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Background: Diet may influence vascular function through elevated homocysteine (Hcy) concentrations.
However the relationship between dietary patterns (DP), characterised by Hcy and its associated nu-
trients is unknown.
Objective: To identify a DP characterised by plasma Hcy, dietary folate and dietary vitamin B12, and
examine its associations with two markers of vascular function: carotid intima-media thickness (cIMT)
and pulse wave velocity (PWV).
Methods: 1562 participants of the MRC National Survey of Health and Development (NSHD), a British
birth cohort, with dietary data measured at least once between 36 and 60e64 years, and cIMT or PWV
measured at 60e64 years were included. DPs were derived using reduced rank regression with three
intermediate variables: 1) plasma Hcy (mmol/L) 2) folate intake (mg/1000 kcal) 3) vitamin B12 intake (mg/
1000 kcal). Multiple regression models assessed associations between the derived DP z-scores and
vascular function adjusting for dietary misreporting, socioeconomic position, BMI, smoking, physical
activity and diabetes.
Results: A DP explaining the highest amount of shared variation (4.5%) in plasma Hcy, dietary folate and
dietary vitamin B12 highly correlated with folate (r ¼ 0.96), moderately correlated with vitamin B12
(r ¼ 0.27), and weakly correlated with Hcy (r ¼ 0.10). This “high B-vitamin” DP (including folate) was
characterised by high intakes of vegetables, fruit and low fibre breakfast cereal, and low intakes of
processed meat, white bread, sugar and preserves. No associations were observed between DP z-scores
and vascular function at any time point following adjustment for covariates.
Conclusion: This study explored a specific hypothesised pathway linking diet to vascular function.
Although we found no consistent evidence for an association between a high B-vitamin DP and vascular
function, we did observe an association with CRP and triglycerides in secondary analyses. Further ana-
lyses using strongly correlated and biologically relevant intermediate variables are required to refine
investigations into diet and CVD in longitudinal cohort data.

© 2018 Published by Elsevier Ltd.
1. Introduction

Decades of research have led to the identification of risk factors
for cardiovascular disease (CVD) and the development of effective
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treatment strategies. Despite this progress [1], CVD remains a sig-
nificant public health concern worldwide [2]. Identifying environ-
mental factors that influence the early stages of CVD will support
prevention strategies. Examining vascular endothelial dysfunction,
which signals atherosclerosis, can support this goal [3]. Vascular
endothelial dysfunction is characterised by altered permeability
barrier function, enhanced adhesion molecule expression,
increased leukocyte adhesion, impaired endothelium-dependent
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vasodilator responses, enhanced thrombosis, impaired fibrinolysis,
a reduction in endogenous nitric oxide activity, reduced vascular
smooth muscle cell function and increased arterial stiffness [4].
Two measures of vascular function that have been used to predict
CVD in the general population include carotid intima-media
thickness (cIMT), a non-invasive ultrasound biomarker of early
atherosclerosis [5] and carotid-femoral pulse wave velocity (PWV),
a measure of arterial compliance as well as stiffness [6].

Diet has long been considered to play a role in the development
of CVD and the link between diet and vascular health is thought to
be mediated through multiple biological pathways [7,8]. Diet,
including entire diets (the Mediterranean diet), individual dietary
components (e.g. fish-oil and fruit and vegetables), or diet-related
genetic polymorphisms, have been shown to be associated with
vascular function outcomes [9]. A mechanism through which diet
may affect vascular health is through its influence on homocysteine
(Hcy) concentrations. Increased homocysteine (Hcy) concentra-
tions have been associated with an increased CVD risk [10e12]. Hcy
concentrations are closely linked with vitamin B-12 and folate,
where deficiencies in these nutrients can result in disruptions to
the methylation pathway causing elevated Hcy concentrations [13].
Supplementation with these nutrients, particularly folate, has been
shown to reduce Hcy concentrations [14,15]. Therefore it is plau-
sible that a diet consisting of high intakes of folate and vitamin B12,
in turn characterised by low Hcy concentrations may have a posi-
tive effect on vascular health. Observational studies demonstrate a
beneficial association between B-vitamins and CVD but large clin-
ical trials have not been supportive of this [11]. However, baseline
levels of B-vitamins and Hcy in these trials may not have been
sufficiently low to observe a beneficial effect of supplementation,
and these studies have mainly focused on secondary prevention
with results from smaller trials suggesting the role of B-vitamins in
preventing atherogenesis and other adverse vascular conditions
remains plausible [11,16].

