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A B S T R A C T

Quality control (QC) is a fundamental component of any study. Diffusion MRI has unique challenges that make manual QC particularly difficult, including a greater
number of artefacts than other MR modalities and a greater volume of data. The gold standard is manual inspection of the data, but this process is time-consuming and
subjective. Recently supervised learning approaches based on convolutional neural networks have been shown to be competitive with manual inspection. A drawback
of these approaches is they still require a manually labelled dataset for training, which is itself time-consuming to produce and still introduces an element of
subjectivity. In this work we demonstrate the need for manual labelling can be greatly reduced by training on simulated data, and using a small amount of labelled data
for a final calibration step. We demonstrate its potential for the detection of severe movement artefacts, and compare performance to a classifier trained on manually-
labelled real data.
Introduction

Quality control (QC) involves ensuring a dataset meets a certain set
of standards before the dataset is given the clearance for inclusion
in subsequent analyses. In MRI there are a large number of potential
artefacts that need to be identified, to enable problematic images to
either be excluded or accounted for in further processing and analysis.
The gold standard for identification of these is visual inspection of the
data.

There are a number of challenges withmanual QC. For a typical study,
which may involve hundreds of subjects, the process can be extremely
time-consuming. This is especially true in diffusion MRI (DW-MR) where
many volumes might be acquired for every subject, and there are
numerous artefacts that each volume must be screened for, such as intra-
volume movement, radiofrequency spikes, chemical shifts, and ghosting.
The current trend towards acquiring increasingly large datasets means
the time required for human QC is becoming prohibitive. The HCP (Essen
et al., 2012) acquired data for 1200 subjects with almost 300 DW-MR
volumes per subject and the UK Biobank will eventually acquire imag-
ing data for 100,000 subjects with over 100 volumes per subject (Miller
et al., 2016). Manual QC is also subjective. Each rater has their own
sensitivity and specificity which cannot be easily altered, meaning the
data is either QCed by a single rater, leading to a single standard but
requiring large amounts of time, or many raters look at the data, which
requires less time but means variable standards are applied across the
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dataset. Some artefacts can also be hard to detect with manual QC, such
as ghosting artefacts which require the careful examination of every slice
in a volume. These challenges have led to an increased interest in auto-
mated methods for QC.

Automated methods for QC fall into two classes. The first kind ex-
tracts tailored features from the datasets and applies hand-tuned cutoffs
to determine whether each volume contains artefacts (Liu et al., 2010;
Oguz et al., 2014). The second kind are supervised learning approaches.
These involve extracting features from the datasets and then using a
training set, obtained from manual QC of a proportion of the data, to
learn the mapping between these features and the classification of each
volume as passing or failing QC. Recently these approaches have used
support vector machines (SVMs), random forest classifiers (Esteban et al.,
2017) and ensembles of classifiers (Alfaro-Almagro et al., 2017). Whilst
promising, both types of approach report performance significantly
below that of a human rater.

Recently, deep-learning based convolution neural networks (CNNs)
(Goodfellow et al., 2016) have been demonstrated to provide
near-human levels of accuracy for identifying motion artefacts in struc-
tural (Iglesias et al., 2017) and DW-MR data (Kelly et al., 2016). Unlike
other supervised approaches, CNNs learn features from the data during
training, rather than requiring them to be hand-crafted and supplied as
input. CNNs tend to have many parameters requiring optimisation —

often in the millions — meaning they typically require large, labelled
datasets for training.
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Fig. 1. Example of the intra-volume movement artefact. For interleaved acquisitions, which are common in DW-MR, the movement causes jagged edges perpendicular
to the EPI plane, here the coronal and sagittal views. This misplacement of the signal is different to signal dropout, also caused by intra-volume movement, which leads
to loss of the signal — an example of dropout can be seen in one of the most inferior slices of the coronal view in this subject.

Table 1
Information on the dHCP subjects used in the study.

