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Abstract 

Brain structures that support spatial cognition by encoding one’s position and direction 

have been extensively studied for decades. In the majority of studies, neural substrates 

have been investigated on a horizontal two-dimensional plane, whereas humans and 

other animals also move vertically in a three-dimensional (3D) world.  

 

In this thesis, I investigated how 3D spatial information is represented in the human 

brain using functional MRI experiments and custom-built 3D virtual environments. In 

the first experiment, participants moved on flat, tilted-up or tilted-down pathways in a 

3D lattice structure. Multivoxel pattern analysis revealed that the anterior hippocampus 

expressed 3D location information that was similarly sensitive to the vertical and 

horizontal axes. The retrosplenial cortex and posterior hippocampus represented 

direction information that was only sensitive to the vertical axis. In the second 

experiment, participants moved in a virtual building with multiple levels and rooms. 

Using an fMRI repetition suppression analysis, I observed a hierarchical representation 

of this 3D space, with anterior hippocampus representing local information within a 

room, while retrosplenial cortex, parahippocampal cortex and posterior hippocampus 

represented room information within the wider building. As in the first experiment, 

vertical and horizontal location information was similarly encoded. In the last 

experiments, participants were placed into a virtual zero-gravity environment where 

they could move freely along all 3 axes. The thalamus and subiculum expressed 

horizontal heading information, whereas retrosplenial cortex showed dominant 

encoding of vertical heading. Using novel fMRI analyses, I also found preliminary 

evidence of a 3D grid code in the entorhinal cortex.  

 

Overall, these experiments demonstrate the capacity of the human brain to implement 

a flexible and efficient representation of 3D space. The work in this thesis will, I hope, 
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serve as a stepping-stone in our understanding of how we navigate in the real – 3D – 

world. 
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Impact statement 

Our world is three-dimensional (3D). We navigate in multi-level buildings, on undulating 

terrain and in the open air. However, the neural circuitry underlying spatial cognition 

(our “internal GPS system”) has mainly been studied on horizontal two-dimensional 

(2D) surfaces. The experiments I report here extend our understanding of spatial 

cognition by incorporating the uncharted third dimension. I used custom-built virtual 

reality navigation paradigms and a non-invasive brain scanning technique (functional 

magnetic resonance imaging - fMRI) to test where, and how, 3D location and direction 

information is encoded in the human brain. The main findings were: (1) the 

hippocampus contained information about where participants were in 3D environments 

and it was similarly sensitive to vertical and horizontal axes; (2) 3D heading was 

collectively encoded by the thalamus, subiculum and retrosplenial cortex, and these 

brain areas were sensitive to either horizontal or vertical direction; (3) the brain seemed 

to have flexible representations of 3D space, adapted for the shape of environments 

and behavioural demands. 

 

My work will hopefully promote further research into 3D spatial cognition in both 

humans and other animals, as we still know so little about this crucial aspect of 

cognition. For example, the retrosplenial cortex, which represented vertical direction 

information in my fMRI studies, is a candidate brain structure to contain head direction 

cells tuned to vertical pitch, and this could be tested in animal electrophysiological 

studies. Taking the lead from my work, which revealed the basic neural circuitry for 3D 

spatial representations, future research should seek to elucidate how we actively 

navigate and find goals in a realistic 3D world. This might help us to develop better 

navigation strategies. I also showed the advantage of using virtual reality techniques 

and a quasi-naturalistic setup, and I believe similar approaches should be deployed 

more widely in the field of spatial research. 
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The impact of my research also extends beyond the domain of spatial navigation. 

Recent findings suggest that the brain uses a map-like code to solve more general 

cognitive problems, such as social interactions, perception and decision making. The 

analysis methods I developed – including probing 3D grid codes using fMRI – could be 

applied to broader cognitive problems which are inherently high-dimensional.  

 

In the longer term, studying 3D spatial representation might bring clinical benefits. The 

hippocampus, entorhinal cortex and retrosplenial cortex – the main brain structures 

investigated in my work – are early casualties in Alzheimer’s disease, and spatial 

disorientation is a common initial symptom. The prognostic value of 2D grid signals in 

the brain has been previously suggested, but spatial navigation tasks in 3D might be 

more sensitive in aiding early detection of impending cognitive decline.  

 

It may sound far-fetched, but understanding the neural basis of our sense of direction 

in 3D could be pertinent when humans are freed from Earth’s gravity. Space 

exploration is an ever-increasing endeavour (e.g. missions to Mars by NASA and 

commercial companies).  An understanding of 3D space representations in the brain 

will be crucial to facilitating the ergonomic design of microgravity environments during 

space travel.  
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Chapter 1 General introduction 

1.1 Overview 

Spatial navigation is an essential skill for all animals (e.g. bees finding honey, rats 

exploring a myriad of underground sewers, humans commuting to work, travellers in a 

busy city or on exotic islands). During navigation, we calculate an efficient route to goal 

destinations and constantly monitor our location and direction within the environment. 

Nowadays, humans often rely on a mobile phone map and GPS technology, but our 

brains are equipped with a biological compass and map system. Decades of extensive 

research in animal electrophysiology, lesion studies, human neuroimaging and 

computational neuroscience have revealed the basic neural circuitry underlying spatial 

cognition. The hippocampus, entorhinal cortex, thalamus and retrosplenial cortex are 

some of the key neural structures for building an internal representation of space by 

encoding position, head direction and distance information. Considering the 

practicalities of conducting experiments, it is understandable that most of this previous 

work has been done using simplified laboratory setups which were on a two-

dimensional (2D) plane.   

 

Yet humans and other animals spend much of their time in a more complex three-

dimensional (3D) world. We move vertically as well as horizontally on slopes, in multi-

level buildings or in volumetric 3D space. Three axes (x, y and z) are required to 

specify one’s location in 3D space and at least two angles (azimuth, horizontal tilt; 

pitch, vertical tilt) are required to represent one’s facing direction (note that one can 

also rotate side-to-side which is called a roll rotation) (Figure 1.1). Despite the inherent 

need for navigation in 3D space, there is a dearth of knowledge concerning the neural 

substrates of 3D spatial processing. The neural representation of 3D space might not 

be a simple extension of 2D space representation because of gravity (Jeffery et al. 
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2013, 2015). Gravity exerts effects on every living organism on earth and in so doing 

distinguishes one axis (the vertical) from other two axes (the horizontal) in 3D space. 

The vertical dimension might be differentially encoded from the horizontal dimensions, 

in terms of encoding precision or neural substrates. Alternatively, the brain might have 

an elegant mechanism for dealing with space that is independent of dimensionality (i.e. 

generalisable across 1D to 3D, or beyond). These mechanisms might be general for all 

species or species-specific.  

 

The key aim of my PhD was to leverage our understanding of how the human brain 

represents the external world and allows us to navigate within it by incorporating the 

uncharted third dimension. Investigating how the brain deals with 3D space is important 

for understanding spatial cognition per se, but it could also provide new insights more 

generally in terms of how the brain has adapted to operate in a complex world. 

 

In this first chapter, I summarise what is currently known about the neural building 

blocks of a 3D spatial map in the brain. I begin with the literature on spatial cells – 

place cells, head direction cells, grid cells and other spatially modulated cells – which 

have been mostly studied in animals. I then present behavioural findings and human 

neuroimaging studies on 3D space. Next, I discuss the anatomy of the hippocampal 

formation. Finally, I provide a brief overview of this thesis.  
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Figure 1.1 Examples of 3D space. (A) Humans and other animals operate within 3D spaces that include 

slopes, multi-level buildings and a voluminous sky. One’s position is represented by 3 coordinates (x, y 
and z). (B) Orientation in 3D space is specified by the azimuth (horizontal tilt) and the pitch (vertical tilt). 

 

1.2 Place cells in 3D space 

The seminal discovery of place cells in the rat hippocampus in 1971 (O’Keefe and 

Dostrovsky 1971) promoted numerous empirical and theoretical studies on the internal 

map of the environment in the following decades, and was awarded a Nobel Prize in 

2014 (for a historical review see Moser et al. (2017)). A place cell in the hippocampus 

fires when an animal is at one or a few unique regions of an environment called place 

fields (Figure 1.2B). Place cells fire at specific locations irrespective of where the 

animal is facing (except when animals run on a 1D trajectory repeatedly (McNaughton 

et al. 1983; Muller et al. 1994)) and they continue to fire even in darkness (Quirk et al. 

1990). Consequently, researchers have concluded that place cells respond to abstract 

spatial information about where an animal is located, rather than a particular view or 

sensory snapshot. Different place cells fire at different locations, so an entire 

environment and an animal’s location within it can be represented by the collective 

activity of place cells. Therefore, O’Keefe and Nadel suggested that place cells are the 

neural correlates of the “cognitive map” proposed earlier by Tolman (Tolman 1948; 

O’Keefe and Nadel 1978). Place cells have mostly been recorded in rodents foraging in 

a 2D horizontal arena (Figure 1.2A), but they have also been reported in rodents during 
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virtual navigation (Aronov and Tank 2014), in monkeys during physical translocation 

(Matsumura et al. 1999) and in humans during virtual navigation (Jacobs et al. 2010). 

 

Figure 1.2 An example place cell recorded in 2D. (A) Left, place cells have typically been recorded in 

the rat hippocampus when animals forage on a 2D flat surface (such as a circular or rectangular arena). 
Reprinted from (Rotenberg et al. 1996) with permission from Elsevier. (B) Top panel, a rat’s trajectory is 
shown as grey lines. Spikes are shown as black dots. Bottom panel, a colour-coded firing map. Red 
represents the high firing rate of a place cell. Reprinted from (Moser et al. 2017) with permission from 
Springer Nature. 

 

In the abovementioned studies, place cells expressed information about an animal’s 

location on a horizontal flat surface (e.g. an X-Y plane). Do place cells also encode the 

Z coordinate if an animal’s location is not restricted to a horizontal X-Y surface? Or do 

they only encode horizontal location regardless of an animal’s vertical coordinate? The 

earliest clue for answering these questions came from an experiment where rodents 

moved on a tiltable surface (Knierim and McNaughton 2001) (Figure 1.3A). In this 

study, it was asked whether a place cell’s firing was bound to a 2D surface regardless 

of an absolute 3D coordinate within the environment. The result was not consistent with 

either pure 2D surface tuning or pure 3D tuning. If a place cell is perfectly bound to the 

local surface, place fields should be identical for both the flat and the tilted condition. 

Only a third of the cells showed similar place fields (e.g. cells 5 and 6 in Figure 1.3A). 

On the other hand, if an absolute 3D location is encoded, cells with place fields at one 

end of the track (which did not change its 3D location after tilting, shaded blue in Figure 

1.3A) should show a higher correlation between the flat and tilted conditions compared 

to the cells with place fields at other end of the track (which was raised from the ground 

after tilting, shaded red in Figure 1.3A). However, these two groups of cells did not 
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show significant differences in place field correlations, contradicting a pure 3D 

encoding hypothesis.  

 

Figure 1.3 Place cells recorded on a tilted plane or on a spiral staircase. (A) Top panel, a flat 

rectangle maze and a tilted maze (45°). Middle panel, views of the flat and tilted maze from an overhead 
camera. Bottom panel, example place cells recorded in the flat and tilted conditions. Some cells (cells 5 
and 6) maintained their firing fields but other place cells (cells 3 and 4) remapped and fired in either the flat 
or the tilted maze only. Adapted from (Knierim and McNaughton 2001). (B,C) Top panels, rats moved on a 
vertical pegboard or a helix structure. Bottom panels, most place cells showed vertically elongated and 
repeated place fields across each coil, suggesting the anisotropic encoding of 3D space. Adapted from 
(Hayman et al. 2011) with permission from Springer Nature.  

 

In Hayman et al. (2011), place cells were recorded when rats foraged on a large 

vertical plane (a “pegboard”) or a helical staircase (Figure 1.3B,C). Most place cells 

showed vertically elongated place fields on the pegboard, and the place fields were 

repeated across each coil in the helical staircase, although there was modulation in 

firing rates across the coils. Spatial information encoded by each place cell was 

significantly smaller for the vertical axis compared to the horizontal axis (note that 

spatial information collectively encoded by a population of neurons might be different 
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(Keinath et al. 2014)). These findings suggested that place cells in rats are less 

sensitive to the vertical dimension and it was proposed that 3D space is anisotropically 

encoded, in a semi-planar manner, as most mammalian animals dwell on the surface 

(Jeffery et al. 2013).  

 

In contrast to the vertically elongated place fields found in rats (Hayman et al. 2011), 

place cells recorded in flying bats showed isotropic place fields. This means that all 

three axes were equally well encoded in the bats (Yartsev and Ulanovsky 2013) 

(Figure 1.4). Do these findings imply that bats and rodents have fundamentally different 

spatial encoding mechanisms, and that bats have a complete 3D spatial map while 

rodents do not? It is possible that flying mammals and surface dwelling mammals have 

evolved differently because of differing behavioural demands. Theta oscillations in the 

hippocampus, which are thought to be important for place cell firing in rodents, were 

found to be absent in bats (Yartsev and Ulanovsky 2013). However, it is too early to 

conclude that rodents and other land animals do not have a 3D map.  

 

 

Figure 1.4 Isotropic 3D place fields in bats. (A) Place cells were recorded wirelessly in flying bats. (B) 

Ten place cells recorded in one bat. Different coloured blobs represent different place cells. (C) The place 
field size in each dimension was similar, suggesting an isotropic encoding of 3D space. Adapted from 
(Yartsev and Ulanovsky 2013) with permission from AAAS. 
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In all of the previous studies, rodents moved mainly on a surface (tilted or a vertically 

repeated surface), and the behavioural demand for encoding absolute 3D locations 

was absent. Rodents are excellent climbers (e.g. laboratory mice often hang upside 

down on the ceiling of a cage and wild mice swiftly climb up the pipes of the building) 

and they can remember the locations of food in a 3D lattice maze (Grobéty and Schenk 

1992a; Flores-Abreu et al. 2014). A 3D lattice maze allows rodents to move along all 3 

axes, and place cells might be equally sensitive to all three axes in this case, similar to 

bats (Figure 1.5A). The main methodological issue with recording place cells in such a 

3D lattice is the tangling of the recording wires, and this could be the reason why only 

behavioural studies have been published on the 3D lattice to date. A wireless recording 

technique, which is rarely used currently, could circumvent this methodological 

problem.  

 

Another experimental setting where pure 3D spatial mapping can be studied is a 

microgravity environment. One intriguing study was conducted in the Neurolab Space 

Shuttle mission of 1998 (Knierim et al. 2000). In the spaceship, rats propelled 

themselves forward by grasping the track. The track was an Escher staircase where 

the rats came back to the origin only after 3 right turns (Figure 1.5B). On the second 

day of visiting to this 3D track, rat place cells showed stable and normal firing fields. 

This finding suggests that even the rat hippocampus can rapidly adapt to and map a 

3D environment that they never encountered before.  

 

In humans and non-human primates, invasive recording studies have not yet been 

conducted during vertical movement in either physical or virtual 3D space.  

 

 



23 

 

 

Figure 1.5 Rats in a volumetric 3D space. (A) A 3D lattice maze. Reprinted from (Grobéty and Schenk 

1992a) with permission from Elsevier. (B) Rats explored an Escher staircase track during the Neurolab 
Space Shuttle mission. Place cells showed normal place fields on the second day of exposure to this track. 
Reprinted from (Knierim et al. 2000) with permission from Springer Nature. 

 

1.3 Head direction cells in 3D space 

Place cells maintain their firing even when animals move around in the environment 

deprived of external sensory cues, implying that an animal can know its location from 

self-motion inputs. If one knows the exact linear and angular movement velocity, the 

final destination can be calculated. For example, if I am now at the origin (x=0, y=0) 

and move to +x direction at a constant speed of 2 unit/s, I will be at (x=10, y=0) after 5 

seconds. This is known as path integration or dead reckoning navigation. James Ranck 

first reported the cells in presubiculum that could provide direction information for path 

integration, at the annual meeting of the Society for Neuroscience (1984) and the full 

paper describing the basic property of these head direction cells was published in 1990  

(Taube et al. 1990). As with place cells, head direction cells were first recorded in rats 

foraging in a circular 2D arena. This initial study revealed that the firing of head 

direction cells was largely independent of the animal’s location and depended only on 

the animal’s head direction (azimuth) relative to a reference direction in the laboratory 

(Figure 1.6).  

 

Subsequently, multiple brain structures have been found to contain head direction cells 

(the lateral mammillary nucleus, anterior dorsal thalamus, presubiculum, retrosplenial 
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cortex, entorhinal cortex) and angular head velocity cells (dorsal tegmental nucleus, 

vestibular nucleus, lateral mammillary nucleus).  The origin of the head direction signal  

has been linked to optic flow, self-movement cues, vestibular inputs and visual 

landmarks, while theoretical models of the head direction signal (e.g. a ring-attractor 

network) have also been investigated (for a  review, see (Taube 2007; Cullen and 

Taube 2017)). However, only a handful of studies have investigated head direction 

cells beyond a horizontal 2D plane, and there is a dearth of knowledge about how 

vertical and horizontal directions are encoded in a 3D environment. 

 

Figure 1.6 Example head direction cells in 2D. (A) One cell fired maximally when an animal was 
heading ~260° and another cell fired maximally when an animal was facing ~70°. Reprinted from (Taube et 

al. 1990) with permission conveyed through the Copyright Clearance Center, Inc. (B) A head direction 
cell’s response can be summarized in a polar plot. This hypothetical cell’s preferred direction is ~25°. 

 

Before I summarise the limited literature on head direction cells in 3D, it is pertinent to 

first describe the physiological mechanisms of detecting vertical direction. Vestibular 

organs in the inner ear sense both vertical and horizontal tilt. The vestibular system is 

composed of three semicircular canals and two otolith organs called the utricle and 

saccule (Figure 1.7A). The three semicircular canals are fluid-filled organs that are 

orthogonally oriented to each other. The canals can detect the angular acceleration for 

yaw, roll and pitch rotations (Figure 1.7B) via the deflection of hair cells within them. 

The otolith organs contain small piles of calcium carbonate crystals (called otoliths) on 

its membrane which adds mass and increases inertia. Hair cells in the otolith organs 

detect linear acceleration and gravity. Due to the orientation of the utricle and saccule 
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within the vestibular apparatus, the utricle is more sensitive to acceleration in a 

horizontal plane and the saccule is more sensitive to acceleration in a vertical plane.  

Rotational and translational information is sent to vestibular nuclei in the brain stem. It 

is then conveyed to the head direction cell network via the lateral mammillary nucleus. 

Figure 1.8 shows a circuit diagram of key areas containing head direction cells and 

other spatial cells. 

 

 

Figure 1.7 Vestibular organs and three rotations. (A) The vestibular system in the inner ear contains 

three orthogonally placed semicircular canals which detect angular acceleration in three directions, yaw, 
roll and pitch, and two otolith organs called the utricle and saccule. This figure was adapted from 
https://www.nasa.gov/audience/forstudents/9-12/features/F_Human_Vestibular_System_in_Space.html. 
(B) The three axes of rotation.  

 

https://www.nasa.gov/audience/forstudents/9-12/features/F_Human_Vestibular_System_in_Space.html
https://www.nasa.gov/audience/forstudents/9-12/features/F_Human_Vestibular_System_in_Space.html
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Figure 1.8 A circuit diagram of the principal connections of areas in the head direction cell 
network.  Relevant brain regions are shown in blue. Reproduced from (Taube 2007) with permission 

conveyed through the Copyright Clearance Center, Inc. 

 

In addition to vestibular inputs from the inner ear, graviceptors in the trunk provide 

additional tilt information which could be particularly important for body posture 

stabilisation (Mittelstaedt 1998). It has been suggested that the differences in otolith (in 

the inner ear) and abdominal viscera graviceptor dynamics might contribute to motion 

sickness (von Gierke and Parker 1994). Vision is another important source of verticality 

detection, which is particularly relevant for the virtual navigation paradigms used in this 

thesis. Visual objects like a tree or a tower are oriented vertically on earth, and visual 

inputs can provide salient cues for verticality even in the absence of physical gravity 

(e.g. viewing a scene photograph in a supine position) (Dyde et al. 2006).  
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The key question here is whether there are head direction cells that respond to 3D 

direction. The rodent literature does not provide reliable evidence for the existence of 

3D head direction cells. An early study observed a few vertical pitch-sensitive cells in 

the lateral mammillary nuclei (Stackman and Taube 1998), but most pitch-sensitive 

cells responded only when a rat was looking up almost 90° and they were not 

modulated by azimuth. Cells responding to azimuth (classical head direction cells) 

were not modulated by pitch. It is possible that pitch and azimuth are encoded by 

different cells and these pieces of information are integrated in unknown downstream 

neurons. However, the absence of cells tuned to an intermediate vertical pitch 

suggests that these cells in the lateral mammillary nuclei cannot map a complete set of 

directions in 3D. This might be explained by the fact that the rats only moved on a flat 

surface and there was no behavioural need to encode vertical direction in this 

experiment. Azimuth encoding helps a rat to know its location on the surface for path 

integration, and one’s location information is a fundamental element of learning and 

memory. In contrast, vertical encoding was unnecessary in the experiment because 

rats did not jump vertically or grasp anything in the air. Rats have eyes with such a 

wide field-of-view (Wallace et al. 2013) that they can even look up to the ceiling without 

tilting their head up. As long as animals are confined to a surface, direction information 

that is orthogonal to the surface is not so relevant.  

  

A few studies have recorded head direction cells when rats were climbing a vertical 

plane or ceiling (Taube et al. 2004; Calton and Taube 2005; Taube, Wang, et al. 2013). 

These studies found that head direction cells responded to an animal’s direction 

relative to the local plane of locomotion as if the vertical plane was an extension of the 

horizontal floor when the animals self-locomoted from the floor to the vertical walls. A 

dual-axis rotation rule suggests that head direction cells are updated by (1) yaw 

rotations around the dorsal-ventral axis of the animal and (2) rotations of the dorsal-

ventral axis around the gravity axis (Page et al. 2017). Head direction cells following 
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the extended floor or dual-axis rule are useful when animals move between multiple 

planes, as they preserve global north-south orientation (Page et al. 2017). However, 

they do not distinguish direction when moving straight north (zero pitch) and moving 

30° up north, for example. Animals moving along the two directions would arrive at very 

different locations if they could move freely in a 3D volumetric space. Therefore, this 

type of head direction cell is not suitable as a neural compass in 3D volumetric space. 

 

A recent breakthrough in the understanding of head direction encoding in 3D came 

from the Ulanovsky group (Finkelstein et al. 2015). Head direction cells were recorded 

in the presubiculum of Egyptian fruit bats in multiple environments: a horizontal 2D 

plane, a vertical ring platform and a 3D arena (Figure 1.9A,E). When bats crawled on a 

plane, a large portion of cells (52%) was sensitive to azimuth and some were tuned to 

pitch (21%) or roll (12%). The recordings in the vertical ring platform allowed even 

sampling of pitch from -180° to 180° and cells tuned to various pitches were found, in 

contrast to the previously-mentioned rat study where only extreme pitch-sensitive cells 

were observed (Stackman and Taube 1998). About 20% of cells recorded in the 

crawling bats were sensitive to the combination of azimuth, pitch and roll (Figure 1.9B). 

The small portion of conjunctive head direction cells implies that 3D direction is 

collectively represented by a population of neurons rather than at the single cell level.  

 

This study also revealed an interesting anatomical gradient in that pure azimuth cells 

were more abundant in the anterolateral part of presubiculum, whereas pure pitch and 

conjunctive cells were more numerous in the posteromedial part of presubiculum 

(Figure 1.9C,D). The most intriguing aspect of this study was the flight condition inside 

a 3D arena. Similar to the crawling condition, pure azimuth, pure pitch and conjunctive 

neurons were observed (Figure 1.9F), although the proportion of these cell types were 

not reported (the small number of cells recorded in the flight condition (n=20) might 

have hampered a comparison between the flight and crawling conditions). Altogether, 
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this study provided strong evidence that 3D direction information is present in the bat, 

which could be used to generate a mental map of 3D space. Is the 3D compass unique 

to flying animals? Probably not. Pitch and roll sensitive neurons were recently found in 

the macaque monkey anterior thalamus (Laurens et al. 2016). Whether a 3D compass 

exists in the human brain is a key question addressed in this thesis. 

 

 

Figure 1.9 3D head direction cells in the bat presubiculum. (A) The bats crawled on a floor (Pose 1) or 

on a vertical ring (Pose 2). (B) The proportion of cells tuned to azimuth, pitch and roll. (C) A sagittal section 
through the presubiculum. (D) An anatomical gradient of head direction cells along the transverse axis of 
the presubiculum. (E) The flight condition setup. (F) Example head direction cells during flight. Similar to 
the crawling conditions, pure azimuth cells, pure pitch cells and conjunctive cells were found. Adapted 
from (Finkelstein et al. 2015) with permission from Springer Nature. 

 

1.4 Grid cells in 3D space 

Until 1990s, the primary region of interest in spatial neuroscience was the 

hippocampus. However, this changed dramatically in 2004 when the Moser group 

investigated dorsal medial entorhinal cortex (Figure 1.10A) (Fyhn et al. 2004). This 

region provides extensive inputs to the dorsal hippocampus where the most sharply 
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tuned place cells are found. They first observed that cells in the entorhinal cortex had 

stable and multiple discrete firing fields that could predict the rat’s location as precisely 

as place cells. It turned out that the multiple firing locations are not random; rather the 

locations correspond to the vertex of a regular hexagonal grid, like a honeycomb 

structure (Figure 1.10B) (Hafting et al. 2005). This is why these cells are called grid 

cells. Due to the regularity of the grids, a grid cell’s firing locations (called grid fields) 

can be described by three parameters: phase (the location or offset of grid fields), scale 

(the distance between the neighbouring grid fields) and orientation (the tilt of the grid 

axis relative to the environment) (Figure 1.10C). Grid cells maintain their firing fields 

regardless of an animal’s movement speed and trajectory (note that direction x grid 

conjunctive cells were also found in the entorhinal cortex and this has important 

implications for probing grid cells non-invasively in humans, which will be discussed 

later in this thesis). That grid cell firing persists in darkness, at least in rats, suggests 

the importance of self-motion and path integration in this spatial representation (Hafting 

et al. 2005; Chen et al. 2016).  

 

 

Figure 1.10 Grid cells in 2D. (A) Medial entorhinal cortex (shaded in red). (B) Example grid cells along 

the dorsal-ventral axis of entorhinal cortex. The grid scale is larger in the ventral entorhinal cortex. Adapted 
from (Stensola et al. 2012) with permission from Springer Nature. (C) Hexagonal grid fields can be 
described by three parameters: phase, orientation and scale. 

 

Interestingly, grid cells are topographically and modularly organised along the dorsal-

ventral axis of entorhinal cortex. Similar to place cells in the hippocampus which have 
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larger place fields in the ventral hippocampus (Jung et al. 1994; Kjelstrup et al. 2008), 

grid cells in the ventral part of entorhinal cortex have a larger grid scale than grid cells 

in the dorsal part of entorhinal cortex (Hafting et al. 2005) (Figure 1.10B). This 

difference in grid scale parallels the difference in hyperpolarization-activated cation 

current along the dorsal-vertical axis (Giocomo and Hasselmo 2008). An oscillatory 

interference model of grid cells proposed that the ionic current and resultant membrane 

potential oscillation is the origin of the grid signal at the single cell level (Burgess et al. 

2007).  

 

A grid scale changes discretely rather than continuously; for example, the distribution 

of grid scales recorded in a single rat had four peaks (modules) and the ratio of grid 

scales between successive modules was around √2 , which implies the doubling of an 

area of grid fields (Stensola et al. 2012). Grid cells within a module share similar grid 

orientation and only differ in grid phase. Grid cells of multiple scales can serve as an 

efficient way of encoding a large space with high precision using a small number of 

cells. It can be understood as a combinatorial or modulo code (Fiete et al. 2008).  

 

As a toy example, 8 unique locations in a simple 1D space can be encoded using only 

3 grid cells that have different periodicity, if a downstream neuron can combine inputs 

from these grid modules (Figure 1.11A). Therefore, it seemed reasonable to assign grid 

cells as the origin of hippocampal place fields (Solstad et al. 2006) (Figure 1.11B). 

However, it was later discovered that new place fields were formed after septal 

inactivation which disrupts grid networks (Brandon et al. 2014), and place cells showed 

adult-like stable firing before grid cells showed mature firing during development (Wills 

and Cacucci 2014). A theoretical study showed that the characteristic hexagonal firing 

fields can be formed from place cell inputs in the neural network architecture that 

resembles a principal component analysis (Dordek et al. 2016). These findings imply 

that the relationship between the entorhinal grid cells and the hippocampal place cells 
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is not a simple unidirectional one, rather it involves a complex interaction between 

them. 

  

Figure 1.11 From grid cells to place cells. (A) A schematic of the combinatorial code for encoding a 1D 

space. Hypothetical grid cell #1 has a periodicity of 8 and it fires when an animal is at locations 1,2,3 and 
4. Grid cell #2 has a periodicity of 4 and it fires at locations 1,2,5 and 6. Grid cell #3 has a periodicity of 2 
and it fires at locations1,3,5 and 7. If grid cells #1 and #3 are “on” and grid cell #2 is “off”, a downstream 
neuron can know that an animal is at location 3. (B) A proposed model for place-field formation. Ventral 
hippocampal place cells receive stronger inputs from grid cells in ventral entorhinal cortex which has a 
larger grid scale, and dorsal hippocampal place cells receive stronger inputs from grid cells in dorsal 
entorhinal cortex which has a smaller grid scale. Overall firing rate is kept at a physiological level by non-
specific inhibitory neurons (red arrows and circle). EC, entorhinal cortex; HC, hippocampus. Adapted from 
(Solstad et al. 2006) with permission from John Wiley and Sons. 

 

Like place cells and head direction cells, grid cells have mostly been investigated on a 

2D horizontal plane. If grid cells are to provide an efficient spatial basis set for encoding 

3D space for the hippocampus (or grid cells are the product of 3D place cell inputs), 

what would the firing fields of grid cells look like in 3D space? We have some clues 
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from an information theoretical account of grid cells (Mathis et al. 2015) and a 

simulation study that used a self-organizing model (Stella and Treves 2015). It was 

shown that the lattice with the highest packing density has the maximum Fisher 

information (Mathis et al. 2015). Fisher information measures how well stimuli (like the 

location of an animal) are decodable from the conditional firing probability of neurons. 

On a 2D surface, a hexagonal arrangement of circles has the highest density 

(compared to a rectangular array or any other regular geometric lattice). In a 3D 

volumetric space, the highest packing density is achieved when grid fields are arranged 

in a face-centred cubic (FCC) lattice, hexagonal close packing (HCP) or some 

combination of these two hexagonal layers (Figure 1.12).  

 

 

Figure 1.12 A 3D grid cell is proposed to fire at multiple locations which corresponds to the centre 
of spheres closely fitted in a box. (A) An FCC arrangement is composed of three hexagonal layers with 

a translational shift (a-b-c). (B) HCP is also composed of repeating hexagonal layers, but only two layers 
repeat (a-b). In both arrangements, a unit cell is composed of 1+12 fields. 

 

Hayman et al. (2011) tested for the existence of 3D grid cells in rodents when exploring 

various 3D environments. On both a vertical surface (“pegboard”) and a helical 

staircase, grid cells did not show periodic firing along the vertical dimension (Figure 

1.13A,C). Grid cells only showed multiple peaks along the horizontal axis and grid 

fields were vertically elongated (on the pegboard) or repeated across coils (on the 
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helical environment), although there was some rate modulation by vertical height. This 

result does not fit the predicted firing pattern of grid cells in 3D described earlier (Figure 

1.12; Figure 1.13B). The authors discussed the possibility that grid cells might have 

much larger vertical spacing than the size of the environment used in the experiment, 

but it is unclear whether and why grid cells should have elongated vertical spacing 

compared to horizontal spacing. A grid cell’s firing in the helical environment resembled 

the repeated and fragmented grid fields that have been observed in a multi-

compartment environment (Derdikman et al. 2009).  

 

Grid cells were also recorded on a 40° slope (Hayman et al. 2015) (Figure 1.13D-F). If 

a grid cell has firing fields corresponding to a 3D lattice covering the entire volumetric 

space, grid fields should be irregular and the distance between the grid fields should be 

larger on the slope compared to a flat surface (Figure 1.13E). However, a grid cell’s 

firing was almost as similar on the slope as on a flat surface. Together with the findings 

from the helical environment (Hayman et al. 2011), this result implies that grid cells are 

adapted to the local surface on which rats move, rather than developing a fully 3D map. 

Thus, we might infer that a surface, regardless of whether it is horizontal, tilted or 

stacked, is not a suitable environment where 3D grid cells can be investigated. The 

best animal model for testing 3D grid cells is flying bats. Some preliminary evidence of 

3D grid cells in bats was presented at the Society for Neuroscience (Ginosar et al. 

2016), but the grid cell showed rather irregular firing fields which were unlike the 

regular 3D lattice predicted by the theoretical models. Thus, the existence of a regular 

3D lattice remains an important unresolved question which will be addressed later in 

this thesis. 
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Figure 1.13 Grid cells recorded on a non-horizontal surface. (A) Two example grid cells recorded in 

rats moving on a vertical surface are shown in the contour plots. The grid cells did not show periodic firing 
for the vertical axis in contrast to the prediction from 3D grid cell models (e.g. a face-centred cubic lattice) 
shown in (B). (C) Rats moved on a helical staircase. The firing of two example grid cells is shown as raw 
data from an overhead camera and separately for each coil. Grid cell firing was repeated across multiple 
vertical levels (coils). (D) Rats moved on a flat surface and an adjacent slope (40°). (E) Two hypotheses of 
grid cells, one is a lattice permeating the 3D space (left) and the other is a planar grid on the environment 
surface (right). (F) An example grid cell’s response shown from an overhead camera. Left panel, raw data; 
middle panel, a contour map; right panel, an autocorreleogram. In contrast to the 3D lattice hypothesis 
which predicts irregular, largely spaced grid fields on a slope, grid fields were regular and had similar 
spacing on the slope and flat surface. (A) and (C) adapted from (Hayman et al. 2011) with permission from 
Springer Nature. (D)-(F) adapted from (Hayman et al. 2015). 

 

1.5 Boundary cells and other spatial cells in 3D space 

In the previous sections, I summarised the properties of the three most widely studied 

cell types (place cells, head direction cells and grid cells) that are known to encode 

spatial information, and I included some predictions for how they might respond in a 3D 
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world. In this section, I consider briefly some other cell types with spatial properties that 

have been less well investigated, namely boundary cells and spatially periodic cells. 

  

From very early studies it was known that a place cell’s firing is modulated by the 

geometry and the boundaries of the environment an animal is exploring. For example, 

when a circular or rectangular environment was uniformly scaled along all axes, some 

place fields were scaled, preserving the relative location within the environment (Muller 

and Kubie 1987) (Figure 1.14A). This study also showed that even a visually 

transparent barrier altered nearby place fields. The importance of boundaries that 

determine the geometry of an environment has been supported by further studies. In 

(O’Keefe and Burgess 1996), place cells were recorded in a small square, large 

square, vertically elongated rectangle and horizontally elongated rectangular arena 

(Figure 1.14B). Place fields maintained the absolute distance or the proportion of the 

distance from two opposite walls, and the authors proposed a model in which a place 

field is formed by Gaussian tuning curves as a function of the distance from each wall. 

Putative cells that respond when an animal is at a particular distance and direction from 

a boundary (“boundary vector cells”) were then proposed to provide inputs to place 

cells (Hartley et al. 2000) (Figure 1.14C). Subsequently, boundary vector cells were 

found in the subiculum (Lever et al. 2009) (Figure 1.14D).  

 

Given that a majority of these boundary vector cells fired in the vicinity of the border of 

an environment, one might ask whether the cells respond to a particular view or the 

tactile sensation of walls. Lever et al. (2009) ruled out this possibility by showing that 

these cells fire at similar locations when different types of boundary (50 cm wall, a 

sheer drop or a low ridge) were used. The persistence of responses from these cells in 

complete darkness also suggested that the cells did not simply respond to particular 

visual cues. Cells with similar characteristics were subsequently found in the entorhinal 
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cortex (Savelli et al. 2008; Solstad et al. 2008) and parasubiculum (Boccara et al. 

2010), and have been called boundary cells or border cells.  

 

Figure 1.14 Place fields are dependent on an environmental boundary and boundary cells have 
been proposed to provide inputs to place cells. (A) A place cell’s firing field maintained its relative 

location when the size of the circular arena doubled. Adapted from (Muller and Kubi 1987) with permission 
conveyed through the Copyright Clearance Center, Inc. (B) Place fields maintained absolute or relative 
distance from the walls in four different environments (small square, horizontal rectangle, vertical 
rectangle, large square). Adapted from (O’Keefe and Burgess 1996) with permission from Springer Nature. 
(C) A boundary vector cell is proposed to fire when an animal is located at a preferred distance and 
allocentric direction from a boundary. Adapted from (Hartley et al. 2000) with permission from John Wiley 
and Sons. (D) Three example boundary vector cells recorded in the rat subiculum in various environments 
(rectangle, circle, diamond shape and when a new barrier was inserted). Adapted from (Lever et al. 2009) 
with permission conveyed through the Copyright Clearance Center, Inc. (E) Hypotheses for boundary cells 
in 3D space. Hypothesis 1 predicts that the cells would respond to the 1D line boundary. Hypothesis 2 
predicts that the cells would respond to the 2D surface boundary. 

 

All of the experiments on boundary cells have been conducted on a flat 2D surface, 

which means that the boundary was one-dimensional - a flat or curved line. Would 

boundary cells fire at line edges (either vertical or horizontal) even when animals freely 

move inside a 3D box (Figure 1.14E, hypothesis 1)? I predict that boundary cells would 

respond to 2D surface boundaries and therefore form a plane-like firing field in 3D 

space (Figure 1.14E, hypothesis 2). This is because distance and direction information 
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from three orthogonal planes is required to locate one’s 3D position. If boundary cells 

only encode the information about an animal’s distance and direction from 1D borders, 

they cannot provide sufficient inputs to hippocampal place cells. We cannot even 

define a line boundary in a smooth 3D environment like a sphere. The best animal 

model to test for the existence of 3D boundary cells is flying bats. Boundary cells 

(responding to the line edge of the enclosure) have been found in the entorhinal cortex 

of bats crawling on a 2D floor (Yartsev et al. 2011), but it remains an interesting 

question as to whether there would be cells encoding the distance and direction from 

walls when bats are flying inside a 3D box. 

 

We can make a similar prediction about the 1D line- or 2D plane-like firing fields of a 

cell type known as band cells or spatially periodic cells in a 3D environment. Some 

theoretical models suggested that the hexagonal firing pattern of grid cells originated 

from cells with spatially periodic cells in 1D (e.g. a stripe or band) (Hasselmo and 

Brandon 2012; Mhatre et al. 2012). In the rat entorhinal cortex, cells that have band-

like firing fields have been observed (Krupic et al. 2012). If such band-like cells exist in 

a volumetric 3D space, I predict that they would look like a full planar wave, instead of 

1D strips. This need to be tested in the future. 

 

1.6 Behavioural studies in 3D space 

So far, I have explained the special cell types in the mammalian brain that encode an 

animal’s location and direction information. In this section, I summarise the behaviour 

of animals navigating in 3D space which can give clues about how 3D space is 

represented in their brains. This is particularly useful for inferring the neural 

representation of 3D space in humans, where neural recording data are scarce. I first 

describe behavioural findings in animals and then humans. 