While studies investigating individual associations between
Hcy, B-vitamins and vascular health can provide valuable insight,
examining dietary patterns (DPs) that capture a broader picture of
food and nutrients may be more predictive of disease risk than
individual nutrients [17]. One way of investigating the association
between DPs and early markers of vascular function via its influ-
ence on Hcy and B-vitamins is through the statistical method,
reduced rank regression (RRR) [18]. RRR is a hypothesis-based
empirical method that uses prior knowledge of a specific
pathway to identify DPs [18]. To our knowledge, no previous study
has examined a DP characterised by folate intake, vitamin B12
intake and plasma Hcy and its relationship with vascular function
as an early marker of CVD risk. We aimed to use longitudinal data
from a cohort of British adults to 1) identify a DP characterised by
dietary folate intake, vitamin B12 intake and Hcy concentrations
using RRR and, 2) examine its long-term relationships with two
markers of vascular function.

2. Methods

2.1. Participants

The MRC National Survey of Health and Development (NSHD)
consists of 5362 singleton births from married parents in England,
Scotland and Wales, stratified by social class [19]. The cohort has
been followed up 24 times since birth [20]. In 2006e2010 (60e64
years), eligible study members were invited for an assessment at
one of six clinical research facilities (CRF) or for home visits by a
trained research nurse. Invitations were not sent to those who had
died (n ¼ 778), who were living abroad (n ¼ 570), had previously
withdrawn from the study (n ¼ 594), or had been lost to follow-up
Please cite this article in press as: Maddock J, et al., A dietary pattern deri
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(n ¼ 564). Of the responders to the 60e64 year follow-up, in-
dividuals attending the CRFs (n ¼ 1690) had lower adiposity and
lifetime smoking exposure and higher levels of physical activity
compared with those who did not attend the CRF [21]. Eligible
participants for the main analyses included those with at least one
vascular measure at 60e64 years and who provided information on
three or more days of dietary intake from at least one adult time
point (n ¼ 1562) (Fig. 1). Ethical approval was obtained from the
Greater Manchester and the Scotland Research Ethics Committees
and participants provided written and informed consent.

2.2. Primary outcomes: vascular measures at 60e64 years

Vascular measurements were taken by trained research staff
during the CRF visits following an overnight fast and prior to any
strenuous physical activity. cIMT was measured in the left and right
common carotid artery from three images taken in the lateral view
on each side using high resolution B-mode ultra-sound imaging
(Vivid I [12 MHz probe]; GE Healthcare) [22]. Participants with
carotid plaque i.e. cIMT greater than 1.5 mm, with abnormal shape
and abnormal wall texture were excluded (n ¼ 13). Further details
of how cIMT was measured are outlined in previous papers [23]. A
combined average of left and right cIMT is used in analyses.

PWV was calculated using pulse pressure waveforms obtained
from the carotid and femoral arteries using the Vicorder device
(SkidmoreMedical). A 100mmwide pressure cuff was placed at the
upper right thigh and another 30 mm partial cuff was placed
directly over the right carotid artery. Cuffs were inflated simulta-
neously to 65 mmHg for approximately 10e15 s. Path length was
measured between the cuffs and defined as the distance between
the suprasternal notch directly to the top of the femoral cuff. PWV
was automatically calculated by an in built algorithm.