Subject M/
F

Gestational age at birth/
weeks

Gestational age at scan/
weeks

CC00069XX12 M 39.14 39.57
CC00099AN18 F 37.43 37.71
CC00117XX10 M 41.57 42.14
CC00122XX07 M 37.43 38.29
CC00126XX11 M 38.14 38.29
CC00138XX15 F 41.43 41.57
CC00162XX06 M 40.14 40.86
CC00164XX08 M 38.71 38.86
CC00168XX12 M 40.14 43.86
CC00170XX06 M 37.86 38.43
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Obtaining training datasets in medical imaging can be challenging.
The acquisition of the data is time-consuming and expensive, and once
acquired the data can be subject to ethical considerations or anonym-
isation requirements that prevent that data being shared freely. Labelling
of such data is also challenging. For the case of QC, labelling requires a
human rater to manually inspect each image volume and flag any that
contain artefacts. The process is subjective, and the accuracy of the
trained classifier will depend on the quality of the labelled dataset, so
often a number of raters are used and their classifications combined in
order to get a more reliable ‘ground-truth’ for the dataset. Furthermore, a
tool trained on a specific set of training data may not generalise well to
datasets acquired with different protocols or hardware, meaning new
training datasets may need to be labelled for each new study.

One potential way to address these issues is to use simulated data.
Simulation could circumvent the need for human labelling by producing
realistic datasets, along with ground-truth labels, for training machine
learning tools on. In the case of QC, a simulator that was capable of
producing datasets containing artefacts, such as motion, could be used
to produce a training set. Little research has been done to investigate
the feasibility of a simulation-based approach to training supervised
learning tools. Until recently, DW-MR simulations have not been capable
of producing realistic data complete with artefacts, but these have
both been demonstrated by a recently proposed framework (Graham
et al., 2016), enabling these new simulation-driven approaches to be
investigated.

In this work, we aim to investigate the feasibility of a supervised-
learning approach to QC that uses simulated data and a small amount
of real data for calibration; thus greatly reducing the amount of training
data required when compared to classifiers trained on real data. As a first
step, we focus on the problem of detecting intra-volume movement in
DW-MR data. Intra-volume movement refers to both signs of head
movement and the signal dropout that this gives rise to — see Fig. 1. We
focus on this artefact because they are often not tackled in QC, as
checking every volume in a dataset can be extremely time-consuming.
Volumes containing this artefact typically need to be identified in QC
so that they can either be removed, or information about them can be
used as confounds in later statistical analysis (Yendiki et al., 2014).
Whilst post-processing techniques have been proposed to correct for
intra-volume movement (Oubel et al., 2012; Marami et al., 2017;
Andersson et al., 2017), it has been reported these fail for severe
cases and an initial QC needs to be performed to remove especially bad
volumes before processing (Kelly et al., 2016). We compare the perfor-
mance of QC classifiers trained on real and simulated data. We aim to
investigate how close a simulation-trained classifier can get to the
state-of-the-art, a real-trained classifier, for QC of movement artefacts
(Kelly et al., 2016).
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Methods

This section details the data, both real and simulated, used in this
work and describes the classifier that was trained on these data.
Data

Real
Ten subjects were taken from the developing Human Connectome

Project (Hughes et al., 2016) (dHCP), which contains MRI data acquired
in neonates. Table 1 shows the age and sex of the subjects. These were
chosen because neonatal scans tend to contain large amounts of move-
ment. The data was acquired on a 3T Philips Achieva, consisting of a
spherically optimized set of directions on 4 shells (b¼ 0 smm�2: 20,
b¼ 400: 64, b¼ 1000: 88, b¼ 2600: 128) split into four subsets, each
with a different phase-encoding (PE) direction. It was acquired using a
multiband acceleration factor of 4, SENSE factor 1.2 and partial fourier
0.86, TR/TE 3800/90ms. The reconstructed data has matrix size
128� 128, with 64 slices per volume resolution 1.17� 1.17� 1.5mm
(dHCP Consortium, 2017).