39 

 

1.6.1 Fish, birds and rodents 

Gravity distinguishes the vertical dimension from the horizontal dimension and all 

animals on earth are under the constant influence of gravity. The vertical axis can be 

an even more salient dimension for fish because of the hydrostatic pressure gradient. 

Burt de Perera’s group have suggested that a fish can detect its vertical position by a 

change in swim-bladder volume when the fish moves vertically, and that this movement 

need not be large in order to be detected (Taylor et al. 2010; Holbrook and Burt de 

Perera 2011). They argued that a pressure change as small as 0.5 cm at the surface 

level can be detected (Qutob 1963). Hydrostatic pressure might be the reason why 

banded tetra fish (Astyanax fasciatus) and benthic fish (Corydoras aeneus), preferred a 

vertical cue when vertical and horizontal information were conflicted (e.g. the reward 

was in the up-left arm during training and the fish had to choose between the up-right 

and down-left arm in the test phase, Figure 1.15A) (Holbrook and Burt de Perera 2009; 

Davis et al. 2014).  

 

However, this does not mean that fish are less accurate in remembering horizontal 

information. When fish were trained to swim freely towards a reward location, they took 

the shortest path, and the vertical and horizontal deviations from the ideal trajectory 

were comparable (Holbrook and Burt de Perera 2013) (Figure 1.15A). From these 

behavioural results, it was suggested that fish have an isotropic 3D spatial 

representation (Burt de Perera et al. 2016). Of note, spatial memory or navigation 

experiments in fish have been much simpler than those in rodents or humans.  The fish 

only learned a short straight line in the experiments, and they had to be retrained 

multiple times during the short test phase to prevent memory extinction. 
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Figure 1.15 Apparatus for studying 3D navigation behaviour in animals. (A) Fish can be trained to 

swim inside one of the two arms to get food reward (left). The arms can be rotated so the vertical and 
horizontal location of the reward can be modified. Alternatively, the arms can be removed and a free 3D 
trajectory can be examined (right). Reproduced from (Holbrook and Burt de Perera 2013) with permission 
from Elsevier. (B) A radial arm maze with vertical tilts. (C) An arena with a small hill. (B) and (C) 
Reproduced from (Jeffery et al. 2013) with permission from Cambridge University Press (D) A 3D lattice 
maze for rodents and birds. Reproduced from (Jovalekic et al. 2011).   

 

Mammals and birds do not have a sensory mechanism that can detect the absolute 

vertical elevation like the swim-bladder in fish (of note humans can detect high altitude 

from low oxygen and pressure decreases, but this is only applicable at extreme 

altitudes like Mountain Everest, so it is not relevant for daily navigation). However, all 

animals are sensitive to their orientation relative to the gravity axis for stable body 

posture and energy costs associated with vertical movements. Thus, a slope or 

vertically tilted plane can work as an additional orientation cue for navigation and 

spatial memory. For example, rats located a previously rewarded position better in a 

45°, or 90° tilted planar maze than in a horizontal maze (Grobéty and Schenk 1992a), 

and performed better in a radial arm maze when some of the arms were tilted between 

0 to 25° (Grobéty and Schenk 1992b) (Figure 1.15B). They also observed that the rats 

showed a pattern of movement that involved moving horizontally before each vertical 

movement in the vertical plane for the first three days of training (Grobéty and Schenk 

1992a). This pattern of more frequent horizontal movements was also observed in 
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another study (Jovalekic et al. 2011). Animals can save energy by making this pattern 

of movements when exploring the vertical plane compared to moving up and down 

frequently.  

 

In other experiments, rats were trained to find a reward in darkness that was located at 

the top of a cone hill of different heights (radius = 40cm, height = 0, 1, 2, 4 cm which 

corresponds to 0, 1.4, 2.9, 5.7°) within a larger circular arena (radius = 100 cm). An 

inverse relationship between the rats’ path length and the cone height was found 

(Moghaddam et al. 1996) (Figure 1.15C). This means that the steeper slope was more 

beneficial than the shallow slope for navigation, and the rats were sensitive to subtle 

differences in steepness of less than a few degrees. Pigeons have also been found to 

use the slope (20°) of a trapezoidal arena to locate a goal position, and preferred the 

slope cue over a geometrical cue when the two cues conflicted (Nardi and Bingman 

2009a, 2009b). Interestingly, slope preference was not affected by hippocampal lesions 

in pigeons (Nardi and Bingman 2009b). To the best of my knowledge, there is no 

hippocampal lesion study in mammals that has specifically investigated vertical or 3D 

navigation. From the behavioural findings of enhanced spatial memory on a slope and 

the high sensitivity to the steepness of a slope, I would predict that an animal’s vertical 

tilt (pitch) on a slope is encoded in the brain at least as precisely as the horizontal 

direction.  

 

In the above experiments, rodents and birds mainly navigated on a 2D surface even 

though a vertical element was added to the surface. The next question is, how do they 

navigate in a fully volumetric 3D space? Do they plan the vertical and horizontal route 

separately? Do they remember the vertical location better or worse than the horizontal 

location? There are mixed results in relation to vertical-horizontal symmetry. In 

(Grobéty and Schenk 1992a), rats were trained to move to a previously rewarded 

position in a 3D lattice (Figure 1.15D) in the following order: seven training trials with 



42 

 

reward (days 1-4), the first transfer test without reward (day 4), seven training trials 

(days 4-6) and the second transfer test (day 6). In the first transfer test, the rats spent 

more time on the correct vertical level than the correct horizontal locations. The 

opposite pattern was found in the second transfer session, which means that the rats 

were able to locate the horizontal location, not the vertical coordinate. The authors 

suggested the energy cost of vertical movement as an explanation for the earlier 

acquisition of vertical information. However, an energy cost account does not explain 

why the rats knew the horizontal coordinate better than the vertical coordinate in the 

second test session, and whether the rats would know the vertical or horizontal 

information better or to the similar degree if the test was conducted for a longer 

duration.  

 

A recent study which used a similar 3D lattice setup and memory task may provide a 

further clue (Flores-Abreu et al. 2014). In this study, the rats chose the vertically 

adjacent location more than the horizontally adjacent location – this was a trend on the 

first test date (day 7) and significant on the second test date (day 10). This finding is in 

line with the result of the second test in (Grobéty and Schenk 1992a). These results 

suggest that rats are more confident of their horizontal location, at least after enough 

exposure. Interestingly, hummingbirds were also tested in a similar 3D lattice maze 

task in Flores-Abreu et al. (2014) and, in contrast to rats, the hummingbirds were more 

confident of their vertical location. Hummingbirds can also distinguish flowers by their 

height (Henderson et al. 2001, 2006).  

 

In summary, differences in the navigation behaviour of fish, rats and birds highlight the 

importance of the mode of movement of animals (whether they are surface-bound or 

volumetric) for spatial cognition and navigation. The behavioural differences could 

originate from how the brain encodes 3D space in a species. Whether the difference is 

evolutionary or developmental is not easy to test, but is nevertheless an interesting 
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question (e.g. would a bird be more confident of its horizontal location if it was raised 

on a horizontal surface from birth?). In the following sections, I focus on 3D navigation 

behaviour in humans, the main topic of this thesis. 

 

1.6.2 Humans 

Similar to other animals, humans are also sensitive to slopes or elevations which are 

navigational cues. In a study by Steck et al. (2003), participants rode on a bicycle 

simulator and navigated a virtual reality (VR) town which contained flat or sloping (4°) 

streets. Navigation errors and pointing errors were significantly smaller in the sloped 

condition, showing the utility of a slope even though it was only 4°. The importance of 

vertical elevation for navigation has also been supported by a task investigating how 

the shortest route is found in an undulating real environment. Participants travelled 

longer distances in an undulated environment as they tried to avoid local hills in the 

travelling salesman problem (Layton et al. 2009). This natural tendency to minimise the 

energy cost incurred when moving vertically (climbing upward is obviously tiring and 

walking down can be even more tiring and dangerous with the risk of slipping and 

falling) might be one reason why people overestimate the angle of slopes (Proffitt et al. 

1995; Creem-Regehr et al. 2004; Shaffer and Flint 2011). For example, a shallow hill 

on the grounds of the University of Virginia which was only 2° was perceived as 10° 

and a steep hill (34°) was reported as 53~55°, both verbally and visually (Proffitt et al. 

1995). Of note, the participants did not greatly overestimate the steepness when they 

haptically reported the steepness by adjusting a tilt board with their hand.  

 

This veridical motor judgment of slope accords with our normal walking behaviour, e.g. 

we do not stumble on a 30° slope by wrongly adjusting our ankles and feet for a 50° 

slope. This could be because of separate visual pathways for conscious perception and 

motor responses (Goodale and Milner 1992). The behavioural finding of the 
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overestimated slope raises a question of whether the neural response would be more 

sensitive to the vertical heading than the horizontal heading in 3D space, e.g. an 

abundance of pitch-sensitive head direction cells compared to the azimuth-sensitive 

cells in the human brain. Or, the brain might encode the vertical direction just as 

precisely as it encodes the horizontal direction as shown by our accurate motor 

responses to the slope. If there exists a neural bias in encoding the vertical and 

horizontal direction, is the bias dependent on the presence of an actual energy cost? 

For example, would the vertical direction be encoded with the same degree of 

sensitivity in environments where the energy cost is absent, such as a VR environment 

or a micro-gravity environment? The visual appearance of the slope alone might be 

sufficient to drive the heightened sensitivity to the vertical axis. It was shown that 

participants also overestimated the steepness of an escalator which does not require 

energy (Shaffer and Flint 2011) and hills in a virtual environment (Creem-Regehr et al. 

2004).  

 

Other than undulating terrain, the most common environment in which humans face a 

3D navigation challenge is multi-level buildings. In modern buildings, from a few to over 

a hundred floors are stacked one on top of the other. The added vertical dimension is 

distinguished from horizontal dimensions not only by gravity but also by its 

discontinuity. Horizontal information can be described in both a continuous or discrete 

manner, such as “2.5 meters north from the entrance”, “the 3rd room on that floor”. In 

contrast, vertical information is often described in a discrete number such as “2nd 

floor”, “10th floor”, and vertical movement is only possible via sparsely located 

staircases or lifts.  

 

Dividing a large space into smaller and more manageable regions can be an efficient 

navigation strategy that can overcome complexity and imprecise spatial information 

(Wiener et al. 2004; Balaguer et al. 2016). A multi-level building is naturally divided into 
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horizontal floors, and so a 3D navigation task is reduced to a 2D horizontal navigation 

task after an initial journey to the correct floor. It has been reported that participants 

who were familiar with a building, more frequently used a floor strategy than those who 

were unfamiliar with the building, and navigation performance was superior when the 

floor strategy was used compared to other navigation strategies (Hölscher et al. 2006). 

Difficulty with navigation across floors, or larger pointing errors for a target location on a 

different floor, might reflect a floor-based spatial representation (Montello and Pick 

1993).   

 

However, horizontal floors is not the only way of segmenting a 3D space; it can also be 

divided into vertical columns because modern buildings often have the same layout for 

each floor (e.g. room 301 is above room 201, room 302 is above room 202, Figure 

1.16). The mental representation of, and navigation strategies within, a multi-level 

building can be dependent on multiple factors such as individual differences, the shape 

of the building and the learning experience. For instance, Büchner et al. (2007) showed 

that one third of participants used the horizontal layout and preferred the vertical first-

horizontal later route for finding objects in a building of the University of Freiburg, 

whereas two thirds of participants used a columnar layout and preferred the horizontal 

first-vertical later route. The authors suggested that the wide building (the horizontal 

width was greater than the vertical height) used in the experiment might have caused 

more participants to choose the columnar layout. Spatial memory of multi-level 

buildings can also be influenced by the learning route. In Thibault et al. (2013), 

participants learned the layout of 9 objects in a virtual building (3 floors x 3 rooms on 

each floor) by watching a video that provided the sensation that they were sequentially 

visiting each room (Figure 1.16). Half of the participants visited the rooms along the 

floor route and the others visited the rooms along a columnar route, and then spatial 

memory was tested using both horizontal and columnar pathways in each participant. 

Overall, the floor learners were more accurate than the columnar learners and there 
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was an interaction effect of learning and testing of route. The floor learners performed 

better on the horizontal test trials and the columnar learners performed better on the 

vertical test trials, suggesting the importance of learning method.  

 

Figure 1.16 A virtual multi-level environment was learned and tested by either floor or columnar 
routes. Pink arrows show the route of the learning. White arrows and black arrows are the familiar and 

novel segments used during testing, respectively. Reproduced from (Thibault et al. 2013) with permission 
from Springer Nature. 

 

Above, I summarised the importance of a slope for navigation and the multiple 

navigation strategies used in multi-level buildings (regionalisation, floor-base or vertical 

column-base). But humans sometimes navigate in a volumetric 3D space without being 

bound to surfaces like slopes and buildings (e.g. astronauts, pilots and divers). How do 

people navigate in a volumetric 3D space? As with other animals, the literature on 

volumetric navigation is scarce, probably due to the difficulty of implementing 

volumetric navigation experiments in a laboratory setting. Only a few virtual navigation 

experiments have investigated spatial cognition when participants made controlled 3D 

rotations in tunnel-like structures. In Vidal et al. (2004), participants had to identify the 

correct layout of 3D tunnels after being passively moved in the 3D tunnels with multiple 

rotations (Figure 1.17). In a “terrestrial” condition, only yaw rotations were used so the 

participants were always in a head upright position (Figure 1.17A). This means that the 

participants were moved straight up and down in the vertical section of the tunnels as if 

they were inside a lift. In a “weightless” condition, participants always moved forward 

which means that either yaw or pitch rotation was applied at each junction (Figure 
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1.17B). Participants were significantly more accurate in the terrestrial condition than the 

weightless condition when a complex 3D maze (with multiple turns) was used. 

However, there were some learning effects in the weightless condition because 

accuracy almost reached that of the terrestrial condition in the last trials. Although this 

learning effect was descriptive (a formal statistical test was not possible due to the 

randomised trial orders used in the experiment), it is an interesting observation that 

humans might be able to process the infrequently used non-horizontal rotation (pitch) 

as accurately as the horizontal rotation (yaw) within a short training period of less than 

an hour. Aoki et al. (2005) also found that a 3D pointing task was more difficult when 

participants made vertical rotations, but the learning effect was not investigated in this 

study.  

 

Figure 1.17 A virtual 3D tunnel experiment. (A) In the terrestrial condition, participants always kept their 

head upright with yaw rotation only. (B) In the weightless condition, participants were always moved 
forwards and either pitch or yaw rotation was applied at the junctions. (C) At the end of the 3D tunnel, the 
participant selected, from among lures, which option was the structure of the 3D maze. Red arrows 
represent the starting location. Adapted from (Vidal et al. 2004) with permission from Elsevier. 
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The 3D rotation experiments described above argue for the importance of the plane of 

rotation relative to the gravity axis. It has been suggested that participants who had 

difficulty spatially updating for the vertical rotation in the two studies described above 

might have experienced the Visual Reorientation Illusion, a common symptom reported 

by astronauts (Oman 2007). This is the phenomenon where the surrounding walls, 

ceiling, and floor suddenly exchange identities. It occurs when an astronaut works 

upside down or views other crew members floating upside down (compared to the “up-

down” orientation on earth, where the astronauts were trained before the space 

mission). Jeffery et al. (2013) argued that the use of a local planar reference like “floor” 

and “ceiling” by astronauts in a microgravity volumetric environment shows that even 

volume-travelling animals might use a planar representation of 3D space. However, it is 

unclear how humans or other animals represent an entire volumetric space using a few 

planes if they constantly change the plane of movement. 

 

1.7 Human neuropsychological, neuroimaging and electrophysiological 

studies in 3D space 

To the best of my knowledge, very few studies have investigated neural activity, or the 

effect of lesions, in the human brain while participants moved both horizontally and 

vertically in a 3D space, and none directly assessed how different types of 3D spatial 

information, such as location and direction, are encoded in the brain. Before I describe 

the few studies on 3D spatial cognition, I summarise the neuropsychological, 

neuroimaging and electrophysiological evidence of 2D spatial information encoded in 

the human brain, which agrees with, and further extends, the previous animal 

electrophysiological findings on place cells, head direction cells, grid cells and border 

cells.  
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1.7.1 Neural correlates of navigation and spatial memory in humans in 2D 

A century of neuropsychological studies has provided valuable information about which 

brain regions are responsible for spatial disorientation. As reviewed in (Aguirre and 

D’Esposito 1999), spatial disorientation can arise for multiple reasons that involve 

different brain structures. Patients with lesions in the posterior parietal lobe show 

egocentric disorientation - difficulty in knowing where objects or places are relative to 

the own body (Levine et al. 1985; Stark 1996). Patients with small focal lesions in the 

right retrosplenial region show a rather pure topographic disorientation (“sense of 

direction”) with little evidence of visuospatial agnosia or egocentric disorientation 

(Takahashi et al. 1997). This finding might be related to head direction cells and other 

spatially modulated cells found in the rodent retrosplenial cortex (Cho and Sharp 2001; 

Alexander and Nitz 2015). Spatial disorientation could also originate from a deficit in 

recognising landmarks and places and this type of agnosia is often associated with 

medial occipital gyrus lesions (Pallis 1955).   

 

Consistent with the well-established findings of place cells in the rodents hippocampus 

and impairment in water maze learning following hippocampal lesions in rodents 

(O’Keefe and Dostrovsky 1971; Morris et al. 1990), topographic memory impairment 

are observed in patients with lesions to the hippocampi or broader medial temporal 

lobe (Smith and Milner 1981; Maguire et al. 1996; Spiers et al. 2001). However, 

bilateral hippocampal lesions do not impair all aspects of spatial navigation. For 

instance, a taxi driver with bilateral hippocampal lesions showed intact static 

topographic memory such as the relationships between landmarks, and he also found 

his way in a virtual simulation of central London, UK that he learned 40 years ago, but 

only when the route involved the main artery roads. He became lost when the route 

depended on non-main roads, suggesting that the hippocampus is specifically required 

for detailed spatial representations (Maguire et al. 2006).  
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The involvement of the human hippocampus in spatial navigation was also observed in 

some of the earliest neuroimaging studies. For example, a positron emission 

tomography (PET) study showed that successful active navigation in a virtual town 

evoked more regional cerebral blood flow in the hippocampal region compared to 

passive arrow-following movement or unsuccessful navigation trials (Maguire et al. 

1998). Functional magnetic resonance imaging (fMRI) studies also showed similar 

navigation performance-related activity in the hippocampus (e.g. Hartley et al. 2003). 

Of note, navigation is a complex cognitive function which engages more than a single 

neural structure (as suggested by neuropsychological studies described earlier), and 

the contrast between active navigation and simple route-following revealed a large 

brain network including parahippocampal cortex, ventral occipital cortex, medial 

parietal regions, cerebellum and areas of the prefrontal cortex (Hartley et al. 2003).  

 

Spiers and Maguire (2006) revealed the complex online neural interactions between 

the brain areas supporting navigation, by implementing a realistic simulation of 

wayfinding in London, UK during fMRI scanning which included collecting retrospective 

verbal reports from each participant with an unprecedented degree of detail. They 

found that hippocampus was particularly engaged during initial planning of routes, but 

not during other periods of navigation such as spontaneous route planning, action 

planning or visual inspection. Together with the functional neuroimaging findings, a 

structural change associated with acquiring spatial knowledge of London’s layout was 

found in the hippocampus of London taxi drivers (Maguire et al. 2000; Woollett and 

Maguire 2011). 
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1.7.2 Place, direction, grid, border representation in the human brain in 2D 

The early neuropsychological and functional neuroimaging studies suggested a role for 

the human hippocampus in spatial navigation, and then the first direct evidence of 

place cells in the human hippocampus was reported in 2003 from an invasive recording 

study. Using depth electrodes implanted for pre-epilepsy surgery planning, Ekstrom et 

al. (2003) recorded neurons in the hippocampus, parahippocampal region, amygdala 

and frontal lobes while participants navigated around a virtual town. They found the 

cells that responded to the instantaneous location of participant, a particular view or a 

goal location. Place cells (that responded to the current location of a participant) were 

more abundant in the hippocampus compared to the other regions. Grid-like cells have 

also been observed in the entorhinal cortex, cingulate cortex and hippocampus in 

neurosurgical patients (Jacobs et al. 2013). Invasive human electrophysiological 

studies provide unique and detailed information on neural codes at a cellular resolution 

which is not achievable with current non-invasive neuroimaging methods (Parvizi and 

Kastner 2018). However, the invasiveness of this method, which requires a clinical 

setup (e.g. clinically-determined locations of electrodes, short and relatively simple 

experiments designed for patients, and patients with epilepsy-related pathology) 

renders it unsuitable for widespread use in studying human neuroscience. The 

challenge, then, is how we non-invasively probe place cells, head direction cells and 

grid cells in the healthy human brain. 

 

This challenge was tackled in an fMRI experiment with multivoxel pattern analysis 

(Hassabis et al. 2009). In this study, participants visited the four corners of a 

rectangular room in a virtual environment during scanning. When they arrived at each 

corner, they looked down at the floor which was visually identical for each corner.  fMRI 

activity was analysed for this floor-viewing period, meaning that different fMRI activity 

between each spatial location could not be explained by different views. The authors 



52 

 

could decode at which corner a participant was located from the patterns of activity 

across voxels in the hippocampus. This finding is important not only because it is the 

first fMRI evidence showing the presence of place information in the hippocampus, but 

because of its implications for the nature of neuronal ensembles in the hippocampus. If 

place cell decoding for each location relies on neurons that are mingled within each 

and every voxel (1.5mm cubic, which contains ~100,000 neurons), multivoxel pattern 

classification would be impossible. The successful decoding of location information 

from multivoxel patterns in the hippocampus hence suggests a spatially distributed, 

uneven neural representation within the hippocampus.  

 

For example, previous animal studies showed that place fields recorded in ensembles 

tend to cluster (Eichenbaum et al. 1989), although this does not mean that place cells 

are topographically organised as in primary sensory cortex. The precise organisation of 

the neural code in the hippocampus is still not fully understood and there exists 

scepticism about the detectability of a place code at the level at which fMRI operates 

(Nolan et al. 2017). Nevertheless, multiple fMRI studies have since revealed place 

information in the hippocampal formation, as well as in the retrosplenial cortex and 

parahippocampal cortex (Vass and Epstein 2013; Sulpizio et al. 2014) using multivoxel 

pattern analysis and repetition suppression analysis. These analysis methods will be 

explained in detail in the next chapter.  

 

A participant’s head direction information has also been observed in multiple fMRI 

studies using multivoxel pattern analysis and repetition analysis. Unlike animal work, 

where typically head direction cells are recorded in freely and continuously moving 

animals, most human participants in fMRI studies have been given only static visual 

cues (e.g. a picture or word describing an object). This prompted them to either 

explicitly or implicitly think about their orientation in a virtual or real environment that 

they experienced before scanning (e.g. “the building is visible when I am facing north”) 



53 

 

(Figure 1.18). Cue presentation typically lasts a few seconds and is followed by a short 

pause (blank screen) before the next cue presentation. This static and discrete 

experimental design is used to control views that are naturally associated with head 

direction and to control the timing (onset and offset) of each directional response for 

ease of fMRI data analysis. The obvious limitation of this approach is that it only 

evokes directional responses based on fixed landmarks. In the real world, angular 

velocity integration from self-motion cues (proprioceptive, vestibular, optical flow) are 

important sources of inputs to head direction cells. Nevertheless, fMRI researchers 

have found evidence for head direction information in areas that are known to contain 

head direction cells in animals, such as the thalamus (Shine et al. 2016), the 

retrosplenial cortex (Baumann and Mattingley 2010; Vass and Epstein 2013; Marchette 

et al. 2014; Shine et al. 2016) and the subiculum (Chadwick et al. 2015). 

Parahippocampal cortex (Sulpizio et al. 2014; Bellmund et al. 2016) and hippocampus 

(Sulpizio et al. 2014) have also been reported to contain head direction information. 

 

 

Figure 1.18 A typical fMRI experiment using a static cue (visual or verbal) for a few seconds to 
evoke the neural response to each direction in the environment. Figures adapted from Vass and 

Epstein 2013 with permission conveyed through the Copyright Clearance Center, Inc. 

 

Compared to place cells or head direction cells, grid cells have more complex response 

patterns (e.g. multiple firing fields, multiple scales and offsets), making the systematic 

variation of a signal at the voxel level (which contains tens of thousands of grid cells) 

unlikely. However, properties of grid cells that allow for their detection using fMRI were 
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discovered based on findings from rodent electrophysiology, and the first fMRI 

evidence of grid cells in the entorhinal cortex was reported in 2010 (Doeller et al. 

2010). The key properties are (1) that orientation of the grid axis is relatively constant 

across cells and (2) that a grid cell’s activity is modulated by an animal’s movement 

direction relative to the grid axis. How to probe grid cell signals using fMRI will be 

discussed later in this thesis. Grid cell-like fMRI signals have since been reported in a 

number of studies that used either actual navigation or mental imagery (Kunz et al. 

2015; Bellmund et al. 2016; Horner et al. 2016). Furthermore, a grid-like representation 

was also found in the non-spatial domain (Constantinescu et al. 2016; Julian et al. 

2018; Nau et al. 2018). Of note, fMRI studies have revealed evidence of grid-like codes 

not only in the entorhinal cortex but also in a broader network including the prefrontal 

cortex in humans (Doeller et al. 2010; Constantinescu et al. 2016). 

 

Regarding boundary cells, a recent invasive recording study found an increase in theta 

power in the subiculum when a target location was close to the boundary of a circular 

arena (Lee et al. 2018). This effect was not present in electrodes in CA1, dentate 

gyrus, entorhinal or perirhinal cortex. Lee et al. (2018) examined the neural responses 

when participants were virtually moving towards the target, not when the participants 

were actually at the boundary, in order to dissociate the boundary signals from view-

related signals. Boundary-related learning effects have also been reported in the 

posterior hippocampus (Doeller et al. 2008).  

 

1.7.3 Neural correlates of movement and navigation in humans in 3D 

There is a very limited neuroimaging literature concerning navigation in 3D space. In 

Indovina et al. (2016), participants were moved on a virtual rollercoaster during fMRI 

scanning. The rollercoaster travelled forward and then turned either left, right, up or 

down in a tunnel. The subsequent linear movements inside the tunnel were visually 
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identical regardless of the preceding turns. Brain activity was compared between each 

of four conditions (leftwards, rightwards, upwards and downwards) during this linear 

movement period. Bilateral hippocampus showed greater activity for the horizontal 

movements whereas the posterior portion of inferior temporal gyrus and the angular 

gyrus showed greater activity for vertical movements. No region distinguished the 

orientation within either the vertical or horizontal plane (e.g. leftward movements were 

comparable to rightward movements). The authors argued that the distinct brain 

activations for movement on the horizontal and vertical planes may allow parallel 

processing of 3D information, and in so doing, simplify navigation in 3D space.  

 

It remains unknown whether these preferential responses to either horizontal or vertical 

motion exist even when participants move freely in a 3D space where horizontal and 

vertical motion are not separated, as in the rollercoaster experiment. For instance, 

which brain areas will be activated when a participant turns right-upwards? The more 

important question is how the brain encodes the specific orientation information of a 

participant. Although this study showed that the amplitude of brain responses differs 

when a participant moved horizontally or vertically, we need much more information 

than this to navigate in 3D.  For instance, we need to distinguish whether we move up 

or down and how much we move up (e.g., 30° or 60°), but the neural encoding of this 

fine-grained 3D spatial information in humans is, as yet, unspecified. 

 

Zwergal et al. (2016) also compared overall brain activity between vertical and 

horizontal navigation, but without testing for fine-grained 3D spatial information 

encoding. In this PET study, half of the participants searched for objects located at 

different levels on the staircase of a hospital (“vertical navigation”) while the other half 

searched for objects while on one floor (“horizontal navigation”). A similar degree of 

activation in the hippocampus was reported for both the vertical and horizontal 

navigation groups during subsequent scanning. Visual cortex and the brainstem 
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showed more activity during horizontal navigation. By contrast, bilateral insula, anterior 

cingulate cortex and cerebellum showed more activity during vertical navigation. The 

authors claimed that horizontal navigation is predominantly guided by visual landmarks 

and vertical navigation is most likely guided by vestibular inputs (insula and 

cerebellum). However, the claim that vertical navigation is less dependent on visual 

landmarks is questionable, because there was in fact a distinct lack of sufficient visual 

information in the vertical navigation condition in this experiment. The floor signs, 

important visual landmarks that distinguish visually similar multiple floors, were hidden 

in this experiment. The contribution of visual landmarks to navigation should be 

investigated in future experiments where the visual cues are well matched between 

horizontal and vertical conditions.      

 

1.8 The anatomy of the hippocampal formation 

In this section, I present an overview of the anatomy of the hippocampal formation 

which contains hippocampus, subiculum and entorhinal cortex, some of the key regions 

studied in this thesis. Multiple views exist on the definition and terminology of 

hippocampus or hippocampal formation. The difference in species and limitations in the 

spatial resolution of non-invasive methods makes the anatomy even more complex to 

describe. 

 

Amaral and Lavenex defined the “hippocampal formation” as being comprised of the 

hippocampus proper, dentate gyrus, subiculum, presubiculum, parasubiculum and 

entorhinal cortex (Amaral and Lavenex 2006) (Figure 1.19). The hippocampus proper 

consists of subfields called CA1, CA2, CA3 (Cornu Ammmonis, meaning a ram’s horn 

due to its curved shape). The subiculum and pre and parasubiculum are collectively 

called the subicular complex or subicular cortices. In human fMRI studies, the 

subiculum label is often used to include presubiculum and parasubiculum due to limited 
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spatial resolution (Adler et al. 2014; Yushkevich et al. 2015). The simplified textbook 

account of the connectivity in this region is as follows: cerebral cortex → medial 

entorhinal cortex → dentate gyrus → CA3 → CA1 → subiculum → medial and lateral 

entorhinal cortex → cerebral cortex. The functional, anatomical and connectivity 

differences between the substructures are important research topics, but unfortunately 

delineating these substructures from in vivo MRI images with standard spatial 

resolution (1~3 mm) is very challenging. Numerous segmentation protocols exist with 

substantial discrepancies between them, especially in the anterior portion of the 

hippocampus (the boundary between CA1 and subicular cortices) (Yushkevich et al. 

2015; Dalton et al. 2017). In most fMRI studies, the term “hippocampus” has been 

loosely defined and used to include the hippocampus proper (CA1/2/3), dentate gyrus 

and subicular cortices.  

 

Figure 1.19 The anatomy of the hippocampus. (A) Left, a drawing of the rodent hippocampus by Cajal. 

Right, the location of the hippocampus (red) in the human brain. DG, dentate gyrus; Sub, subiculum; EC, 
entorhinal cortex. Figures from Wikimedia in the public domain. Image generated by Life Science 
Databases. (B) The subfields of hippocampus are shown with anterior slices moving along the longitudinal 
axis. Figure from Dalton et al. 2017. 
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1.9 Summary and thesis objectives 

In this chapter, I have reviewed the literature on how specific cell types encode spatial 

information (e.g. location, direction, distance) and behavioural findings on spatial 

navigation that hint at how the 3D world is represented in the brain. To date, due to a 

paucity of empirical findings and the considerable differences in species, behaviour and 

shapes of 3D environments used in the existing literature, there is no consensus on 

basic issues such as whether 3D space is encoded in a volumetric manner or in a 

planar manner, or whether the vertical and horizontal axes are equally well encoded.  

In particular, there is a big gap in our understanding of 3D spatial representation in the 

human brain.  

 

In my thesis, I aimed to provide insights into how 3D spatial information is encoded in 

the human brain when people navigate in various types of 3D environments. To do this, 

in the next chapter, I first introduce the general experimental methods used in this 

series of studies, such as the VR techniques and the basics of fMRI and data analysis. 

I then present the series of experiments that I conducted during my PhD in the 

following order: 

 

In Chapter 3, I built a semi-volumetric virtual environment where participants could 

climb up and down, somewhat like a junglegym in a playground. I examined whether 

navigationally relevant brain structures contained vertical and horizontal spatial 

information (e.g. the place and direction of a participant moving in this virtual 

environment) equally well, or whether some brain structures were more sensitive to 

either the vertical or horizontal axis. I used both behavioural measurements (accuracy 

and response time for one’s location/direction judgments, and size estimation of the 3D 

virtual environment) and fMRI multivoxel pattern similarity analysis to address these 

questions. 
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In Chapter 4, I developed a virtual gallery building which had multiple levels and rooms. 

I hypothesised that this type of 3D environment could be encoded in a hierarchical 

manner, e.g. where am I in a room, which room am I in within the wider building. Using 

fMRI repetition suppression analysis, I searched for where in the brain these different 

types of spatial information were encoded. I also tested whether there was a bias in 

vertical and horizontal information (e.g. whether people got more confused about the 

vertical floors than the horizontal locations within a floor). 

 

In Chapter 5, I built a virtual zero gravity environment where participants could move 

along all 3 axes freely. Participants explored the virtual spaceship rendered on VR 

head-mounted display which provided multisensory inputs prior to scanning. I then 

tested how the vertical and horizontal components of 3D head direction were encoded 

in the head direction cell network using fMRI multivoxel similarity analysis. 

 

In Chapter 6, I developed an fMRI analysis method to investigate a grid cell’s activity in 

3D based on the known direction-modulated property of grid cells. Using this method, I 

tested for the existence of a 3D grid-code in data I collected using the virtual zero 

gravity environment. I also developed interactive software that visualises 3D grid cells 

and predicts the activity of grid cells as a function of a participant’s movement.   

 

Finally, in Chapter 7, I draw the experimental results together to propose how the 

human brain encodes spatial information in various 3D environments. I discuss current 

methodological limitations and suggest future experiments for pursuing a fuller 

understanding of 3D spatial representation and navigation.  

 



60 

 

1.10 Publications 

The following publications have arisen from work in this thesis: 

 

Kim M, Jeffery KJ, Maguire EA (2017) Multivoxel pattern analysis reveals 3D place 

information in the human hippocampus. Journal of Neuroscience 37: 4270-4279. 

 

Kim M, Maguire EA (2018) Hippocampus, retrosplenial and parahippocampal cortices 

encode multi-compartment 3D space in a hierarchical manner. Cerebral Cortex 28: 

1898-1909.  

 

Kim M, Maguire EA. 3D grid cells in human entorhinal cortex: Theoretical and 

methodological considerations and fMRI findings (revisions invited). 

 

Kim M, Maguire EA. Thalamus, subiculum and retrosplenial cortex encode 3D head 

direction information in volumetric space (revisions invited).  

 

Other publications arising during my PhD: 

 

Clark IA, Kim M, Maguire EA. Verbal paired associates and the hippocampus: The role 

of scenes.  Journal of Cognitive Neuroscience (in press). 

 

Kim M, Barnes GR, Maguire EA. Temporal dynamics of spatial memory recall in 3D 

space (in preparation). 
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Chapter 2 General methods 

2.1 Overview 

In this chapter, I describe the basic principles of the data acquisition and the analysis 

methods that I used throughout my experiments. First, I introduce the behavioural 

setups and virtual environments that I developed. I then explain the principles of 

measuring neural responses using fMRI, preprocessing of raw data and the use of the 

general linear model (GLM). Finally, I outline the core fMRI analysis methods - 

repetition suppression analysis and multivoxel pattern analysis and the software used 

for statistical tests.  

 

2.2 Participants 

All participants were in the age range of 18 to 36 years, right-handed, had normal or 

corrected-to-normal vision and no history of neurological or psychiatric disorders. The 

number of male and female participants was closely matched in each experiment. Most 

participants were UCL undergraduate and masters students recruited from the Institute 

of Cognitive Neuroscience’s subject database. All gave informed written consent in 

accordance with the local research ethics committee. Most participants only took part in 

one experiment.  During the recruitment process, I screened all participants for the risk 

of motion sickness or VR sickness. A minority of participants felt discomfort when 

interacting with one of my VR environments. In these cases, the experiment was ended 

immediately, and the participant was supervised until the feeling of sickness had 

passed.  

 



62 

 

2.3 Virtual environments 

The use of virtual environments was central to my PhD given that I investigated the 

neural encoding of 3D spatial information using neuroimaging techniques where 

participants were physically constrained in an MRI scanner. I developed three unique 

3D virtual environments for use in the experiments (a junglegym, a multi-level building 

and a spaceship) within which participants could navigate. The exact details of each 

environment are described in the experimental chapters, with general background 

information provided here.   

 

I implemented the virtual environments using the 3D modelling software Sketchup 

(Trimble, CA, USA) and the game engine Unity 4.6 or 5.4 (Unity Technologies, CA, 

USA). This game engine is a complete solution for visual graphics, physics, scripting 

and user interface, and it supports multi-platforms (Windows: the main stimulus 

presentation for all my experiments; Android: the VR head-mounted display for 

Experiment 3; WebGL: the web-based grid visualisation software developed for 

Experiment 4).  

 

Throughout my experiments, I used a first-person perspective to provide participants 

with the immersive feeling that they were inside a 3D space. The screen aspect ratio 

and camera parameters which determined the field-of-view of a participant in the virtual 

environment were carefully set to mimic natural human vision. A wide screen aspect 

(16:9 for Experiment 1 and 4:3 for Experiments 2-4) was used because human eyes 

have a wider field-of-view for the horizontal axis. The vertical field-of-view was ±30° for 

all experiments and the horizontal field-of-view was ±45.7° for Experiment 1 and ±37.6° 

for Experiments 2-4 (Figure 2.1A). Although humans can view up to 100° laterally 

(Spector 1990), our peripheral vision is not as good as our central vision, and the Unity 

monocular camera with a larger field-of-view induces significant distortion and 
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discomfort, particularly when a participant looks up or down (Figure 2.1B). This was 

why I used a vertical field-of-view of ±30° (a commonly used default camera setup). 

However, when a virtual environment is rendered on a VR head-mounted display which 

has binocular lenses placed closed to the eyes (the pre-scan task in Experiment 3), a 

wider field-of-view can be achieved without distortion. I therefore used a vertical field-

of-view of ±45° (a default setup for VR head-mounted displays). The horizontal field-of-

view was ±48° for the VR head-mounted display (the hardware’s specification).  

 

 

Figure 2.1 The field-of-view in an example virtual environment. (A) The top view shows the horizontal 

field-of-view and the side view shows the vertical field-of-view. (B) Example views for different vertical field-
of-views (left, ±15°; middle, ±30°; right, ±45°). Horizontal field-of-view is proportionally scaled. 

 

2.4 Experimental procedures 

All experiments were conducted at the Wellcome Centre for Human Neuroimaging, 

Institute of Neurology, University College London, London, UK. Upon their arrival, 

participants gave written informed consent after having read an information sheet that 
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described the study and having asked any questions that they had. Participants 

performed various spatial exploration and memory tasks in a virtual environment. Pre-

scan behavioural training and testing took approximately 1 hour for all experiments. 

Behavioural experiments took place in a quiet testing room equipped with a desktop 

PC. Once participants successfully completed the behavioural phase, they were 

thoroughly screened once again for MRI safety (having also been screened prior to 

their arrival at the Centre).  

 

After the safety check, a participant wore ear protection and lay on the MRI table in a 

supine position. Foam pads were placed at the sides of their head to further reduce the 

acoustic noise and to prevent excessive movement. A breathing belt and pulse 

oximeter were attached to the participant so that experimenters could check for any 

signs of distress during scanning. In addition, a participant’s status was monitored via a 

camera. In all of the experiments, a participant was provided with an emergency alarm 

which they could squeeze at any point during scanning to indicate that they wanted to 

come out of the scanner. They were also provided with an MRI-compatible keypad 

(Current Designs, PA, USA) with which to accomplish the tasks, and this was held in 

their right hand. 