2.3. Secondary outcomes: CVD-risk factors at 60e64 years

We considered blood pressure, blood lipids, triglycerides, and C-
reactive protein (CRP) measured in overnight fasting blood samples
at 60e64 years as secondary outcomes [24]. Details of the assay
used to estimate low density lipoprotein (LDL), high density lipo-
protein (HDL) and total cholesterol, triglycerides and CRP have
previously been published [23,25]. Blood pressure was measured
twice using an Omron HEM-705 with the participant in a seated
position, with the second reading used for this analysis. Informa-
tion on medication use was collected and coded according to the
British National Formulary, from which individuals on lipid
lowering and antihypertensive medications were identified.

2.4. Dietary assessment in adulthood

Dietary data were collected when participants were aged 36, 43,
53 and 60e64 years [26e29]. All food and drink consumed both at
home and away were recorded by participants in a 5-day estimated
diet diary [30]. Detailed guidance notes and photographs were
provided to assist participants [28]. Dietary intake was coded in the
MRC Human Nutrition Research, Cambridge using the in-house
programmes, Diet In Data Out (DIDO) and Diet In Nutrients Out
(DINO) [26,27]. Nutrient intakes were calculated based onMcCance
andWiddowson's The Composition of Foods taking into account food
composition, fortification and portion sizes [29]. We aggregated
intakes of individual foods and drinks into 46 food groups (g/day)
based on nutrient profile and culinary usage (Supplementary
Table 1).

We used an individualised method to identify dietary mis-
reporting. This involved assigning a Physical Activity Level (PAL) to
each individual based on self-reported responses to questions on
ved using B-vitamins and its relationship with vascular markers over
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Fig. 1. Number of participants in the MRC National Survey of Health and Development and selection for the present study. CRF: clinical research facility; cIMT: carotid intima-media
thickness; PWV: pulse wave velocity.
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leisure time physical activity and calculating the ratio of estimated
intake (EI) to estimated energy requirement (EER) and its 95%
confidence interval (CI) for each year [31e33]. Individuals were
grouped into underreporters (EI:EER <95 CI EI:EER), plausible re-
porters (EI:EER within the 95% CI) or overreporters (EI:EER >95%CI
EI:EER), coded as 0, 1 and 2, respectively. A cumulative dietary
misreporting variable across adulthood was created by combining
responses to the 4 time points where 0 indicates underreporting at
all time points and 8 indicates overreporting at all time points.

2.5. Intermediate variables for RRR

We considered three variables as the intermediate variables in
RRR analyses: plasma Hcy, dietary intake of folate and dietary intake
of vitamin B-12. Total plasma Hcy (mmol/l) was determined from
participant's samples at 60e64 years using a LTQ Orbitrap Elite mass
spectrometer coupled to an Ultimate 3000 ultra high performance
liquid chromatography (Thermo Fisher) in the Department of
Biochemistry University of Cambridge. The Orbitrap was operated
over a mass range of 60e1500m/z at a resolution of 3000 ppm. Data
were integrated in Xcalibur (Thermo Fisher) and the homocysteine
signal (mmol/l) was normalised to the deuterated internal standard.
We obtained dietary folate (mg/1000 kcal) and vitamin B12 (mg/
1000 kcal) as nutrient densities from the diet diaries.

2.6. Covariates in adulthood

We identified relevant covariates a priori. These included: so-
cioeconomic position (SEP), body mass index (BMI), smoking sta-
tus, physical activity and presence of diabetes.

Since some participants had retired by 60e64 years, SEP was
based on occupational social class at age 53 years (or 43 years if
missing (n ¼ 112)), grouped into categories according to the UK
Registrar General's classification (professional and intermediate;
skilled non-manual; skilled manual; semi-skilled and unskilled
manual).

Height and weight were measured at 60e64 years. BMI was
calculated as weight (kg) divided by height (m2).