For this study, the b¼ 2600 smm�2 volumes were removed as they
contained very little signal, which caused even manual QC to be chal-
lenging. This left 172 volumes per subject. Manual QC was performed by
visual inspection, with one rater assigning a label of either acceptable or
unacceptable to each volume. The rater classified the whole dataset
twice, on two separate occasions, to provide an estimate of intra-rater
agreement.

Simulated
Data was generated using the simulation framework described in

Graham et al. (2016). In brief, the simulator uses an input object that



Table 2
Tissue parameters used for the simulations in this chapter. Proton density ρ is in
arbitrary units.

Tissue T1/ms T2/ms ρ

Grey matter 2200 200 0.8
White matter 2850 250 0.8
CSF 3700 280 0.8
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describes the proton density of WM, GM and CSF at each voxel, as well as
the T1 and T2 parameters for each tissue type. This simulator also takes as
input a pulse sequence describing the RF pulses and gradients to be
applied, a description of any artefacts (such as motion), and a repre-
sentation of the diffusion-weighting at every voxel. The Bloch equations
are solved for every voxel in the input object, enabling realistic data
along with its artefacts to be generated (Drobnjak et al., 2006, 2010).

Simulated data was designed to be visually similar to the dHCP
data. Data was simulated using the same b-values and directions as the
dHCP. Voxel size and FOV were selected to minimise computation time:
2.5 mm isotropic and 72 � 86 � 55 voxels — this results in lower reso-
lution data than the dHCP, but to simulate data at a resolution of
1.17� 1.17� 1.5mm would be computationally prohibitive. Seven
subjects were simulated using input objects derived from different sub-
jects from the HCP, according to the process described in Graham et al.
(2016). Neonatal DW-MR images have different contrast to adult data,
with much reduced contrast between GM, WM and CSF. MR parameter
values were modified to increase the visual similarity between simulated
and real data— T1 parameters were taken fromWilliams et al. (2005), T2

parameters from Leppert et al. (2009) and then adjusted further to
maximise visual similarity with the dHCP datasets — the final set of
parameters used are shown in Table 2.
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The simulated data contained motion and eddy-current artefacts.
Known motion was injected into the datasets during simulation. The
traces describe the object's translations along and rotations about each of
the three axes, and are discretised in time so that they provide these six
parameters for each slice that is to be acquired. The traces were syn-
thesised to contain sudden ‘jerks’ of the head that consist of the head
moving to a certain location and then back to its original location in a
period less than TR, the repetition time — these give rise to the intra-
volume movement artefact shown in Fig. 1. These ‘jerks’ were chosen
randomly so that there was a 40% chance of any given volume containing
movement, and movement was equally likely to be a translation or
rotation around any of the three axes. In addition to this a slow drift
component was also added so that the overall position of the head
changed across the simulation of all volumes for a subject. In practice the
traces of the ‘jerks’ were approximated as Gaussians with time period
0.2*TR and the slow drift was a Cosine with a period in the range 5*TR-
15*TR. Fig. 2 shows an example trace for all 172 volumes of a subject, and
Algorithm 1 describes more precisely how the traces were generated.
Interleaved slice-ordering was simulated, without multiband, so that
these intra-volume movement spikes produced the characteristic zig-zag
edge pattern as seen in Fig. 1. Signal dropout was also simulated. In the
dHCP data signal dropout is often, but not always, present in volumes
that show other signs of severe intra-volume movement. To reflect this,
dropout was added to a volume containing significant motion with a
probability of 70%. Dropout is applied by directly reducing the signal of
slices in k-space, rather than simulating the effect of the interaction be-
tween movement and the diffusion gradients. This simpler approach still
produces realistic-looking dropout artefacts (Andersson et al., 2016). The
full details of how dropout was added is described in Algorithm 2.
Eddy-current artefacts were included in the data using the method
described in Graham et al. (2016).