 

A scanning session lasted ~1.5 hours including setup time and structural scanning. 

Participants were debriefed after scanning and reimbursed for their time (£10/hour). In 

total, each participant visited the Centre for ~3 hours.  

 

2.5 Principles of MRI and fMRI 

In this section, I present a brief conceptual explanation of the biophysical basis of MRI 

and fMRI, given that this was the main method I used in my experiments.  
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2.5.1 Signal generation in MRI 

MRI is a non-invasive imaging method that relies on the difference in magnetic property 

between tissues. Any atom that has magnetic spin can be used for MRI, but hydrogen 

is commonly used in MRI because of its abundance in our body (e.g. H2O). A hydrogen 

nucleus has one spinning proton and this positively charged particle generates an 

electric current and a magnetic moment. In the presence of a strong magnetic field (the 

Siemens 3 Tesla MRI scanner used in my experiments creates a magnetic field that is 

several hundred times stronger than a typical refrigerator magnet), protons align to the 

external magnetic field, resulting in a net magnetization. 

 

This net magnetization precesses around the longitudinal axis of the external field at 

Larmor frequency which is proportional to the external field strength and a 

gyromagnetic ratio of atoms. If electromagnetic energy that matches the Larmor 

frequency is delivered (the radiofrequency pulse provided by a head coil in the MRI 

scanner), protons are “excited” and change from a low energy state to a high energy 

state. The excitation tips the net magnetization from the longitudinal axis to the 

transverse plane. Once the excitation ceases, transverse magnetization decays with a 

time constant of T2 (called T2 relaxation) and longitudinal magnetization recovers with 

a time constant of T1 (called T1 relaxation). Importantly, different tissues (e.g. grey 

matter, white matter, cerebral spinal fluid) have different T1 and T2, resulting in 

different magnetic resonance (MR) signal intensity (Figure 2.2). There is also T2* which 

is a time constant for the decay of transverse magnetization under the presence of 

local field inhomogeneity. T2* is a crucial concept for fMRI and is described in a later 

section.  
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Figure 2.2 T1 and T2 contrast for MRI.  Different tissues have different T1 and T2 constants which lead 

to a difference in MR signal intensity. For instance, longitudinal magnetization is greater in white matter 
(red line) than grey matter (blue line) at 600 ms from the excitation (left panel). Therefore, white matter is 
shown bright (higher intensity) and grey matter is shown dark (low intensity) on T1 images. 

 

2.5.2 From raw signals to an image 

Raw MR signals are measured by receiver coils in MRI in the form of time-varying 

electric current. How do we know where this signal comes from in order to reconstruct 

a 3D spatial image? This spatial encoding problem is solved by applying a gradient to 

the external magnetic field. If a small extra magnetic field is applied to a particular part 

of the brain (e.g. a horizontal slice at the level of amygdala, z = -26mm), protons within 

the slice will precess at a slightly higher Larmor frequency than the rest of the brain, 

and receiver coils can selectively measure signal from this slice (known as slice 

selection). Different gradients along two other axes can be applied to localise the signal 

within a slice (known as frequency and phase encoding). Consequently, a 3D structural 

image is achieved.  

 

2.5.3 BOLD signal for fMRI  

The BOLD (blood-oxygenation-level-dependent) fMRI signal is an indirect way of 

measuring neural activity via neural-hemodynamic coupling. A simple explanation for 
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the origin of the BOLD signal is as follows. Active neurons demand oxygen and 

glucose, and the energy is supplied by neighbouring blood vessels. There is a complex 

cascade of biochemical processes that increases the local cerebral blow flow when 

neurotransmitters are released from active synapses (Figure 2.3). Paradoxically, a 

supply of fresh oxygenated haemoglobin is greater than demand, resulting in a 

decrease in local concentration of deoxygenated haemoglobin. Deoxygenated 

haemoglobin is paramagnetic which means it distorts the local magnetic field and 

shortens T2*. A decrease in deoxygenated haemoglobin increases T2*, leading to 

higher MR signal. Therefore, we see “activation” (higher BOLD signal relative to the 

baseline) in the visual cortex when participants are shown a picture, and activation in 

the motor cortex when participants tap their fingers. If we see activation in some brain 

regions during particular cognitive or behavioural tasks, we infer that brain regions (or 

neurons within those brain areas) are involved in that task. 

 

Figure 2.3 Neural-hemodynamic coupling. Glutamates released from a synapse trigger calcium 

signalling in both astrocytes and neurons which leads to the production of various vasoactive agents 
including nitric oxide (NO) and arachidonic acid (AA). The vasoactive agents constrict and dilate a blood 
vessel. The change in blood flow and the concentration of deoxygenated hemoglobin is the basis of the 
fMRI signal. Reprinted from (Attwell et al. 2010) with permission from Springer Nature. 
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However, “the higher the neural activity, the larger the BOLD signal” is an overly 

simplified description. The precise spatiotemporal relationship between 

electrophysiological activity of neurons and the BOLD signal is still unknown and 

continues to be actively researched. Previous studies that simultaneously measured 

fMRI and electrophysiology have mostly been conducted in primary sensory cortex in 

animals. These studies revealed the typical shape of the hemodynamic delay (e.g. the 

BOLD signals lags about 6 seconds from the peak neural activation) and that the 

BOLD signal is better correlated with the local field potential (LFP) than spiking activity 

(Logothetis 2003). This implies that inputs to the neurons contribute more to the BOLD 

signal than neural outputs. Although inputs and outputs are often correlated, it is 

possible that inhibitory inputs (which reduce spiking) could evoke a positive BOLD 

signal. Furthermore, different brain regions can have different neural assemblies and 

different neurovascular coupling.  

 

For instance, the hippocampus was reported to show a weaker correlation between 

BOLD and theta-band activity than nearby parahippocampal cortex (Ekstrom et al. 

2009). The sign of the BOLD signal change is not trivial to interpret because it depends 

on the experiment-specific baseline. In cognitive experiments, a baseline is often 

defined as the inter-trial-interval when stimuli are not presented and participants are not 

asked to perform specific tasks. Sensory cortex typically shows increased neural 

activity and positive BOLD signal relative to this non-stimulus baseline. However, brain 

regions in the default mode network, including the hippocampus, are not inactive in the 

absence of external stimuli, and therefore BOLD signal can be even smaller during 

stimulus presentation compared to the “baseline” (Ekstrom 2010). I observed this 

negative BOLD signal in Experiment 2. 

 

In short, the BOLD fMRI signal measures spatiotemporally filtered neural activity (e.g. 

action potentials and synaptic currents induced by hundreds of thousands of neurons in 
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a typical fMRI voxel) via complex neural-hemodynamic coupling. I used BOLD fMRI in 

my experiments because it is currently the best non-invasive technology that can 

measure the entire brain, including deep structures such as the hippocampus, with 

good spatial resolution. Nevertheless, the inherent methodological limitations of fMRI 

should be considered when interpreting the results.  

 

2.5.4 Scanning parameters 

For BOLD imaging, T2*-weighted echo planar images (EPI) were acquired using a 3T 

Siemens Trio scanner (Siemens, Erlangen, Germany) with a 32-channel head coil. 

Scanning parameters optimised for reducing susceptibility-induced signal loss in areas 

near the orbitofrontal cortex and medial temporal lobes were used as follows: slice TR  

= 70 ms, TE = 30 ms, resolution = 3 × 3 x 3 mm, matrix size = 64 x 74, z-shim gradient 

moment of -0.4mT/m ms (Weiskopf et al. 2006). The number of transverse slices 

angled at -30° was 48 for Experiment 1, and 44 for Experiments 2-4, resulting in a 

volume TR of 3.36 sec for Experiment 1 and 3.08 sec for Experiments 2-4. This 

sequence covered the entire brain except for the very top and bottom edges in rare 

cases where a participant had a particularly large brain. Before the main functional 

scans, fieldmaps were acquired with the standard manufacturer’s double echo gradient 

echo field map sequence (short TE = 10 ms, long TE = 12.46 ms, 64 axial slices with 2 

mm thickness  with a 1 mm gap yielding whole brain coverage; in-plane resolution 3 x 3 

mm. The fieldmaps were later used during preprocessing for correction of magnetic 

field inhomogeneity. After the functional scans, a T1-weighted structural scan (MDEFT) 

was obtained with 1mm isotropic resolution (Deichmann et al. 2004). 
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2.6 Preprocessing of fMRI data 

Before the main analysis, raw fMRI data need to be preprocessed to compensate for 

signal artefacts, head motion and individual differences in anatomy. Here I briefly 

describe the preprocessing applied to my data. I used the neuroimaging analysis 

software SPM12 (www.fil.ion.ucl.ac.uk/spm) for preprocessing.  

 

2.6.1 Discarding the first volumes 

Signal intensity is larger for the first few volumes when the TR is relatively short for T1 

recovery (Figure 2.4). To allow for T1 equilibrium, I presented the task stimuli once 5 

volumes had been acquired and discarded the first 5 volumes from any analyses. 

 

 

Figure 2.4 The T1 saturation effect. (A) Example images for the 1st, 3rd, 5th, 7th TR in one subject. (B) 

The signal intensity of one voxel indicated by the red crosshair in panel (A). Signal intensity is higher for 
the first volume because T1 magnetization has not yet reached the saturation. (C) A schematic 
explanation for T1 saturation.  
Courtesy of Allen D. Elster, MRIquestions.com (http://mriquestions.com/dummy-cycles.html). 
 

2.6.2 Realignment and unwarping 

A participant’s head is not completely static during scanning even if they have been 

instructed to remain still and the foam pads prevent excessive movements. This means 

that, for example, a voxel that corresponds to the anatomical coordinate of [20, 30, 28] 

http://www.fil.ion.ucl.ac.uk/spm
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mm at t = 0 sec can represent [21, 31, 30] mm at time t = 100 sec. This movement can 

also interact with geometric distortion of images induced by local field inhomogeneity. 

To ensure each voxel measures the signal from the same brain structure throughout 

scanning with minimal geometric distortion, I used the SPM realign and unwarp 

function with the fieldmap images that measured the baseline field inhomogeneity. This 

function estimates 3 translation and 3 rotation parameters using rigid body spatial 

transformation. These 6 head realignment parameters were later included in the GLM 

to account for any residual movement that could influence the fMRI data. 

 

2.6.3 Coregistration of functional and structural images 

Functional images which have a lower spatial resolution (3 mm) need to be 

coregistered to a structural image which has a higher spatial resolution (1 mm) for later 

spatial normalisation and anatomical comparisons. I used the SPM coregistration 

function to match these images. This function finds the rigid transformation (affine 

matrix) that maximises the mutual information between the functional and structural 

image which have different signal intensity profiles (grey matter is brighter in functional 

images and white matter is brighter in structural images).  

 

2.6.4 Spatial normalisation 

In all of my experiments, I made inferences about neural activity at the population level. 

To achieve group-level inference, brain images from multiple participants need to be 

aligned in the same space, in my case using the “template brain” from the Montreal 

Neurological Institute (MNI) (Mazziotta et al. 1995). This inter-subject alignment 

process is known as spatial normalisation. I used the SPM segment and normalisation 

function to normalise individual brains to MNI space. This function segments the 

structural images into different tissues (white matter, grey matter, CSF, bone) based on 
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signal intensity. A Bayesian generative model is used to combine a prior tissue 

probabilistic map and intensity distribution in individual data. Local shrinkage and 

stretch (a deformation matrix) is applied in order to match individual brains to the MNI 

template brain. 

  

2.6.5 Spatial smoothing 

Spatial smoothing is often applied in fMRI research for three reasons. First, smoothing 

can maximise the signal-to-noise ratio (SNR) if the width of smoothing matches the 

size and shape of the true signal. For example, if the spatial extent of neural activity is 

expected to be 8mm, random spatial noise will be averaged out if smoothing of 8mm is 

applied. Second, smoothing makes the distribution of fMRI signal close to the normal 

distribution which is a common assumption for standard statistical tests. Third, 

smoothed data have a smaller number of independent signals, which can alleviate the 

multiple comparison correction problem. In SPM, a Gaussian smoothing kernel is used. 

The full-width at half maximum (FWHM) determines the size of smoothing and 1 to 3 

voxel sizes (which is 3 to 9 mm for my fMRI data) is commonly used (Figure 2.5). 

 

 

Figure 2.5 Spatial smoothing. 

 

However, an obvious disadvantage of spatial smoothing is that it sacrifices the spatial 

resolution of fMRI data and it carries the risk of washing away the true signal when we 

do not know the size of the true signal. For example, if each voxel is tuned to slightly 
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different stimuli (e.g. voxel A responds more when a participant is facing North and its 

neighbouring voxels B, C, D respond more when a participant is facing South, East, 

and West respectively), averaging these voxels’ responses would eliminate the chance 

of detecting a direction-specific response. Thus, it is a common not to spatially smooth 

the data in the context of multivoxel pattern analysis, which seeks neural information 

that distinguishes numerous experimental conditions. However, one study has 

suggested that smoothing does not harm multivoxel pattern analysis (Op de Beeck 

2010). 

 

In my experiment, I did not smooth the data when I used multivoxel pattern analysis 

(Experiment 1 and Experiment 3) and smoothed the data when I conducted univariate 

analyses (Experiment 2 and Experiment 4). 

 

2.6.6 Temporal filtering 

The fMRI signal can contain noise such as a slow fluctuation of the magnetic field in 

the scanner and also physiological noise. To remove any slow fluctuations, SPM 

includes a set of discrete cosine transform basis functions when it analyses fMRI data 

using the GLM which is described in the next section. I used a cut-off frequency of 128 

sec for all of my experiments, which is the default in SPM. 

 

2.7 The GLM and mass-univariate analysis 

After preprocessing, fMRI data are typically analysed in a GLM framework. This is due 

to hemodynamic delay that renders temporal correspondence difficult. In other words, 

the fMRI signal at time t does not reflect the instantaneous neural response at time t, 

rather it reflects the blood oxygenation state which is influenced by temporally 

extended neural responses from up to 15 seconds prior to time t. Considering this slow 
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neural-hemodynamic coupling, researchers use a GLM to estimate neural responses to 

multiple experimental conditions. 

 

Each GLM contains multiple regressors that predict fMRI signal for given experimental 

conditions. This regressor (Figure 2.6C) is a boxcar function that models the period of 

interest (e.g. when a participant is facing 30° – black line – and when a participant is 

facing 60° – red line, Figure 2.6A) convolved by a hemodynamic response function 

(Figure 2.6B). Throughout my experiments, I used the SPM canonical hemodynamic 

response function which is a mixture of gamma functions which model the BOLD signal 

as reaching a peak about 6 seconds after the neural impulse (Figure 2.6B). A GLM 

assumes that the fMRI signal is a weighted linear mixture of neural signal.  

 

 

Figure 2.6 The hemodynamic response function. The fMRI signal (C) is modelled as a convolution of 

neural responses (A) and hemodynamic response function (B). 

 

This can be formulated with the following equation: 

y = X β +  ε 

y is the fMRI data at each voxel (a column vector where each element is the fMRI 

signal at each time point). X is called a design matrix which contains multiple columns 

(regressors) modelling each experimental condition such as “facing 30°” and “facing 

60°” (black and red lines in Figure 2.6C). A design matrix X often contains regressors 

of no interest (“nuisance regressors”) such as the head realignment parameters or 
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session-specific constant terms. These nuisance regressors are included to rule out the 

influence of non-interesting variables on neural data. β is the weight of each regressor 

and it can be interpreted as the amplitude of fMRI signal for each experimental 

condition (e.g. how much fMRI signal varies when a participant is facing 30° and 60° 

respectively). The beta parameters need to be estimated from the data. ε   is the 

residual error. 

 

2.7.1 Parameter estimates 

Under the assumption that the residual error variance is independent and 

homogeneous: 

ε~N(0, 𝜎2)  

the best parameter estimate for the above equation is: 

β̂ = (𝑋′𝑋)−1𝑋′y 

The above solution is known as Ordinary Least Squares. However, in real data residual 

error is unlikely to be independent and homogeneous. For instance, the fMRI signal at 

time t is likely to be similar to the signal at time t-1 and t+1, due to temporal 

autocorrelations. This violation of IID (independent and identically distributed) 

assumption complicates the parameter estimates and later hypothesis testing (e.g. the 

degrees of freedom). To overcome this problem, SPM first estimates the noise 

variance structure in the data using Restricted Maximum Likelihood (ReML) (Friston et 

al. 2002). This process recursively searches a parameter using sample covariance and 

a prior model covariance structure. I used a first-order autoregressive model, AR(1), in 

my experiments, which is the default in SPM.  

 

In this process, SPM pools the sample covariance over voxels, assuming the noise 

covariance is constant across voxels. This pooling process was motivated by the fact 

that estimation of the hyperparameters for a covariance structure in a single voxel is 
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very noisy and pooling across multiple voxels allows more precise estimation of a 

covariance structure. Of course, a covariance structure is not perfectly identical across 

all voxels, so the estimated covariance structure might differ slightly depending on the 

voxels included in the analysis (e.g. whether only a small region of entorhinal cortex or 

the whole brain is included). In my experiments, the whole brain was included in the 

analysis. Once the covariance structure is estimated, a whitening matrix which 

compensates for the covariance structure is generated and applied to the design 

matrix. Then the parameters can be estimated using a Least Squares solution. This 

estimate is now called Weighted Least Squares.  

 

The parameters are estimated for each voxel in the brain, generating a Statistical 

Parametric Map (SPM). This parameter map can be later used in hypothesis testing 

using linear contrasts.  

 

2.7.2 T-statistics  

It is known that under the null hypothesis H0: cβ̂ = 0, where c is a row vector of 

constants, the following statistic 

t =
𝑐�̂�

√𝜎2𝑐(𝑋′𝑋)−1𝑐′
 

has a t-distribution with degrees of freedoms equal to the number of samples minus the 

number of parameters. For example, when a GLM contains two regressors or 

experimental conditions (e.g. “visited a different room” and “visited the same room 

again”), regression coefficients are estimated for each condition, beta1 and beta2. By 

using a contrast, c = [1, -1], we can test whether the neural parameter (or response 

strength) is significantly greater when a participant visited a different room compared to 

when the participant visited the same room again, using a simple t-test. If a contrast of 

c = [1, 0] is used, it tests whether the regression coefficient for “visited a different room” 
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is zero or not. This is effectively a parameter estimate normalised by the residual error 

(the denominator in the above equation) and I used this as a proxy for neural 

representations in the later multivoxel pattern similarity analysis.  

 

So far, a GLM was applied to individual participants and parameter estimates were 

computed for each participant’s fMRI time series in each voxel. To make an inference 

at a population level (e.g. that brain region X shows a greater response when people 

visit a different room than when they visit the same room again), I used a random 

effects analysis in SPM (called a second-level analysis). This analysis treats each 

participant as a random sample drawn from a wider population where between-subject 

variance is typically large. It simply tests whether an effect (e.g. the difference between 

visiting the same or a different room, or a neural response when facing 60°) is 

significantly above zero at the group level using a t-test: 

t =
𝜇

𝑆𝐸
 

where μ is the mean of (linearly weighted) betas across all participants and SE is the 

standard error of the (linearly weighted) betas across all participants. The degrees of 

freedom is the number of participants minus 1. 

 

2.7.3 Statistical thresholding 

When we report whether some voxels show a significant effect of the experimental 

manipulation, alpha level of 0.05 is commonly used which controls the false positive 

rate to be less than 5%. However, the GLM approach described above is applied to 

multiple voxels in the brain (which is why it is called a “mass-univariate” analysis) which 

means that about 3,000 voxels can be identified as false positive if the same t-test 

were used 60,000 times (the number of 3 mm voxels in the brain). This problem is 

known as the multiple comparison problem. To calculate the p-value adjusted for 
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multiple comparisons, SPM uses Random Field Theory to estimate the spatial 

smoothness of the data and measure the number of independent tests within the brain. 

Because neural responses are often spatially smooth (e.g. if one voxel is activated by 

face stimuli, its neighbouring voxels are also likely to be activated by face stimuli), the 

number of independent voxels (called Resel in SPM) is smaller than the number of total 

voxels. The resultant p-value is known as Family-Wise Error rate (FWE) which is the 

probability of having at least one false positive among all voxels tested. Throughout my 

experiments, I report the p-value corrected for the number of voxels within regions of 

interest (ROIs) or across the whole-brain.   

 

2.8 Repetition suppression analysis 

The main methodological limitation of fMRI (and all other non-invasive neuroimaging 

methods used in humans) is that it measures the gross activity of millions of neurons. 

When we want to investigate fine neural representations at the cellular level (e.g. head 

direction cells that fire when a participant is facing North and neighbouring cells that fire 

when a participant is facing South), the fMRI signal from a single voxel is unlikely to 

reveal subtle differences between experimental conditions because the sum of mixed 

responses would be almost identical (Figure 2.7A), unless most cells within a voxel are 

tuned to particular stimulus, like the primary visual cortex favouring visual stimuli 

compared to auditory stimuli. However, the spatial limitation of fMRI can be partially 

relieved by using repetition suppression analysis (or multivariate analysis which I will 

describe in the next section).  

 

Repetition suppression analysis takes advantage of the phenomenon that neural 

activity is reduced when the same neural population is repeatedly activated (for a 

recent review, see (Barron et al. 2016)). This phenomenon, also called adaptation, has 

been observed in single unit recordings in multiple brain regions including 
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inferotemporal cortex (Gross et al. 1969), primary visual cortex (Maddess et al. 1988), 

perirhinal cortex and entorhinal cortex (Xiang and Brown 1998) in animals. Repetition 

suppression can reveal the tuning of neurons (stimulus selectivity), and not just the 

effects of novelty. For instance, neurons in inferotemporal cortex showed repetition 

suppression for an object of varying size and location, suggesting that these neurons 

encode the identity of the object rather than the pictorial representation of the object on 

the retina (Lueschow et al. 1994). Importantly, this repetition suppression effect 

predicts that the fMRI signal would be lower when a stimulus is preceded by the same 

stimulus (Y→Y) compared to when a stimulus is preceded by a non-identical stimulus 

(X→Y) even though fMRI responses to the single presentation of stimulus X and 

stimulus Y are not distinguishable due to the mingled neural responses within a voxel 

(Figure 2.7A). Thus, we can test whether neural activity contains information about 

these stimulus types by comparing the response to repeated stimuli and non-repeated 

stimuli (Figure 2.7B).  

 

Of note, as shown in the previous study which used object stimuli with varying size and 

locations on the retina (Lueschow et al. 1994), repetition suppression analysis can be 

used to compare the neural representation between non-identical stimuli that share 

some features. For example, researchers can manipulate multiple features of stimuli 

(e.g. object and floor; object A on the 1st floor, object A on the 2nd floor, object B on the 

1st floor) and test which feature evokes repetition suppression (e.g. object or floor) to 

reveal what is encoded in a brain region. Repetition suppression analysis has been 

widely used in fMRI experiments; to name just a few, invariant object representation in 

the lateral occipital complex (Grill-Spector et al. 1999), mnemonic interference in the 

hippocampal formation (Reagh and Yassa 2014) and construction of novel memories 

during decision making in prefrontal cortex (Barron et al. 2013). 
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Repetition suppression analysis can be applied to various brain regions and multi-

modal techniques (single unit recordings, fMRI, magnetoencephalography (MEG)), but 

there is a limitation on the experimental designs where this analysis can be used. This 

analysis is most suitable for a simple experimental design where experimenters can 

present stimuli in a discrete and specific sequence. For example, when experimenters 

want to compare the similarity of neural representations of stimuli A, B, and C, the 

stimuli should be ideally presented in all possible permutations (e.g. A→B, A→C, 

B→C). This is not possible for spatial navigation tasks in a naturalistic context where a 

participant’s location and direction changes continuously (unless a virtual wormhole is 

used). Therefore, I only used a repetition suppression analysis in Experiment 2, where 

the neural representation of each discrete location was discontinuously evoked in a 

specially designed sequence.  

 

 

Figure 2.7 The principle of repetition suppression analysis. (A) A typical fMRI study measures the sum 

of activity of numerous neurons within each voxel. For simplicity, let us assume that there are seven 
neurons (circles) in one voxel (box) of which two voxels respond to stimulus X (green circles) and stimulus 
Y (red circles) respectively. In this case, the sum of the neural responses within a voxel as measured by 
fMRI is identical for stimulus X (the bottom left bar graph) and stimulus Y (the bottom right bar graph) 
because two neurons are activated for both stimuli. Therefore, if we simply compare the neural responses 
to these two conditions, we cannot tell whether this voxel contains information about stimulus type. (B) 
When a population of neurons is reactivated in a short time interval, the neural activity weakens (shown as 
bright grey in the right graph) due to neural adaptation. Consequently, the fMRI signal is expected to be 
lower when a stimulus is preceded by the same stimulus (Y→Y) compared to when a stimulus is preceded 
by a non-identical stimulus (X→Y). Therefore, we can test whether neural activity contains information 
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about stimulus type by comparing the response to repeated stimuli and non-repeated stimuli, instead of 
directly comparing the response to one stimulus type or the other. 

 

2.9 Multivariate pattern analysis 

Traditionally, fMRI studies have searched for neural activity that depends on 

experimental manipulations at a single voxel. This is analogous to single cell 

electrophysiology, which focuses on the selectivity of a neuron to a few experimental 

conditions, e.g. a place cell that responds when an animal is at a particular location, a 

neuron that responds most to the picture of Jennifer Anniston (Quiroga et al. 2005). 

However, with technological advances in multi-electrode recordings, the idea that the 

brain encodes information in terms of population activity rather than single cell activity 

has received growing empirical and theoretical support (Averbeck et al. 2006). For 

instance, individual place cells in ventral hippocampus have larger place fields than the 

cells in dorsal hippocampus, and consequently were thought to contain less spatial 

information than the dorsal hippocampus. However, it was found that the location of an 

animal reconstructed from the population activity of ventral hippocampus was as 

precise as those reconstructed from the dorsal hippocampus (Keinath et al. 2014).  

 

In parallel to a growing interest in population coding, multivoxel (or multivariate) pattern 

analysis became popular in fMRI research. Multivoxel pattern analysis assumes that 

neural information (or representations) is present in the spatially distributed activity 

patterns across multiple voxels. Biases in neural populations in each voxel are a 

prerequisite for a multivariate analysis, e.g. voxels 1, 2, 5 in primary visual cortex 

contain slightly more neurons tuned to a 30° visual grating and voxels 3, 4 contain 

slightly more neurons tuned to a -30° grating.  

 

One application of multivariate analysis is decoding or classification of experimental 

conditions, sometimes known in the popular media as “mind reading” (Norman et al. 
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2006). This classification approach uses machine learning techniques (e.g. support 

vector machines, neural networks, nearest-neighbour classifiers) to  test whether each 

experimental condition (e.g. object X and object Y) evokes a distinct multivoxel pattern 

(Haxby et al. 2001). Another approach is representational similarity analysis, or RSA 

(Kriegeskorte et al. 2008). RSA focuses on how the neural representational similarity 

between experimental conditions is related to the similarity measures predicted from 

multiple theoretical models. These two approaches are not mutually exclusive. One can 

test multiple theoretical models by using different classifiers, and one can classify the 

experimental conditions using a binary model representational similarity matrix. 

However, these approaches have different philosophies; the classification approach 

can be viewed as a first-order isomorphism that seeks a one-to-one correspondence 

between the neural representation and experimental conditions, whereas RSA uses a 

second-order isomorphism. RSA is particularly suitable for testing common hypotheses 

in the data acquired from different modalities (e.g. electrophysiology, fMRI, MEG) 

which have a different number of sensors and resolution so a simple one-to-one 

correspondence cannot be achieved. An implementation of RSA is simpler than the 

classification approach which involves advanced machine learning techniques. 

Furthermore, it has been suggested that RSA, which uses a continuous similarity 

metric between neural representations, can more reliably reveal neural information 

than the classification approach which uses discretised classification accuracy  

(Walther et al. 2016). For these reasons, I used a pattern similarity analysis to test 

multiple spatial encoding hypotheses in Experiment 1 and Experiment 3. I explain the 

basic analysis flow of RSA below. 

 

The first step is to estimate the neural representation for each experimental condition of 

interest (e.g. location A, location B, facing 30° vertically, facing 30° horizontally). I 

defined the neural representation as multivoxel patterns associated with each 

experimental condition. I used a first-level GLM to account for the hemodynamic delay 
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when estimating neural responses to each experimental condition from the fMRI data. I 

estimated the responses for each scanning session separately, e.g. a neural pattern for 

location A in session 1, a neural pattern for location A in session 2. Either the raw 

regression coefficients (beta) or variance normalised T values can be used as a proxy 

for neural representations, but a methodological review paper has suggested that T 

values outperform beta values in multivoxel pattern classification (Misaki et al. 2010). 

This could be due to normalisation of noisy voxels that have high beta values. 

Consequently, I used T values in my experiments. Some studies subtract mean 

patterns of multiple experimental conditions to eliminate the common activation effect, 

but the mean subtraction can induce arbitrary correlations and obscure the 

interpretation of results (Garrido et al. 2013), so I used raw T values without any mean 

subtraction. 

 

Once multivoxel patterns for each experimental condition are estimated, similarity 

values between every pair of experimental conditions are computed. The two most 

commonly used similarity measures are Pearson correlation and Euclidean distance. I 

used Pearson correlation because I assumed that the relative signal intensity between 

voxels contains more important information than the absolute signal intensity difference 

captured by Euclidean distance. Absolute signal intensity is also more vulnerable to 

baseline signal fluctuations between scanning sessions. I always calculated the 

Pearson correlation between experimental conditions in different scanning sessions 

(e.g. location A in session 1 – location B in session 2) to minimize the potential 

temporal confounds when comparing the neural responses to different experimental 

conditions within one scanning session.  

 

I averaged the correlation values between all pairs of scanning sessions; e.g. similarity 

between location A and location B was the average of similarity between [location A in 

session 1, location B in session 2], [location A in session 1 – location B in session 3], 



84 

 

[location A in session 2 – location B in session 1], [location A in session 2 – location B 

in session 3], [location A in session 3 – location B in session 1], [location A in session 3 

– location B in session 2]. I also computed the similarity within the same condition 

across scanning sessions; e.g. location A in session 1 – location B in session 2. This 

within-condition similarity measures how reliable the neural representation is across 

multiple scanning sessions, and this within-similarity should be higher than similarities 

between different experimental conditions if the multivoxel response patterns contain 

information about the experimental conditions.  

 

Next, neural representational similarity values are compared to similarity values 

predicted from multiple encoding hypotheses. There are numerous ways of comparing 

empirical data to theoretical predictions. One is to compare the raw pattern similarity 

values between different experimental conditions using t-tests, based on hypotheses 

(e.g. the horizontal-weighted anisotropic 3D encoding hypothesis in Experiment 1 

predicts the pattern similarity would be as follows: within-same location > between 

vertically adjacent locations > between horizontally adjacent locations). I used this 

simple comparison approach in Experiment 1.  

 

Another approach is to compare the neural similarity values to theoretical similarity 

values using a correlation or regression analysis. This approach is more appropriate 

when continuous variables or multiple levels of similarity values are predicted from 

hypotheses. This was the case in Experiment 3, where neural similarity values were 

modelled as a function of the difference in angle between each heading direction (the 

differences ranged from 0 to 120°). In my experiment, and many previous studies 

(Carlin et al. 2011; Vass and Epstein 2013; Marchette et al. 2014; Chadwick et al. 

2015), regression coefficients or correlations that are significantly greater than zero at 

the group level were taken as evidence showing that multivoxel responses in a brain 

region contain information that matches a theoretical model. However, one should be 
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aware that this is only a low bar for a complete explanation of neural representations in 

a brain region (Nili et al. 2014). Multiple models can explain some part of the variance 

in the data, and neural data always have many unexplained sources of variance, 

especially in non-sensorimotor areas like the hippocampus. Thus, when I claim “this 

brain region X’s activity was significantly or best explained by hypothesis Y” in this 

thesis, I do not rule out the possibility that alternative models that have not been 

specifically tested in my experiment could better explain the data. This issue, that only 

a limited hypotheses space can be tested in one experiment, applies to any empirical 

research field. 

 

2.10 Statistical tests 

Statistical tests for fMRI GLM were conducted as described in Section 2.7.3. All other 

statistical tests were computed in MATLAB (R2014a, MathWorks, MA) or IBM SPSS 22 

(IBM, NY) using threshold of 0.05. Data are presented with the mean ± 1 standard 

deviation (SD), unless otherwise specified. Error bars are standard error of the mean 

(SEM), unless otherwise specified. 

 

In the next four chapters, I describe my experiments where participants explored 

various virtual 3D environments and their brain responses were analysed using the 

methods described here.  
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Chapter 3 Experiment 1: A semi-volumetric space 

3.1 Introduction 

In Chapter 1, I summarised how 2D place and direction information in animals is 

encoded in spatially-sensitive cells such as place cells and head direction cells 

(O’Keefe and Dostrovsky 1971; Taube et al. 1990), and the evidence for this spatial 

information in humans in brain regions including hippocampus (Hassabis et al. 2009; 

Sulpizio et al. 2014), retrosplenial cortex (Baumann and Mattingley 2010; Vass and 

Epstein 2013; Marchette et al. 2014; Sulpizio et al. 2014; Shine et al. 2016) and 

entorhinal cortex (Chadwick et al. 2015). In contrast, I also noted in Chapter 1 that 3D 

space encoding in the brain has been considered in only a few animal studies, with 

discrepancies between their findings. For example, Hayman et al. (2011) found that 

place cells in the hippocampus expressed less information about the vertical axis 

compared to the horizontal axis when rats moved on a vertical wall and helix staircase. 

This neural finding, and asymmetry in vertical and horizontal navigation behaviours 

(Grobéty and Schenk 1992a; Jovalekic et al. 2011), led some to propose that 3D space 

representation might be fundamentally anisotropic, such that 3D space is divided into 

the main plane of locomotion (e.g. horizontal) and the axis orthogonal to the plane (e.g. 

vertical) (Jeffery et al. 2013). In contrast, most place cells recorded in the hippocampus 

of flying bats were equally sensitive to all three axes (Yartsev and Ulanovsky 2013), 

and head direction cells recorded in the presubiculum of crawling or flying bats were 

tuned to either horizontal (azimuth), vertical (pitch), or a combination of azimuth and 

pitch, thus providing a 3D compass required for a complete, isotropic 3D map 

(Finkelstein et al. 2015, 2016).  

 

But what about humans - is 3D space anisotropically represented as it appears to be in 

rats, or isotropically represented as in bats? Are different brain regions involved in 



87 

 

vertical and horizontal spatial processing as suggested by two previous neuroimaging 

studies that I described in Chapter 1 (Indovina et al. 2016; Zwergal et al. 2016)? To 

answer these questions, in this first experiment I investigated whether and how 3D 

location and direction information is represented in the human brain using an fMRI 

virtual navigation paradigm and multivoxel pattern analysis. The aim was to adjudicate 

between the following hypotheses: (1) vertical and horizontal information is similarly 

represented in a brain structure (isotropic encoding); (2) either vertical or horizontal 

information is represented with greater sensitivity in one or more brain regions 

(anisotropic encoding); or (3) vertical and horizontal information is represented in 

separate brain areas (2D planar encoding).  

 

When testing these hypotheses, the choice of 3D environment and experimental 

paradigm is pertinent because the mode of movement can determine the 

dimensionality and the shape of neural representations (Finkelstein et al. 2016). Based 

on the degrees of freedom of movements, there is a spectrum of 3D environments 

ranging from a multi-level building, where one mainly moves horizontally and only 

occasionally moves vertically, to a microgravity environment where one can freely 

move along all 3 axes. I elected to start with an intermediate type of environment, a 

semi-volumetric lattice virtual reality environment, where participants could move along 

flat, tilted-up or tilted-down pathways. I chose this approach because, first, both vertical 

and horizontal information is equally well accessible in this lattice environment, allowing 

for a fair comparison between them. The helical staircase (Hayman et al. 2011) or 

multi-level building (Zwergal et al. 2016) used in the previous experiments in rats and 

humans respectively, did not have matched sensory inputs between the vertical and 

horizontal conditions. This was because the different vertical locations were visually 

similar due to the repeated nature of the structures (note that a repeated structure is in 

itself an interesting topic for consideration in relation to 3D spatial representation, and I 

will address this further in Experiment 2). Second, under normal gravity conditions, a 
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human’s movement is bound to a surface rather than a complete volumetric space. 

Therefore, the semi-volumetric 3D lattice environment was a more ecological and 

reasonable starting point to study 3D spatial representation in the human brain (note 

that a volumetric environment will be tested in Experiment 3).  

 

As a priori ROIs in this first experiment, I focussed on the hippocampus, retrosplenial 

cortex and entorhinal cortex because place cells and head direction cells have been 

found in these regions in animals in 2D space, and numerous fMRI studies have also 

reported place and direction information in these structures in 2D virtual environments.  

 

3.2 Methods 

3.2.1 Participants 

Thirty six healthy right-handed adults took part in the experiment (18 females, mean 

age 24.2 years, standard deviation (SD) 4.25 years, range 19-34 years). All had normal 

or corrected-to-normal vision and gave informed written consent in accordance with the 

local research ethics committee.  

 

3.2.2 The virtual reality environment 

The virtual environment was a lattice structure which conveyed the sense of an open 

3D space, like a junglegym in a playground (Figure 3.1A). It comprised four levels and 

each level contained 4 x 4 nodes which were linked to neighbouring nodes by narrow 

pavements (horizontal or sloped) or wooden pillars. From where a subject stood on a 

node, they could move along the pavements to one of six neighbouring nodes: four on 

the same horizontal plane and two on different floors. From an egocentric perspective, 

they could move straight forwards or straight backwards (in the latter case they would 
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turn 180° to approach the node behind them), diagonally on the same floor forwards or 

backwards, or they could move up or down via a slope (Figure 3.1C). The lattice was 

enclosed by tall concrete walls without a ceiling. All walls looked identical except that 

one contained a green door which acted as a unique landmark. During the experiment, 

the participants could only occasionally see the green door, and so they could not use 

a simple landmark matching strategy to know where they were; instead they had to 

carefully keep track of their location throughout the experiment. 

 

The horizontal (x-axis, see Figure 3.1A for the axes convention) and vertical (z-axis) 

distance between two adjacent nodes was made identical in order to test the isotropy 

of vertical and horizontal space representation in the human brain. The distance along 

the y-axis was set to be 1.9 times larger than the other two distances to make the slope 

of the pavement 29°. This angle was chosen in order to preserve ecological validity, 

because this has been reported to be the steepest slope a human can walk up at a 

normal pace (Kinsella-Shaw et al. 1992). The virtual environment was implemented 

using Unity 4.6 (Unity Technologies, CA, United States). A first-person perspective was 

used and the field-of-view was ±30° for the vertical axis and ±45.7° for horizontal axes. 