Smoking status was categorised as never, current or ex-smoker
at 60e64 years (or 53 or 69 years if missing (n ¼ 115)).
Please cite this article in press as: Maddock J, et al., A dietary pattern deri
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Accumulation of leisure time physical activity (LTPA) across
adulthood was derived as previously described [34]. At each age,
we categorised participants as inactive, moderately active or most
active. The overall score is the sum of responses at each time point,
ranging from 0 (inactive) to 8 (active). LTPA across adulthood was
categorised as always inactive, active in at least one time point,
active at more than one time point.

Self-report of doctor diagnosis of diabetes (type 1 or type 2) up
to 60e64 years was categorised as yes/no.

2.7. Statistical analyses

2.7.1. Reduced rank regression
We used reduced rank regression (RRR) to identify a DP char-

acterised by plasma Hcy, dietary folate, and dietary vitamin B12,
using data from participants at 60e64 years. RRR DPs are weighted
linear combinations of food intake that explain the maximum
variation in a set of pre-defined intermediate variables i.e. variables
that are hypothesised to be on the pathway between food intake
and the outcome of interest. We applied RRR to all 1867 partici-
pants with dietary data (regardless of whether they had vascular
measures or not) at 60e64 years using the 46 food groups (g/day)
as predictors and plasma Hcy (mmol/l), dietary folate (mg/1000 kcal)
and dietary vitamin B12 (mg/1000 kcal) as intermediate variables.
Since there were no major differences between the DPs of men and
women, the presented DP is based on data from men and women
combined.

For each completed food diary, the participant received a z-
score. This z-score represents the degree to which the participant's
reported intake reflected the DP obtained from RRR in relation to
other individuals in the study (mean ¼ 0, SD ¼ 1).

2.7.2. Confirmatory reduced rank regression
Following identification of the DP at 60e64 years, we estimated

DP z-scores at the three younger ages. A total of 2107 participants
had dietary information from one or more time points. It was not
possible to independently identify the DP at younger ages since Hcy
concentrations were available at 60e64 years only. Therefore to
score participants in relation to DP at earlier ages, we applied
confirmatory RRR using the DP identified in the 60e64 year follow-
ved using B-vitamins and its relationship with vascular markers over
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up [35]. This involved using the scoring weights produced by the
60e64 year RRR DP and applying them to reported dietary intakes
from earlier years. This results in each participant receiving a z-
score which quantifies how much their reported dietary intake at
each time point reflects the DP identified at 60e64 years. To assess
long-term adherence to the identified DP, we calculated an average
DP z-score for each individual with DP z-scores from at least 2 time
points.

2.8. Primary analyses

Since the distribution of DP z-scores was found to vary by sex,
we grouped DP z-scores into fifths using sex-specific cut-points.We
assessed differences in selected nutrient intakes and intermediate
variables according to sex-specific DP fifths at 60e64 years using
linear regression models.

To enhance comparability between the outcomes, we stand-
ardised cIMTand PWV for use in subsequent regressionmodels. We
assessed associations between sex-specific groups of the DP z-
scores (with the lowest fifth, Q1, as reference) at each time point
and vascular function at 60e64 years separately using a series of
linear regression models. The regression models were adjusted for:
1) participant characteristics (dietary misreporting and socioeco-
nomic position) 2) lifestyle factors (BMI, smoking and physical ac-
tivity) 3) diabetes. Interactions between the DP and sex and the DP
and smoking were assessed. We examined non-linear associations
between the DP z-scores and vascular outcomes using a likelihood
ratio test comparing models with the DP groups fitted as a linear
term to a model with the DP groups fitted as a categorical term.

We applied linear regressionmodels with the same adjustments
outlined above to investigate average DP z-scores over time and
vascular outcomes.

2.9. Sensitivity analyses

In sensitivity analyses, we additionally adjusted associations
between the DP and vascular function for the use of folic acid or
multivitamin dietary supplements, as well as lipid lowering and/or
antihypertensive medication. Information for folic acid supple-
mentation was available for participants at 60e64 years only and
there was no information on the use of any nutrient supplemen-
tation at 43 years.