Fig. 2. Example simulated motion trace for all 172 volumes in a dataset.

M.S. Graham et al. NeuroImage 178 (2018) 668–676
Labels were assigned to each volume using the following scheme. The
amount of intra-volume movement for each volume was calculated for
each of the three rotations and three translations. If all of the translations
were less than 1mm and rotations less than 1�, the volume was given a
label 0, for acceptable. If any of the translations were greater than 1mm
and less than 2.5 mm, or rotations greater than 1� and less than 2.5� the
volume was assigned 1, for moderate. If any translations were greater
than 2.5 mm or rotations greater than 2.5�, the volume was assigned a 2.
It was observed that inclusion of volumes with moderate movement
(label 1) with the volumes with severe movement (label 2) made it much
more difficult to train the classifier. These volumes included very subtle
signs of motion that were challenging to QC when visually inspected. By
contrast, we found that most volumes of the real data were much more
straightforward to classify; it was usually very obvious whether or not
they contained movement artefacts. For this reason it was decided to
remove the 108 volumes with moderate motion from the simulated
dataset. This left a total of 1096 volumes, 732 without movement and
364 with.
671
Classifier

We based our classifier on a type of neural network called a con-
volutional neural network. These networks have provided state-of-the-art
performance in computer vision tasks in recent years (Russakovsky et al.,
2015), making them sensible candidates for the task of identifying
motion-artefacts in scans. A drawback of such networks is that they
contain millions of parameters, and so they typically require large
amounts of training data and large amounts of computational power to
successfully train. To circumvent this we adopted a transfer learning
approach (Pan and Yang, 2010), which consists of taking a classifier
trained to perform on a certain task and re-training a small number of
parameters using a small amount of data to perform well on another,
often similar, task.

Our transfer learning approach here is similar to that described in
Kelly et al. (2016), where they successfully trained a classifier on real
data to detect motion artefacts. We used the pre-trained InceptionV3
network as the base network, which has achieved state-of-the-art
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performance in the classification of natural images (i.e. photos taken on
standard cameras of everyday objects such as dogs, boats, cars) (Szegedy
et al., 2015). To finetune InceptionV3, the top layer of the network was
removed, and replaced with a fully connected layer with 16 neurons,
followed by a prediction layer with 2 neurons for the two classes in our
problem (motion-corrupted or normal). All parameters were fixed apart
from those in the newly added layers, vastly reducing the number of
parameters required for training.

The classifier was trained by passing it sagittal slices through the
brain along with ground-truth labels. We trained two classifiers: one on
real data, and one on simulated data, using seven subjects for training as
in Kelly et al. (2016). Five subjects were used for training, and two for
validation. We chose to use three sagittal slices from each volume at
training time, though in principle using more might provide better re-
sults. One of the slices was taken from the central plane of the volume and
the other two from either side of this central plane, towards the edges of
the brain. For the real data, these side slices were 14 slices away from the
middle slice on either side, for the simulated data, these were 16 slices
away, as the simulated brains were slightly larger.

For both classifiers, images were zero-padded along the shorter
dimension to make them square, resized to 299 by 299 pixels, and
replicated three times for the three channels of the network (a fixed
requirement of the InceptionV3 network). Each image was scaled so that
its intensity lay between �1 and 1. Each classifier was trained for 30
epochs using the Adam optimizer with a learning rate of 0.001 (Kingma
and Ba, 2014) and a cross entropy loss function. The classifiers were
implemented in Keras (Chollet et al., 2015). Training took less than
20min on a Titan X Pascal GPU.