A snapshot of the 3D lattice as seen from a participant’s perspective is shown in Figure 

3.1D. During pre-scan training, the stimuli were rendered on a standard PC (Dell 

Optiplex 980, with an integrated graphic chipset) and presented on a 20.1 inch LCD 

monitor (Dell 2007FP) with a screen resolution of 1600 x 900. The same PC and 

resolution were used during scanning. The stimuli were projected on a screen using an 

Epson EH-TW5900 projector at the back of the MRI scanner bore, and participants saw 

the screen through a mirror attached to the head coil. The screen covered a field of 

view of ~21° horizontally and ~12° vertically.  
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Figure 3.1 Experimental design. (A) An overview of the virtual environment. A 4 x 4 x 4 lattice structure 

was enclosed by tall concrete walls. One of the walls contained a green door as a unique landmark. The 
horizontal (x-axis) and vertical (z-axis) distance between two adjacent nodes was made identical to test 
the isotropy of 3D space encoding. The distance along one horizontal axis (y-axis) was 1.9 times longer 
than other distances because the vertical slope was designed to be walkable at 29°. (B) An overhead view 
of the lattice. (C) A close-up view of 6 pavements around a centre node. From where a subject stood on a 
node, they could move along the pavements to one of six neighbouring nodes: four on the same horizontal 
plane and two on different floors. (D) An example view of the lattice structure from a subject’s perspective 
during the free exploration phase prior to scanning. (E) Example of a trial during scanning. Participants 
continuously moved from one node to another as if they were riding a rollercoaster. Each trial began with a 
turn at the node, followed by a linear movement on the pavement (journey), then a countdown screen. In 
some trials, a place or direction question was presented before the next trial began. An example direction 
question is shown here. See Figure 3.2A for place questions. 
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3.2.3 Procedure 

Each participant completed the experimental tasks in the following order: free 

exploration prior to scanning, one practice of the experimental task before scanning, 

the experimental task during scanning and a post-scan debriefing session.  

 

Free exploration prior to scanning 

Having watched a short demonstration of the experimental task, participants freely 

explored the virtual environment using a keyboard in a testing room. During this self-

paced exploratory period (mean duration 734 sec, SD 300 sec), participants volitionally 

moved along the pavements and visited all four floors of the lattice structure. The 

position and heading direction of participants were recorded every 0.1 sec. Because 

the pavements linking each node were designed to be narrow, most participants “fell” 

down from the lattice at least once during the exploration. I welcomed this experience 

because it allowed participants to appreciate the height, maximizing the sense of 3D 

space. However, to prevent height-related anxiety from influencing the task, 

participants were told that they would move along a pre-programmed route during the 

scanning experiment without falling off. I later confirmed in the debriefing session that 

94% of the participants were not at all anxious during the scanning experiment. 

Participants did not practice in advance the exact routes that would be experienced in 

the scanner because different pseudo-randomised routes that were optimised for 

sampling each direction and place were used during scanning. 

 

Scanning task 

In the scanner, participants moved along a pre-programmed route in the 3D lattice 

structure as if they were riding a rollercoaster (this was practised before entering the 

scanner). This constrained-movement approach had advantages over unconstrained 

free exploration or the use of static picture stimuli. Compared to the latter, the 
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rollercoaster experience provided participants with a strong sense of being in a 3D 

space (see the debriefing results), thereby allowing a more ecological investigation of 

space representation in the human brain. This approach also permitted precise control 

of the movement trajectory for every subject, which cannot be achieved if participants 

are moving freely.  

 

Although there were 4 levels in the virtual environment, only the inner 8 nodes on the 

middle two floors were used for the analysis because the ground level and the top floor 

were quite distinctive in physical appearance. To increase the number of visits to these 

inner nodes, the rollercoaster moved between these inner nodes on 76% of the trials.  I 

used movement sequences in which each of the inner eight nodes and directions of 

interest were sampled with similar frequency (see section 3.2.7), allowing an unbiased 

and reliable estimation of 3D place and direction representations. The routes were 

presented in a randomised fashion across subjects. To ensure subjects paid attention 

during the task, they were occasionally asked about their current position and direction 

(see below, and Figure 3.1E for the timeline of an example trial).  

 

A pre-programmed route during one scanning session was composed of 50 

consecutive movements (trials) from one node to an adjacent node in the lattice. On 

each trial the rollercoaster prepared to move at the initial node by turning towards the 

next node (‘turn’). A constant angular velocity was applied during this 3 sec turn and 

the instantaneous direction was a linear interpolation between the initial 3D direction 

vector and the next directional vector. After the turn, the rollercoaster underwent a 

linear movement along the pavement (‘journey’) at a constant speed to the next node, 

which took 5 sec. Participants’ viewing angle, equivalent to their head direction, was 

parallel to the pavement. This meant that when they were moving up by 29°, head pitch 

was also 29°. Having arrived at the destination node, the virtual environment was 

temporarily hidden by a white countdown screen for 5 sec (‘countdown’). In the majority 
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of trials (76%), the next trial started straight after the countdown. In 24% of the trials, a 

question was presented before the next trial and the subject indicated their current 

position or direction on a map using a keypad with the right hand (Figure 3.1E). These 

occasional questions were included to maintain participants’ attention and to compare 

the behavioural sensitivity of encoding the vertical and horizontal dimensions (see 

Section 3.2.4 below). The question period also helped participants to maintain the 

correct sense of direction throughout the experiment because when participants 

answered incorrectly, the correct place or direction was shown on the screen. In total, 

one session of 50 consecutive trials lasted ~13 minutes. Participants completed four 

scanning sessions with a short break between each session, making a total functional 

scanning time of ~50 minutes.   

 

Post-scan debriefing session 

After scanning, participants were asked about how much they felt immersed in the 

virtual environment with the following options: “I felt like I was really there”, “I 

occasionally thought about the environment as being on a computer screen, but overall 

the environment was convincing and I felt I was moving straight, up or down”, "I was 

often distracted by the feeling that I was not in a real environment". They also reported 

whether the height made them anxious or nervous during the scanning task with 3 

options: "Not at all", "Somewhat", "Very". 

 

Importantly, participants were also asked (without prior notice) to estimate the length 

and angle of the virtual environment in terms of meters and degrees based on their 

experience of navigating within it. Although the vertical and horizontal distance 

between two nodes were made equivalent, participants’ subjective perception of 

distance or direction could be different from the true physical distances due to the 

horizontal-vertical visual illusion (Avery and Day 1969), and this might influence the 

neural encoding of the vertical and horizontal dimensions. For instance, the neural 
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representation of the straight heading direction and the vertically 29° tilted direction 

could be more dissimilar than the straight direction and horizontally 29° tilted direction if 

participants overestimate the vertical slope compared to the horizontal angle. In 

addition to the quantitative estimate of vertical/horizontal size, I also asked about 

participants’ qualitative impression of the size of the whole environment (options: 

small/medium/large) because spatial scale-dependent representation has been 

associated with the hippocampus (Evensmoen et al. 2015). 

 

3.2.4 Behavioural analysis 

Performance during the scanning task  

Both place and direction questions were three-alternative forced choice, meaning that 

chance accuracy was 33%. In the place question, the positions of the two distractors 

varied systematically enabling me to compare the behavioural sensitivity of horizontal 

and vertical encoding (Figure 3.2). In the ‘with-V’ condition, one distractor was above or 

below the correct position (vertical distractor) and the other distractor was on the same 

floor, adjacent to the correct position. In the ‘without-V’ condition, all three choices were 

on the same horizontal plane such that one distractor was adjacent to the correct 

position along the short horizontal axis and the other along the long horizontal axis. If 

the vertical and horizontal axes were equally well encoded, performance for both 

conditions should be similar. On the other hand, if the vertical axis was poorly encoded 

relative to the other two horizontal axes such that the participants were more confused 

by a distractor above or below the true position, performance for the with-V conditions 

would be worse than for the without-V condition, which did not involve a vertical 

distractor. I compared the response time and accuracy of these conditions using paired 

t-tests.  
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Figure 3.2 Behavioral analysis of vertical and horizontal place encoding. (A) Participants occasionally 

indicated their location from 3-alternative forced choice questions as shown here. (B) The positions of the 
distractors in the place questions were varied systematically. For simplicity of explanation, a correct node 
here is shown in pink and the two distractors are shown in black in orthogonal projections of the 3D lattice. 
In the with-V condition, one distractor was above or below the correct node and the other distractors were 
adjacent to the correct position on the same horizontal plane. In the without-V condition, both distractors 
were on the same floor as the correct location. 

 

The direction questions were included to motivate the participants to concentrate on 

both place and direction, and there was no variation in the distractors. Rather, I 

compared the response time and accuracy when the correct direction had a non-zero 

vertical pitch component (direction J/M in Figure 3.4B) and when the pitch of the 

correct direction was zero (direction I/K/L/N in Figure 3.4B) to test whether vertical pitch 

was more distinguishable. 

 

Post-scan debriefing session 

I counted the number of responses for each option in the multiple choice debriefing 

(i.e., participants’ engagement in the virtual environment, emotional state and 

qualitatively perceived size of the environment). A quantitative size estimate of the 

vertical and horizontal dimensions was analysed using a t-test. A ratio of the perceived 

vertical and horizontal distance and angle was tested against a true ratio of 1 using a 

one sample t-test.   
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3.2.5 Scanning and image processing 

Functional MRI scans (voxel size = 3 x 3 x 3 mm, 48 slices, TR = 3.44 sec) and a 

structural MRI scan (1 x 1 x 1 mm) were acquired using a 3T Siemens Trio scanner 

and preprocessed using SPM12. The scanning parameters and preprocessing are 

described in detail in Section 2.5.4. To summarise, after removing the first 5 volumes to 

allow for T1 equilibration effects, functional images were realigned to the first volume of 

each scanning session and geometric distortion was corrected by the SPM unwarp 

function using the fieldmaps. Each participant’s anatomical image was then 

coregistered to the distortion corrected mean functional images. Functional images 

were normalized to MNI space, and were left unsmoothed for multivoxel pattern 

analysis to preserve the fine scale activity patterns.   

 

3.2.6 Anatomical ROIs 

I defined three anatomical ROIs for areas known to contain spatial information: 

hippocampus, retrosplenial cortex and entorhinal cortex. Each ROI was manually 

delineated on the group average structural MRI scan (1 x 1 x 1 mm) using ITK-SNAP 

(www.itksnap.org). The ROIs were then resampled to the resolution of the functional 

scans (3 x 3 x 3 mm).  

 

The hippocampus was divided into anterior and posterior ROIs given the literature 

showing anatomical and functional variation along its long axis (Poppenk et al. 2013; 

Strange et al. 2014). A coronal coordinate (y = -19 mm) which approximates the 

position of the apex of the uncus on the group average structural MRI scan was used 

to divide anterior and posterior hippocampus. Of note, the hippocampus ROI in this 

study included CA1/2/3, dentate gyrus and the subiculum proper, but it did not 

extended medially to the pre/parasubiculum (see Section 1.8 for the neuroanatomy). 

 

http://www.itksnap.org/
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Although some navigation fMRI studies have defined a “retrosplenial complex” which 

includes Brodmann areas 29-30, occipitotemporal sulcus and posterior cingulate cortex 

using a functional localizer (Vass and Epstein 2013; Marchette et al. 2014), I used a 

more precise anatomical definition of retrosplenial cortex, based on cytoarchitecture, 

which includes only Brodmann areas 29-30 (Vann et al. 2009). Functionally defined 

ROIs vary from one study to another depending on the statistical threshold and 

individual differences. Anatomical retrosplenial cortex and functionally defined 

retrosplenial complex overlap, and whether an anatomical or functional definition is 

more appropriate depends on the specific research question. In this study, I was 

interested in searching for 3D spatial information with precise anatomical priors in 

retrosplenial cortex, where spatially modulated cells have been reported in animals, so 

I elected to use this conservative and threshold-free anatomical definition. 

 

The entorhinal ROI was defined following the protocol in Pruessner et al. (2002). I 

defined the caudal end of entorhinal cortex as 2mm posterior to the uncal apex (y = -21 

mm) following this protocol, but note that some studies have used a more posteriorly-

extended definition of entorhinal cortex (Chadwick et al. 2015). While the entorhinal 

cortex mask was derived so as not to extend into the neighbouring pre/parasubiculum, 

there existed a chance that one or two voxels in the neighbouring pre/parasubiculum 

were included in the entorhinal ROI due to spatial resolution and individual differences. 

The entorhinal cortex is challenging for fMRI researchers due to substantial signal loss 

induced by susceptibility artefact in this region. I assessed the temporal signal to noise 

ratio (tSNR) defined as the mean of the fMRI time series divided by the standard 

deviation in every voxel of the ROI (after spatial normalisation). As expected, tSNR was 

much lower in entorhinal cortex (19.8 ± 6.6) compared to the whole hippocampus (61.1 

± 8.9) and retrosplenial cortex (56.2 ± 9.9), implying that entorhinal cortex could be 

disadvantaged in expressing its function. Anatomical localisation of the ROIs can be 

seen in Figure 3.3. The number of functional MRI voxels within each ROI was: left 
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anterior hippocampus 54; right anterior hippocampus 61; left posterior hippocampus 

98; right posterior hippocampus 91; left retrosplenial cortex 158; right retrosplenial 

cortex 135; left entorhinal cortex 47; right entorhinal cortex 49. 

 

 

Figure 3.3 Anatomical ROIs. Anterior hippocampus (blue), posterior hippocampus (green), entorhinal 

cortex (pink) and retrosplenial cortex (red) masks are overlaid on the group averaged structural scan. 

 

3.2.7 Multivoxel pattern analysis 

3D space encoding hypotheses  

To adjudicate between the different 3D space encoding hypotheses (isotropic 3D, 

anisotropic 3D or planar), I compared the amount of vertical and horizontal spatial 

information in each ROI using multivoxel representational similarity analysis (Haxby et 

al. 2001; Kriegeskorte et al. 2008). My assumption was that if both vertical and 

horizontal dimensions were encoded with equal sensitivity (isotropic, Figure 3.4C), the 
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neural representation of two points along the vertical axes should be as distinguishable 

as those of two points along the horizontal axes, given that the distance between these 

two points is equivalent.  

 

Therefore, in Figure 3.4A, fMRI multivoxel pattern similarity between place A and B 

(different vertical, ‘diff-V’) would be comparable to the similarity between place A and C 

(different horizontal, ‘diff-H’), and obviously both should be lower than the within-place 

(A and A) pattern similarity (‘same’). If the vertical axis is poorly encoded compared to 

the horizontal axis (anisotropic, horizontal weighted, Figure 3.4C), the two places along 

the vertical axes would be less distinguishable than the two places along the horizontal 

axes. Therefore, the pattern similarity between place A and B (diff-V) would be larger 

than the similarity between A and C (diff-H). By contrast, if the horizontal axis is 

encoded with low sensitivity (vertical weighted, not shown), the pattern similarity of the 

diff-H condition would be larger than the diff-V condition. In the extreme case when 

only the horizontal (or vertical) dimension is encoded (pure horizontal or pure vertical, 

Figure 3.4C), the neural representation of two places that share the same horizontal (or 

vertical) coordinates would be completely indistinguishable, so the pattern similarity for 

the two positions along the vertical axis, diff-V condition, (or the two positions along the 

horizontal axis, diff-H condition) would be comparable to same place condition. If 

neither horizontal nor vertical information is encoded, neural responses to each 

location will be random and inconsistent, so there would be no systematic differences 

between the same, diff-V, diff-H conditions. An analogous analysis was used to test for 

the existence and quantity of horizontal (azimuth) and vertical (pitch) direction 

information in the ROIs. 
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Figure 3.4 Place and direction encoding hypotheses. (A) The places of interest. The inner 8 nodes on 

the middle two floors were used because the ground level and the top floors were visually distinctive. (B) 
There were six heading directions. (C) Hypotheses: 1) The isotropic 3D encoding hypothesis predicts that 
the vertical and horizontal axes are symmetrically encoded. Thus, two places along the vertical axes (diff-
V, e.g. A and B) are equally distinguishable as the two points along the horizontal axes (diff-H, e.g. A and 
C), resulting in equal representational similarity for diff-V and diff-H conditions that are smaller than the 
same location condition (same, e.g. A and A). In the case of direction encoding, two directions that have 
different vertical pitch components (diff-V, e.g. L and M) would have similar pattern similarity as two 
directions that have different horizontal azimuth components (diff-H, e.g. L and N). 2) The anisotropic, 
horizontal-weighted hypothesis predicts higher pattern similarity for diff-V than diff-H because the neural 
response is less sensitive to the vertical change than to the horizontal change. 3) A pure vertical encoding 
hypothesis predicts that as long as the vertical coordinate is the same, the neural pattern will be equivalent 
even if the horizontal coordinate is different, therefore diff-H is comparable to the same. 4) A pure 
horizontal encoding hypothesis predicts the opposite, that diff-V is comparable to the same. 

 

Analysis protocol  

The first step for the representational similarity analysis was to estimate neural 

representations (multivoxel patterns) for each place and direction in the virtual 3D 
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lattice structure. As mentioned previously, although there were 4 levels in the virtual 

environment, only the inner 8 nodes on the middle two floors were used for the analysis 

because the ground level and the top floor were quite distinctive in physical 

appearance (Figure 3.4A). Therefore, the 4 nodes marked in blue were usually 

approached from 3 directions marked in blue and the other 4 nodes marked in red were 

approached from the 3 directions in red (Figure 3.4A,B). I estimated the unique 

multivoxel pattern activity for each place x direction pair (8 x 3 = 24) for each scanning 

session and each participant using the SPM. My GLM contained 24 place x direction 

regressors which modelled the journey+countdown period of 10 sec for each of the 4 

scanning sessions. I used the whole journey+countdown period because the 

participants reported that they thought about where they were moving from the 

beginning of the journey period and they had to maintain this spatial information until 

the end of countdown.  

 

In addition to the 24 regressors of interest for each session, nuisance regressors were 

included in the GLM; one for modelling the trials when the participants visited outside 

the inner eight nodes, two regressors for modelling the occasional place and direction 

question periods, six regressors for head motion realignment and a constant regressor 

for each scanning session to account for mean signal variation. In summary, the 

resulting t-statistics for each voxel in the ROIs were the estimates of multivoxel 

activations when the subjects were facing those directions and moving towards and 

standing in those locations, with the hemodynamic delay being taken into account.  The 

second step was to calculate the similarity of multivoxel patterns for each place and 

direction combination using Pearson’s correlation coefficient and to compare the 

similarity to the 3D encoding hypotheses described in Figure 3.4C.   

 

Because the 4 nodes shown in blue and the 4 nodes shown in red in Figure 3.4.A were 

approached by 3 different directions as described above, I restricted the analysis to 
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within either blue or red nodes to fully control the direction and place factors, and then 

averaged the two similarity matrices later. As a result, a 12 x 12 pairwise correlation 

matrix was created for each subject. Importantly, I cross-validated the similarity 

measure across scanning sessions to ensure the independence of each dataset and to 

estimate a non-biased similarity measure (e.g. the similarity between place A-direction 

1 and place B-direction 2 was the mean of the correlation between the place A-

direction 1 in session 1 and place B-direction 2 in session 2 and the correlation 

between session 1 and session 3, between session 1 and session 4, etc.) Each 

pairwise similarity measure was then grouped into 3 categories: same (e.g. A and A), 

different vertical (diff-V, e.g. A and B), different horizontal (diff-H, e.g. A and C) (Figure 

3.4C).   

 

For the place encoding analysis, the pairs of place x direction combinations which 

shared the same direction were excluded in order to control for the direction factor. By 

excluding the same direction pair, the neural representation similarity between the 

same place could not be due to mere visual identity. Rather, if the neural 

representation was more similar for the same place compared to another place, it could 

be interpreted as evidence for place encoding that is generalisable across different 

directions and different scanning sessions. For the direction encoding analysis, the 

same place pairs were excluded to test for the existence of direction information that 

was independent of place.  

 

Finally, the mean pattern similarities for each of the three categories (same, diff-V, diff-

H) were compared at the group level with a one-way repeated measures ANOVAs and 

post-hoc t-tests with Bonferroni correction. I report one sided p-values for comparisons 

between same and diff-V or same and diff-H because the pattern similarity for the 

same spatial condition should be higher than those for a different condition if place or 

direction information is present. I then plotted the bar graphs of this mean pattern 
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similarity so that they can be easily compared with the 3D place and direction encoding 

hypotheses that are shown in Figure 3.4C.  

 

3.2.8 Control analysis: visual texture similarity  

I designed the virtual environment with a limited palette of colours and textures and 

only one salient landmark (even this green door landmark was rarely visible during the 

experiment) in order to minimise the influence of visual inputs when investigating place 

or direction information. Nevertheless, visual input differed second-to-second because 

participants solely relied on visual information to track their position and direction. The 

floor in particular was important as it provided an unambiguous and reliable sense of 

3D space. Thus, I applied a slightly brighter colour to the floor, and the proportion of the 

floor included in the field of view varied depending on whether the participants were 

heading straight, or up/down (Figure 3.5). To examine whether the place or direction 

information found in the brain in the main analysis was explained by these visual 

differences, I conducted a control analysis that used partial correlations to compare the 

neural similarity data to the place or direction encoding hypotheses, while controlling 

for this visual component.  

 

To do this, I measured pairwise visual similarity between each place and direction 

using a simple visual texture model (Renninger and Malik 2004), in the same way as 

neural pattern similarity was calculated (e.g., visual similarity between place A-direction 

1 and place A-direction 2, the similarity between place C-direction 1 and place D-

direction 2). Images captured at every half a second during the 5 sec journey period of 

each place x direction combination were averaged and entered into the texture model. 

The model applied Gabor filters of varying orientation and size to extract the common 

textures, and then a distribution of textures across the different pairs of images was 

compared using the chi-square distribution. The chi-square distance metric was 
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converted to a similarity measure by subtracting each chi-square value from the 

maximum chi-square value. Consequently, I obtained "observed neural similarity" and 

"visual similarity" variables for each subject.  

 

Next, I created “predicted neural similarity” variables based on the isotropic place 

encoding or pure vertical direction encoding hypotheses (Figure 3.4C). The isotropic 

place encoding model predicts high neural similarity for the “same” condition and low 

similarity for “diff-V” and “diff-H” condition, therefore 1 was assigned for the pairwise 

similarity in the “same” condition and 0 was assigned for the “diff-V” and “diff-H” 

conditions. As long as the rank order was preserved, any number could be assigned. 

The pure vertical direction encoding model was assigned 1 for “same” and “diff-H”, and 

0 for “diff-V”.  I then calculated the partial Spearman correlation between the “observed 

neural similarity” and “predicted neural similarity”, while controlling the “visual similarity” 

for each subject. If this partial correlation is significantly above zero across subjects, it 

would be evidence of place or direction encoding in the neural data that is not fully 

accounted for by low level visual features. This partial correlation approach is similar to 

that employed by Carlin et al. (2011). I used a one-sided t-test to test significance. 

 

Figure 3.5 Example views from multiple locations and directions. Although the virtual environment 

was designed to contain a limited palette of colours and textures to prevent simple associations between 
spatial information and visual cues, the views were not completely orthogonal to the spatial information. 
The view particularly differed when participants moved up or down due to the proportion of the floor in the 
field of view.  
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3.2.9 Control analysis: head motion 

One might ask whether participants physically moved their head during this virtual 

navigation experiment inside the MRI scanner, and this physical movement-related 

artefact could confound the analysis that seeks evidence of place and directional 

encoding in the (virtual) 3D space. To avoid this problem, I carefully instructed 

participants to remain still and used the standard head immobilisation equipment (foam 

pad) to minimise head movement. As Table 3.1 below shows, this was effective 

because head motion within each scanning session, as estimated by the SPM image 

realignment protocol, was considerably smaller than voxel size. On average, the 

maximal movement (Z translation) was only 1.38 mm compared to the 3 mm voxel 

size. 

 

Table 3.1 Head motion parameters estimated by the SPM realignment process. 

 X (mm) Y (mm) Z (mm) Pitch (°) Roll (°) Yaw (°) 

Mean (SD) across 
36 subjects 

0.32  
(0.19) 

1.08  
(0.42) 

1.38  
(1.07) 

0.03 
(0.02) 

0.01 
(0.005) 

0.01 
(0.005) 

The subject with 
the most movement  

0.76 2.33 6.07 0.09 0.02 0.03 

The subject with 
the least movement 

0.11 0.30 0.30 0.01 0.003 0.003 

 

More importantly, I confirmed the absence of confounding head motion related to the 

virtual rollercoaster ride in a pilot scanning study before the main experiment was 

conducted. In this pilot study involving the VR task, a small optical marker was 

attached to upper teeth of one volunteer via a personalised dental holder. While in the 

scanner, a high resolution motion tracking camera tracked the position and orientation 

of the optical marker with resolution of 80 Hz and 0.001 mm. After bandpass filtering 

(0.0078 to 0.2 Hz) which removes various sources of noise (e.g. fMRI slice acquisition 

frequency 14.3 Hz, heartbeat ~1.3 Hz and breathing ~0.3Hz), I examined the time 

course of the optical marker’s information (3 linear movements and 3 rotation 
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parameters, a proxy for head position) time-locked to the onset of the journey (where 

the regressor for the GLM was constructed in the main experiment).  

 

As can be seen from Figure 3.6 below, none of 6 head motion parameters showed 

abrupt changes at the onset of journey (pink line), countdown (cyan) or turn (green). 

The time course was baseline corrected by -4 to -3 sec to the journey onset. I also 

checked whether there were overall amplitude changes of head motion for each 

location or heading direction in the virtual environment. A squared sum of head motion 

parameters during the journey and countdown period was calculated for each trial and 

included in a one-way ANOVA with the 8 locations and 6 directions as the main factors. 

These tests further confirmed the absence of systematic differences in head motion for 

virtual location or direction (p>0.2 for all six parameters).  

 

Figure 3.6 Six head motion parameters measured by a high resolution motion tracking system in a 
pilot subject. The black line is the time course of each trial; the pink line (0 sec) refers to the onset of the 

journey and the cyan line (5 sec) indicates the onset of the countdown period. The green line (-3 sec) 
indicates the onset of the turn prior to the journey. No sudden head motion was detected in the turn, 
journey or countdown periods.  
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3.3 Results 

3.3.1 Behavioural performance during scanning 

Overall, participants correctly kept track of their position and direction within the 3D 

lattice during the virtual rollercoaster ride (place question accuracy = 86.6 ± 12.3%, 

direction question accuracy = 93.4 ± 8.6%, chance level = 33.3%). The place questions 

were divided into two categories depending on the existence of a vertical distractor 

(Figure 3.2B). Accuracy did not differ between the categories (t(35)=0.0, p=1.0, Figure 

3.2B), however response time differed significantly. Participants responded faster when 

there was no distractor along the vertical axis (without-V, mean = 2.91 ± 0.71 sec) 

compared to when a vertical distractor was present (with-V, mean = 3.21 ± 0.84 sec; 

t(35)=3.7, p<0.001). These results imply that the participants precisely identified 

themselves within a horizontal plane, and the process of distinguishing the vertical 

coordinate (‘Am I on the first floor or second floor?’) slightly slowed down the response 

without affecting accuracy. 

 

Figure 3.7 Place question results. (A) Accuracy did not differ between the with-V and without-V 

conditions. (B) Response time (RT) was significantly shorter in the without-V condition indicating that 
distinguishing the vertical position took longer than locating one’s position within a horizontal plane. Error 
bars are standard error of the mean adjusted for a within-subjects design (Morey 2008) **p<0.01. 

 

For the direction question, the presence of a slope speeded up responses. Response 

time was significantly shorter when facing direction was tilted up or tilted down (mean = 
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2.26 ± 0.57 sec) compared to when facing direction was on a horizontal plane (mean = 

2.69 ± 0.63 sec; t(35)=-6.3, p<0.001). Accuracy was higher in the vertical question 

trials (mean = 97.7 ± 4.9%) compared to the non-vertical trials (mean = 91.1 ± 12.6%; 

t(35)=3.3, p=0.003). This finding is consistent with previous results in humans and rats 

where the slope of a maze facilitated spatial memory (Grobéty and Schenk 1992a; 

Steck et al. 2003).  

 

3.3.2 Post-scan debriefing session 

When asked about their engagement with the task, 19% of participants chose the 

option “I felt like I was really there” and 69% chose “I occasionally thought about the 

environment as being on a computer screen, but overall the environment was 

convincing and I felt I was moving straight, up or down”, implying that the virtual 

environment used in this experiment provided an effective, if not complete, sense of 

being in 3D space. As mentioned previously, I also confirmed that height-related 

anxiety was not the confounding factor, as 94% of participants reported being “not at all 

anxious” during the scanning experiment. 

 

Testing of the perception of the environment’s size revealed that the majority of 

subjects regarded the overall size of the virtual environment as medium or large (large: 

31%, medium: 58%) and only 11% of the subjects reported it as small. Quantitatively, 

the ratio of vertical and horizontal distance estimates was not significantly different from 

the true ratio of 1 (mean ratio = 1.01 ± 0.27; t(35)=0.2, p=0.8). This result is suggestive 

of unbiased, isotropic 3D space perception in the virtual environment. However, the 

participants estimated the angle between the slope and the horizontal plane as 

significantly larger than the angle between two pavements on the horizontal plane 

(vertical angle = 40.3° ± 8.9, horizontal angle = 36.7° ± 9.0, mean ratio = 1.15 ± 0.31; 

t(35)=2.8, p=0.008) even though basic geometry would imply that the two angles 
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should be identical given that the vertical and horizontal distances are equal. This 

finding accords with the literature on human observers’ tendency to overestimate the 

steepness of a slope (Proffitt et al. 1995) and vertical pointing in a 3D building (Brandt 

et al. 2015). The symmetric distance perception and asymmetric angle perception 

raised the question of whether the brain would encode vertical/horizontal place and 

direction symmetrically or asymmetrically, which I examined next.  

 

3.3.3 Multivoxel pattern analysis – place encoding 

Among the ROIs, the right anterior hippocampus showed evidence of significant place 

information (F(2,70)=7.6, p<0.001; Figure 3.8). In the hippocampus, both vertically 

displaced locations (diff-V) and horizontally displaced locations (diff-H) were 

significantly distinguishable from the same locations (post-hoc pairwise comparison, 

same > diff-V, t(35)=3.1, p=0.006; same > diff-H, t(35)=3.6, p=0.002, Bonferroni 

corrected). fMRI pattern similarity of vertically displaced locations (diff-V) and 

horizontally displaced locations (diff-H) were not significantly different from each other 

(t(35)=0.7, p=1.0). Although the absence of significant difference between the vertical 

and horizontal place encoding is not direct evidence of equivalence between the two, 

my prior encoding hypotheses suggest that this finding best fits with the isotropic 3D 

place encoding hypothesis where the horizontal and vertical dimensions are encoded 

with similar sensitivity (Figure 3.4C, isotropic 3D). The right entorhinal ROI showed a 

trend for pure vertical encoding (F(2,70)=2.3, p=0.1, same > diff-V, t(35)=2.1, p=0.07). 

No other ROIs showed either vertical or horizontal place information.  

 

Of note, the absolute fMRI pattern similarity value of 0.02~0.03 may appear to be low, 

but given that neural signals are highly variable, and the similarity was calculated 

across different scanning sessions to ensure complete independence of the datasets 

(while also controlling the direction factor for place, and the place factor for direction), 
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small values are to be expected. Indeed, these values are perfectly in line with extant 

studies using this approach (Hsieh et al. 2014; Chadwick et al. 2015; Hsieh and 

Ranganath 2015; Schapiro et al. 2016; Schuck et al. 2016). More importantly, the 

absolute similarity value within a single condition has little meaning and the existence 

of place information should be tested by the difference in pattern similarity value 

between the conditions.  

 

A control analysis confirmed that this isotropic place encoding in the anterior 

hippocampus pertained even after controlling for low level visual features (t(35)=3.5, 

p=0.0006). 

 

 

Figure 3.8 Place encoding results. The right anterior hippocampus (antHC_R) contained significant 

place information. Locations along the vertical axis (diff-V) and locations along the horizontal axis (diff-H) 
were equally distinguishable (same > diff-V or diff-H), suggesting an isotropic 3D representation. The 
anatomical ROI is overlaid on the group average structural MRI scan. Error bars are standard error of 
mean adjusted for a within-subjects design (Morey 2008); **p<0.01, post-hoc Bonferroni-corrected. 

 

3.3.4 Multivoxel pattern analysis - direction encoding  

The direction encoding analysis revealed different results from the place encoding 

results. Significant direction information was only found in the right posterior 

hippocampus (F(2,70)=4.8, p=0.01) and the right retrosplenial cortex (F(2,70)=3.8, 

p=0.04). In both ROIs, different vertical directions (diff-V) were distinguishable whereas 
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the different horizontal directions (diff-H) were not (post-hoc pairwise comparison, 

same > diff-V, t(35)=2.5, p=0.03; same ≈ diff-H, t(35)=-1.1, p=1.0 for the right posterior 

hippocampus; same > diff-V, t(35)=2.6, p=0.02; same ≈ diff-H, t(35)=-0.6, p=1.0 for the 

right retrosplenial cortex, Bonferroni corrected) (Figure 3.9). This result suggests a pure 

vertical encoding scheme in the right posterior hippocampus and right retrosplenial 

cortex, and this resonates with previous animal studies which found head direction 

cells that were only sensitive to the vertical pitch (Stackman and Taube, 1998; 

Finkelstein et al., 2014).  

 

A control analysis confirmed that this result pertained even after controlling for visual 

texture similarity (t(35)=2.17, p=0.02 for the right posterior hippocampus; t(35)=1.9, 

p=0.03 for the right retrosplenial cortex). 

 

 

Figure 3.9 Direction encoding results. The right posterior hippocampus (postHC_R) and right 

retrosplenial cortex (RSC_R) ROIs contained significant direction information. In both regions, different 
vertical directions were distinct (same > diff-V) but the horizontal directions were not (same ≈ diff-H). The 
anatomical ROI is overlaid on the group average structural MRI scan. Error bars are standard error of 
mean adjusted for a within-subjects design (Morey 2008); *p<0.05, †p=0.12, post-hoc Bonferroni-
corrected. 
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3.4 Discussion 

In this first experiment, I investigated the neural representation of 3D spatial 

information in the human brain when participants explored a semi-volumetric space, a 

lattice structure. There were three main results. First, behaviourally, participants had 

similarly accurate memory for vertical and horizontal locations, whereas vertical tilt 

facilitated performance on the direction judgement task. Second, I found that the right 

anterior hippocampus contained place information that was sensitive to both horizontal 

and vertical axes. Finally, vertical directional information was found in the right 

posterior hippocampus and retrosplenial cortex. 

 

The hippocampus has been long known to encode an animal’s 2D location (O’Keefe 

and Dostrovsky 1971; Ekstrom et al. 2003; Hassabis et al. 2009; Sulpizio et al. 2014), 

and the current experiment extends previous knowledge by taking into account the 

third spatial dimension. Together with the behavioural findings of high accuracy 

irrespective of the presence of a vertical or horizontal distractor (except for the small 

response time difference), and the symmetrically perceived length of the 3D 

environment, multivoxel representational similarity in the right anterior hippocampus 

supports an isotropic 3D space encoding hypothesis, as has been observed in bats 

(Yartsev and Ulanovsky 2013), rather than the anisotropic planar encoding hypothesis 

based on rodent findings (Hayman et al. 2011; Jeffery et al. 2013).  

 

However, it would be premature to conclude that the human hippocampus is more 

similar to that of the bat than the rat in relation to 3D spatial encoding. The shape of the 

environment and behavioural demands should be considered before coming to a firm 

conclusion. Place cells show a repeating firing pattern when an environment comprises 

multiple recurring compartments (Nitz 2011; Spiers et al. 2015) and some 3D 

environments have repeated structures along the vertical axis, e.g. the helical staircase 
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used in a previous rat study (Hayman et al. 2011). Therefore, an apparent lack of 

vertical information in rats could be due to the repeating nature of the 3D environment. 

Furthermore, the physical boundaries that discretise a 3D space along the vertical 

dimension (e.g. ceiling) might have contributed to the anisotropy of 3D space in 

Hayman et al. (2011). In contrast, my 3D lattice environment did not contain any walls 

and each location of interest was separated by the same vertical and horizontal 

distance, physically and perceptually. It would be interesting to test whether the human 

hippocampus shows a symmetric representation of 3D space even when the space is 

divided by clear physical boundaries like walls and ceilings, and this will be examined 

in Experiment 2.  

 

Regarding behavioural demands, it should be noted that participants in my experiment 

were explicitly asked to encode both vertical and horizontal coordinates, whereas most 

animal studies do not impose such a requirement. A place cell’s response can be 

modulated by reward and attention (Markus et al. 1995; Hölscher et al. 2003) and it is 

possible that a place cell adapts to encode and remember the space better when it is 

behaviourally relevant. It could be that place cells in rats would show an isotropic firing 

pattern if they were explicitly required to distinguish every location in 3D space. A 

recent behavioural study showed that rats were able to learn a 3D maze as well as a 

2D maze, at least over a short timescale (Wilson et al. 2015). Conversely, the vertical 

and horizontal axes might be differentially encoded in humans where explicit spatial 

awareness is absent or a more demanding goal-oriented navigation task is used.  

 

The other findings from this first experiment concerned the encoding of vertical and 

horizontal directions. At the behavioural level, participants indicated their heading 

direction faster and more accurately when they were facing up or down, and the 

vertical angle was overestimated to a greater extent than the horizontal angle. This 

result fits with the idea that the gravity (vertical) axis is a reference direction (Barnett-
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Cowan and Bülthoff 2013). Knowing one’s direction relative to the gravity axis is 

essential for maintaining the stability of body posture, and all animals have a tendency 

to maintain an upright head posture. Physical gravity did not play a part in the current 

experiment because subjects were in a supine position in the MRI scanner. However, 

the vertical axis can be defined not only by gravity but also by visual cues (Dyde et al. 

2006). I believe the visually conveyed vertical axis in the current virtual environment 

was a reasonable proxy for the gravity vertical axis in real life, and that the experience 

of ‘falling’ during the pre-scan free exploration also supported this analogy.  

 

At the neural level, the right posterior hippocampus and retrosplenial cortex exhibited 

only vertical direction information. This might reflect potential head direction cells that 

are only sensitive to vertical pitch similar to those found in animals (Stackman and 

Taube 1998; Finkelstein et al. 2015). The direction encoding result remained significant 

after controlling for visual texture similarity, but I acknowledge that view and head 

direction, in particular for the vertical component, were not perfectly orthogonal. It is 

possible that the posterior hippocampus and retrosplenial cortex findings may also be 

related to view encoding. Retrosplenial cortex has connections to many cortical and 

subcortical regions that map space in different reference frames including the 

hippocampus, posterior parietal cortex and thalamic nuclei (Vann et al. 2009). It 

encodes not only head direction but also turning behaviour (Alexander and Nitz 2015), 

place and view (Vass and Epstein 2013; Marchette et al. 2014), and stable landmarks 

(Auger et al. 2012, 2015). Future work should seek to disentangle these factors and 

isolate 3D head direction information.  

 

It should also be noted that the current experimental design might not have had 

sufficient sensitivity to detect horizontal direction encoding in the brain. I set the angular 

difference between the directions as 29° because that is known to be the steepest 

slope humans can walk up. However, most previous fMRI studies detected direction-
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specific responses using much larger angular differences (90°), e.g. north, south, east 

and west) (Baumann and Mattingley 2010; Vass and Epstein 2013; Marchette et al. 

2014; Chadwick et al. 2015; Shine et al. 2016). A previous fMRI study treated 

directions that differed by 30° as identical directions (Bellmund et al. 2016) based on 

the animal literature that the tuning width of head direction cells is much larger than 30° 

(Cullen and Taube 2017). Therefore, it might be possible to detect both vertical and 

horizontal direction information if larger angular differences are used.  Head direction 

encoding will be more extensively studied in Experiment 3 using a volumetric space.    