2.10. Secondary analyses

In secondary analyses, we investigated whether adherence to
the identified DPwas associatedwith other CVD-risk factors using a
similar series of regressionmodels. We applied censored regression
where use of antihypertensive/lipid-lowering medication were
likely to affect the level of the outcome (i.e. blood pressure,
cholesterol and triglycerides) [36].

2.11. Multiple imputation

Of the eligible participants (n ¼ 1562), 97%, had complete data
for all covariates. Missing values were most frequent for SEP (3%)
followed by smoking status (1%). To account for missing data on
covariates used in regression models, we performed multiple
imputation by chained equations where twenty complete datasets
were created [37]. The results based on regression analyses using
multiple imputation were similar to those conducted on complete
cases, but with slightly more precise standard errors. The imputed
results are presented.

We performed RRR using the PROC PLS procedure in SAS and all
other analyses were performed using STATA version 14.
Please cite this article in press as: Maddock J, et al., A dietary pattern deri
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3. Results

3.1. Participant characteristics

Table 1 displays demographics, lifestyle factors and vascular
phenotypes of the 1562 participants with relevant data. Means for
cIMT and PWV were slightly higher for men, among those with a
higher BMI, with diabetes, who smoked (for cIMT only), and re-
ported taking either blood-pressure or lipid-lowering medication
(p � 0.008).

Participants with data for at least one vascular outcome and
information on DP scores from at least one time point (n ¼ 1562)
were more likely to be of higher SEP, had a lower mean BMI, lower
lipids, cholesterol, blood pressure and CRP values and had generally
healthier lifestyles than those responding to the 60e64 year follow-
up who did not have vascular function information (n ¼ 667,
Supplementary Table 2).

3.2. Dietary pattern

Of the 2107 participants with dietary information from one or
more time points 77% had dietary information for the first time at
36y. A total of 73%, 76%, 64% and 65% participants were identified as
plausible dietary reporters at 36, 43, 53 and 60e64 years
respectively.

The three intermediate variables (plasma Hcy, dietary folate and
dietary vitamin B12) were not found to be highly correlated with
each other (r � 0.02 for all pairwise correlations). Since three in-
termediate variables were used in RRR models, three DPs were
identified.

The first DP identified was strongly and positivity correlated
with dietary folate, had a moderate positive correlation with di-
etary vitamin B12 and was weakly correlated with plasma Hcy
(Supplementary Table 3). The first DP, which will be referred to as
the high B-vitamin DP, explained 4.5% of the variation in all three
intermediate variables. The second and third DPs explained
considerably less variation in intermediate variables: 1.7% and
0.88% respectively (Supplementary Table 3). Since the first high B-
vitamin DP explained the highest percent of the variation in in-
termediate variables, only this DP was taken forward for subse-
quent analysis.

A higher DP z-score for the high B-vitamin DP was characterised
by higher intakes of vegetables, fruit, and low fibre breakfast ce-
reals, and low intakes of processed meat, white bread and, sugar
and preserves (Fig. 2). Details of the second and third DPs obtained
from these analyses are outlined in Supplementary Figs.1 and 2 and
Supplementary Table 3.

Dietary intakes of folate and vitamin B12were highest in the top
fifth of the DP distribution. However, Hcy concentrations did not
change according to z-scores for the high B-vitamin DP (Table 2). In
addition, total energy intakes and percentage energy from fat
decreased, while percentage energy from carbohydrate and protein
increased with increasing DP fifths (Table 2). However, the size of
the difference in these nutrients across groups was small (Table 2).
Mean z-scores for the high B-vitamin DP did not change extensively
over time (see Fig. 3).

3.3. Associations between the high B-vitamin DP z-scores and
vascular function

Although participants in the top fifth of the DP distribution at 36
years had lower cIMT compared with those in the bottom fifth
(ptrend ¼ 0.09), this attenuated slightly following adjustment for
lifestyle factors and diabetes (Table 3). There was no evidence of a
linear trend or deviation from linearity in any model (Tables 3 and
ved using B-vitamins and its relationship with vascular markers over
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Table 1
Characteristics of participants with at least one vascular measure and dietary data from at least one time point (n ¼ 1562).