Testing was performed on the three reserved dHCP subjects. To assign
a label to each volume, a certain number of slices were extracted from the
volume and classified; if the mean of these scores was greater than a
certain threshold, t, the volume was labelled as containing motion. Each
brain had approximately 60 saggital slices, so we chose to score alternate
slices to strike a balance between dense sampling and GPU memory
constraints, giving a total of 30 scores per volume. For the real-trained
classifier we used the natural threshold of t¼ 0.5. Despite attempts to
match the simulated and real data in appearance, there are remaining
differences (such as the noise patterns caused by the multiple coil re-
ceivers in the real data, and the presence of artefacts not simulated such
as susceptibility) which the simulation-trained classifier has not ‘seen’
before, which affects the scores that it assigns to real data. This means the
threshold for the simulation-trained classifier had to be calibrated using a
single subject from the real training set. We experimented with two
methods for determining the optimal threshold from this subject. In the
first, the threshold that maximized the F1-score between the true and
predicted labels for this subject was chosen for use at test-time. The F1
score is defined as:

F1 ¼ 2*
precision*recall
precisionþ recall

(1)

with precision and recall defined as:

precision ¼ TP
TPþ FP

(2)

recall ¼ TP
TPþ FN

(3)

where TP are true positives, TN true negatives, FP false positives and FN
false negatives. The rationale for this method was finding a threshold that
balanced precision and recall. In the second, the greatest threshold that
gave >95% recall for motion-corrupted volumes in this subject was
chosen. The rationale for this method was that it may be preferable to
ensure the majority of corrupted volumes are found, even if this means
rejecting some false positives. Classification took 28ms per volume, or
48 s for the 172 volumes in each dHCP dataset.
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Experiment design

We aim to investigate how close a simulation-trained classifier can get
to the state-of-the-art, a real-trained classifier, for QC of movement ar-
tefacts. Given the real-trained classifier has been claimed to approach the
performance of a human-rater (Kelly et al., 2016), we first compare our
real-trained classifier to the intra-rater variability in order to establish
whether our implementation of it serves as a suitable benchmark. We
then compare our simulation-trained classifier to the performance of the
real-trained. As part of the evaluation of the simulation-trained classifier
we compare the two proposed choices for evaluating the optimal
threshold described earlier.

Results

Simulated and real data is shown in Fig. 3. Both simulation-trained
and real-trained classifiers fit their validation sets well — the
simulation-trained achieved 95% accuracy on the simulated validation
set, and the real-trained achieved 93% accuracy on the real validation
set.

We determined the optimal threshold for the simulation-trained
classifier using each of the seven real subjects in the
training þ validation set, in order to get a sense for the extent to which
the threshold depends on choice of subject. Thresholds determined from
the F1-score criterion were more tightly clustered (from 0.86 to 0.97)
then those determined from the sensitivity criterion (0.71–0.96), indi-
cating the F1 criterion is a more reliable way of determining a threshold.
We decided to use the F1 criterion thresholds for the test dataset.

Both classifiers were tested on the three held-back dHCP subjects.
Fig. 4 shows the precision-recall curve for the two classifiers. Whilst it
was decided to use the F1 criterion for the results, thresholds for the
sensitivity criterion are also plotted on this Figure to demonstrate the
greater variance in precision/recall scores this introduces. The real-
trained classifier achieved precision and recall of 97% and 98% for
classification of corrupted volumes, results comparable to the state-of-
the-art results reported in Kelly et al. (2016). Intra-rater agreement on
the test set was 99%, showing this classifier approaches human level
performance. The simulation-trained classifier achieved precision and
recall of 95% and 93% for the most common F1-determined threshold
(0.94, occurred in 3/7 subjects). If the lower range threshold was used
(0.87) precision and recall was 83% and 97%, and for the upper
threshold (0.97) these values were 96% and 85%. Fig. 5 shows results for
both classifiers on some of the test data. Fig. 6 shows the mean classifier
score for each volume in the test set, along with the classification for each
volume.

Discussion

In this work we compared the performance of a QC tool trained on
simulated data to that of a tool trained on real data. The real-trained
classifier achieved near-human performance, confirming the findings in
Kelly et al. (2016). The simulation-trained classifier demonstrated per-
formance approaching that of the real-trained classifier. It was able to
detect the majority of the motion corrupted volumes in the test set,
though it showed slightly reduced precision and recall compared to the
real-trained classifier.