 

The finding of different types of spatial information (place versus vertical direction) in 

the anterior and posterior hippocampus accords with other evidence of functional 

variation down its longitudinal axis. Based on the evidence from animal 

electrophysiology (Kjelstrup et al. 2008), lesion studies (McTighe et al. 2009) and 

neuroimaging (Evensmoen et al. 2015), it was proposed that the anterior hippocampus 

may encode a large-scale or generalisable representations of the environment, 

whereas posterior hippocampus may encode a fine-scale and local representation 

(Poppenk et al. 2013; Zeidman and Maguire 2016). In this experiment, the lattice 

structure eliminated the demand for fine-scale encoding of locations, and most subjects 

perceived the size of the environment as medium or large rather than small. Thus, the 

anterior hippocampus may have been suitable for representing this location information 

independent of the direction. In contrast, the posterior hippocampus could be 

associated with vertical direction because the detail of a view was more distinguishable 

when participants were heading up or down. Posterior hippocampus is connected to 

the parahippocampal and retrosplenial cortices that are known for scene processing 

(Kobayashi and Amaral 2003; Blessing et al. 2016) and are activated during scene 

discrimination tasks (Lee et al. 2008). 
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In conclusion, this first experiment provided evidence suggesting that vertical and 

horizontal location information can be equally well encoded in the hippocampus in a 

semi-volumetric 3D lattice environment, although the vertical gravity direction seems 

more salient than the horizontal direction. In the next experiment, I tested how a 

compartmentalised 3D space is encoded in the brain.  
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Chapter 4 Experiment 2: A multi-compartment 3D space 

4.1 Introduction 

In the previous chapter, I showed that the human anterior hippocampus expressed 3D 

location information that was similarly sensitive to the vertical and horizontal dimension 

when participants explored a semi-volumetric space. The 3D lattice structure used in 

the previous experiment did not contain a ceiling or walls which might potentially 

influence the representation of 3D space. In the next experiment, I investigated how a 

multi-level building, the most common type of working and living spaces for humans 

today, is represented in the brain. The spatial navigation and encoding strategies for 

multi-level buildings could be different to those for semi-volumetric space. 

 

As noted in Chapter 1, regionalisation is a key characteristic of modern buildings - 

multiple floors stacked on top of each other and multiple rooms located side-by-side on 

a floor. When we navigate within multi-floor buildings, we can use hierarchical planning 

rather than using a 3D vector shortcut or volumetric 3D map. For example, we can 

decide which floor to go to (“second floor”), and which room on that floor (“the first room 

nearest the stairs”), then the location within the room (“the inside left corner of the 

room”). Regionalisation and the hierarchical representation of space involving multiple 

scales has been consistently observed (Hirtle and Jonides 1985; Han and Becker 

2014; Balaguer et al. 2016), but it is not fully understood how spatial information about 

multiple scales is encoded at the neural level, particularly in a 3D context. 

 

One obvious question is whether a common neural representation is used for each 

compartment (room). Using a generalised code to register local information is an 

efficient strategy compared to assigning unique codes for every location in an entire 

environment in the context of repeating substructures. Moreover, a common local 
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representation can be seen as a “spatial schema” that captures the essence of an 

environment and helps future learning of relevant environments or events (Tse et al. 

2007; Marchette et al. 2017). The retrosplenial cortex and hippocampus are candidate 

brain regions for the encoding of within-compartment, local information. Place cells in 

the hippocampus are known to repeat their firing fields in a multi-compartment 

environment (Derdikman et al. 2009; Spiers et al. 2015). Moreover, human fMRI 

studies have shown that the hippocampus contains order information that generalises 

across different temporal sequences (Hsieh et al. 2014), and the retrosplenial cortex 

contains location codes that generalise across different virtual buildings (Marchette et 

al. 2014). 

 

Another question is where in the brain each compartment is represented within the 

larger environment in order to complement the local room information. To the best of 

my knowledge, no study has simultaneously interrogated the neural representation of 

local spatial representations and the compartment information itself. The hippocampus 

might contain both types of information. It has been suggested that the hippocampus 

represents spatial information of multiple scales down its long axis. For example, the 

size of place fields is larger in ventral hippocampus than dorsal hippocampus in rats 

(Kjelstrup et al. 2008). In a human fMRI study, increased activation in posterior (dorsal) 

hippocampus was associated with a fine-grained spatial map, whereas the anterior  

(ventral) hippocampus was linked with coarse-grained encoding (Evensmoen et al. 

2015).  

 

It is also important to ask whether vertical and horizontal information is equally well 

encoded in a compartmentalised 3D environment. In other words, is it the case that 

when a room is located directly above another room, are they as equally 

distinguishable as two rooms that are side-by-side on the same floor? Although I 

showed that the human hippocampus encoded vertical and horizontal location 



119 

 

information equally well in a 3D lattice structure (Experiment 1), it might be different in 

the presence of physical barriers like walls and ceilings. As reviewed in Section 1.6.2, 

there are mixed behavioural findings in relation to vertical-horizontal 

symmetry/asymmetry in a multi-level building. For example, a group who learned the 

location of objects in a virtual multi-floor building along a floor route had, overall, better 

spatial memory than a group who learned along a vertical columnar route, suggesting a 

bias towards the floor-base representation (Thibault et al. 2013). However, another 

study reported that twice as many participants reported a columnar representation of a 

building than a floor representation (Büchner et al. 2007).  

 

I sought to address the issues outlined above in order to provide much-needed 

information about how regionalisation of space is realised at the neural level, in 

particular in a 3D context. Participants learned the locations of paintings in a virtual 

multi-floor gallery building by volitionally navigating within it prior to scanning. Also 

before scanning, I compared their spatial judgments within and across vertical and 

horizontal boundaries. Then participants performed an object-location memory test 

while being passively moved in the virtual building during fMRI scanning. Repetition 

suppression analysis was used to ascertain which brain regions represented the local 

information within a room, or the room information within the building. In addition, I 

asked whether vertical and horizontal room information in the brain was symmetrically 

or asymmetrically represented.  

 

4.2 Methods 

4.2.1 Participants 

Thirty healthy adults took part in the experiment (15 females; age 23.7 ± 4.6 years; 

range 18-35 years; all right-handed). All had normal or corrected-to-normal vision and 
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gave informed written consent to participation in accordance with the local research 

ethics committee. 

 

4.2.2 The virtual environment 

The virtual environment was a gallery building. There were 4 identical-looking rooms 

within the building, two rooms on each of two main floors (Figure 4.1). There was a 

unique painting located in each of the four corners of a room, resulting in 16 unique 

locations in the building. The paintings were simple and depicted animals or plants 

such as a dog, rose or koala bear. Painting locations were randomised across the 

participants, therefore spatial location was orthogonal to the content of the painting 

associated with it. The virtual environment was implemented using Unity 4.6 (Unity 

Technologies, CA, USA). A first-person-perspective was used and the field-of-view was 

±30° for vertical axes and ±37.6° for horizontal axes. During pre-scan training, the 

stimuli were rendered on a standard PC (Dell Optiplex 980, integrated graphic chipset) 

and presented on a 20.1 inch LCD monitor (Dell 2007FP). The stimuli filled 70% of the 

screen width. The same PC was used during scanning, and the stimuli were projected 

(using an Epson EH-TW5900 projector; resolution 1024 x 768) on a screen at the back 

of the MRI scanner bore and participants saw the screen through a mirror attached to 

the head coil. 

 

Figure 4.1 The virtual gallery. (A) Overview of the virtual gallery building with transparent walls for 

display purposes here. (B) Overview of one room with transparent walls for display purposes here. (C) An 
example view from a subject’s perspective during the learning period prior to scanning.  
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4.2.3 Procedure 

Having watched a demonstration of the experimental tasks, each participant completed 

the tasks in following order: movement practice and learning prior to scanning, a pre-

scan egocentric judgment task and the object location memory task during scanning 

(which was preceded by a short practice of the scanner task).  

 

Movement practise 

Participants practised moving inside the virtual building using a keyboard (the W/A/S/D 

and arrow keys). They could move forwards, backwards, left and right. They could turn 

to the right or left side, and look up or down. They were asked to visit all floors via a 

staircase. During this movement practise, the paintings were hidden. All participants 

quickly learned how to control their movements in the virtual environment. 

 

Learning prior to scanning 

Participants were instructed to freely explore the virtual gallery building and to 

memorise the locations of all the paintings. Note taking was not allowed. I allocated 20 

minutes for the initial learning phase (a timer was shown in a corner of the screen), but 

allowed participants to proceed to the test phase before 20 minutes had elapsed if they 

felt that they had learned the layout very well. The purpose of this self-determined 

criterion was to prevent participants from becoming bored. Seventeen out of the 30 

participants moved on to the test phase before 20 minutes has passed (mean 16 min, 

SD 2 min). This subjective criterion is used because experimenters could check the 

participants’ objective memory performance afterwards and let the participants revisit 

the building and learn the layout again if performance was sub-optimal, before they 

proceeded to the scanner. Four out of the 30 participants (only one of whom was 

among the 17 participants who asked to move on to testing prior to the 20 minutes 
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elapsing) had to re-visit the virtual building for up to 5 additional minutes because their 

accuracy either in the egocentric judgment test or the short practice for the scanning 

object-location test was below 70%. These four participants’ accuracy during scanning 

was between 78% and 83%. The mean accuracy of the 30 participants for the scanning 

task was 93% (SD 5.5%). I am confident, therefore, that every participant had good 

knowledge of the spatial layout.    

 

Pre-scan: egocentric judgment task 

Immediately after the learning phase, there was a spatial memory test which required 

participants to make egocentric spatial judgments in the gallery. This test was used to 

examine the influence of vertical and horizontal boundaries on the mental 

representation of 3D space (see the Section 4.2.4 below).  

 

On each trial of this test, participants saw a short dynamic video which provided the 

sensation of being transported to one of the 16 paintings (locations) from the corridor 

(duration 2.5 sec; Figure 4.2A). These videos were used to promote the impression of 

navigation whilst providing full experimental control. On half of the trials, participants 

started from one end of the corridor facing a floor sign on the wall, while on the 

remaining trials, they started from the other end of the corridor facing the stairs. In both 

cases they would terminate in the same location within a room, regardless of whether 

they began the journey facing the floor sign or stairs.  

 

On every trial, participants were transported to one of two rooms on the floor where 

they started - thus the videos did not contain vertical movement via the staircase. Of 

note, except for the target painting, the other three paintings in a room were concealed 

behind curtains. Once a participant arrived at the target painting within a room, a 

question appeared on the screen (Figure 4.2A). The question asked about the position 

of another painting relative to the participant’s current position, e.g. “Is the pig on your 
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left?”, “Is the sunflower on your right?”, “Is the dog above you?”, “Is the duck below 

you?”. Participants responded yes or no by pressing a keypad with their index or 

middle finger. Similar to a previous study by Marchette et al. (2014), I instructed 

participants to interpret left, right, above or below broadly, “including anything that 

would be on that side of the body” and not just the painting directly left, right, above or 

below. For example when a participant was facing the turtle painting in Figure 4.2B, the 

sunflower was on their right and the duck was above. The time limit for answering the 

question was up to 5 sec. The inter-trial interval (ITI) was drawn from a truncated 

gamma distribution (mean 2.9 sec, minimum 2.0 sec, maximum 6.0 sec, shape 

parameter 4, scale parameter 0.5) and there were 64 trials. Participants were provided 

with their total number of correct and wrong answers at the end of the test, but did not 

receive feedback on individual trials.  

 

Figure 4.2 Experimental tasks. (A) On each trial, participants were virtually transported to one of the 

paintings from a corridor, and then participants performed spatial memory tasks. During the pre-scan 
egocentric judgments test, they were asked to make spatial judgments about the locations of other 
paintings, e.g. “Is the pig on your right?” (mean response time = 3.2 sec). During the scanning test, they 
were asked to indicate whether the painting was the correct one or not for that location, “Is this picture 
correct?” (mean response time = 1.3 sec). (B) An example layout of 16 paintings located in the 4 rooms of 
the gallery. The within, vertical, horizontal and diagonal rooms were defined relative to a participant’s 
current location. In this example, the participant was standing in front of the turtle painting (blue arrow). 

 

fMRI scan: object location memory task 

On each trial of the scanning task, participants were transported to one of the paintings 

from the corridor as in the pre-scan memory test (duration 2.5 sec; Figure 4.2A). All 
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four paintings in the room were concealed behind curtains. Once a participant arrived 

at a painting, the curtain was lifted. The participant then indicated whether the painting 

was the correct one or not for that location by using a keypad. On 80% of the trials, the 

correct painting was presented and on 20% of trials a painting was replaced by one of 

the other 15 paintings. The response to the question was self-paced with an upper limit 

of 4.5 sec (mean response time 1.3 sec, SD 0.7 sec), and the inter-trial intervals were 

the same as those in the pre-scan memory test. There were 100 trials for each 

scanning session and each participant completed 4 scanning sessions with a short 

break between them, making a total functional scanning time of ~50 minutes. 

Participants were told the total number of correct and wrong answers at the end of 

each scanning session, but individual trial feedback was not given. The order of visiting 

the paintings (locations) are important for repetition suppression analysis, and this will 

described in shortly. I used a sequence that balances first-order carry-over effects 

(Aguirre 2007; Nonyane and Theobald 2007). This meant that one location was 

followed by every other location with similar frequency. A similar sequence has been 

used in other fMRI studies (Vass and Epstein 2013; Sulpizio et al. 2014).  

 

4.2.4 Behavioural analyses 

Pre-scan egocentric judgement test 

To test the influence of compartmentalisation by vertical and horizontal boundaries on 

spatial judgments, I compared the accuracy and response time of egocentric spatial 

judgments between four conditions (Figure 4.2B): (1) within; when the painting in 

question was in the same room as a participant; e.g. a participant was facing the turtle 

and made a spatial judgment about the pig, rose, or koala; (2) vertical; when the 

painting in question was in the room above or below a participant; e.g. a participant 

facing the turtle was asked about the dog, gold fish, duck or chicken; (3) horizontal; 

when the painting in question was in the adjacent room on the same floor as a 
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participant; e.g. a participant facing the turtle was asked about the sunflower, crab, 

dolphin or swan; (4) diagonal; when the painting in question was in a diagonal room; 

e.g. a participant facing the turtle was asked about the elephant, eagle, lily or tulip.  

 

If participants had a holistic mental representation of 3D space irrespective of physical 

boundaries within the building, performance for all four conditions should be similar. In 

contrast, if their mental representation was segmented into each room, spatial 

judgments within the same room (within) would be facilitated and therefore higher 

accuracy and/or faster response times would be expected compared to spatial 

judgments across different rooms (vertical, horizontal or diagonal conditions). If space 

is predominantly divided into a horizontal plane, as suggested by some previous 

studies (Jovalekic et al. 2011; Thibault et al. 2013; Flores-Abreu et al. 2014), spatial 

judgments about paintings on different floors (vertical, diagonal) would be more difficult 

than paintings on the same floor (within, horizontal). I used a repeated one-way 

ANOVA and post-hoc paired t-tests to compare the accuracy and response time for the 

four conditions, with a significance threshold of p<0.05. 

 

Object location memory test during scanning 

I tested whether spatial knowledge of 3D location was organised into multiple 

compartments by measuring a behavioural priming effect. Each trial was labelled as 

one of four conditions depending on the room participants visited in the immediately 

preceding trial (Figure 4.3A,B). Figure 4.3B shows an example trial sequence and the 

room label for each trial in red: (1) same; when participants visited the same room in 

the previous trial, e.g. the 2nd trial; (2) vertical; when participants previously visited the 

room above or below the current room, e.g. the 3rd trial; (3) horizontal; when 

participants previously visited the adjacent room on the same floor, e.g. the 5th trial; (4) 

diagonal; when participants previously visited neither a vertically nor horizontally 

adjacent room, the e.g. 4th trial.  
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A holistic, volumetric representation of space would result in similar behavioural 

performance for all four conditions. If representations were compartmentalised, 

participants would make more accurate and/or faster judgments when spatial memory 

was primed by the representation of the same compartment (room). If spatial 

representations were further grouped along the horizontal plane, visiting the adjacent 

room on the same floor (horizontal condition) will also evoke a behavioural priming 

effect. Alternatively, the space might be represented in a vertical column, leading to the 

prediction of a priming effect for the vertical condition. I compared accuracy and 

response time for the four conditions using a repeated-measure ANOVA and post-hoc 

paired t-tests. 

 

 

Figure 4.3 Analysis overview. (A) A floor plan of the virtual building. The 4 rooms are labelled as 

“Rm101”, “Rm102”, “Rm201”, “Rm202” and the 4 corners as “A”, “B”, “C”, “D” for the purposes of 
explanation here. Participants were not told of any explicit labels during the experiment. (B) An example 
trial sequence. For the behavioural and fMRI repetition suppression analyses, each trial was labelled 
based on its spatial relationship with the preceding trial, e.g., the 2nd trial belongs to the “same room, 
different corner” condition. Of note, this trial definition is used for analysis only and participants were not 
asked to pay attention to the preceding trial. (C) Predictions for the fMRI signals. If some brain regions 
encoded corner information, a lower fMRI signal was expected for the same corner condition compared to 
the different corner condition. If room information was encoded, fMRI signal was expected to be lower for 
the same room condition compared to the different room condition. 
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4.2.5 Scanning and image processing 

Functional scans (voxel size = 3 x 3 x 3 mm, 44 slices, TR = 3.08 sec) and a structural 

scan (1 x 1 x 1 mm) were acquired using a 3T Siemens Trio scanner and preprocessed 

using SPM12. The scanning parameters and preprocessing are described in detail in 

Section 2.5.4. To summarise, after removing the first 5 volumes to allow for T1 

equilibration effects, functional images were realigned to the first volume of each 

scanning session and geometric distortion was corrected by the SPM unwarp function 

using the fieldmaps. Each participant’s anatomical image was then coregistered to the 

distortion corrected mean functional images. Functional images were normalised to 

MNI space, then spatial smoothing (8 mm) was applied.   

 

4.2.6 fMRI analyses 

Main analysis: room and corner encoding 

I used an fMRI repetition suppression analysis to search for two types of spatial 

information in the brain: (1) corner; a participant’s location within a room, and (2) room; 

which room a participant was in within the building. fMRI repetition suppression 

analysis is based on the assumption that when a similar neural population is activated 

across two consecutive trials, the fMRI signal is reduced during the second trial. 

Therefore, if a brain region encodes corner information, visiting the same corner in a 

consecutive trial would result in reduced fMRI signal compared to visiting a different 

corner (Figure 4.3C). For example, visiting Rm201-B after Rm101-B (3rd trial in the 

example sequence, Figure 4.3B) or visiting Rm101-D twice in a row (6th trial in the 

example) would evoke reduced fMRI signal than visiting Rm101-B after Rm101-A (2nd 

trial in the example) or visiting Rm102-D after Rm201-B (4th trial). On the other hand, if 

a brain region encodes room information, visiting the same room in consecutive trials 

(e.g. Rm101-A → Rm101-B, 2nd trial) would result in reduced fMRI signal compared to 

visiting a different room (e.g. Rm101-B →Rm201-B, 3rd trial).  
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I also tested whether vertical and horizontal boundaries similarly influenced neural 

similarity between rooms. If there was a bias in encoding horizontal information better 

than vertical (floor), then the two rooms on top of each other (e.g. Rm101 and Rm201) 

would be less distinguishable than the two rooms on the same floor (e.g. Rm101 and 

Rm102). Therefore, visiting a vertically adjacent room (e.g. Rm101-B → Rm201-B, 3rd 

trial) would result in more repetition suppression, leading to a reduced fMRI signal, than 

visiting a horizontally adjacent room (e.g. Rm102-D → Rm101-D, 5th trial). I was also 

able to ask whether two rooms in a diagonal relationship (e.g. Rm201-B → Rm102-D, 

4th trial) were more distinguishable than vertically or horizontally adjacent rooms.  

 

To answer these questions, I constructed a GLM which modelled each trial based on 

its spatial relationship to the preceding trial in terms of two factors: corner and room. 

The corner factor had 2 levels: same or different corner, and the room factor had 4 

levels: same, vertical, horizontal or diagonal room. This resulted in a 2 x 4 = 8 main 

regressors. Each regressor was a boxcar function which for each trial modelled the 

entire stimulus duration including the virtual navigation period (2.5 sec) and subsequent 

object-location memory test (mean response time 1.3 sec, SD 0.7 sec) (Figure 4.2A top 

three panels) convolved with the SPM canonical hemodynamic response function. I 

modelled the entire period as a single boxcar function because information about 

spatial location was cumulatively processed throughout the navigation video and 

continued until participants decided whether the painting was the correct one or not for 

the location. The first trial of each scanning session, which did not have an immediately 

preceding trial, or the trials where participants were incorrect (mean 6.8%, SD 5.5%) 

were excluded from the main regressors and modelled separately. The GLM also 

included nuisance regressors: six head motion realignment parameters and the 

scanning session-specific constant regressor.  

 



129 

 

First, I conducted a whole-brain analysis to search for corner and room information 

using two contrasts: (1) “same corner < different corner”, collapsed across the room 

factor, and (2) “same room < different room” (the average of the vertical 

room/horizontal room/diagonal rooms), collapsed across the corner factor. Each 

participant’s contrast map was then fed into a group level random effects analysis. 

Given my a priori hypothesis about the role of hippocampus and retrosplenial cortex for 

encoding spatial information, I report voxel-wise p-values corrected for anatomically 

defined hippocampus and retrosplenial cortex ROIs. I used the same anatomical ROIs 

that I delineated in Experiment 1 because my fMRI images were spatially normalised to 

a standard template brain so that anatomical differences between groups of 

participants in each experiment were negligible (see Section 3.2.6 for details). For the 

rest of the brain, I report regions that survived a whole-brain corrected family-wise error 

(FWE) rate of 0.05.  

 

Having identified brain regions that contained significant corner information from the 

whole brain analysis, I examined the spatial encoding in these regions further by 

extracting the mean fMRI activity. As a proxy for the mean fMRI activity, beta weights 

for every voxel within the spherical ROIs (radius 5 mm, centred at the peak voxel) were 

averaged for each participant, and then compared at the group level by paired t-tests. 

For this functional ROI-based analysis, I divided the “same corner” condition into “same 

corner, same room” and “same corner, different room” and compared each condition to 

“different corner”. This analysis was used to rule out the possibility that the corner 

encoding was driven purely by the repetition suppression effect of “same corner, same 

room” < “different corner”. If a brain region encodes each of the 16 locations (or 

associated paintings) without a spatial hierarchy, repetition suppression would only 

occur for the “same corner, same room” condition and there would be no difference 

between “same corner, different room” and “different corner”.  
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I conducted a similar control analysis in the brain regions that contained significant 

room information (“same room < different room”). I compared the mean activity of 

“same room, same corner” and “same room, different corner” to “different room” to rule 

out the possibility that the room encoding was driven by the repetition suppression of 

the exactly same location. Crucially, I also compared mean activity of different room 

conditions (vertical/horizontal/diagonal rooms) to test for any potential bias in encoding 

vertical or horizontal information.   

 

Of note, this experiment was specifically designed to examine the main effect of corner 

and room information, rather than to test a pure non-hierarchical encoding model 

where only the exact same location shows repetition suppression (“same corner, same 

room” < ”different corner, same room” = “same corner, different room” = “different 

corner, different room”).  Such an encoding hypothesis cannot be separated from the 

painting encoding hypothesis, given that each location was associated with a unique 

painting. The data could also be examined in terms of 3D physical metric distance from 

the preceding trial modelled as a linear parametric regressor. However, the highly 

discretized nature of the environment makes inferences about metric encoding difficult 

in this context, and this issue would be better addressed with a different type of 

environment.  

 

4.2.7 Supplementary analysis: room versus view encoding 

In this experiment, room information was cued by a distinctive view such as a wall 

containing a floor sign, therefore the room encoding effect could arise due to view 

encoding and/or more abstract spatial information about a room that was not limited to 

a particular view. I was able to test for these possibilities because participants were 

virtually transported to each room from two directions as I described in Section 4.2.3, 

which means they could visit the same room on consecutive trials from the same or a 
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different direction (Figure 4.4). For example, if they had visited Rm102 from the floor 

sign side in the preceding trial and visited the same room from the stairs side in the 

current trial, the initial views were different even though the same room was visited. On 

the other hand, if they had visited Rm102 from the floor sign side in the preceding trial 

and visited Rm202 from the floor sign side in the current trial, the initial views were 

similar even though two rooms were different.  

 

 

Figure 4.4 Two views associated with each room. Participants could be transported to a room from two 

opposite ends of the corridor, (A) facing a floor sign wall or (B) facing a staircase. This created two visually 
distinctive approaches for each room. 

 

I constructed a GLM which modelled each trial based on two factors: whether it was the 

same or a different room from the previous trial, and whether the starting direction 

(view) was the same or different direction from the previous trial. This resulted in 4 trial 

types: “same room, same view”, “same room, different view”, “different room, similar 

view”, and “different room, different view”. As in the main analysis, only correct trials 
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were included for the main regressors, and head motion realignment parameters and 

scanning session-specific constant regressors were included in the GLM.  

 

For each participant, I extracted the mean activity (beta weights) for each trial type in 

the room encoding regions identified in the “same room < different room” contrast 

described earlier. I conducted a repeated measures ANOVA and post-hoc paired t-

tests to compare the mean beta weights between the “same room, same view”, “same 

room, different view”, and “different room” (collapsed over similar and different view). If 

only the view was encoded, then the “same room, same view” would have a reduced 

fMRI signal compared to “different room”, but “same room, different view” would not be 

associated with a reduced fMRI signal compared to the “different room” condition. If 

abstract room information was encoded, the “same room, different view” condition 

would also be associated with reduced fMRI signal compared to the “different room” 

due to repetition of the room. I was also able to compare “same room, same view” and 

“same room, different view” to test view dependency when the room was repeated.  

 

4.3 Results 

4.3.1 Behavioural results 

Pre-scan egocentric judgment task 

In order to examine the influence of vertical and horizontal boundaries on the mental 

representation of 3D space, I compared the accuracy and response time of spatial 

judgments for 4 conditions: within, vertical, horizontal and diagonal rooms. Participants 

were faster at judging the location of paintings within the same room compared to 

paintings in different rooms (Figure 4.5; F(3,87)=5.4, p=0.002, post-hoc paired t-tests: 

within vs. vertical, t(29)=-3.5, p=0.001; within vs. horizontal, t(29)=-2.7, p=0.011; within 

vs. diagonal, t(29)=-2.2, p=0.034). There was no significant difference in response time 
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between the vertical, horizontal and diagonal rooms. This result suggests the 

importance of a physical boundary, but this was not influenced by whether the 

boundary was vertical or horizontal. Accuracy did not differ significantly between the 

four conditions (F(3,87)=1.2, p=0.3; mean overall accuracy 80%, SD 12%). 

 

Figure 4.5 Accuracy and response time (RT) during the pre-scan egocentric direction judgments 
task. Accuracy was not different between the conditions. However, participants were significantly faster for 

the within-room (Within) condition. There were no differences between vertical (Ver), horizontal (Hor) or 
diagonal (Diag) rooms. Error bars are SEM adjusted for a within-subjects design (Morey 2008). *p<0.05. 

 

Object-location memory task during scanning 

Overall, participants performed well on the object-location memory task (mean 

accuracy 93%, SD 5.5%). Participants were more accurate and faster at judging 

whether a painting was in the correct location if they had visited the same room in the 

preceding trial (Figure 4.6; Accuracy: F(3,87)=4.2, p=0.008; post-hoc paired t-tests: 

same vs. vertical, t(29)=3.4, p=0.002; same vs. horizontal, t(29)=2.3, p=0.032; same 

vs. diagonal, t(29)=2.3, p=0.028; response time: F(3,87)=8.3, p<0.001; same vs. 

vertical, t(29)=-4.0, p<0.001; same vs. horizontal, t(29)=-2.8, p=0.009; same vs. 

diagonal, t(29)=-4.1, p<0.001), and neither accuracy nor response time differed 

between the vertical, horizontal or diagonal rooms. This result, along with the pre-scan 

memory task, suggests the mental representation of 3D space was segmented into 

each room, regardless of vertical floor. 
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Figure 4.6 The behavioural priming effect of room during the scanning task. (A) Accuracy was 

significantly higher for the same room condition compared to all other rooms. There was no significant 
difference between the other room types. (B) Response time (RT) was significantly shorter for the same 
room condition compared to all other conditions. There was no significant difference between other room 
types. These results are in line with a room-based representation of 3D space, regardless of vertical floor. 
Error bars are SEM adjusted for a within-subjects design (Morey 2008). *p<0.05. 

 

4.3.2 fMRI results 

Corner information 

The “same corner < different corner” contrast revealed left anterior lateral hippocampus 

(Figure 4.7, peak MNI coordinate [-33, -19, -16], t(29)=5.31, p=0.001, small volume 

corrected for a bilateral hippocampal mask), suggesting that this region encodes at 

which corner a participant is located within a room. No other brain region showed a 

significant corner repetition suppression effect at the whole brain corrected level. 

 

 

Figure 4.7 Corner encoding region. The whole brain contrast “same corner < different corner” revealed 

only the left anterior hippocampus (peak MNI = [-33,-19,-16], t(29)=5.31, p=0.001, small volume 
corrected). The thresholded map is overlaid on a group average structural MRI scan (p<0.001, uncorrected 
for display purposes). No other brain region survived correction for multiple comparisons. 
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I further examined this spatial encoding in the left anterior lateral hippocampus by 

extracting the mean activity (beta) for each condition. I investigated the fMRI signal 

when exactly the same location was visited (“same corner, same room”, e.g. Figure 

4.3B, Rm101-D → Rm101-D) and when the same corner, but a different room was 

visited (“same corner, different room”, e.g. Rm101-B → Rm201-B) and compared them 

to the “different corner” condition (e.g. Rm201-B → Rm102-D). If the entire building is 

represented in a single volumetric space without a hierarchy, then each of the locations 

would be uniquely encoded, so repetition suppression is expected only for the “same 

corner, same room” condition. My finding speaks against the single volumetric 

representation hypothesis because both “same corner, same room” and “same corner, 

different room” conditions evoked significant repetition suppression effects compared to 

the “different corner” condition (one-sided paired t-tests: “same corner, same room” < 

”different corner”, t(29)=-4.4, p<0.001; “same corner, different room” < “different 

corner”, t(29)=-4.2, p<0.001). This implies that the anterior hippocampus contains local 

corner information that is generalised across different rooms, supporting an efficient 

hierarchical representation of 3D space.  

 

On a related note, one might ask whether the hippocampus showed sensitivity to the 

heading direction instead of location. Participants faced opposite walls when they were 

at corner A (or B) and when they were at corner C (or D) (Figure 4.3A). However, they 

faced the same direction when they were at location A and B (or C and D) and further 

analysis revealed that there was no difference in the anterior hippocampus when 

participants visited a corner on the same wall or the opposite wall. Thus, I can conclude 

that the hippocampus encoded corner information rather than heading direction.   

 

Room information 

The “same room < different room” contrast revealed bilateral retrosplenial cortex (right 

retrosplenial peak [9, -52, 11], t(29)=8.55, p<0.001; left retrosplenial peak [-9, -58, 14], 
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t(29)=7.91, p<0.001, small volume corrected for a bilateral retrosplenial mask), right 

parahippocampal cortex (peak [27, -37, -16], t(29)=7.21, p<0.001), and the posterior 

part of the hippocampus (right hippocampus peak [27, -28, -10], t(29)=6.12, p<0.001; 

left hippocampus peak [-27, -34, -7], t(29)=4.32, p=0.014, small volume corrected for a 

bilateral hippocampus mask) (Figure 4.8A). This suggests that these regions encode in 

which room a participant was located in the building. It is notable that the room 

information was detectable in the posterior portion of hippocampus, compared to 

corner information which was detectable in the anterior hippocampus. 

 

 

Figure 4.8 Room encoding regions. (A) The whole brain contrast “same room < different room” revealed 

bilateral retrosplenial cortex (RSC), right parahippocampal cortex (PHC) and bilateral posterior 
hippocampus (postHC). Given a priori interest in RSC and postHC, their clusters are shown with a small 
volume corrected threshold level (T(29)>3.67, T(29)>3.75), while the PHC cluster is shown with a whole-
brain corrected threshold (T(29)>6.008). The peak MNI coordinate is shown below each cluster. (B) 
Comparison of mean activity for three different room types (vertical/horizontal/diagonal) at each cluster 
(5mm sphere at peak voxel). The “same” condition (in yellow) is shown for reference purposes. The 
response to the diagonal condition was significantly larger than for the vertical condition in all regions 
except the left RSC. There was no significant difference between the vertical and horizontal conditions. 
Error bars are SEM adjusted for a within-subjects design (Morey 2008). *p<0.05. 

 

I further examined this spatial encoding in the right and left retrosplenial cortex 

(RSC_R, RSC_L), right parahippocampal cortex (PHC_R) and right and left posterior 
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hippocampus (postHC_R, postHC_L) by extracting the mean fMRI activity for the 

“same corner, same room”, “different corner, same room”, and “different room” 

conditions. In all regions, I found significant repetition suppression effects for both 

“same corner, same room” and “different corner, same room” conditions compared to 

the “different room” (one-sided paired t-tests: “same corner, same room” < “different 

room”: RSC_R, t(29)=-6.6, p<0.001; RSC_L, t(29)=-4.9, p<0.001; PHC_R, t(29)=-4.9, 

p<0.001; postHC_R, t(29)=-4.9, p<0.001; postHC_L, t(29)=-3.2, p=0.002; “different 

corner, same room” < “different room”: RSC_R, t(29)=-4.1, p<0.001; RSC_L, t(29)=-

3.6, p<0.001; PHC_R, t(29)=-5.0, p<0.001; postHC_R, t(29)=-3.0, p=0.003; postHC_L, 

t(29)=-2.2, p=0.02). These findings suggest the presence of room information that is 

independent of the local corner.  

 

I then tested for the existence of vertical-horizontal asymmetry in these five room 

encoding regions - RSC_R, RSC_L, PHC_R, postHC_R, postHC_L - by extracting the 

mean activity for sub-categories of the different room conditions: vertical room, 

horizontal room and diagonal room. If vertical information was relatively poorly encoded 

compared to horizontal information, I would expect that two rooms on top of each other 

to be more similarly represented in the brain than the two adjacent rooms on the same 

floor. Consequently, I would expect less fMRI activity for the vertical room condition 

than the horizontal condition. I also tested whether two rooms in a diagonal relationship 

were more distinguishable than either the vertically or horizontally adjacent room due to 

physical or perceptual distance. For this comparison, I used a repeated measures 

ANOVA with 3 room types as a main factor. In Figure 4.8B, I also plot the same room 

condition for reference purposes. Since the room encoding region was defined by the 

“same room < different room” contrast, the “same room” should be associated with 

reduced activity in all regions.  
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A significant main effect was found in all regions except for the left retrosplenial cortex 

(RSC_R, F(2,58)=3.8, p=0.029; RSC_L, F(2,58)=2.4, p=0.10; PHC_R, F(2,58)=3.2, 

p=0.049; postHC_R, F(2,58)=3.5, p=0.036; postHC_L, F(2,58)=3.6, p=0.032). Post-hoc 

t-tests showed that this main effect was driven by a small difference between the 

vertical and diagonal conditions (“ver” versus “diag”, RSC_R, t(29)=-2.4, p=0.022; 

PHC_R, t(29)=-2.5, p=0.017; postHC_R, t(29)=-2.3, p=0.031; postHC_L, t(29)=-2.3, 

p=0.028). The diagonal condition evoked a larger signal than the vertical condition, 

implying that two rooms in a diagonal relationship are more differently encoded than 

two rooms on top of each other. None of the regions showed a significant difference 

between the vertical and horizontal conditions.  

 

As a side note, the sign of the mean activity (beta) was negative in the hippocampus, 

implying that the activity was lower during the stimulus presentation period (the virtual 

navigation and subsequent object-location memory test) compared to the fixation cross 

inter-trial interval. In the literature, the hippocampus is often reported to show negative 

beta values during stimulus presentation or task periods (Bakker et al. 2008; 

Evensmoen et al. 2015; Hodgetts et al. 2015; Brodt et al. 2016). I believe that the 

absolute beta value of a single condition has little meaning in this study as the implicit 

baseline (inter-trial interval) was not a meaningful experimental condition. The current 

study explicitly focussed on comparisons between the main experimental conditions 

such as the “same room” versus the “horizontal room”. The comparisons showed the 

predicted pattern of repetition suppression, with the fMRI signal associated with the 

“same” condition reduced compared to the different room conditions.  

 

4.3.3 Supplementary analysis: room versus view encoding  

In order to know whether the retrosplenial cortex, parahippocampal cortex and 

posterior hippocampus encoded view information associated with each room and/or 
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more abstract spatial knowledge about the room, I conducted a supplementary analysis 

that separated the same room condition into sub-categories of same view and different 

view conditions. I then compared them to the different room condition (see Section 

4.2.7). I observed repetition suppression effects even when participants visited the 

same room but approached it from a different view (Figure 4.9; one-sided paired t-

tests: “same room, different view” < “different room”, RSC_R, t(29)=-2.1, p=0.021; 

RSC_L, t(29)=-2.4, p=0.011; PHC_R, t(29)=-1.9, p=0.034; postHC_R, t(29)=-1.8, 

p=0.041; postHC_L, t(29)=-1.9, p=0.034). This suggests that these regions contained 

abstract room information that was not limited to the exact view. However, there was 

also evidence for view encoding in some regions. For example, visiting the same room 

from the same view evoked significantly less activity compared to visiting the same 

room from different view in the right retrosplenial cortex, parahippocampal cortex and 

posterior hippocampus (one-sided paired t-tests: “same room, same view” < “same 

room, different view”, RSC_R, t(29)=-2.5, p=0.010; PHC_R, t(29)=-3.4, p=0.001; 

postHC_R, t(29)=-1.8, p=0.041). In contrast, the left retrosplenial cortex and left 

posterior hippocampus did not show any significant differences between the same view 

and different view (p>0.1). In summary, left retrosplenial cortex and left posterior 

hippocampus showed relatively pure room encoding that was independent of view. 

Other regions showed additional view dependency, and this was particularly strong in 

right parahippocampal cortex.  
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Figure 4.9 Room and view encoding. Even when participants visited the same room from an approach 

with a different view, the fMRI signal was smaller than when visiting a different room (“same room, different 
view” < “different room”), suggesting the existence of abstract room information that is not explained by a 
particular view. However, RSC_R, PHC_R and postHC_R showed additional view dependency (“same 
room, same view” < “same room, different view”). Error bars are SEM adjusted for a within-subjects design 
(Morey 2008). *p<0.05. 

 

4.4 Discussion 

In this study I investigated how a multi-compartment 3D space (a multi-level gallery 

building) was represented in the human brain using behavioural testing and fMRI 

repetition suppression analyses. Behaviourally, I observed faster within-room 

egocentric spatial judgments and a priming effect of visiting the same room in an 

object-location memory test, suggesting a segmented mental representation of space. 

At the neural level, I found evidence of hierarchical encoding of this 3D spatial 

information, with the left anterior hippocampus containing local corner information 

within a room, whereas retrosplenial cortex, parahippocampal cortex and posterior 

hippocampus contained information about the rooms within the building. Furthermore, 

both behavioural and fMRI data were concordant with unbiased encoding of vertical 

and horizontal information.  

 

I consider first the behavioural findings. There is an extensive psychological literature 

suggesting that space is encoded in multiple “sub-maps” instead of a flat single map. 

Accuracy and/or reaction time costs for between-region spatial judgments (McNamara 
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et al. 1989; Montello and Pick 1993; Han and Becker 2014), and context swap errors, 

where only the local coordinate is correctly retrieved (Marchette et al. 2017), are 

evidence for multiple or recurring sub-maps. Here, I observed faster response for 

within-room direction judgments and a behavioural priming effect of visiting the same 

room during a spatial memory task. These findings are therefore consistent with the 

idea of a segmented representation of space.  