Total Male (N ¼ 743) Female (N ¼ 819)

N % or mean (SD) N % or mean (SD) N % or mean (SD)

Demographics
Socioeconomic position at 53 years (or 43 years if missing)
Professional & intermediate 816 52.2 459 61.78 357 43.59
Skilled non-manual 363 23.2 80 10.77 283 34.55
Skilled Manual 193 12.4 144 19.38 49 5.98
Semi-skilled and unskilled manual 151 9.7 50 6.73 101 12.33
Missing 39 2.5 10 1.4 29 3.5
P sex differenceb <0.001

Lifestyle-related factors
BMI at 60e64 years, kg/m2 1562 27.5 (4.6) 743 27.6 (3.8) 819 27.5 (5.1)
Missing 0
P sex differenceb 0.40

Self-reported physical activity since 1982
Inactive 199 12.7 85 11.44 114 13.92
Active at some point 1272 81.4 605 81.43 667 81.44
Always active 90 5.8 53 7.13 37 4.52
Missing 1 0.1 0 0 1 0.1
P sex differenceb 0.06

Smoking status
Current 167 10.7 82 11.04 85 10.38
Ex-smoker 873 55.9 442 59.49 431 52.63
Never smoker 506 32.4 209 28.13 297 36.26
Missing 16 1.0 10 1.4 6 0.7
P sex differenceb 0.005

Medical conditions at 60e64 years
Anti-hypertensive medication
No 1097 70.2 503 67.7 594 72.53
Yes 419 26.8 213 28.67 206 25.15
Missing 46 2.9 27 3.6 19 2.3
P sex differenceb 0.07

Lipid lowering medication
No 1236 79.1 550 74.02 686 83.76
Yes 326 20.9 193 25.98 133 16.24
Missing 0
P sex differenceb <0.001

Diabetes
No 1477 94.6 701 94.35 776 94.75
Yes 83 5.3 42 5.65 41 5.01
Missing 2 0.1 0 0 2 0.24
P sex differenceb 0.35

Vascular phenotype at 60e64 years
Pulse wave velocity, m/s 1191 8.18 (1.5) 551 8.35 (1.44) 640 8.04 (1.56)
Missing 371 192 179
P sex differenceb <0.001

Carotid intima-media thickness, mm 1479 0.69 (0.13) 707 0.71 (0.14) 772 0.67 (0.11)
Missing 83 36 47
P sex differenceb <0.001

Systolic blood pressure 1557 135.61 (18.16) 742 138.98 (18.03) 815 135.53 (17.74)
Missing 5 1 4
P sex differenceb <0.001

Diastolic blood pressure 1558 77.21 (9.82) 743 78.88 (9.88) 815 75.69 (9.51)
Missing 4 0 4
P sex differenceb <0.001

Total cholesterol, mmol/L 1492 5.69 (1.19) 718 5.32 (1.08) 774 6.03 (1.18)
Missing 70 25 45
P sex differenceb <0.001

Low density lipoprotein cholesterol 1452 3.53 (1.02) 692 3.30 (0.94) 760 3.74 (1.05)
Missing 110 51 59
P sex differenceb <0.001

High density lipoprotein cholesterol 1492 1.60 (0.40) 718 1.41 (0.33) 774 1.76 (0.40)
Missing 70 25 45
P gender differenceb <0.001

Triglycerides, mmol/L 1460 1.12 (1.09, 1.14)a 698 1.23 (1.18, 1.27) 762 1.03 (0.99, 1.06)
Missing 102 45 57
P sex differenceb <0.001

C-reactive protein, mg/L 1491 2.18 (2.08, 2.28)a 718 2.12 (1.99, 2.26) 773 2.23 (2.10, 2.37)
Missing 71 25 46
P sex differenceb 0.21

a Values are geometric mean (95% CI).
b c2 for categorical variables; t-test/Wilcoxon-rank sum for continuous variables.
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Fig. 2. Factor loadings for the high B-vitamin dietary pattern at 60e64 years.