The classifier presented here is a modified version of the one pre-
sented by Kelly et al. (2016). It offers comparable performance when
trained on real data whilst offering a number of improvements. Firstly,
ours involves training a single neural network, compared to the 11
trained in Kelly et al. (2016). Our classifier only requires magnitude data,
whilst the previous classifier uses both magnitude and phase data, and
we don't need to distinguish between b-values for training. Our final
decision is made by a simple thresholding of the classifier outputs, whilst
Kelly et al. (2016) requires the additional training of a random forest
classifier on the CNN outputs.



Fig. 4. Precision-recall curve for both classifiers in the test set, consisting of 516 volumes. The threshold for the real-trained classifier of 0.5 is plotted on the curve, as
are the seven thresholds determined for both the F1- and sensitivity-based criterions for the simulation-trained classifier.

Fig. 3. Real and simulated data. Red bounding boxes indicate the volume was assigned a ground-truth label as containing intra-volume movement. Each image is
taken from a different volume.
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Fig. 6. Classifier scores for each volume in the test-set. The score is produced by averaging the classifier outputs for the 30 slices classified in each volume. Threshold
of 0.94 used for the simulation-trained plot.

Fig. 5. Sample classifier results for images in the test-set. Green border indicates a correct classification as containing motion, blue borders indicate false-negatives and
yellow borders are false-positives. Confusion matrices for classification on all 516 volumes in the test set are shown below. Threshold of 0.94 used for the sim-
trained results.

M.S. Graham et al. NeuroImage 178 (2018) 668–676
We only trained our classifier to detect movement artefacts, but there
are many more artefacts that would ideally be identified by the QC
process, and future work will look into extending the classifier. In theory,
classifiers such as the one proposed in this work would be well suited to
identifying any artefacts that a human is able to spot when inspecting
slices through a volume, including ghosting, fat-artefacts, susceptibility
and RF spikes. The classifier is currently not suitable for detecting arte-
facts that require visual comparison to other images (such as eddy-
currents) or those best detected by examining model residual maps
(Tournier et al., 2011). One advantage of training using simulated data is
that the training set can be designed to include numerous examples of
artefacts that might be very rare in practice (such as RF spikes). Training
to identify these rarer artefacts on real data may require labelling a very
large dataset in order to find sufficient training examples. The classifier is
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designed to be used on data before any post-processing (e.g. motion
correction) is applied, in order to flag up problematic volumes, but they
could potentially also be applied to automatically check if
post-processing has successfully corrected visible problems in the data.
We focused on DW-MR in this study, but other modalities (such as fMRI)
contain both movement and other artefacts, and the approach demon-
strated in this work can be adapted to produce classifiers for these
modalities.

One potential source of error was the automatic threshold chosen to
produce ground-truth labels for the simulated data. A volume with more
than 2.5mm translation or rotations greater than 2.5� was labelled as
containing intra-volume movement. If volumes with this level of move-
ment looked significantly different to volumes in the real data that were
manually labelled as containing movement the simulation-trained



Fig. 7. Scores for a hybrid classifier trained on the full simulated dataset and 20
volumes from the real dataset. Results shown for a threshold of 0.5.
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classifier's performance would be affected. We investigated this by per-
forming manual QC on two subjects from the simulated dataset. Manual
and automatic QC agreed for 95% of cases. When they disagreed it was
because the automatic threshold picked up on slightly more subtle cases
of movement. This could have led to a slightly more sensitive classifier
than the real-trained one, but this does not seem to have been the case.
Future work could investigate better ways of assigning labels to the
simulated data. For example, the thresholding could take into account
when the movement occurs in the acquisition of a volume as well as the
type of movement occurring (e.g. translations, rotations).