 

Importantly, the current study examined regionalisation in 3D space and compared the 

influence of vertical and horizontal boundaries for the first time. Some previous studies 

have suggested a bias in dividing space in the horizontal plane (Jovalekic et al. 2011; 

Thibault et al. 2013; Flores-Abreu et al. 2014). The horizontal planar encoding 

hypothesis predicts an additional behavioural cost for spatial judgments across floors 

and priming effects for the rooms within a same floor. However, I did not find any 

significant difference in performance for spatial judgments across vertical and 

horizontal boundaries, or priming effects for rooms on the same floor. Although the 

absence of significant difference does not necessarily mean equivalence, the most 

parsimonious interpretation would be that each room within this 3D space was similarly 

distinguishable.  

 

This fits with the symmetric encoding of 3D location information in a semi-volumetric 

space tested in Experiment 1, and isotropic place fields found in bats (Yartsev and 

Ulanovsky 2013). One concern might be that the small number of rooms in the virtual 

building in the current study allowed participants to encode each room categorically 

without being truly integrated in a 3D spatial context. However, in order to be 

successful at the egocentric judgments task across rooms (mean accuracy was 80%), 

the participants must have had an accurate representation of the 3D building. Testing 

an environment with more floors and rooms in the future could facilitate the search for 

any additional hierarchies within 3D spatial representations. For example, rooms might 
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be further grouped into the horizontal plane or a vertical column in a more complex 

environment. It might also help to reveal subtle differences, if they exist, between 

vertical and horizontal planes.  

 

At the neural level, I found that the fMRI response in the left anterior hippocampus was 

associated with local corner information that was generalised across multiple rooms. 

This  fits well with previous findings that hippocampal place cells in rodents fire at 

similar locations within each segment of a multi-compartment environment (Derdikman 

et al. 2009; Spiers et al. 2015). This common neural code enables efficient encoding of 

information. For example, the 16 locations in the virtual building could be encoded 

using only 8 unique codes (4 for distinguishing the corners of rooms and 4 for 

distinguishing the rooms themselves) given its regular substructures. This room-

independent representation in the anterior lateral hippocampus can also be seen as a 

‘schematic’ representation of space (Marchette et al. 2017) where the regular structure 

of the environment is extracted. Furthermore, there is evidence that the ability of the 

hippocampus to extract regularity in the world is not limited to the spatial domain. A 

previous fMRI study found that temporal order information in the hippocampus 

generalised across different sequences (Hsieh et al. 2014). Statistical learning of 

temporal community structure has also been associated with the hippocampus 

(Schapiro et al. 2016) and, interestingly, localised to the anterior portion. Rodent 

electrophysiology and modelling work also suggests that ventral hippocampus 

(analogous to the human anterior hippocampus) is well suited to generalising across 

space and memory compared to dorsal hippocampus (analogous to the human 

posterior hippocampus) (Keinath et al. 2014).  

 

In addition to generalised within-room information, it is also important to know a room’s 

location to identify one’s exact position within a building. I found that multiple brain 

regions represented room information, with the retrosplenial cortex exhibiting the most 
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reliable room repetition effect. At first this finding might seem surprising, given that 

head direction information has been consistently associated with the retrosplenial 

cortex in humans and rodents (Baumann and Mattingley 2010; Marchette et al. 2014; 

Shine et al. 2016; Jacob et al. 2017). In this experiment, participants faced paintings on 

opposite walls within a room. Therefore, if retrosplenial cortex encoded the participant’s 

facing direction, local corner encoding would be expected instead of room encoding. 

However, numerous findings suggest that retrosplenial cortex encodes more than head 

direction; processing of multiple spatial features such as location, view, velocity and 

distance have been linked with this region (Cho and Sharp 2001; Sulpizio et al. 2014; 

Alexander and Nitz 2015; Chrastil et al. 2015). Moreover, retrosplenial cortex has been 

found to be involved in both a location and an orientation retrieval task when 

participants viewed static pictures of an environment during fMRI (Epstein et al. 2007).  

 

Given the rich repertoire of spatial, visual and motor information the RSC processes, it 

is perhaps not surprising that some studies observed local head direction signals and 

others found global head direction information in this region (Marchette et al. 2014; 

Shine et al. 2016). This might also be influenced by functional differences within the 

retrosplenial cortex, or indeed laterality effects. In our experiment, the right retorpslenial 

cortex showed stronger repetition suppression when participants visited the same room 

from same view compared to when they visited the same room from different view, 

whereas the left retrosplenial cortex response was only influenced by the repetition of 

the room. 

 

Retrosplenial cortex might have a role in integrating local representations within a 

global environment. A recent theory about the neural encoding of large-scale 3D space 

proposed that 3D space is represented by multiple 2D fragments, and retrosplenial 

cortex was proposed to be a candidate area for stitching these together (Jeffery et al. 

2015). In the current experiment, room information can be broadly viewed as the 
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orienting cue within a building that allows integration of the fragmented space (each 

room). For localisation and orientation of local representations within a larger spatial 

context, landmark information is crucial and retrosplenial cortex supports the learning 

of and processing of stable landmarks (Auger et al. 2012, 2015). Furthermore, head 

direction signals in retrosplenial cortex are dominated by local landmarks (Jacob et al. 

2017).  

 

The second region that represented room information was the parahippocampal cortex. 

It also showed a strong view dependency in addition to room information. This 

contrasts with the left retrosplenial cortex which only showed a room repetition effect. 

Together these findings are consistent with the proposed complementary roles of the 

parahippocampal cortex and retrosplenial cortex in scene perception, whereby the 

former seems to respond in a view-dependent manner whereas the retrosplenial cortex 

represents integrative and more abstract scene information. For example, it has been 

shown that when participants saw identical or slightly different snapshot views from one 

panoramic scene, retrosplenial cortex showed fMRI repetition effects for both identical 

and different views, but parahippocampal cortex only exhibited repetition suppression 

for the identical view (Park and Chun 2009). In addition, multivoxel patterns in 

retrosplenial cortex have been observed to be consistent across different views from 

each location, whereas this was not the case for the parahippocampal cortex (Vass 

and Epstein 2013). 

 

Along with retrosplenial cortex and parahippocampal cortex, the final area to represent 

room information was the posterior hippocampus. The similarity in spatial encoding 

between these regions might be predicted from their close functional and anatomical 

connectivity (Kobayashi and Amaral 2003; Kahn et al. 2008; Blessing et al. 2016). It is 

notable that in Experiment 1, I also found that posterior hippocampus and retrosplenial 

cortex encoded the same type of spatial information (vertical direction) while anterior 
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hippocampus encoded a different type of spatial information (3D location). In that 

study, different vertical directions resulted in more distinguishable views, although 

direction information observed in the multivoxel patterns remained significant after 

controlling for low level visual similarities. The current result does not fit precisely with 

accounts that associate the posterior hippocampus with a fine-grained spatial map 

(Poppenk et al. 2013; Evensmoen et al. 2015). In fact, my findings could be interpreted 

as evidence in the opposite direction, namely that coarser-grained representations of 

the whole building engage the posterior hippocampus. Nevertheless, overall, the 

anterior and posterior hippocampal findings provide further evidence of functional 

differentiation down the long axis of the hippocampus (Baumann and Mattingley 2013; 

Poppenk et al. 2013; Strange et al. 2014; Zeidman and Maguire 2016).   

 

Finally, as with the behavioural data, I examined the fMRI data for possible differences 

between the horizontal and vertical planes. I did not find significant differences in fMRI 

amplitude between the vertical and horizontal conditions in the brain structures that 

contained room information. This neural finding is consistent with the behavioural 

results of similar accuracy and response time for spatial judgments across vertical and 

horizontal rooms, and similar priming effects for each room. These results fit well with 

an isotropic representation of 3D space, similar to Experiment 1.  

 

Again, as with the behavioural data, one concern might be that each room is 

represented in retrosplenial cortex, parahippocampal cortex and posterior 

hippocampus in a categorical, semantic manner without consideration of their physical 

3D location in building. However, as I discussed earlier, egocentric spatial judgments in 

the pre-scan task prevented participants from separately encoding each room without 

the 3D spatial context. Furthermore, I found that visiting a diagonal room evoked a 

larger fMRI signal than visiting a vertical room, and this finding cannot be explained if 

each room was encoded in a flat manner without a spatial organisation. This implies 
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that the neural representation of two rooms in a diagonal relationship were more 

distinguishable than two rooms on top of each other. This might be due to the change 

in two axes for the diagonal room (vertical and horizontal) compared to a change along 

only one axis for the vertical room, or simply because of a longer distance between two 

rooms in diagonal relationship. Distance encoding has been previously reported in 

parahippocampal cortex and RSC (Marchette et al. 2014; Sulpizio et al. 2014).  

 

To disambiguate these possibilities, a larger environment consisting of multiple vertical 

and horizontal sections should be tested. For example, if the physical distance between 

the rooms is the main factor for neural dissimilarity, two rooms on the same floor that 

were separated by 5 other rooms (e.g. Rm101 and Rm106) would be more 

distinguishable than two rooms that are both vertically and horizontally adjacent (e.g. 

Rm101 and Rm 202). If the change in both vertical and horizontal axes always has a 

greater effect than the change in one axis, the diagonal rooms would be more 

distinguishable than horizontally or vertically aligned rooms regardless of distance. Use 

of a larger environment would also widen the scope for detecting subtle differences, if 

any, in the vertical and horizontal axes. 

 

In addition to absolute physical distance, path or navigation distance is also a 

consideration. For example, a typical multi-level building like the one used in the 

current study has limited access points for movement across the floors. People cannot 

directly move up to the room above through the ceiling; rather they have to use stairs 

or elevators which are often sparsely located in the building. Thus, two rooms on top of 

each other are further apart in terms of actual navigation than two rooms side-by-side 

on the same floor, even when absolute distances are identical or the vertical rooms 

have even shorter physical distance than the horizontal rooms. Representation of 

space in the hippocampus is not only influenced by absolute distance but also by path 

distance (Howard et al. 2014), and it has also been suggested that topology instead of 
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physical geometry is encoded in hippocampal place cells (Dabaghian et al. 2014). It 

would be intriguing to systematically investigate the effect of physical and path 

distance, and the potential interaction with vertical/horizontal boundaries, in future 

studies. 

 

In summary, this second experiment provided novel evidence showing that a multi-

compartment 3D space was represented in a hierarchical manner in the human brain, 

where within-room corner information was encoded by the anterior lateral hippocampus 

and room (within the building) information was encoded by retrosplenial cortex, 

parahippocampal cortex and posterior hippocampus. Moreover, similar to the findings 

in the previous experiment where a 3D lattice structure was used, the behavioural and 

neural findings showed equivalence of encoding for vertical and horizontal information, 

suggesting an isotropic representation of 3D space even in the context of multiple 

spatial compartments. In the next experiment, I will test how a completely continuous 

3D space is encoded in the brain.  
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Chapter 5 Experiment 3: Direction encoding in a volumetric space 

5.1 Introduction 

In the previous two experiments, participants’ movements were restricted to either 

narrow tracks of the 3D lattice structure (Experiment 1) or the floors of a multi-level 

building (Experiment 2). Although humans are normally bound to such surfaces due to 

gravity, they sometimes explore open and volumetric 3D spaces – for example, when 

they dive in deep oceans, control aircraft and manoeuvre in the microgravity of a 

spaceship. For navigation in volumetric 3D space, which allows continuous rotations 

along all three axes, knowing one’s 3D orientation is crucial. In bats, a 3D compass 

system – head direction cells tuned to either azimuth, pitch, roll or the conjunctive 

components of 3D directions – was found in the presubiculum. However, the neural 

mechanisms of 3D head direction encoding still remain largely unknown in non-flying 

mammals because most previous studies have been conducted in a surface based 

environment (flat or tilted, as described in Section 1.3) rather than a full volumetric 

space. Technical difficulties associated with recording neural activity in non-flying 

animals in volumetric space (e.g. the requirement for underwater recording devices or 

microgravity simulators with a centrifuge) might be one reason for the dearth of 

knowledge.  

 

This is where studying the human brain with VR techniques becomes advantageous. 

With recent advances in affordable and easy-to-use VR technologies, I could build a 

virtual zero gravity spaceship environment where participants felt like they were floating 

or flying. I then tested for the existence of 3D direction signals in the human brain while 

participants were moving in a wide range of 3D directions. This is in contrast to 

Experiment 1, which only examined head direction signals on a 29° tilted track.  
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Also in comparison to the previous two experiments, I introduced behavioural training 

with a head-mounted display (“VR goggles”) here in Experiment 3. The VR goggles 

provided a much more immersive sensation of 3D space than a conventional screen 

because they tapped into multisensory (visual, vestibular and proprioceptive) inputs, 

which are crucial for the head direction system. It was previously suggested that 

exposure to both visual and vestibular stimuli during a pre-scan period with VR goggles 

might lead to a recapitulation of body-based information during later fMRI scanning, 

where only visual input is available due to head immobilisation (Shine et al. 2016).  It 

was further noted that pre-exposure to vestibular cues could be particularly important 

for detecting head direction signal in the thalamus (Shine et al. 2016).  

 

In this chapter, I tested whether vertical (pitch) and horizontal (azimuth) direction 

information was encoded in the brain using fMRI multivoxel pattern similarity analysis. I 

focused on the brain regions that are known to contain head direction cells – 

retrosplenial cortex, thalamus, subiculum and entorhinal cortex, but I also searched for 

direction encoding beyond the ROIs using a whole-brain searchlight analysis. In 

addition, I examined whether participants were equally good at encoding vertical and 

horizontal direction using behavioural tests. Neural correlates of individual differences 

in direction judgment performance was also investigated.  

 

5.2 Methods 

5.2.1 Participants 

Thirty healthy adults took part in the experiment (16 females; mean age = 25.9 ± 4.8 

years; range 19-36 years; all right-handed). All had normal or corrected-to-normal 

vision and gave informed written consent to participation in accordance with the local 

research ethics committee. To minimise the risk of VR-related feelings of nausea, 
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during this experiment, I primarily recruited participants who had previous experience 

of using VR goggles without discomfort. 

 

5.2.2 The virtual environment 

The virtual environment was composed of two distinctive rectangular compartments, 

called here room A and room B for convenience, which were linked by a corridor 

(Figure 5.1A). Participants were instructed that they were inside a virtual zero gravity 

“spaceship” where they could move up, down, forwards and backwards freely. The 

walls, floors and ceilings had different textures which provided orientation cues. A 

snapshot of the virtual environment as seen from a participant’s perspective during 

scanning is shown in Figure 5.1B-E. The virtual environment was implemented using 

Unity 5.4 (Unity Technologies, CA, United States) with textures and sci-fi objects 

downloaded from the Unity Asset Store. The virtual environment can be viewed here: 

www.fil.ion.ucl.ac.uk/Maguire/spaceship3D. 

  

The virtual spaceship was rendered on two different mediums for pre-scanning tasks 

and scanning tasks respectively: VR goggles (Samsung Gear VR, model: SM-R322 

with a Samsung Galaxy S6 phone) and a standard computer screen (20.1 inch LCD 

monitor, Dell 2007FP with Dell Optiplex 980 computer).  

 

The VR goggles provided participants with a fully immersive sensation of 3D space via 

their built-in head motion tracking system, stereoscopic vision and wide field-of-view 

(96°). A rotation movement in the VR display was made by a participant’s physical 

head rotation, and a translational movement was made by a button press on the 

Bluetooth controller (SteelSeries Stratus XL, Denmark). For example, a participant 

could move up towards the ceiling in the virtual spaceship by physically looking up and 

pressing the forward button on the controller. To rotate to the right, they physically 
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rotated their head to the right or rotated their whole body when the required rotation 

was beyond the range of neck rotation. For ease of rotation, participants were seated 

on a swivel chair throughout.  

  

During fMRI scanning, participants watched a video that was rendered on a standard 

computer screen (aspect ratio = 4:3). The video was a first-person perspective that 

gave the participants the feeling of moving in the virtual spaceship. The stimuli were 

projected on the screen using a projector at the back of the MRI scanner bore (Epson 

EH-TW5900 projector), and participants saw the screen through a mirror attached to 

the head coil. The screen covered a field of view of ~19° horizontally and ~14° 

vertically.  

 

 

Figure 5.1 The virtual environment. (A) An overview of the virtual spaceship composed of two rooms 

linked by a corridor. Some walls are shown as transparent here for display purposes. (B-E) Example views 
from a participant’s perspective during scanning. (B) and (C) are views when a participant is facing down 
in room A and room B, respectively. (D) and (E) are views when a participant is facing straight ahead in 
room A and room B, respectively. 
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5.2.3 Procedure 

All participants completed the experimental tasks in the following order: familiarisation 

and pointing task with VR goggles prior to scanning, direction judgment task during 

scanning (which was preceded by a short practice of the scanner task) and post-scan 

debriefing. 

 

Pre-scan: familiarisation  

Participants first familiarised themselves with the VR goggles and the controller during 

a simple “ball collection” task (duration = 5 minutes). Multiple balls were scattered in 

the spaceship and participants moved to the balls one-by-one. When they arrived at 

each ball, they received auditory feedback (a ‘ping’ sound). The primary purpose of this 

task was to familiarise participants with controlling their movements in the virtual 

environment via head/body rotations and button presses on the controller. In addition, 

participants were asked to pay attention to the overall layout of environment for later 

tasks. This ball collection task also ensured that the participants visited every part of 

the virtual environment.  

 

Pre-scan: pointing task 

After the initial familiarisation period, participants performed a spatial memory task 

which required a good sense of direction in the virtual 3D spaceship (duration = 15 ± 2 

minutes, Figure 5.2). While wearing the VR goggles, at the beginning of each trial, 

participants were placed in one of the two rooms in the spaceship. There was one 

floating ball in the room and participants had to memorise the location of the ball. 

During this encoding phase (duration = 18 sec), participants could move freely and 

they were instructed to look at the ball from various directions and distances in order to 

learn the precise location of the ball. The ball then became invisible and a participant 

was transported to a random location. Participants were then required to look towards 
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the remembered location of the ball and press a button when they had made their 

decision, after which feedback was provided in the form of the angular deviation from 

the true angle (Figure 5.2B). Throughout the task (encoding and testing), a small red 

crosshair was shown to aid the orientation (Figure 5.2B).  

 

In the majority of trials (“within-room”, n = 16), testing took place in the same room 

where the ball was located during encoding. There were six additional trials where 

testing occurred in the other room; for example, participants encoded the ball’s location 

in room A but they were placed in room B during the test phase, requiring them to point 

to the ball behind the wall. These “across-room” trials were included in order to 

encourage participants to build an integrated map of the whole spaceship that was not 

limited to a local room. An integrated mental representation was important for the later 

fMRI analyses because I searched for direction information that was generalised 

across the two rooms. 

 

 

Figure 5.2 The pre-scan pointing task. (A) Wearing VR goggles, participants moved inside the virtual 

spaceship by rotating their head or body and pressing the forward button on the controller. (B) During the 
encoding phase, participants memorised the precise location of a ball by looking at it from various 
directions and distances. During the test phase, they were positioned at a random location and were asked 
to look towards the remembered location of the balls. Once they had made their decision and pressed the 
button, feedback was provided in the form of their absolute angular error. 

 

Scanning: direction judgment task 

During scanning, participants watched a video rendered on a standard display and 

performed a direction judgment task. The video provided participants with the feeling 

that they were flying in a controlled 3D trajectory within the spaceship (Figure 5.3A). 
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The pre-programmed video allowed tight control of location, direction and timing for all 

participants. The trajectory consisted of multiple short linear movements (each of 3 

sec) followed by rotation (2/2.6 sec). Ideally, I would have sampled all possible head 

directions in 3D space (from -180° to 180° horizontally and from -90° to 90° vertically), 

but I restricted the range of linear movement directions in order to acquire reliable 

measurements of the neural responses to each direction within the limited scanning 

time. I sampled five levels of horizontal azimuth and five levels of vertical pitch from -

60° to 60° with 30° steps, resulting in 25 unique 3D directions (Figure 5.3B,C).  

 

Figure 5.3 The direction judgment task during scanning. (A) Participants watched a video that 

provided the sensation that they were moving inside a virtual spaceship. (B) Occasionally, participants 
were asked to indicate either the vertical or horizontal direction of their last movement. (C) During 
scanning, five levels of pitch and azimuth were sampled, resulting in 25 unique 3D head directions. 

 

A smooth trajectory was used without abrupt rotations (e.g. if a participant’s previous 

direction was 0°, the participant would be facing 0 ± 30° after a turn). A constant linear 
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and angular velocity was applied in order to control the velocity, which can modulate 

the firing rate of head direction cells (Stackman and Taube 1998). If a participant 

reached the boundary of the spaceship, a blank screen appeared for two seconds and 

then the next trajectory started from the other end of the spaceship. On a quarter of the 

trials, a question screen appeared immediately after a linear movement and 

participants indicated the direction of their last movement by pressing a button pad (a 

5-alternative forced choice question with a time limit of 5 sec, mean response time = 

1.7 ± 0.4 sec, Figure 5.3B). When they made an incorrect choice, the correct direction 

was then shown on the screen. This direction judgment task ensured participants kept 

track of their movements during scanning. Since vertical or horizontal direction 

questions were randomly presented, participants were required to know their 3D 

direction throughout. The two rooms of the spaceship were visited alternatively for each 

of four scanning sessions. Half of the participants started in room A and half started in 

room B. Each scanning session lasted ~11 minutes with a short break between the 

sessions, making a total functional scanning time of 50 minutes.  

 

Of note, roll rotations are also possible in 3D space (e.g. where the right ear is down or 

the left ear is down, Figure 1.7B). However, roll rotation is less important for navigation 

because the azimuth and pitch determine the forward movement vector (Figure 1.1B) 

and the roll is simply a rotation around this vector. It has been proposed that animals 

tend to avoid roll rotations for the efficient computation of 3D direction, and that might 

be the reason for the paucity of cells tuned to roll in bats (Finkelstein et al. 2015, 2016). 

The head motion of participants recorded during the pre-scan VR experiment indeed 

confirmed that the roll was close to zero. Thus, I focused on the azimuth and pitch and 

not roll in this experiment. 
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Post-scan debriefing session 

After scanning, participants were asked to rate how much they felt immersed in the 

virtual environment, separately for the pre-scan VR goggle tasks and the scanning task 

with the conventional display. The multiple choice options were similar to those used in 

Experiment 1 which were: “I felt like I was really in the spaceship”; “I occasionally 

thought about the environment as being computer-generated, but overall the 

environment was convincing and I felt I was moving around in the spaceship”; “I was 

often distracted by the feeling that I was not in a real environment”. They were also 

asked whether the vertical or horizontal question was easier during the scanning task. 

 

5.2.4 Behavioural analyses 

Pre-scan: a pointing task 

I first measured the absolute 3D angular error for the within-room trials and the across-

room trials. I then tested whether participants were equally good at processing vertical 

and horizontal information by decomposing the absolute 3D error of each trial into 

vertical and horizontal components. The geometry of the angular decomposition is 

shown in Figure 5.4. Let us assume that a participant was at location L and the true 

location of the ball was M (true direction: L→M). If the participant looked towards O (the 

actual direction: L→O), the absolute angular error was ∠MLO. I defined the vertical 

error as the pitch difference between the true direction and the actual direction, which 

was identical to ∠OLP in Figure 5.4. The horizontal error was defined as the angle 

between the true direction (L→M) and the looked-at direction where the pitch was 

matched (L→P), which was ∠PLM. The mean vertical and horizontal error was 

computed for each subject using the within-room trials, then a paired t-test was used to 

compare the mean vertical and horizontal error at the group level. I did not include the 

across-room trials because recalling the location of the ball in a different room involves 

different cognitive process from recalling within the same room, and the number of 
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across-room trials was much smaller than within-room trials.  As I described earlier, the 

main purpose of the across-room trials was to encourage participants to build an 

integrated representation of the whole spaceship. However, even when the across-

room trials were included, the result remained similar.  

 

After having observed a significant difference between the vertical and horizontal error, 

I wondered whether this difference was due to the fact that participants looked up or 

down with a steep angle to indicate the ball’s location, which is infrequently performed 

in our daily lives. To test this, I divided the trials into quadrants based on the pitch of 

the true direction. The mean and standard deviation for pitch for each quadrant were as 

follows: 1.0 ± 1.1°, 9.3 ± 1.5°, 30 ± 2°, 63 ± 4.5°. I then compared the vertical and 

horizontal error in these subsets of trials which ranged from almost flat (1.1°) to very 

steep (63°) conditions. I also divided the trials into those when participants performed 

the pointing task in room A and room B to check whether the difference in the vertical 

and horizontal error was unique to a particular environment. 

 

 

Figure 5.4 Decomposition of the angular error in the pointing task. When a participant who was 

located at L looked towards O instead of M (the true location of the ball), the absolute error was ∠MLO. 

The vertical error was defined as ∠OLP and the horizontal error was defined as ∠PLM.  

 

Scanning: direction judgment task 

I first measured overall accuracy (chance = 20%) to confirm whether participants knew 

their 3D direction in the virtual environment. I then tested whether participants were 
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better at knowing their vertical or horizontal direction. In comparing vertical and 

horizontal performance, it was more informative to consider how much a participant’s 

response direction deviated from the true direction and not just whether they made a 

correct or wrong judgement. For example, when the true direction was 1 (“steep up”, 

Figure 5.3B), a participant could have selected either 2 (“shallow up”) or 4 (“shallow 

down”) and these errors were quantitatively different. To quantify the angular 

sensitivity, I defined the angular error of each trial by assigning 0° when participants 

chose the correct response; 30° when participants chose the adjacent direction such as 

2 for 1, 60° when participants chose the direction 2 steps away from the correct 

direction such as 3 for 1, and so on. The mean angular error and response time was 

computed for vertical and horizontal questions respectively in each participant 

(excluding trials where participants did not respond within the time limit of 5 sec, which 

occurred very rarely - less than 1% of trials) and paired t-tests were used to compare 

the vertical and horizontal angular error and response time at the group level. 

 

Post-scan debriefing session 

I counted the number of responses for each option in the multiple choice debriefing (i.e. 

how much they felt immersed in the virtual environment and whether the vertical or 

horizontal question was easier, or whether they were similar). 

 

5.2.5 Scanning and pre-processing 

Functional MRI scans (voxel size = 3 x 3 x 3 mm, 44 slices, TR = 3.08 sec) and a 

structural MRI scan (1 x 1 x 1 mm) were acquired using a 3T Siemens Trio scanner 

and preprocessed using SPM12. The scanning parameters and preprocessing are 

described in detail in Section 2.5.4. To summarise, after removing the first 5 volumes to 

allow for T1 equilibration effects, functional images were realigned to the first volume of 

each session and geometric distortion was corrected by the SPM unwarp function 
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using the fieldmaps. Each participant’s anatomical image was then coregistered to the 

distortion corrected mean functional images. Functional images were normalised to 

MNI space, and were left unsmoothed for multivoxel pattern analysis to preserve the 

fine scale activity patterns.   

 

5.2.6 fMRI analysis: ROI  

Anatomical ROIs 

The thalamus ROI was extracted from the AAL atlas (Tzourio-Mazoyer et al. 2002) 

(Figure 5.5). Although head direction cells have been mainly found in the presubiculum 

in animals, here I used a broader subiculum mask containing pre/parasubiculum 

because it was not feasible here to distinguish these fine structures with the standard 

resolution of the fMRI images. This broad subiculum ROI was delineated on the group 

averaged structural MRI scan following the protocol in Dalton et al. (2017) (Figure 5.5).  

I used the retrosplenial cortex and entorhinal cortex which I created in Experiment 1 

(see Section 3.2.6 for details). The number of functional voxels (3 x 3 x 3 mm) within 

each ROI (L = left, R = right) were as follows: thalamus_L, 302; thalamus_R, 286; 

retrosplenial_L, 158; retrosplenial_R, 135; entorhinal_L, 47; entorhinal_R, 49; 

subiculum_L, 34; subiculum_R, 34. 

 

Figure 5.5 The thalamus (blue) and subiculum (red) ROIs are shown on the group averaged 
structural MRI scan. 
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Representational similarity analysis – ROI  

To examine whether each ROI contained vertical or horizontal direction information, or 

both, I used a multivoxel pattern analysis similar to that used in previous studies (e.g. 

Carlin et al. 2011; Vass and Epstein 2013). This analysis compared the neural 

similarity measures to model similarity values predicted from different encoding 

hypotheses. As a first step in the analysis, I estimated the neural responses to each 3D 

head direction using a GLM. The design matrix contained 25 main regressors which 

were boxcar functions that modelled the period when participants moved straight in one 

of 25 directions (5 levels for vertical pitch x 5 levels for horizontal azimuth) (Figure 

5.3C), convolved with the SPM canonical hemodynamic response function. In addition, 

the occasional questions and blank screen periods (when participants came to the 

border of the spaceship) were separately modelled in the GLM as regressors of no 

interest. Six head realignment parameters were also included as nuisance regressors. 

The GLMs were applied for each scanning session in each participant. 

 

I then computed the neural representational similarities between each direction using 

Pearson’s correlation between the multivoxel T-values within the ROIs that were 

estimated in the preceding GLM. Crucially, representational similarity was calculated 

between neural responses to the 3D directions when a participant was in different 

rooms of the virtual spaceship. This ensured that neural similarity was calculated 

between independent scanning sessions (because each room was alternatively visited 

in separate scanning sessions). More importantly, this across-room similarity analysis 

allowed me to detect relatively pure spatial direction information that was independent 

of view, which is naturally linked to head direction.  

 

Figure 5.1B-E shows example views when participants moved in two different 

directions in the two rooms. For instance, when I calculated the neural similarity 

between the “down-left” direction and “flat-right” direction, the correlation between 
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“down-left” in room A (Figure 5.1B) and “flat-right” in room B (Figure 5.1E) and the 

correlation between “down-left” in room B (Figure 5.1C) and “flat-right” in room A 

(Figure 5.1D) were averaged. Therefore, the higher neural similarity between pairs of 

directions was not attributable to the higher visual similarity between the views 

associated with the directions within the same room. In summary, I calculated a 

symmetric 25 x 25 pairwise representational similarity matrix for each participant. I 

converted the similarity value (Pearson’s r) into a dissimilarity value by inverting it (1-r) 

for ease of later analysis. 

 

Finally, these neural dissimilarity measures were compared to the vertical and 

horizontal directional encoding models using multiple regression. I used encoding 

models in which neural dissimilarity is linearly dependent on the difference in pitch or 

azimuth between two directions (Figure 5.6). For example, a vertical encoding model 

predicts that neural similarity between two directions that have the same pitch will be 

the highest, while neural similarity between two directions where pitch is -60° and 60° 

respectively will be the lowest, regardless of azimuth. I also included a visual texture 

similarity model to control for low-level visual similarity across the rooms. Therefore, 

pitch distance, azimuth distance, visual similarity and a constant term were included in 

the multiple regression model. I computed the visual texture similarity using Renninger 

and Malik's (2004) model as I described in Section 3.2.8. This visual control model was 

also used in previous studies that investigated direction encoding (Vass and Epstein 

2013; Sulpizio et al. 2014).  

 

The regression coefficients (beta) of each participant were fed into a group level 

analysis to test whether the neural response in the selected ROIs was explained by the 

vertical or horizontal encoding model. I tested whether the regression coefficient was 

significantly greater than zero using a t-test. I also performed paired t-tests to compare 
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the betas of the vertical and horizontal models to ascertain whether the neural 

response was more sensitive to one model or the other. 

 

Figure 5.6 The model representational similarity matrix for the fMRI analysis. The representational 

similarity matrix (25 x 25) contained pairwise similarity values between each of the 25 unique directions. 
(A) If the vertical direction was encoded, the neural similarity between the directions that share a common 
vertical tilt, pitch would be high (dark colours), e.g. between (pitch, azimuth) = (0°,-60°) and (0°,60°) as 
indicated by the orange arrow. Similarity falls as the difference in pitch between two directions increases. 
(B) If the horizontal direction is encoded, the neural similarity between the directions that share a common 
horizontal angle, azimuth would be high (dark colours), e.g. between (pitch, azimuth) = (0°,60°) and 
(30°,60°), as indicated by the orange arrow. Similarity falls as the difference in azimuth between two 
directions increases. 

 

5.2.7 Neural correlates of individual differences 

I also tested whether there was a relationship between the direction information 

represented in the multivoxel pattern in the ROIs and behavioural performance during 

the scanning direction judgment task. For the behavioural performance measure, I 

used the mean angular error pooled across the vertical and horizontal direction 

questions, given that the vertical and horizontal errors were highly correlated 

(Pearson’s r = 0.81, p < 0.001). I defined the direction information in individuals as the 

regression coefficient for the vertical and horizontal direction model in my ROIs. 

Pearson’s correlation coefficient was used for the significance test. 
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5.2.8 fMRI analysis – searchlight 

While my main interest was in testing for the existence of vertical and horizontal 

direction information in my pre-specified ROIs, I also conducted a whole-brain 

searchlight analysis (Kriegeskorte et al. 2006) to test whether there were any other 

brain regions sensitive to vertical and horizontal direction. Moreover, the searchlight 

analysis complemented findings from the ROI analysis particularly in the thalamus, by 

providing additional anatomical localisation, given that the thalamus is a heterogeneous 

structure containing multiple functionally distinct nuclei. For localisation of thalamic 

structures, I relied on the WFUpickAtlas software (Lancaster et al. 1997, 2000; Maldjian 

et al. 2003) and a human thalamus atlas (Morel 2007). I performed the same 

representation similarity analysis using the multivoxel T-values within small spherical 

ROIs (radius 6 mm) centred on each voxel across the whole brain. This generated 

regression coefficient maps for vertical and horizontal encoding models for each 

participant. These maps were fed into the group-level analysis (one-sample t-test) in 

SPM. I report voxel-wise p-values corrected for my anatomical ROIs. For the rest of the 

brain, I report voxels that survived whole-brain multiple comparison correction (family-

wise error rate of 0.05).   

 

5.3 Results 

5.3.1 Behavioural results – pointing task 

The pre-scan pointing task involved participants wearing the VR goggles and looking 

towards the remembered position of balls while they were positioned at random 

locations. The group mean angular error was 21 ± 9° for within-room trials. Figure 5.2B 

shows an example view when a participant made a ~20° error, and demonstrates that 

the participant’s pointing direction (the centre of the screen, a red crosshair) was 

reasonably close to the target ball. The error for across-room trials was slightly larger 
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(28 ± 20°). This is unsurprising, because participants had to orient themselves to the 

target ball behind the wall. Given this overall good level of performance, I am confident 

that participants went into the subsequent scanning experiment with a reasonable 

sense of orientation in the 3D virtual environment.  

 

Furthermore, I found that the mean vertical error was significantly smaller than the 

horizontal error when angular errors were decomposed into the vertical and horizontal 

components (t(29)=-3.4, p=0.002, Figure 5.7A). This suggests that participants were 

more accurate at recalling the ball’s location along the vertical dimension. This effect 

was significant even when room A and room B trials were analysed separately (room 

A, t(29)=-3.1, p=0.005; room B, t(29)=-3.3, p=0.003). Furthermore, the difference 

cannot be attributed to looking up or down with an unusually steep angle. When I 

divided the trials into quadrants based on the vertical pitch of the true direction, the 

vertical error was significantly smaller than the horizontal error for the first three 

quadrants where the mean vertical tilt was only 1.0°, 9.3°, or 30° (first quadrant, t(29)=-

3.5, p=0.001; second quadrant, t(29)=-4.1, p<0.001; third quadrant, t(29)=-2.6, p=0.01; 

fourth quadrant, t(29)=0.6, p=0.6).        

 

5.3.2 Behavioural results – direction judgment test 

During scanning, participants were moved in a preprogrammed 3D trajectory and were 

occasionally asked about their movement direction, either vertically or horizontally. The 

mean accuracy (74 ± 16%) was well above chance level (20%), suggesting that 

participants were able to keep track of their movement direction. I found that 

participants made significantly smaller errors for the vertical questions compared to the 

horizontal questions (t(29)=-2.4, p=0.02, Figure 5.7B). In contrast, I observed a small, 

but significant, difference in response time. Participants were slightly faster at the 
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horizontal questions (vertical = 1.79 ± 0.36 sec, horizontal = 1.67 ± 0.38 sec, t(29)=2.6, 

p=0.015). 

  

 

Figure 5.7 Behavioural results. (A) In the pre-scan pointing task, the vertical component of the angular 

error was significantly smaller than the horizontal component. (B) During the scanning direction judgement 
task, participants made smaller errors for the vertical question than the horizontal questions. Error bars are 
SEM adjusted for a within-subjects design (Morey 2008). ** p<0.01, * p<0.05.  

 

5.3.3 Post-scan debriefing session 

The rating data showed that participants felt immersed in the virtual environment, with 

the vast majority choosing either “I felt like I was really in the spaceship” (57% for the 

pre-scan VR goggle task, 10% for the scanning task) or “I occasionally thought about 

the environment as being on a computer screen, but overall the environment was 

convincing and I felt I was moving around in the spaceship” (43% for the pre-scan VR 

goggle task, 80% for the scanning task). This result implies that my virtual environment 

effectively conveyed a sense of being in 3D space, and particularly strongly during the 

pre-scan session with the VR goggles. 

 

In relation to the subjective difficulty of the vertical and horizontal questions during 

scanning, 50% of the participants reported that the vertical questions were easier while 

only 10% of the participants found the horizontal questions easier. This subjective 

report was in line with the objective measures reported above (i.e. the vertical error 
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was smaller). The rest of the participants (40%) reported that the difficulty was similar 

for vertical and horizontal questions. 

 

5.3.4 fMRI results – ROIs 

I investigated whether vertical and/or horizontal direction information was encoded in 

the multivoxel patterns in the pre-defined ROIs (that are known to contain head 

direction cells in 2D). The right retrosplenial cortex showed both vertical and horizontal 

direction information (vertical, t(29)=3.69, p=0.001; horizontal, t(29)=2.05, p=0.050, 

Figure 5.8A), but this region was significantly more sensitive to vertical direction (paired 

t-test, t(29)=2.61, p=0.014). In contrast, the left thalamus showed only horizontal 

direction encoding (t(29)=2.81, p=0.009, Figure 5.8B), and horizontal encoding was 

significantly stronger than vertical encoding (paired t-test, t(29)=-2.36, p=0.025). The 

right thalamus and left subiculum also showed horizontal direction information 

(thalamus, t(29)=2.27, p=0.031; subiculum, t(29)=2.63, p=0.013, Figure 5.8C,D), but 

direct comparison between vertical and horizontal sensitivity was not significant. 

Bilateral entorhinal cortex, right subiculum and left retrosplenial cortex did not show any 

significant evidence of vertical or horizontal direction encoding.  

 

Figure 5.8 Multivoxel pattern analysis in the ROIs. Each ROI is overlaid on the group averaged 

structural MR image on the top row. (A) Right retrosplenial cortex (RSC) showed both vertical and 
horizontal direction encoding, but it was more sensitive to the vertical direction. Bilateral thalamus (B, C) 
and left subiculum (D) showed only horizontal direction encoding. V, vertical; H, horizontal; R, right; L, left. 
Error bars are SEM. ** p<0.01, * p<0.05.  
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5.3.5 Individual differences 

The above analysis revealed evidence of vertical and horizontal direction information in 

the retrosplenial cortex, thalamus and subiculum at the group level. I then tested 

whether direction information in these regions could explain the individual differences in 

behavioural performance during the direction judgment test. I found that vertical 

direction information in the right retrosplenial cortex was significantly correlated with 

angular error (r = -0.45, n = 30, p = 0.01, Figure 5.9). This means that participants 

whose right retrosplenial cortex showed more vertical direction information were more 

accurate at making direction judgments. Horizontal direction information in the right 

retrosplenial cortex, bilateral thalamus and left subiculum was not correlated with 

behaviour (p>0.05). 

