative distribution function of the stan-
dard normal distribution.
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