There is room for more investigation. It would be interesting to un-
derstand how similar the real and simulated data need to be in order to
obtain good performance. The resolution of simulated data was different
to the dHCP data, and multiband wasn't simulated, meaning movement
of slices was not correlated across a volume. Further work could deter-
mine whether these differences affect performance, as well as how per-
formance depends on the amount of movement simulated, signal
dropouts, image contrast and choice of b-values and directions. This ties
into how well the trained classifiers will generalise to new, unseen
datasets — for example a dataset acquired on adult subjects, or with a
different protocol. It is worth nothing that the classifier would need to be
re-trained for protocols where the artefacts manifest themselves differ-
ently, such as 3D imaging or non-EPI based methods. We could also look
at howmuch training data is required for good performance; in this work
we matched the amount of simulated and real data used for training, but
we could test whether performance can be improved even further by
using more simulated data for training. Moving to a GPU-accelerated
simulator (Xanthis et al., 2014) would facilitate easily producing larger
quantities or training data, and also enable higher-resolution data to be
simulated. Whilst it is an advantage that the classifier only requires the
images, it would be interesting to ascertain whether supplying further
information (such as b-values) could assist classification.

There are some drawbacks to the approach described in this paper.
These centre around the difficulties inherent in training on one domain
(simulated data) and then classifying in a different domain (real data).
This can be seen in Fig. 6. It shows that the simulation-trained classifier
was good at spotting artefacts, and assigned high scores to volumes
containing movement, but was much less sure for volumes that did not
contain movement, producing scores with a very large spread. This
contrasts with the real-trained classifier, which was able to assign high
scores to volumes with movement and low scores to volume without.
This meant the simulation-trained classifier had a smaller margin for
error, which caused the occasional large mistake: in Fig. 5, it can be seen
the simulation-trained classifier predicted a false-negative on a volume
that quite clearly contained movement artefacts — the errors in the real-
trained classifier tend to be more straightforward ‘borderline cases’ that a
human might find difficult to classify. The shift in scores caused by the
transfer between domains also meant that the simulation-trained classi-
fier still requires some labelled, real-data for calibration. Whilst this is
still a big reduction in the amount of labelled data required when
compared to the amount needed to train the classifier, it would be ideal if
none was required. Furthermore, the choice of subject used for the
calibration introduces variability into the final performance of the clas-
sifier. One potential way to address these issues would be to work on
increasing the realism of the simulations, for example by including some
of artefacts not simulated such as susceptibility, fat artefacts, and the
complex noise distributions caused by multiple receiver coils. However,
we believe a more promising way to address these limitations is by
including recent research on domain adaptation in machine learning, i.e.
getting a classifier trained to perform well in domain A (e.g. simulated
data) to perform well on domain B (e.g. real data) without requiring any
labelled data from domain B. One of the simplest ways to do this is to
include a small amount of real data in training. Fig. 7 shows some pre-
liminary results using this approach, training on the simulated dataset
and 20 volumes from the real set. The classifier is able to produce much
lower scores for normal volumes, enabling the standard threshold of 0.5
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to be used. It seems unlikely these results are driven fully by the real data
as the real data only contained a single volume containing movement
artefacts, so the simulated data was necessary to help the classifier learn
what a motion-corrupted volume looks like.

Whilst the hybrid result is promising, it is similar to the calibration
approach in that it still requires some real data to be manually labelled.
Ideally a classifier would be able to learn from the real data in a fully
unsupervised manner, and these unsupervised approaches will be the
focus of future developments. Examples of such approaches in the liter-
ature (outside of QC) include Kamnitsas et al. (2017) in which they
encourage the classifier to learn features which are domain-invariant by
pitting it adversarially against a discriminator which attempts to predict
the domain the classifier is working in by examining the classifier's ac-
tivations. In Bousmalis et al. (2017), a neural network is used to adapt
simulated data to appear more like real data; training on this adapted
data gives performance equivalent to training on real data.
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