 

Figure 5.9 Neural correlates of individual differences. Participants whose right retrosplenial cortex 

exhibited more vertical direction information were better at the direction judgment task (i.e. had a smaller 
angular error). r = -0.45, n = 30, p = 0.01. 

 

5.3.6 fMRI results – searchlight 

A whole-brain searchlight analysis for vertical direction encoding identified bilateral 

retrosplenial cortex (right, peak at [9, -58, 8], t(29)=5.62, p=0.001; left, [-9, -46 ,2], 

t(29)=5.04, p=0.003, small volume corrected for bilateral retrosplenial masks, Figure 

5.10A), similar to the finding from the ROI analysis. Clusters in lingual gyrus (peak, [-
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12, -61, 2], t(29)=7.29, p=0.002; [3, -61, 8], t(29)=6.87, p=0.005) and cuneus (peak, [6, 

-82, 17], t(29)=7.24, p=0.002) also showed vertical direction information. 

 

Horizontal direction information was observed in the anterior part of the left thalamus 

(peak at [-9, -10, 11], t(29)=4.73, p=0.016, small volume corrected for bilateral 

thalamus masks, Figure 5.10B). The peak coordinate is most likely located in the 

ventral anterior nucleus, but I caveat this localisation by noting that the spatial 

resolution of fMRI scans used here (3 mm) was not fine enough to identify small 

thalamic nuclei with confidence. Furthermore, neural responses in the neighbouring 

thalamic nuclei could have contributed to this finding due to the nature of multivoxel 

pattern analysis (6 mm radius). I also observed a voxel in the left subiculum which 

showed horizontal direction information, as in the earlier ROI analysis ([-27, -25, -16], 

t(29)=3.58, p=0.04, small volume corrected for the bilateral subiculum mask). At the 

whole-brain corrected level, horizontal direction information was also observed in the 

central sulcus ([-33, -22, 50], t(29)=8.63, p<0.001), supplementary motor cortex ([-6, 5, 

53], t(29)=6.10, p=0.04) and visual cortex ([-9, -82, -10], t(29)=6.22, p=0.03; [-9, -79, 5], 

t(29)=6.04, p=0.047; [-6,-73,-7], t(29)=6.24, p=0.03).  

 



169 

 

 

Figure 5.10 Searchlight results. (A) Vertical direction information within the bilateral retrosplenial cortex 

(RSC) mask. (B) Horizontal direction information within the bilateral thalamus mask, p<0.001 uncorrected 
for display purposes. See the main text for the other regions that survived whole-brain multiple comparison 
correction.  

 

5.4 Discussion 

In this experiment I investigated how 3D head direction was encoded in the human 

brain when participants moved in a volumetric space. Using a VR environment and 

fMRI multivoxel pattern similarity analysis, I found that the thalamus and subiculum 

were sensitive to the horizontal component of 3D head direction. By contrast, vertical 

heading information was dominant in retrosplenial cortex, and vertical direction 

information in retrosplenial cortex was significantly correlated with behavioural 

performance during a direction judgment task. Participants were more accurate along 

the vertical dimension for both pre-scan and scan tasks. 

 

The anterior thalamic nuclei (ATN) are important subcortical structures for spatial 

navigation and memory (Jankowski et al. 2013). Within the hierarchy of the head 

direction cell network, the ATN receive vestibular inputs via the lateral mammillary 



170 

 

nuclei and project to higher cortical areas including retrosplenial cortex and dorsal 

presubiculum (Taube 2007). Most head direction cells in the ATN have been recorded 

when rodents moved on a 2D plane. The current study therefore significantly extends 

our understanding of the head direction system by providing the first evidence that the 

thalamus (especially the anterior portion) encodes horizontal heading even when 

participants moved in a volumetric 3D space.   

 

The lack of vertical direction information in the thalamus resembles the early finding of 

head direction cells in the lateral mammillary nuclei, which were insensitive to the 

vertical head tilt of rats (Stackman and Taube 1998), although we should be mindful of 

the difference in structures (thalamus versus mammillary nuclei) and environments (3D 

spaceship versus 2D plane), and the limitations of the recording apparatus used in this 

early rat study. The vertical insensitivity of the thalamus might also be related to 

previous findings that showed head direction cells in the rat ATN maintained the 

preferred direction on the vertical wall as if the wall was an extension of the floor, and 

the head direction cells only cared about the rotation along the body axis, not the 

rotation of the body axis relative to the vertical gravity axis (Calton and Taube 2005; 

Taube, Wang, et al. 2013).  

 

Why the head direction system in the thalamus was not sensitive to vertical pitch is an 

interesting question that requires further investigation. One possible explanation is that 

the vestibular system, which is responsible for angular integration and updating of the 

responses of head direction cells in the thalamus, might be less sensitive to vertical 

rotation because humans are surface-based animals and we infrequently rotate 

vertically. Although participants’ heads were immobilised during scanning, vestibular 

and proprioceptive inputs they experienced during the pre-scan task with the VR 

goggles might have been reinstated by visual cues during scanning and contributed to 

head direction encoding as suggested by a previous study (Shine et al. 2016). 
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Furthermore, optic flow during scanning alone could have stimulated the vestibular 

nuclei (Glasauer 2005), and head direction cells in the thalamus of rats were 

modulated by pure optic flow without visual landmarks (Arleo et al. 2013). Vertical and 

horizontal optokinetic responses are known to activate both common and unique 

vestibular nuclei (Bense et al. 2006). It is also possible that vertical information might 

be more evident in the thalamus if spatial encoding is studied in a real environment 

instead of a virtual environment. Recently, cells tuned to gravity (vertical tilt) were found 

in the macaque monkey anterior thalamus (Laurens et al. 2016).  

 

The next finding concerns the subiculum. The presubiculum is reciprocally connected 

to the anterior thalamus, and a lesion in the thalamus disrupts head direction cells in 

the presubiculum (Goodridge and Taube 1997). To date, the presubiculum is the only 

brain structure where head direction cells have been recorded in animals exploring a 

volumetric space (Finkelstein et al. 2015). In this bat study, cells that were sensitive to 

either azimuth (horizontal) or pitch (vertical) as well as conjunctive cells were found in 

the presubiculum. In the present study, I found only horizontal direction information in 

the human subiculum. This might be attributable to a difference in species (bat versus 

human) or to methodological differences. Unlike invasive recordings, fMRI measures 

aggregated neural responses. Therefore, the current study might have captured the 

dominance of cells tuned to azimuth compared to the cells tuned to pitch that was 

observed in the bat study (52% and 21% respectively). A future fMRI study with higher 

spatial resolution might be able to detect less abundant pitch and conjunctive head 

direction cells in the human presubiculum, if indeed a similar anatomical gradient of 

azimuth, pitch and conjunctive cells also exists in the human brain (Finkelstein et al. 

2015) .  

 

Unlike the thalamus or subiculum, the right retrosplenial cortex exhibited vertical 

direction information, although horizontal information was also present in this region. 
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Therefore, in principle it seems that retrosplenial cortex could serve as a 3D compass 

on its own.  My finding of a significant correlation between vertical direction information 

in the retrosplenial cortex and behavioural accuracy might reflect the functional 

relevance of retrosplenial cortex for processing 3D direction information (although it is 

unclear why only vertical direction information and not horizontal direction information 

in this region correlated with individual differences). The dominance of vertical 

information in the retrosplenial cortex is concordant with my previous finding of vertical 

direction encoding when participants moved on a 3D junglegym in Experiment 1. One 

explanation could be that visual cues might be more salient for the vertical axis 

compared to the horizontal axis (the influence of view is discussed further below). 

Within the head direction system, retrosplenial cortex is directly connected to early 

visual cortex (Kobayashi and Amaral 2003) and head direction cells in retrosplenial 

cortex are dominated by local visual landmarks (Jacob et al. 2017). Of note, the 

presubiculum is also known to have direct connections with secondary visual cortex in 

rodents (Vogt and Miller 1983), but whether there are direct connections between the 

presubiculum and early visual cortex in primates is unknown. 

 

Behaviourally, participants were more accurate at judging vertical direction (though 

slightly slower in response) during scanning. Half of the participants reported that the 

vertical question felt easier and some subjects anecdotally reported that it was due to 

the views of the ceiling and floor, even though I designed the side walls to also provide 

clear polarisation cues for the horizontal direction. Views are naturally dependent on 

head direction, and the horizontal component of head direction has less influence on 

views as the vertical tilt increases in 3D space. For example, let us assume that the 

azimuth of a participant is 0° and 180° when the vertical tilt is 0°. In this case, the 

participant faces towards global East and West and the views can be very different due 

to distinct landmarks. In contrast, when the vertical tilt is 90°, the participant looks 

straight up in the sky, regardless of whether they face East or West. The views of the 
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sky will be rotated 180° in retina space, but this change in view is less dramatic than 

the view when looking straight East or West. Although I tried to orthogonalise the view 

and head direction by measuring the neural similarity between pairs of directional 

responses across different rooms in my virtual environment (as I explained in Section 

5.2.6), and I also added a low-level visual texture similarity regressor for extra control, 

there still remains a possibility that the views were more similar when the vertical tilts 

were similar compared to when the horizontal direction was similar. This could reflect 

the nature of the relationship between head direction and view in 3D space, rather than 

being a particular feature of my virtual environment.  

 

In the pre-scan pointing task where participants were required to look at the 

remembered location of the ball, I also found smaller vertical errors compared to 

horizontal errors. There are multiple interpretations for this finding. First, the vertical 

axis might be inherently more salient than other axes because of gravity providing a 

reference direction (Barnett-Cowan and Bülthoff 2013). Participants physically tilted 

their head up and down when wearing the VR goggles in this task. Therefore, it would 

be interesting to test how much contribution physical gravity made to the encoding and 

recall of an object in 3D space by conducting the same experiment with a standard flat 

display and comparing performance between the different types of equipment. Second, 

as I discussed above, participants might have felt that there were more visual cues for 

the vertical dimension (ceiling and floor) than the horizontal dimension, even though I 

designed the environment to contain ample cues along all dimensions. Third, the height 

of the spaceship was shorter than one of the axis on the floor and this might have 

facilitated the vertical encoding of the location of the ball. One way to rule out the 

influences of visual appearance and geometry of an environment would be to conduct 

the experiment with two environments of which one is a 90° rotated version of the other 

so that the left-right axis becomes the up-down axis. Fourth, the larger horizontal error 

might be attributable to poor depth perception. It has been suggested that the depth 
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axis (which corresponds to one of the horizontal axes when participants are in an 

upright position, as in the current experiment) is uniquely represented, and not in fact 

the vertical axis (Orban 2013). 

 

Related to the vertical-horizontal asymmetry, one interesting question is the potential 

influence of an explicit cognitive task on the neural representation of head direction. In 

the current experiment, I occasionally asked participants to indicate their vertical or 

horizontal direction between movements. This task could be answered rapidly and 

easily, thus minimising interruption to the task and the need for additional scanning 

time, while ensuring that participants paid attention to their 3D movement direction. 

However, the explicit and separate questions for vertical and horizontal directions might 

have contributed to the encoding of vertical and horizontal information in different brain 

regions. Vertical and horizontal information might be more homogenously represented 

in these brain regions if participants move freely in 3D space without explicitly paying 

attention to the vertical and horizontal components of direction. Experimenters could 

then avoid using the terms “vertical” and “horizontal” during the experiment, and 

participants could be asked to directly indicate their 3D direction (although I note that it 

is almost impossible to indicate precisely and rapidly one’s 3D direction without dividing 

it to vertical and horizontal components). Alternatively, cognitive tasks that test an 

explicit awareness of movement direction could be removed, given that head direction 

cells are often recorded in rodents when animals forage in an environment without 

active navigation or a spatial memory test. In contrast, more spatially demanding tasks, 

such as 3D path integration with multiple pitch, roll and yaw rotations (Vidal et al. 

2004), might result in stronger head direction signals both vertically and horizontally.  

  

In conclusion, this experiment provided evidence showing that the thalamus, subiculum 

and retrosplenial cortex (the ‘classic’ head direction system) also encode horizontal or 

vertical heading in 3D space. The entorhinal cortex which was among my ROIs did not 
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show significant direction encoding. However, I found a different type of spatial 

representation in the entorhinal cortex, which I describe in the next chapter. 
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Chapter 6 Experiment 4: A grid code in volumetric space 

6.1 Introduction 

In the previous chapter, I presented evidence for vertical and horizontal direction 

encoding in the classical head direction cell network – the thalamus, retrosplenial 

cortex and subiculum – using an fMRI virtual navigation paradigm in a volumetric 

space. This 3D head direction information is expected to provide crucial inputs to place 

cells and grid cells – the main cell types supporting a 3D map of the environment in the 

brain. The grid code is particularly intriguing because it enables efficient encoding of a 

large space using relatively few cells, compared to when each individual cell fires at 

unique locations, as is the case with the hippocampal place code. The need for an 

efficient representation can be even greater for a volumetric 3D space than a 2D space 

because the former scales much faster than 2D space (a cubic function versus a 

square function).  

 

As I described in Section 1.4, theoretical studies have predicted grid cells to follow 3D 

arrangements such as a face-centred cubic (FCC) or hexagonal close packing (HCP) 

in a volumetric space (Mathis et al. 2015; Stella and Treves 2015). However, empirical 

studies are scarce, and knowledge about the activity of grid cells in 3D space remains 

elusive (except for some preliminary evidence of 3D grid cells reported in bats, Ginosar 

et al. (2016)). To fill this gap in our understanding of 3D spatial representations, in this 

experiment, I developed analysis methods to test for a grid code in a volumetric 3D 

space using human fMRI. 

 

The main question I asked was whether it is possible to detect a grid code using fMRI, 

given that this technique does not have cellular resolution. Fortunately, previous fMRI 

studies have successfully investigated grid cells in 2D space using a known property of 
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grid cells whereby their activity is modulated by movement direction (Doeller et al. 

2010). Here I proposed that the same property could be used to probe grid codes in 

3D.  

 

In this chapter, I first describe the proposed firing patterns of 3D grid cells, namely FCC 

and HCP, with graphical user interface (GUI) software I developed to visualise 3D grid 

structures and direction-modulated grid signals. Next, I explain the principles of 

detecting 3D grid cells using fMRI. A detailed description of the analysis is then 

presented together with theoretical and methodological considerations that are either 

unique to 3D grid codes or relevant to both 2D and 3D contexts. Finally, I tested the 

feasibility of this new analysis method using the fMRI data obtained in my virtual 

spaceship experiment which I described in the previous chapter. 

 

6.2 Methods: grid analysis 

6.2.1 Expected response profiles of grid cells in a volumetric 3D space 

Optimal encoding of 3D volumetric space with grid cells has been extensively 

discussed in previous theoretical and modelling studies (Mathis et al. 2015; Stella and 

Treves 2015), and here I briefly describe two potential arrangements of grid fields: FCC 

and HCP. Both FCC and HCP arrangements are analogous to the spatial arrangement 

of tightly stacked spheres inside a box with a minimum gap (e.g. oranges in a crate). 

These 3D arrangements can be viewed as 2D hexagonal lattices (Figure 6.1A left 

panel) stacked on top of each other with a translational shift between the layers. FCC is 

composed of three repeating layers (blue, yellow and red spheres, see Figure 6.1B left 

panel) and HCP is composed of two repeating layers (blue and red spheres, see Figure 

6.1C left panel). The grid axis, which is the key property used for my analysis, is the 
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direction linking one grid field to its neighbouring grid fields (the green lines linking a 

centre black sphere to neighbouring coloured spheres in Figure 6.1 middle panel).  

 

When considering one centre sphere and its neighbouring 12 spheres, the positions of 

3 spheres differ between the FCC and HCP arrangements (the yellow spheres in 

Figure 6.1B,C middle panel). This difference leads to different direction-modulated 

fMRI signals between the FCC and HCP, which is described in the next section. I 

developed interactive web-based software where users can zoom, pan, rotate and 

cross-sect a 3D grid cell’s structure (the software, including a manual, can be accessed 

here: www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui). Example screenshots are shown in 

Figure 6.2. The software was implemented using Unity 5.4 (Unity Technologies, CA, 

United States). 

http://www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui
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Figure 6.1 Grid cells in 2D and 3D. The left panels show the receptive fields (grid fields) of grid cells in 

different arrangements – (A) hexagonal in 2D, (B) FCC in 3D, (C) HCP in 3D. The middle panels show the 
unit cell and grid axis of each arrangement. In 2D, one grid field (black sphere) is surrounded by 6 fields 
(red balls). In 3D, one grid field (black sphere) is surrounded by 12 grid fields (red, blue and yellow 
spheres in FCC and red and blue spheres in HCP). The grid axis (green lines) is the direction linking one 
grid field to its neighbouring grid fields. A grid cell’s activity is expected to be modulated by the animal’s 
movement direction (black arrow) relative to the grid axis (the vertical (θ) and horizontal (φ) angles). The 

right panel shows the simulated grid cell’s activity as a function of the movement direction relative to the 
grid axis. Due to the regularity of the grid axis (e.g. 60° periodicity in 2D), grid activity also shows some 
periodic patterns. 
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Figure 6.2 Screenshots of my 3D grid cell visualisation software. The software, including a manual, 

can be accessed here: www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui. Users can change the viewpoint, the size 
of the spheres and select cross-sectional views of grid fields. Users can also switch between the FCC and 
HCP arrangements. 

 

6.2.2 Principles for detecting 3D grid cells using fMRI  

fMRI measures the gross activity of thousands of neurons via complex neural-

hemodynamic coupling. When the thousands of grid cells that fire at different locations 

are summed up, the gross activity is no longer expected to respond to fixed periodic 

locations in the environment. However, there is another important property of grid cells 

that enables their detection at a macroscopic level like fMRI. The activity of grid cells is 

known to be modulated by the alignment between the movement direction of an animal 

and the grid axis (Doeller et al. 2010). This means that a grid cell shows greater activity 

when an animal moves along the grid axis (Figure 6.1A middle and right panel). As the 

majority of grid cells share a common grid axis, the summed response of thousands of 

grid cells can be systematically modulated by the movement direction of a participant. 

In previous studies that investigated grid cells in 2D, fMRI activity was modelled as a 

cosine function of movement direction relative to the grid axis with a period of 60° to 

http://www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui
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account for hexagonal symmetry (Doeller et al. 2010; Constantinescu et al. 2016; 

Horner et al. 2016). 

 

I assume that the same principle of direction-modulation will hold in 3D, so that fMRI 

activity can be modelled as the degree of alignment between 3D movement direction 

and the grid axis. I defined the alignment score as a cosine of the angle between the 

3D movement direction and the nearest grid axis. Thus, a larger signal is expected 

when the angle is smaller (i.e. the movement is aligned to the grid axis). The nearest 

grid axis forms the minimum angle with the direction vector. The grid cell’s expected 

response when a participant is moving in a particular 3D direction, defined by azimuth 

(horizontal angle) and pitch (vertical angle), can be visualised using my interactive 

software. Figure 6.3A,B show examples of when movement direction is aligned to the 

grid axis (large signal) and when movement direction is misaligned (small signal), 

respectively.  

 

According to this model, FCC and HCP grid cells will show complex response patterns 

as a function of the vertical and horizontal components of a participant’s movement 

direction relative to the grid axis (Figure 6.1B,C right panels). The response patterns of 

FCC and HCP are largely similar except for the difference in vertical symmetry. As the 

HCP arrangement is symmetric across the horizontal plane (e.g. the blue spheres on a 

layer above the red spheres are located at the identical position as the blue spheres on 

the layer below, Figure 6.1C middle panel), two movement directions that only differ in 

the sign of vertical pitch (e.g. (azimuth, pitch) = (45°, 30°) and (45°, -30°)) result in the 

same grid activity (symmetric across θ = 0 plane in Figure 6.1C right panel). In 

contrast, the FCC arrangement is symmetric across the origin (e.g. the blue and yellow 

spheres are facing each other, Figure 6.1B middle panel) and therefore the two 

directions opposing across the origin will result in the same grid response (Figure 6.1B 

right panel). 
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Figure 6.3 A grid cell’s activity is modulated by movement direction relative to the grid axis. (A) A 

participant’s 3D movement direction (the black arrow, left panel) is close to the grid axis (the white line, left 
panel) with 5° deviation. Thus, the activity of grid cells is expected to be high (the yellow bar graph, right 
panel). (B) A participant’s movement direction (the black arrow, left panel) is far away from the grid axis 
(the white line, left panel) with 30° deviation. Consequently, less activity is expected (the yellow bar graph, 
right panel). Users can change the movement direction using the sliders on the right panel. The nearest 
grid axis turns from green to white as users change the movement direction. Users can also switch 
between the FCC and HCP models and change the viewpoint. See the online manual for a detailed 
explanation. 

 

6.2.3 The orientation of the grid axis relative to the environment 

Crucially, the activity of a grid cell, or a grid voxel in fMRI, depends upon both the 

movement direction of a participant (which is known to experimenters) and the 

orientation of a grid axis relative to the 3D environment (which is unknown to 

experimenters). Figure 6.4 describes two hypothetical cases where a participant moves 

in the same direction but the grid axis is oriented differently. In Figure 6.4A, a 
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participant’s movement direction (the black arrow) is relatively closely aligned to the 

grid axis with an angular deviation of 14°, resulting in high activity (the yellow bar 

graph). In Figure 6.4B, due to different orientation of the grid axis, the same movement 

direction is further away from the grid axis with an angle of 35°, resulting in low activity. 

The orientation of the grid axis should be numerically estimated by iteratively fitting the 

experimental data - a process I describe in a later section.  

 

 

Figure 6.4 The orientation of the grid axis relative to the environment. Movement direction (the black 

arrow, left panel) is identical in A and B (azimuth = 55°, pitch = 50° in this example). However, grid cells 
are aligned differently relative to the environment (the rectangular frame, left panels in A and B), meaning 
that the grid axes are rotated from each other (left panel). Thus, the grid alignment scores measured as 
the angle between movement direction and the nearest grid axis differ (14° versus 35°), resulting in 
different amounts of grid activity (the yellow bar graphs, right panels in A and B). Users can change the 
orientation of the grid axis using the sliders on the right panel. 
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Unlike in 2D, where the orientation of the grid axis can be specified by one polar angle 

from a reference direction (e.g. 20° from the north-south axis), the grid axis in 3D can 

be, in principle, rotated along any three arbitrary axes and the order of applying each 

rotation also matters (known as the non-commutative property of 3D rotation). Although 

users can explore these 3D rotation options in my software (Figure 6.5), I restricted the 

rotation of the 3D grid axis to only one axis so that six hexagonal grid fields (the red 

spheres in Figure 6.4) remained parallel to the ground of the environment when I 

analysed my fMRI data. This restriction in grid orientation can be justified by the fact 

that grid cells on a 2D horizontal surface show the corresponding hexagonal grid fields. 

This restriction is also required for when researchers want to compare putative grid 

orientation across multiple voxels or multiple participants using a standard circular 

statistic like a von Mises distribution. This restriction also simplifies the modelling 

process and reduces the computational cost and the risk of overfitting GLMs hundreds 

of times.  

 

 

Figure 6.5 When a grid axis is rotated freely along all three axes. A hexagonal grid pattern on the 

horizontal plane would not be observed in this case. 
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6.2.4 The relationship between the grid alignment score and fMRI activity 

A grid voxel’s activity is expected to be modulated by the degree of alignment between 

movement direction and the grid axis, and I defined the grid alignment score as the 

cosine of the angle between movement direction and the nearest grid axis. This is 

similar to the previous grid analysis in 2D which used parametric regressors of cosine 

and sine functions (Doeller et al. 2010; Horner et al. 2016). However, the precise form 

of the direction-modulated firing rate of grid cells is not known in either 2D or 3D. There 

is also additional complexity in measuring the grid cell’s signal via neural-hemodynamic 

coupling. Therefore, it is also possible to model the grid voxel’s activity with a non-

sinusoidal function, like a linear or binary function. The exact relationship between 

direction-modulated grid activity and the fMRI response should be examined in future 

studies.  

 

6.2.5 Estimating 3D grid orientation in fMRI data 

In this section, I describe how to estimate 3D grid orientation from an fMRI time series. 

As explained earlier, the grid alignment score can be calculated as the cosine of the 

angle between the participant’s movement direction (known to experimenters) and the 

nearest grid axis. The nearest grid axis is determined by the orientation of the grid axis 

relative to the environment, which is unknown to the experimenters (Figure 6.4). In 2D, 

the grid activity can be modelled as a simple cosine function of the movement direction 

(φ) and the orientation of grid axis (ω): 

Y = cos(60° ∙ φ − ω) 

Using the compound angle formula, the orientation (ω) can be estimated analytically by 

fitting cosine and sine functions in a GLM: 

cos(60° ∙ φ − ω) = cos(60° ∙ φ) ∙ cos(ω) − sin (60° ∙ φ) ∙ sin (ω) 
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However, a simple analytical function of azimuth  (φ ), pitch ( θ)  and the grid axis 

orientation, which can have up to 3 degrees of freedom (3 parameters), describing the 

complex response pattern of grid activity in 3D is unknown (Figure 6.1B,C right panel). 

Therefore, I suggest a simple numerical method to estimate grid orientation as follows.  

 

I first assume that grid orientation is aligned at 0° from a reference direction (e.g. 

parallel to the side wall of the environment) and then calculate the grid alignment score. 

This grid alignment vector is then convolved with the hemodynamic response function 

(the SPM canonical hemodynamic response function). The resulting vector serves as a 

hypothetical grid voxel signal. I create a GLM which contains this predictive 3D grid 

signal and nuisance regressors that include six head motion realignment parameters 

and experiment-specific conditions like the occasional question and response periods. 

The fMRI time series (after standard preprocessing) in each voxel and in each 

scanning session is then fitted with the GLM, and the outcomes - beta (regression 

coefficients) and mean square residual - are saved for each voxel.  

 

I then repeat the whole procedure with newly calculated grid alignment scores with 

different assumptions, namely that the grid orientation is aligned at 15°, 30°, 45°, …, 

120° relative to the environment (note it is sufficient to sample the grid orientation up to 

120°, as the geometry of the 3D lattice structure of both FCC and HCP is symmetric for 

120° rotations on a plane). For each voxel and each scanning session, I select the 

orientation of the grid axis that gives the best fit by comparing the mean square 

residual of these multiple GLMs.  A GLM with the smallest mean square residual and a 

positive regression coefficient for the grid signal regressor is selected. The reason I 

select the GLM with a positive regression coefficient is to avoid the inverted 

relationship between the hypothetical grid cell’s signal and the fMRI response (e.g. 

when movement is more aligned to the grid axis, the fMRI signal is lower). In rare 

cases (<10% of voxels in my empirical data – see later sections) where all grid 
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orientation models yield a negative regression coefficient, I simply select the GLM with 

the smallest mean square residual. To summarise, this iterative fitting process 

identifies which grid orientation best describes the fMRI signal in each voxel and in 

each scanning session. 

 

6.2.6 Testing for a grid signal in the fMRI data 

I then test whether each voxel shows a consistent 3D grid signal across different 

scanning sessions by quantifying the regression coefficient of the grid signal model. 

For instance, if the fMRI data in one scanning session (e.g. session 1) is best fitted with 

a grid model that aligns at 15°, I measure the grid score as the beta of the same grid 

orientation (15°) model in the another scanning session (e.g. session 3). The beta 

values of voxels in the ROI are averaged for each participant, and a t-test is used to 

test whether the beta is positive at the group level, as this hypothesis is inherently one-

sided. This approach is similar to previous 2D grid analyses where the grid orientation 

was estimated from one half of the dataset and tested on the other half of the dataset, 

and the regression coefficient was tested against zero at the group level (e.g. Doeller et 

al. (2010); a standard group level inference for fMRI experiments).  

 

However, there is a difference between my study and some of the previous studies in 

terms of grid orientation averaging. In Doeller at al. (2010) and Horner et al. (2016), the 

estimated grid orientation of each voxel within the ROI was averaged, and this 

averaged grid orientation model was tested in the other half of the data. Here, I 

estimate and test the grid orientation model within each voxel, then I later summarise 

the grid score of voxels within the ROI. Neighbouring grid cells share a common grid 

orientation which is the essential property of grid cells that allows for the detection of 

the direction-modulated signal at the fMRI voxel level, and earlier fMRI studies 

assumed one unique grid orientation for the entire entorhinal cortex. However, there is 
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also evidence of multiple grid modules within the entorhinal cortex that have different 

grid orientations and scales (Stensola et al. 2012), and I believe that estimating and 

testing grid orientation at the voxel level, instead of the whole ROI, can maximise the 

sensitivity of the analysis. This voxel-by-voxel estimation and test approach was used 

in more recent 2D grid cell study (Nau et al. 2018). 

 

6.3 Methods: empirical data 

In this section, I report on how I tested the feasibility of the 3D grid analysis that I 

proposed above, by applying the analysis method to empirical data. 

 

6.3.1 Participants, task and fMRI data 

The data from Experiment 3 were used in the analysis, given that the question I was 

addressing here was orthogonal to that considered in that experiment. To reprise 

briefly, 30 participants explored a virtual zero gravity spaceship while wearing VR 

goggles prior to scanning. During scanning, they were passively moved along a 

preprogrammed 3D trajectory inside the virtual spaceship (Figure 5.3). The 3D 

trajectory allowed tight control and even sampling of each 3D direction and timing. I 

used a 3D trajectory which sampled a limited range of movement directions, -60° to 60° 

both vertically or horizontally, to measure a reliable neural signal within a limited 

scanning time. Importantly, participants were required to keep track of their 3D 

movements during scanning and, as described in the previous chapter (Section 5.4.2), 

accuracy for the direction judgment question was well above chance. Participants 

visited the two compartments of the spaceship alternatively for each of 4 scanning 

sessions (11 minutes each). Functional images (3 x 3 x 3 mm) were realigned, 

normalised, and smoothed with a 6mm kernel. 
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6.3.2 ROI selection 

Taking my lead from the extensive animal literature on grid cells, I focused on my 

analysis on the entorhinal cortex. Left and right entorhinal masks that I described 

previously were used (Section 3.2.6). Of note, entorhinal cortex has been further 

divided into posterior medial and anterior lateral parts in one previous fMRI study 

(Bellmund et al. 2016), based on the finding in rodents that grid cells are typically 

reported in the medial entorhinal cortex. However, my study used standard resolution 

fMRI, and further segmentation of this kind was not feasible. Functional specialisation 

within the entorhinal cortex is an interesting topic that needs to be further addressed in 

future studies with high-resolution scanning sequences. 

  

Another important point to consider is that entorhinal cortex is notoriously difficult to 

image because of fMRI susceptibility artefacts in this vicinity. Although sequence 

development continues in this regard, entorhinal cortex still has inherently low raw 

BOLD signal compared to other cortical regions. Crucially, standard fMRI analysis 

softwares like SPM exclude voxels of low signal by default. The “global masking 

threshold” parameter in the first-level model specification in SPM determines which 

voxels are to be included in the analysis based on the raw intensity, and voxels in the 

entorhinal cortex can often be excluded. It can also result in a different number of 

voxels in the entorhinal ROI for each participant. In my studies, I defined the entorhinal 

ROI anatomically, without excluding any voxels based on raw signal intensity for 

several reasons. First, an exclusion criterion based on the mean BOLD intensity is 

arbitrary. Depending on the version of the software, the same voxels can be included 

or excluded from the analysis. Second, raw BOLD intensity alone does not predict 

whether a voxel shows functional modulation. For instance, whereas the raw signal 

intensity of cerebrospinal fluid is higher than most other cortical areas, we rarely 
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observe meaningful signal in the cerebrospinal fluid in typical cognitive experimental 

paradigms.  

 

6.3.3 Main grid analyses 

I applied the 3D grid analysis that I described in Section 6.2 to the preprocessed fMRI 

data. In essence, I estimated the orientation of the 3D grid (separately for FCC and 

HCP grid types) in each voxel within the entorhinal cortex by iteratively fitting the fMRI 

time series in each scanning session to the predicted grid alignment score defined as 

the cosine of movement direction and the nearest grid axis. When I fitted the grid 

model signals to my fMRI data using GLMs, the experiment-specific condition (turn, 

question and blank screen periods) were also included as regressors of no interests 

(see Section 5.2.3 for detailed experimental procedures). The grid model was then 

tested on data from another scanning session. Because my virtual spaceship had two 

compartments, I trained and tested the grid cell models within each compartment, and 

averaged the regression coefficient of the two compartments. This regression 

coefficient was tested against zero at the group level (excluding outliers - participants 

with more than a standard deviation of 3 in my empirical data) using a one-sided t-test. 

 

I then tested whether the estimated grid orientation was clustered across participants. If 

the grid axis was anchored to visual features in the environment such as landmarks or 

the boundary, every participant would exhibit a similar grid orientation, given they were 

in the same environment. I calculated the average grid orientation across all voxels 

within the ROIs for each subject and each compartment using a circular mean. I then 

applied a Rayleigh test for non-uniformity of circular data. The circular mean and non-

uniformity test was computed using CircStat2012a toolbox (Berens 2009).  
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6.3.4 Control analyses – direction or view encoding 

My 3D grid analysis (as well as the 2D grid analyses in the published literature) relied 

on the dependency of the neural signal on movement direction, and one concern was 

whether a neural signal that is responsive to one particular direction (or the view 

associated with a direction) could be weakly correlated with a grid cell model and so 

identified as a grid cell. This was why I used a direction (or view) encoding model as a 

control analysis. I created a direction-sensitive model signal which was sensitive to one 

of nine 3D directions that were visited by participants in the virtual environment. The 

nine directions were regularly sampled both horizontally and vertically: (azimuth, pitch) 

= (-60°, -60°), (-60°, 0°), (-60°, 60°), (0°, -60°), (0°, 0°), (0°, 60°), (60°, -60°), (60°, 0°), 

(60°, 60°).  

 

Following Bellmund et al. (2016), I assumed that each direction-sensitive neural 

response had a margin of 30°. This meant that neurons or voxels that responded 

strongly to (0°, 0°) direction would also respond strongly to (±30°, ±30°), and would 

respond weakly to the rest of the movement directions. I convolved the binary direction 

response vector with the hemodynamic response function. I created a GLM similar to 

the grid model described in the previous section but now the grid signal was replaced 

by the direction encoding signal. Again, the best direction-encoding model was 

selected for each voxel from one scanning session and then tested on the other 

scanning session. If voxels in my ROIs (left and right entorhinal cortices) responded to 

unique directions, I would see a significantly positive regression coefficient for a 

direction model at the group level.    

 

6.3.5 Control analyses – other grid models 

In 2D, a non-hexagonal grid model, such as a 4-fold symmetry, was tested as a control 

model (Doeller et al. 2010). Similarly, I tested whether fMRI signal in the entorhinal 
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cortex was explained by a square lattice model (Figure 6.6A). A square lattice model 

has a lower packing density than the FCC and HCP models, and so the square lattice 

model is not an optimal way of encoding 3D space. Just as in my testing of the FCC 

and HCP models, I used the same assumption that the activity of a grid voxel was 

modulated by the alignment score (cosine of angle) between movement direction and 

the grid axis orientation (Figure 6.6B,C).  

 

 

Figure 6.6 A square lattice model in 3D. (A) The receptive fields of hypothetical grid cells which follow a 

square lattice arrangement. (B) A grid cell’s activity is expected to be modulated by the animal’s movement 
direction (the black arrow) relative to the orthogonal grid axis (the green lines); θ, vertical movement angle 
relative to the grid axis; ϕ, horizontal movement angle relative to the grid axis. (C) A simulated grid cell’s 
activity as a function of movement direction. It displays 90° periodicity when vertical pitch (θ) is close to 
zero. 

 

I also tested a hexagonal grid model which only cares about horizontal movement 

direction regardless of pitch. This model is related to the previous observation in rats 

that receptive field of grid cells were vertically elongated on the wall and in the spiral 

staircase apparatus (Hayman et al. 2011) (Figure 6.7A). It predicts that grid activity is 

only modulated by the horizontal angle between movement direction and grid axis 

(Figure 6.7B,C). For example, grid activity would be high if a participant moves in 0°, 

60°, 120°, 180°, 240°, 300° direction (azimuth-wise) independent of whether they move 

up or down. 
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Figure 6.7 An azimuth-only grid model in 3D. (A) The receptive fields of hypothetical grid cells which 

show hexagonal periodicity only along the horizontal axes and not along the vertical axis. (B) A grid cell’s 
activity is expected to be modulated by the animal’s horizontal movement direction (the black arrow) 
relative to the grid axis (the green lines); θ, vertical movement angle relative to the grid axis; ϕ, horizontal 
movement angle relative to the grid axis. (C) A simulated grid cell’s activity as a function of movement 
direction. It displays 60° periodicity along the horizontal dimension (ϕ), independent of whether an animal 
is moving up or down (θ). 

 

6.3.6 Control analyses – other regions 

I also tested the main grid models (FCC and HCP) in other brain regions to reassure 

that the grid-like representation I observed in the entorhinal cortex was not merely an 

artefact that was present across the whole brain. The control ROIs were primary 

auditory, visual and motor cortices. I defined the peak coordinate for each ROI using 

the fMRI meta-analysis toolbox Neurosynth (Yarkoni et al. 2011) (primary auditory 

cortex [-44, -24, 8]; primary visual cortex [-8, -86, 0]; primary motor cortex [-40, -16, 

60]), and then created 7mm spherical ROIs (51 voxels) centred at these peaks. This 

radius was chosen to match the number of voxels in entorhinal cortex mask (left 

entorhinal cortex = 47, right entorhinal cortex = 49). 
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6.4 Results 

6.4.1 Main grid analyses 

I tested whether fMRI signal in the left and right entorhinal cortices (Figure 6.8A) was 

modulated by participants’ 3D direction, as predicted by the two optimal grid models in 

3D - FCC and HCP. The FCC grid model was significant in bilateral entorhinal cortex 

(left, t(28)=2.9, p=0.003; right, t(28)=1.8, p=0.04, one-sided, Figure 6.8B). The HCP 

grid model did not significantly explain the response of either left or right entorhinal 

cortex (left, t(28)=1.4, p=0.08; right, t(29)=0.4, p=0.4, Figure 6.8C).  

 

I then examined whether the putative FCC grid orientation was clustered across 

participants using Rayleigh’s test for non-uniformity. Figure 6.8D shows that grid 

orientation was not significantly clustered in the left entorhinal cortex (room A, Z = 2.2, 

p = 0.1; room B, Z = 1.1, p = 0.3), or the right entorhinal cortex (room A, Z = 1.1, p = 

0.1; room B, Z = 0.2, p = 0.8). This means that the grid axis was not anchored to, or 

driven by, particular features of the environment, consistent with previous studies in 

circular environments, even though my environment was rectangular (Doeller et al. 

2010; Nau et al. 2018).  
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Figure 6.8 Grid cell-like representations in the entorhinal cortex. (A) The anatomical ROIs, left and 

right entorhinal cortices, are shown on the group-averaged structural MRI scan. (B) The mean beta of the 
FCC grid cell model was significantly positive in the entorhinal cortex. (C) The HCP model was not 
significant in either left or right entorhinal cortex. (D) Putative FCC grid orientation was not clustered 
across participants. Each blue circle represents the grid orientation of individual participants in the left 
entorhinal cortex. ** p<0.01, * p<0.05  

 

6.4.2 Control analyses 

To exclude the possibility of a neural signal sensitive to one particular direction (or 

associated view) being identified as a grid voxel, I tested a unique direction encoding 

model as a control. The direction encoding model was not significant in either 

entorhinal cortex (left, t(29)=-0.8, p=0.8; right, t(29)=-1.1, p=0.9), suggesting that the 

FCC grid-like signal found in the entorhinal cortex was not driven by one particular 

direction.  