Table 2
Characteristics of high B-vitamin dietary pattern by sex-specific dietary pattern quintile at 60e64 years (n ¼ 1867).

Total (n ¼ 1867) DP Q1 (n ¼ 374) DP Q2 (n ¼ 373) DP Q3 (n ¼ 373) DP Q4 (n ¼ 374) DP Q5 (n ¼ 373) Ptrend

Dietary pattern score �0.01 (1.05) �1.35 (0.67) �0.49 (0.35) �0.02 (0.31) 0.45 (0.30) 1.36 (0.82) <0.001
Plausible reporters (%) 66.80 76.20 65.15 67.56 64.97 60.05
Intermediate variables
Homocysteine (mmol/l) 9.79 (6.87) 9.57 (6.58) 9.56 (7.03) 9.43 (6.41) 10.46 (7.29) 9.91 (7.02) 0.20
Dietary Folate (mg/d) 348.93 (212.74) 299.80 (110.01) 321.91 (130.32) 335.84 (120.51) 349.49 (132.34) 437.74 (393.16) <0.001
Dietary Vitamin B12 (mg/d) 8.97 (30.46) 6.36 (3.89) 8.28 (26.92) 8.42 (18.71) 8.22 (21.38) 13.59 (55.47) 0.004
Nutrients
Energy (kcal/d) 1879.12 (458.53) 2046.70 (451.11) 1925.69 (448.49) 1847.49 (430.57) 1798.26 (445.45) 1777.23 (465.52) <0.001
% Energy from Fat 33.97 (5.88) 35.36 (6.08) 34.57 (5.67) 33.87 (5.68) 33.43 (5.28) 32.62 (6.31) <0.001
% Energy from CHO 46.88 (7.34) 44.95 (7.76) 46.03 (7.11) 47.05 (6.52) 47.19 (7.32) 49.17 (7.30) <0.001
% Energy from Protein 16.68 (3.07) 15.91 (2.80) 16.21 (2.67) 16.60 (2.75) 17.13 (3.25) 17.58 (3.51) <0.001
Top positive loading food groups (g/d)
Vegetables 171.97 (91.56) 126.49 (63.76) 149.17 (72.16) 164.52 (74.24) 184.65 (83.02) 235.17 (116.36) <0.001
Fruit 152.85 (114.86) 111.82 (97.56) 130.05 (102.36) 149.89 (110.17) 165.70 (110.69) 206.92 (128.15) <0.001
Low fibre breakfast cereal 5.92 (15.82) 2.25 (6.46) 4.16 (8.18) 4.56 (9.03) 6.08 (10.06) 12.59 (30.01) <0.001
Top negative loading food groups (g/d)
Processed meats 32.19 (31.40) 47.28 (42.88) 36.22 (29.22) 30.28 (27.30) 26.12 (24.78) 21.01 (21.81) <0.001
White bread 45.18 (41.32) 63.04 (46.95) 50.32 (41.92) 45.58 (38.41) 38.03 (37.45) 28.91 (32.46) <0.001
Sugar and preserves 11.64 (15.12) 17.47 (19.40) 13.03 (16.12) 10.97 (13.32) 9.56 (12.88) 7.17 (10.26) <0.001

Values are mean (SD) unless otherwise indicated.
CHO: Carbohydrate.
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4). Therewas no evidence for interaction between the DP and sex or
the DP and smoking (pinteraction � 0.05 for all ages). Additional
adjustment for the use of folic acid or multivitamin dietary sup-
plements, or use of lipid lowering and/or antihypertensive medi-
cation did not alter the estimates presented.