 

I also tested a square lattice model and a hexagonal grid model, where vertical pitch 

was ignored. Neither of these models significantly explained the fMRI signal in the 
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entorhinal cortex (square lattice model: left, t(29)=-0.9, p=0.8; right, t(29)=-0.3, p=0.6; 

azimuth-only model: left, t(29)=1.6, p=0.06; right, t(29)=0.7, p=0.2).  

 

Finally, I examined the FCC grid model in the size-matched primary sensorimotor 

areas, and no region showed a significant grid code (primary auditory cortex, t(29)=0.5, 

p=0.3; primary visual cortex, t(29)=1.7, p=0.053; primary motor cortex, t(29)=-2.3, 

p=1.0). This further suggests that my finding of an FCC grid-like signal in the entorhinal 

cortex was not a spurious effect that was detectable anywhere in the brain. 

 

6.5 Discussion 

In this chapter, I presented a novel analysis method to investigate grid cells in 3D non-

invasively in humans. I also developed associated software to help researchers 

visualise grid cells in 3D and predict their responses. Using these methods, I observed 

an fMRI signal in the entorhinal cortex which was in line with one particular 3D grid cell 

model – an FCC lattice model.  

 

The main advance of this study was the probing of putative grid cells in 3D by 

predicting the fMRI signal as a function of 3D movement direction and the grid axis. 

The principle of measuring direction-modulated grid signals has been widely used in 

2D (Doeller et al. 2010; Kunz et al. 2015; Bellmund et al. 2016; Constantinescu et al. 

2016). Here, I extended, for the first time, this principle into 3D volumetric space, 

thereby opening up the possibility of empirically studying grid cells in high-dimensional 

space. Predicting the activity of a 3D grid cell was inevitably more complicated than a 

2D grid cell due to the added dimension, as I described in the Methods section. 

Consequently, I estimated the 3D grid orientation by iteratively fitting the neural data 

with signals predicted by different possible grid orientations. I successfully 

demonstrated the feasibility of this analysis approach by finding that my data were 
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concordant specifically with the FCC model in the entorhinal cortex, the candidate brain 

structure for 3D grid encoding. 

 

This result is suggestive of 3D grid cells in the human entorhinal cortex that are 

responsive when people explore a volumetric space.  However, I remain cautious until 

this finding is further corroborated by future studies that directly measure cellular 

responses. It is not yet proven that the direction modulation principle also holds in 3D, 

because there is as yet no clear evidence of grid cells showing a regular 3D lattice 

pattern (note that a recent study in bats found multiple firing fields that were not 

perfectly regular, Ginosar et al. (2016)). Invasive recordings from the human brain in a 

similar 3D virtual reality experiment to the one I used here may be able to provide more 

direct evidence of grid cells showing 3D receptive fields. Once there is a fuller 

understanding of the cellular physiology of grid cells, it will be possible to determine the 

optimal fMRI analysis protocol that takes into consideration the multiple factors I have 

described here. This includes whether the orientation of the 3D grid axis is parallel to 

the ground or not, the precise model between the grid alignment and the fMRI signal 

(e.g. cosine, linear, binary) and the distribution of the grid orientation across different 

voxels within the entorhinal cortex.  

 

The distinction between the FCC and HCP models also deserves further investigation. 

Although I showed that only the FCC model significantly explained my empirical data, it 

does not provide unequivocal evidence of the superiority of one model over the other, 

because it does not involve direct model comparison. Neither the regression coefficient 

nor the residuals between the two models were significantly different (data not shown). 

To have a formal comparison between the models, I believe that more data and more 

sampling directions (beyond the -60° to 60° used in the current experiment) are needed 

in future experiments. The FCC and HCP models have identical encoding efficiency 

(Mathis et al., 2015). Stella and Treves (2015) found that simulated grid fields did not 
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converge to either FCC or HCP alone, and the outcome had a small deviation from 

both models. It may be that factors such as the anisotropy of the environment (all 

animals are influenced by gravity, thus the vertical axis is distinguished from the other 

two axes) might influence the optimal encoding of space. It is currently unknown how 

this might be related to either the FCC or HCP models. Furthermore, grid cells are 

known to be influenced by the geometry of environment (Krupic et al. 2014). For 

instance, a previous study showed that grid orientation was anchored to the boundary 

of the environment (Stensola et al. 2015; Julian et al. 2018) although such clustered 

orientation was not observed in my virtual spaceship with a rectangular shape. FCC 

and HCP models should be tested in environments of different shapes (e.g. spherical 

or asymmetric shapes) in the future.  

 

In the process of extending grid analysis from 2D to 3D, I felt there was a pressing 

need for 3D visualisation software, because it was not trivial to imagine the lattice 

structures of 3D grid cells and the relationship between the grid axis and 3D movement 

vectors. Therefore, I developed simple interactive software that can help researchers to 

visualise and understand the direction-modulated signal of 3D grid cells. This web-

based software is easy to use without requiring an additional third-party CAD 

(computer-aided design) program. Of note, this software was developed for 

visualisation purposes, and it does not have a data analysis function. There is already 

grid analysis software for 2D grid codes (Stangl et al. 2017), and researchers who are 

familiar with 2D grid analysis can readily implement a 3D analysis with their own 

protocols, once they grasp the geometry of 3D grid cells. 

 

In summary, I believe that my experimental paradigm, analysis method and software 

serve as a useful initial stepping-stone for studying grid cells in realistic 3D worlds. Grid 

cells have been reported to encode not only physical space, but also more abstract 

knowledge (Constantinescu et al. 2016; Aronov et al. 2017; Julian et al. 2018; Nau et 
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al. 2018), and I hope my approach might, in due course, also promote interrogation of 

more abstract high-dimensional cognitive processes. 
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Chapter 7 General discussion 

7.1 Overview 

The aim of this thesis was to extend our current understanding of the neural 

representation of space into 3D about which little was known, particularly in humans. 

To achieve this goal, I conducted a series of behavioural and fMRI experiments using 

various types of custom-built 3D virtual environments. Before I discuss the overarching 

findings of this endeavour in relation to 3D spatial encoding hypotheses, and before 

proposing future directions for this research, I will first recapitulate the main findings 

from my four experiments. 

 

In Experiment 1, I examined whether vertical and horizontal spatial information (place 

and direction) were equally well encoded in a semi-volumetric lattice environment 

where participants could move on straight, tilted-up or tilted-down pathways. 

Behaviourally, participants had similarly accurate memory for vertical and horizontal 

locations (except for a small response time difference). Concordant with the 

behavioural findings, fMRI multivoxel pattern analysis revealed that the right anterior 

hippocampus contained place information that was similarly sensitive to both horizontal 

and vertical axes, supporting an isotropic 3D place encoding hypothesis. In contrast, 

participants indicated their heading direction more quickly and more accurately when 

they were in a tilted direction, and they also overestimated the vertical slope. 

Retrosplenial cortex and posterior hippocampus were the brain areas that I found to be 

sensitive to vertical direction. 

 

In Experiment 2, I assessed how a multi-compartment space (a building with multiple 

levels and rooms) was represented in the brain using spatial memory tests and fMRI 

repetition suppression analyses. Behaviourally, participants were faster at within-room 
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egocentric spatial judgments and showed priming effects of visiting the same room, 

suggesting a compartmentalised representation of space. There was no evidence of 

additional compartmentalisation into either vertical columns or horizontal rows. At the 

neural level, the anterior hippocampus showed local information within a room, 

whereas retrosplenial cortex, parahippocampal cortex and posterior hippocampus 

showed room information within the wider building, supporting a hierarchical map of 

this 3D space. Again, vertically adjacent rooms and horizontally adjacent rooms were 

similarly distinguishable.  

 

In Experiment 3, I tested how 3D direction information was encoded in a volumetric 

space where participants could move freely along all 3 axes. Behaviourally, participants 

were more accurate at indicating their vertical direction than their horizontal direction. 

Using fMRI multivoxel pattern analysis, I found that the thalamus, particularly the 

anterior portion, and the subiculum encoded the horizontal component of 3D direction, 

whereas the retrosplenial cortex predominantly encoded the vertical direction. 

 

In Experiment 4, I developed an fMRI analysis method to study, non-invasively, the 

response of putative human grid cells in a volumetric 3D space. I found that fMRI signal 

in the entorhinal cortex was best explained by a FCC grid model which has previously 

been suggested as the optimal encoding model of 3D space.  

 

In the following sections, I discuss my findings in relation to different 3D spatial 

encoding hypotheses. 

 

7.2 A generalised spatial code 

One extreme hypothesis predicts that a 3D spatial code is a simple extension of a 2D 

code. In other words, the brain uses an elegant spatial encoding scheme that can be 
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generalised across multiple dimensions, as if the periodic finding of grid cell in 1D 

environments is a slice through a 2D lattice (Yoon et al. 2016). Consequently, a 3D 

map should be isotropic (e.g. all 3 axes are equal). For example, place cells, which 

have circular receptive fields in 2D, are expected to show spherical receptive fields in 

3D instead of ellipsoidal or irregular shapes. Place cell recorded in flying bats indeed 

showed isotropic 3D receptive fields (Yartsev and Ulanovsky 2013). Head direction 

cells, which are tuned to a specific azimuth in 2D (i.e. a 2D vector), are expected to be 

tuned to specific combinations of azimuth and pitch in 3D (i.e. a 3D vector). Such 

conjunctive head direction cells were observed in the bat presubiculum (Finkelstein et 

al. 2015). Grid cells that show hexagonal lattice firing patterns on a 2D plane are 

expected to show 3D lattice firing patterns in 3D (Horiuchi and Moss 2015; Mathis et al. 

2015; Stella and Treves 2015). At the behavioural level, animals are expected to 

perceive and remember their location equally well along all 3 axes and freely explore 

the space without a preference for movement in one particular dimension.  

 

My findings in a 3D lattice environment (Experiment 1) – of similarly accurate memory 

for vertical and horizontal locations and 3D place information detected in the human 

anterior hippocampus – supports the generalised, isotropic encoding hypothesis (note, 

I will discuss the limitations of fMRI spatial resolution in Section 7.6.3). In the multi-level 

building environment (Experiment 2), I again found that two rooms on top of each other 

were as distinguishable as two side-by-side rooms in terms of representations in the 

posterior hippocampus, retrosplenial cortex and parahippocampal cortex. The finding of 

a 3D FCC grid-like representation in the entorhinal cortex while participants moved in a 

virtual spaceship (Experiment 4), also supports the notion that the brain uses an 

efficient representation of space not only in 2D but also in 3D.  

 

However, other findings raise the question about whether humans have a perfectly 

isotropic map of 3D space and whether every spatial code is fundamentally 3D, 



203 

 

particularly the direction code. In Experiment 1, the presence of vertical distractors 

slowed down responses even though it did not affect accuracy. If participants were 

perfectly confident about their 3D location without vertical-horizontal biases, both 

accuracy and response time should have been comparable. Multiple previous 

behavioural studies in multi-level buildings have found navigational strategy and 

performance differences that favoured either vertical or horizontal segmentation (see 

Section 1.6.2).  

 

Of particular note, vertical and horizontal direction encoding did not take place in the 

same brain structure with the same precision. In Experiment 1, retrosplenial cortex and 

posterior hippocampus contained vertical direction information only. In Experiment 3, 

the retrosplenial cortex again showed predominantly vertical direction encoding 

whereas the thalamus and subiculum showed horizontal direction encoding.  

 

These findings beg the question as to whether there are more realistic alternatives to a 

generalised spatial encoding hypothesis that could explain my findings. 

 

7.3 Separate neural substrates for vertical and horizontal direction encoding 

Head direction cells that are tuned to a specific 3D direction might not be necessary for 

a 3D spatial map.  Instead, groups of head direction cells (in the same or different brain 

regions) that are tuned to either azimuth or pitch could be sufficient. Even in bats who 

naturally explore a volumetric 3D space, the majority of head direction cells were tuned 

to either azimuth or pitch alone, rather than 3D direction (Finkelstein et al. 2015). If 

vertical and horizontal angular velocity signals are fed into separate sets of head 

direction cells, some head direction cells would respond to pitch and the others would 

respond to azimuth alone. Cells that were sensitive to angular head velocity on a 

horizontal plane were found in the dorsal tegmental nucleus, lateral mammillary 
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nucleus and other vestibular nuclei (see Taube 2007 for review). Cells that are 

sensitive to vertical angular head velocity have not yet been studied, but a separate 

population of cells encoding vertical angular velocity is likely to exist because the 

vestibular system in the inner ear also consists of multiple organs that are sensitive to 

either vertical or horizontal rotation (see Section 1.3). Consequently, the separate 

streams of vertical and horizontal direction information might be integrated at the level 

of hippocampal place cells or entorhinal grid cells. In principle, attractor neural network 

models that explain linear path integration for 2D place cells (McNaughton et al. 2006) 

can be extended to 3D by adding separate intermediate layers that contain either 

vertical or horizontal direction signals, although wiring of this recurrent network could 

be challenging (Horiuchi and Moss 2015). Separate encoding of pitch and azimuth can 

save on neuronal resources, because if each cell is tuned to every possible 

combination of azimuth and pitch, the number of combinations would be enormous.  

 

Regarding neural substrates of head direction encoding, the influence of landmarks 

and views should be also considered. Angular path integration is prone to error 

accumulation and head direction cells should be anchored to landmarks for reliable 

direction encoding.  As I discussed earlier (Section 5.4), views can be more dependent 

on vertical head direction in the natural environment, as in Experiments 1 and 3. Thus, 

a head direction system that is more influenced by visual cues, like the retrosplenial 

cortex due to its close anatomical connections with visual cortex (Kobayashi and 

Amaral 2003; Jacob et al. 2017), might show higher sensitivity to vertical heading 

differences. Future studies could examine vertical and horizontal head direction 

information that is independent of views by using less naturalistic setups where view 

and head direction are orthogonalised, e.g. static images or imagination without visual 

cues (Vass and Epstein 2013; Marchette et al. 2014; Sulpizio et al. 2014; Shine et al. 

2016).  
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7.4 Vertical-horizontal asymmetry and its implications for a 3D map 

In the previous section, I presented the possibility of separate neural substrates for 

vertical and horizontal direction information. I now discuss a different issue which is 

vertical-horizontal symmetry. Vertical and horizontal direction encoding can be equally 

or unequally precise and this might affect the isotropy of a 3D map. 

 

As I reviewed in Section 1.6, numerous behavioural studies have suggested that 

humans, rodents and birds are sensitive to their body orientation relative to the gravity 

axis (the vertical axis) and use the slope as a navigational cue (e.g. Grobéty and 

Schenk 1992; Steck et al. 2003; Nardi and Bingman 2009). For example, human 

participants were more accurate on a navigation task in the sloped condition even 

when the slope was only 4° (Steck et al. 2003). The energy cost associated with 

vertical movement has been proposed as an explanation for participants’ tendency to 

overestimate slopes (e.g. perceiving a 30° hill as 50°) (Proffitt et al. 1995; Creem-

Regehr et al. 2004; Shaffer and Flint 2011).  

 

The questions then arise as to whether, and how, people could have an accurate map 

of 3D space if their perception of 3D geometry is distorted due to overestimation of 

vertical angles or height (Brandt et al. 2015). To consider these issues, we should first 

distinguish the explicit (verbal or visual) estimation of a slope on the one hand and 

knowledge about one’s actual 3D orientation on the other. When people estimate a 

slope, they typically stand upright on a horizontal plane at a distance from the slope. 

Incorrect estimation of a slope does not prevent people from correctly behaving in 3D 

environments, e.g. people walk normally on a 10° hill without wrongly adjusting their 

ankles for a 20° hill. On a related note, Proffitt et al. (1995) showed that participants 

made fairly accurate judgments of a slope when they were asked to adjust a tilt board 

to match the slope of a hill using their hands. In my Experiment 1, although participants 
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incorrectly overestimated the angle of the slope, the slope actually helped them to 

know which direction they were heading. In Experiment 3, participants successfully 

kept track of their 3D direction, and the angular errors were actually smaller for the 

vertical direction questions. The vertical angular error was also smaller in the pre-scan 

pointing task in the same experiment (although there could be several explanations for 

this behaviour, including the asymmetric visual cues, see Section 5.4). To summarise, 

at least in my experiments, participants had good knowledge about their 3D orientation, 

particularly the pitch (but see Vidal et al. (2004) and Gramann et al. (2012) who found 

poor path integration performance for rotation on a vertical plane). 

 

If we calculate our location purely by integrating velocity (direction and speed) over 

time, behavioural and neural differences in vertical and horizontal direction encoding 

would be followed by similar differences in location encoding. In other words, more 

accurate encoding of vertical movement direction would lead to more precise vertical 

location estimation. However, findings of direction and location encoding were not in 

parallel in my Experiment 1. Although, behavioural and neural results implied the 

vertical direction was more salient, participants were equally good at knowing their 

vertical and horizontal location (in terms of accuracy) and indeed seemed less 

confident about their vertical location (slower response time), while fMRI signal in the 

anterior hippocampus was in line with an isotropic place encoding hypothesis. There 

are at least two explanations for this discrepancy between the direction and location 

encoding.  

 

First, the 3D map might not be perfectly isotropic. As I discussed earlier (Section 3.4, 

4.4), there might have been a small difference in the precision of place encoding that 

was not detectable in the discretized environment. For example, if 0.8 vertical unit 

difference was equivalent to 1.0 horizontal unit difference, this small difference was 

unlikely to be detected in the discretized environment. This explanation also applies to 
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the finding in the multi-level building in Experiment 2 which had only two rooms and two 

floors. The best experimental setup to investigate the relationship between direction 

and place encoding is a continuous and volumetric 3D environment like the one used in 

Experiment 3. However, in Experiment 3, my priority was to understand the 3D 

direction code and I did not include behavioural tasks to measure the accuracy or 

precision of place encoding.  

 

Second, path integration from the head direction system is not the only source of 

knowing one’s location. Unless participants navigate blindfolded in a sensory-deprived 

environment (zero auditory, tactile, odour cues), visual landmarks play an important 

role. In all of my experiments, I included several visual cues to aid spatial cognition in 

the virtual 3D environments (e.g. a green door in Experiment 1, a floor sign in 

Experiment 2, ceilings, floors, windows in Experiment 3). Therefore, even if direction 

information is asymmetric for the vertical and horizontal dimensions, additional sensory 

cues might compensate for this and enable an isotropic place map. 

 

7.5 Flexible representations of 3D space 

Throughout my thesis, one question was how 3D spatial information is represented in 

the human brain, and the isotropy of a 3D map was one aspect of that question. 

Instead of drawing a simple conclusion about the mechanism of 3D spatial encoding, 

such as “the brain uses an isotropic 3D volumetric map”, “a 3D map is fundamentally 

anisotropic due to gravity”, I want to emphasise that 3D spatial encoding is a generic 

problem where multiple factors should be considered. I believe it is more likely that we 

use a flexible representation of 3D space according to the nature of environment and 

our behaviour within it, rather than using a fixed, stereotyped representation.  
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When we navigate in a volumetric space like the virtual zero gravity spaceship, a 

neural compass that can track continuously changing 3D directions (Experiment 3) and 

a grid cell system that can efficiently represent a 3D space, like the FCC lattice 

(Experiment 4), would be appropriate. In contrast, 3D head direction cells or grid cells 

would be mostly redundant for navigation in a multi-level building where we mainly 

move on a horizontal plane and only occasionally move across planes. In the multi-

compartments environment, a hierarchical representation would be optimal and I found 

behavioural and neural evidence that exactly supports that in Experiment 2 (e.g. a 

priming effect of visiting the same room, dissociation of local and room information in 

the brain). In the 3D lattice environment where movement was constrained to narrow 

tracks (Experiment 1), a continuous tracking of 360° azimuth and 180° pitch might not 

be necessary. 

 

Whether the map is isotropic or not will also depend on the behavioural demands and 

the shape of environment. In all of my experiments, participants were explicitly asked to 

know their precise 3D location or direction. The behavioural and neural results implied 

that both vertical and horizontal information were well represented in the brain, 

although different neural structures were involved in this information processing. I 

would predict that vertical-horizontal asymmetry might be more prominent if an explicit 

task was absent. For example, people normally stop thinking about which floor they are 

on once they arrive at that floor. If a place code is measured in this situation, vertical 

information would appear to be missing or reduced compared to horizontal location 

information, as in place cells and grid cells recorded in rodents that showed reduced 

information for the vertical axis (Hayman et al. 2011). In contrast, if participants receive 

an incentive for knowing their vertical location, or if there are more salient landmarks in 

the vertical dimension, then I would expect the neural representation to be sharpened 

for the vertical axis. Reward and attention are known to modulate the activity of place 

cells (Markus et al. 1995; Hölscher et al. 2003).  
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7.6 Outstanding issues and future directions 

In this thesis, I explored multiple questions about how we represent 3D space, which 

have been rarely investigated to date, but this thesis is only a starting point. There are 

limitations to my experiments, and numerous other issues that still need to be 

addressed, as I will discuss in this section. 

 

7.6.1 From virtual reality to real world navigation 

“Is navigation in virtual reality with fMRI really navigation?” (Taube, Valerio, et al. 2013) 

is a common criticism applied to fMRI studies of spatial cognition in both 2D and 3D. 

Active movements, vestibular and proprioceptive inputs are absent when a participant’s 

head is immobilised inside a narrow MRI scanner bore. However, numerous 

behavioural and neural studies have suggested that active movement is important for 

navigation and reliable neural representations of space. For example, even for a simple 

scene perception task, participants were better when they actively changed their 

viewpoint compared to when they remained static and the scene (some real objects on 

a table) was rotated (Wang and Simons 1999). In Klatzky et al. (1998), participants 

correctly updated their heading and pointed to the origin in a blindfolded walking 

condition, but not in the passive optic flow (random lines) condition (although note that 

in a naturalistic virtual environment, the vast majority of participants correctly updated 

their heading using visual motion alone (Riecke et al. 2012)). At the neural level, place 

cells showed less spatial-specificity (i.e. large place fields, low peak firing rates, noisier 

firing patterns) when rats were passively moved or remained static (Terrazas et al. 

2005). Spatial selectivity of place cells was dramatically reduced in body-fixed rats in a 

2D virtual arena (Aghajan et al. 2014). On the other hand, in another VR setup where 

rats could walk freely and rotate, place cells, head direction cells and grid cells were all 



210 

 

observed, although the grid fields were expanded compared to real world navigation 

(Aronov and Tank 2014). Passive transport is known to impair path integration in head 

direction cells (Stackman et al. 2003).  

 

The abovementioned findings suggest that head-restrained virtual navigation is not the 

optimal method to study the neural correlate of spatial cognition, but virtual navigation 

in fMRI is the main workhorse when studying spatial cognition in the human brain 

(including this thesis) for following reasons. First, fMRI (along with MEG) is the only 

non-invasive method that can reliably measure neural activity in deep brain structures 

like the hippocampus and thalamus, and the head must be immobilised for fMRI. 

Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) are 

non-invasive and portable imaging methods, allowing measurement of freely moving 

human participants, but these methods do not have good spatial resolution and 

coverage (i.e. electric resistivity of skull and non-transparent tissue limit the imaging 

depth), and EEG is particularly susceptible to muscle artifacts. Second, virtual 

navigation paradigms provide the means for both rigorous and flexible experimental 

control over what participants see and experience, which is much more difficult to 

achieve in the real world. For example, the bespoke 3D environments I created for the 

experiments in this thesis were created with great care for every detail (colour, texture, 

size, etc.), and one of the environments - the virtual zero gravity spaceship - could not 

be easily realised in the real world.  

 

However, in the future, we might be able to mitigate the current technical limitations of 

studying spatial navigation in the human brain with a recently developed mobile MEG 

system. MEG measures small magnetic fields induced by neural activity (i.e. it has 

excellent temporal resolution compared to fMRI which measures slower hemodynamic 

responses) and homogenous magnetic permeability of the brain enables clear source 

localisation (i.e. reasonable spatial resolution) (Baillet 2017). Although it has long been 
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thought that MEG cannot measure deep structures due to signal attenuation, this 

notion has been challenged by recent advances in precise modelling and accurate 

sensor positioning techniques (Meyer et al. 2017). Most importantly, unlike the 

traditional MEG scanner which is as bulky and restrictive as MRI scanners due to the 

need for cryogenically cooled magnetic sensors, the newly developed MEG system 

with optically-pumped magnetometers (OPMs) is lightweight and portable. A recent 

study showed that neural activity can be measured when participants made natural 

movements such as drinking, stretching and playing ping pong while seated (Boto et al. 

2018). This opens an exciting possibility to study the human brain in more naturalistic 

setups. Using a wearable MEG system, we could study the neural correlates of 3D 

physical head rotation and location. It would be possible to achieve the optimal balance 

between rigorous and flexible experimental control and multisensory navigation by 

combining the wearable MEG system with immersive VR techniques (e.g. a virtual 

treadmill, a motion tracking system). Furthermore, OPM-MEG will permit a different 

perspective on navigation compared to that of fMRI, which I discuss in the next section. 

 

7.6.2 Temporal dynamics of 3D spatial memory and navigation 

In this thesis, I mainly focused on which brain areas encode 3D spatial information and 

whether vertical and horizontal information are equally well encoded in the spatially 

distributed pattern of neural activity using fMRI. However, neural code is not only 

spatial (e.g. which neurons are activated), but also temporal (e.g. the timing and 

temporal order of neural activation). For instance, we might recall the location of an 

object in 3D space by serially accessing vertical and horizontal information. Or, vertical 

and horizontal information might be processed simultaneously (parallel processing). 

Moreover, different types of information might be encoded in different frequency 

domains. Neural oscillations is an important topic in cognitive neuroscience. In spatial 

neuroscience, a prominent low-frequency oscillation (theta) in the hippocampus has 
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been extensively studied (see review, Buzsáki (2005)). For example, the timing of a 

place cell’s firing is linked to the animal’s location within a place field and the 

background theta oscillation (O’Keefe and Recce 1993). Multiple behavioural correlates 

of hippocampal theta have been found including speed, view and distance (Watrous et 

al. 2011; Vass et al. 2016). It was not possible to study this important temporal code in 

this thesis due to the poor temporal resolution of fMRI. Future studies using MEG or 

invasive electrophysiology will allow us to develop a fuller understanding of spatial 

representations in 3D by incorporating temporal information. 

 

7.6.3 From neuroimaging to invasive cell recordings 

As I explained in Chapter 2 (Section 2.5.3), fMRI measures spatiotemporally filtered 

neural activity, and this often gives rise to the criticism that fMRI cannot validly study 

cellular representations like place cells, head direction cells and grid cells. Taube et al. 

(2013) argued that it might be intrinsically impossible to measure head direction signals 

using the BOLD signal. They suggest that this is because the head direction signal is 

always “on” regardless of a participant’s active navigation state, and that numerous 

head direction cells tuned to different directions covering the entire 360° (even larger 

when the vertical dimension is added) is mixed within a single fMRI voxel. Indeed, this 

is a question I asked myself throughout my PhD. However, I believe that fMRI research 

can provide valuable insights and evidence, albeit indirect, of spatial representation 

when well-designed experiments and analysis techniques such as repetition 

suppression and multivariate analysis are used (Section 2.8, 2.9).  

 

Although Taube et al. (2013) suggested that direction (or place) tuning is mixed within 

a voxel, previous electrophysiological studies have typically measured less than a 

hundred neurons simultaneously (often much fewer), and a complete distribution of 

tuning functions of millions of neurons within the entire hippocampus, thalamus or 
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entorhinal cortex is as yet unknown. Successful detection of 3D place and direction 

information in the hippocampus, retrosplenial and thalamus in this thesis, and in the 

previous fMRI studies reviewed in Section 1.7.1, imply that place cells and head 

direction cells are not perfectly evenly distributed at a macroscopic level; rather there is 

some unevenness (e.g. voxel 1 contains slightly more neurons tuned to +60° than -30°) 

that is detectable by fMRI. 

 

However, there is still an inherent limitation of fMRI studies which is that multiple 

neuronal encoding scenarios can give rise to the same fMRI signal. For example, I 

found the fMRI multivoxel pattern activity in the anterior hippocampus contained 3D 

location information that was similarly sensitive to the vertical and horizontal axes in 

Experiment 1. This result does not guarantee that individual place cells have a 

complete 3D receptive field (see the schematic representation in Figure 7.1A). Even 

when one population of place cells encodes only vertical height (e.g. “y=1” and “y=2” 

cells in Figure 7.1B) and the other population encodes only horizontal location (e.g. 

“x=1” and “x=2” cells in Figure 7.1B), the fMRI analysis will detect both vertical and 

horizontal location information when these cells are mixed within a 3 mm isotropic 

voxel. Therefore, while I can claim that the anterior hippocampus contains 3D location 

information, but I cannot claim that place cells in the anterior hippocampus have 

isotropic 3D receptive fields. Similarly, a vertical head direction signal is less likely to be 

detected by fMRI if the majority of head direction cells are tuned to azimuth and only a 

minority of the cells are tuned to pitch (Finkelstein et al. 2015) as I already discussed in 

Experiment 3 (Section 5.4). Thus, the current fMRI findings should be complemented 

by invasive cellular electrophysiology studies in the future.   
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Figure 7.1 Different neuronal encoding hypotheses leading to similar fMRI results. (A) Each cell is 

tuned to a specific 3D location, e.g. (x,y)=(1,1), (1,2), (2,1). For simplicity, assume that x represents the 
horizontal coordinate and y represents the vertical coordinate. The cell tuned to (1,1) is equally distributed 
in voxel 1 and voxel 2, but the cell tuned to (2,1) is more abundant in voxel 1, leading to different fMRI 
multivoxel patterns for these two locations. (B) Each cell is tuned to either vertical or horizontal coordinates 
and 3D location information is encoded by a combination of these neurons. For example, when a 
participant is located at (2,1), the cells tuned to x=2 and the cells tuned to y=1 are activated. Due to an 
uneven distribution of these cells, location (1,1) and location (2,1) result in different multivoxel fMRI 
patterns. Note the similarity of fMRI patterns for conjunctive encoding (A) and separate encoding (B) 
hypotheses. 

 

7.6.4 Individual differences 

As neuroscientists, we are often interested in drawing a general conclusion about how 

the brain works, but we should not forget that none of the seven billion human brains in 

this world is identical. There are large individual differences in spatial ability, from those 

who easily get lost even with the help of modern technology (like the author of this 

thesis) to those who can draw an accurate map after just one brief visit to a location. 

There are multiple methods to quantify individual differences in navigation and spatial 

ability including subjective questionnaires (Hegarty et al. 2002) and a more objective 

measures of spatial performance during tasks. In my thesis, I found a significant 

relationship between neural activity (vertical direction information in the retrosplenial 
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cortex) and behavioural performance (angular error during a direction judgment task) 

only in Experiment 3. The simple scanning tasks and the pre-scan training that resulted 

in overall high behavioural accuracy in my experiments (because I wanted all 

participants to have an accurate representation of the virtual 3D space so I could seek 

unambiguous neural correlates of spatial encoding) could have made it difficult to 

reveal subtle individual differences in the other experiments. More challenging 

behavioural tasks that result in a large variance in performance could be used in the 

future.  It would also be possible to study the neural correlates of individual differences 

in 3D navigation strategies, e.g. vertical first or horizontal first (Hölscher et al. 2006; 

Büchner et al. 2007) using structural MRI measures such as voxel based morphometry 

(Ashburner and Friston 2000). It should also be noted that the participants recruited in 

my experiments (and in many cognitive neuroscience studies) had a very specific 

demographic, young and highly educated attendees of a UK university. That such 

participants are not fully representative of the population more generally (who have a 

broader range of ages, education, socioeconomic states, etc.) should be borne in mind. 

 

Another related issue is that the brain is a highly adaptive and flexible organ shaped by 

our experiences. One of the most well-known examples of this in spatial neuroscience 

is in London taxi drivers who have structural changes in their hippocampus after years 

of spatial knowledge accumulation (Maguire et al. 2000; Woollett and Maguire 2011). 

An interesting question in 3D spatial representation is whether extensive exposure to 

3D navigation would yield different spatial encoding in the brain, such as more 

volumetric and symmetric representation of 3D space. For example, I found separate 

encoding of vertical and horizontal direction information in the retrosplenial cortex, 

thalamus and subiculum in Experiment 3, but professional astronauts or pilots might 

encode vertical and horizontal direction information equally well in the same brain 

structure. Studying the brains of specialised populations could also provide insights into 

the origin of interspecies differences in 3D spatial encoding. As I reviewed in Section 
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1.6, rodents, birds and fish show different behaviours in 3D, e.g.  birds seem more 

confident of their vertical location memory while rats seem more confident of horizontal 

location memory (Flores-Abreu et al. 2014), and it is unknown whether the difference is 

evolutionary or developmental. If an astronaut’s brain shows a more similar response 

profile to a bat’s brain than a fellow human brain, it would favour the developmental 

account. Of course, the difference between the brain of astronauts and undergraduate 

psychology students might be negligible given that even astronauts or divers spend 

more time on the ground than in a volumetric space, but this is intriguing hypothesis to 

test in the future. 

 

7.6.5 Clinical implications 

In relation to individual differences, one can also ask whether there are any clinical 

implications (e.g. aiding diagnosis) in understanding 3D spatial representation in the 

human brain. Spatial disorientation is a common symptom associated with normal 

aging and various brain pathologies (Lester et al. 2017). The hippocampus, 

retrosplenial cortex, entorhinal cortex – the main brain structures studied in this thesis – 

are known to be compromised early in the course of Alzheimer’s disease (Braak and 

Braak 1991; Jack et al. 1997; Pengas et al. 2012). In addition to general structural and 

metabolic changes in these regions during Alzheimer’s disease, more specific 

dysfunction was observed in the entorhinal cortex. Kunz et al. (2015) showed that 

young adults with a genetic risk for Alzheimer’s disease (APOE-ε4 carriers) showed 

reduced grid-like representations, which could potentially serve as a prognostic marker 

decades before disease onset.  

 

Overall, while it is clear that knowledge about spatial cognition has clinical relevance, 

the question is what “3D” can add over and above the existing link between spatial 

cognition in 2D and neurological conditions. I can only speculate about this because I 
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did not study any patient populations in my experiments and, to the best of my 

knowledge, this issue has not been addressed yet in the published literature. One 

potential contribution is the extensive use of the vestibular system for 3D navigation 

compared to 2D. To maintain balance and orientation in sloped and vertical 

environments, vestibular inputs are crucial. Vestibular input is closely linked to 

hippocampal structure and function. For example, patients with partial bilateral 

vestibulopathy showed reduced hippocampal volume, higher spatial anxiety and a 

more dominant route-finding strategy (Kremmyda et al. 2016). Therefore, navigation 

tasks in 3D might be more sensitive in revealing some neurological conditions. Indeed, 

it has been proposed that 3D spatial memory and navigation should be included in 

routine neurological examinations (Brandt et al. 2017).  

 

7.6.6 From representation to action in space 

One limitation of my experiments was that participants were passively moved while 

their brain activity was scanned inside the MRI scanner. This passive movement 

approach (without active wayfinding behaviour) was appropriate for my main research 

goal - to investigate the neural representation of 3D spatial information - because it 

allowed optimal sampling of 3D locations and directions. Similarly, even in the animal 

literature, place cells, head direction cells and grid cells have been mostly recorded 

when animals simply run in an experimental arena without goal-directed behaviour. 

However, the neural code for 3D location or direction is just the starting point for 

understanding our active navigation behaviour. We ultimately want to understand how 

we know our location and direction from sensorimotor inputs, compute a shortcut to the 

goal location and update the route online. It is unlikely that active navigation involves 

just a few structures that contain place cells, head direction cells and grid cells (e.g. 

hippocampus, entorhinal cortex and retrosplenial cortex – the main ROIs in this thesis). 

Rather, it likely also engages a parietal network for egocentric spatial processing (e.g. 
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“the goal is above me”), a striatum network for automatic stimulus-response (e.g. “turn 

upward when the tree is visible”) and the prefrontal cortex for controlling the 

hippocampal and striatal systems (see a review on the cognitive architecture of spatial 

navigation - Chersi and Burgess (2015)).   

 

Regarding navigation in 3D, the computation of energy cost when moving vertically 

should be considered when we plan a route, unless we are making a spacewalk. 

Where is this computation implemented in the brain? If it happens outside the medial 

temporal lobe, how does it influence the spatial code in the hippocampal formation? 

How do we balance competing goals – minimising energy cost versus minimising travel 

time, if a shortcut involves a steep vertical movement? These are some of the 

questions that should be addressed in the future.  

 

7.6.7 Beyond the spatial domain 

In this thesis, I investigated how 3D space is encoded in the human brain, particularly 

in the hippocampal formation. However, recent literature suggests that the 

hippocampal formation encodes not only physical space but also more abstract 

cognitive variables, indeed this wider definition of a ‘cognitive map’ was envisaged from 

its inception (Tolman 1948). For example, a changing auditory tone (from low 

frequency to high frequency) can be mapped in a 1D auditory space. Aronov et al. 

(2017) found place cells in the hippocampus that fired at specific auditory frequencies 

and grid cells in the entorhinal cortex that fired at multiple auditory frequencies. In 

humans, entorhinal cortex showed a grid-like signal for a 2D visual space (eye gaze 

location, Julian et al. (2018); Nau et al. (2018)) and other 2D stimulus spaces (e.g. the 

length of the neck and legs of cartoon stimuli, Constantinescu et al. (2016)). In a social 

context, for example, each person could be described in abstract 2D space where one 

axis is “power” and the other axis is “trustworthiness”. This social 2D space was 
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proposed to be encoded in the hippocampus (Tavares et al. 2015). If the hippocampal 

formation indeed organises knowledge about any behaviourally-relevant information in 

a map-like fashion, the map cannot be limited to 2D, because our world is 

multidimensional and complex.  

 

During my PhD, I aimed to understand how physical space mapping is generalised 

from 2D to 3D, and the same can be asked of non-physical space mapping. For 

example, it would be interesting to test whether the FCC grid representation is 

developed in the entorhinal cortex when participants learn abstract cartoon stimuli with 

three attributes (e.g. the length of neck, legs and arms). Furthermore, unlike physical 

3D space where x, y and z axes are orthogonal, attributes might covary in abstract 

space. How the brain builds an efficient representation of abstract high dimensional 

space is a key question in neuroscience.    

 

7.7 Summary and conclusions 

The spatial world is 3D and humans and other animals move horizontally but also 

vertically within it. Most previous studies on spatial encoding have been conducted on 

a simple 2D plane and there was a dearth of knowledge about how 3D spatial 

information is encoded in the human brain. To start to fill this gap in our knowledge, I 

created various 3D virtual environments ranging from a conventional building to a zero 

gravity spaceship and measured the behavioural and fMRI responses while 

participants explored these 3D environments in a quasi-naturalistic setup. 

Behaviourally, participants showed overall high performance for their 3D location and 

direction judgments, with vertical pitch often regarded as more salient. Navigationally 

relevant structures – the hippocampus, retrosplenial cortex, entorhinal cortex and 

thalamus – that contain place cells, head direction cells, grid cells on a 2D plane also 
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showed the relevant spatial codes in my 3D environments. In a multi-level environment, 

I observed evidence of a hierarchical representation of space.  

 

Overall, these findings demonstrate the capacity of the human brain to implement a 

flexible and efficient representation of 3D space. I believe that this thesis can serve as 

a stepping-stone to understand how we navigate in complex real worlds such as multi-

level buildings, undulating terrain and in the open air or under water. I also hope that 

the investigation of the spatial representation of 3D space going forward will provide 

new insights into the more general question in neuroscience of how the brain has 

adapted to solve high-dimensional cognitive problems. 
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