3.4. Associations between average z-score for the high B-vitamin
DP and vascular function

Compared with the bottom fifth, participants in higher average
DP groups had lower cIMT scores. However the association atten-
uated following adjustment for lifestyle factors. There was no evi-
dence for an association between average high B-vitamin DP z-
score and cIMT or PWV (Table 5).
Please cite this article in press as: Maddock J, et al., A dietary pattern deri
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3.5. Associations between average z-score for the high B-vitamin
DP and other CVD risk factors

There was evidence for an inverse association between average
DP z-scores and CRP, and triglycerides (Table 6). There was no ev-
idence for an association between the high B-vitamin DP and any of
the other CVD risk factors examined (Table 6).

4. Discussion

In this British birth cohort, we identified a high B-vitamin DP
consisting of high intakes of vegetables and fruit and low intakes of
processed meat and white bread. There was no consistent evidence
for an association between scores for this DP at any age and cIMT or
ved using B-vitamins and its relationship with vascular markers over
18.06.969



Fig. 3. High B-vitamin dietary pattern z-scores over time.

Table 3
Association between the high B-vitamin dietary pattern sex-specific quintiles and caroti

DP Q1 DP Q2 DP Q3

Coef (95% CI) Coef (95% CI)

36 years n ¼ 1137
Model 1 Ref �0.10 (�0.30, 0.09) �0.20 (�0.40, �0.0
Model 2 Ref �0.11 (�0.30, 0.08) �0.20 (�0.40, �0.0
Model 3 Ref �0.11 (�0.31, 0.08) �0.20 (�0.40, �0.0
43 years n ¼ 1152
Model 1 Ref �0.08 (�0.27, 0.11) 0.01 (�0.19, 0.20
Model 2 Ref �0.06 (�0.25, 0.12) 0.03 (�0.17, 0.22
Model 3 Ref �0.06 (�0.25, 0.12) 0.02 (�0.17, 0.22
53 years n ¼ 1007
Model 1 Ref �0.19 (�0.39, 0.02) �0.08 (�0.29, 0.12
Model 2 Ref �0.17 (�0.38, 0.03) �0.04 (�0.25, 0.16
Model 3 Ref �0.17 (�0.37, 0.03) �0.04 (�0.24, 0.17
60e64 years n ¼ 1352
Model 1 Ref �0.05 (�0.23, 0.12) �0.10 (�0.27, 0.07
Model 2 Ref �0.05 (�0.22, 0.12) �0.08 (�0.25, 0.09
Model 3 Ref �0.05 (�0.22, 0.13) �0.08 (�0.25, 0.09

Model 1: dietary misreporting, socioeconomic status.
Model 2: dietary misreporting, socioeconomic status, BMI, smoking status, physical activ
Model 3: dietary misreporting, socioeconomic status, BMI, smoking status, physical activ

a Imputed covariates, standardised outcome.

Table 4
Association between the high B-vitamin dietary pattern sex-specific quintiles and pulse

DP Q1 DP Q2 DP Q3

Coef (95% CI) Coef (95% CI)

36 years n ¼ 920
Model 1 Ref �0.34 (�0.57, �0.12) �0.01 (�0.23, 0.
Model 2 Ref �0.35 (�0.58, �0.13) �0.03 (�0.25, 0.
Model 3 Ref �0.36 (�0.58, �0.13) �0.03 (�0.25, 0.
43 years n ¼ 937
Model 1 Ref 0.08 (�0.12, 0.28) �0.08 (�0.29, 0.
Model 2 Ref 0.08 (�0.12, 0.28) �0.07 (�0.28, 0.
Model 3 Ref 0.08 (�0.12, 0.28) �0.08 (�0.29, 0.
53 years n ¼ 826
Model 1 Ref 0.05 (�0.17, 0.27) 0.11 (�0.11, 0.
Model 2 Ref 0.07 (�0.15, 0.29) 0.14 (�0.08, 0.
Model 3 Ref 0.08 (�0.14, 0.30) 0.15 (�0.07, 0.
60e64 years n ¼ 1092
Model 1 Ref �0.15 (�0.34, 0.04) �0.06 (�0.25, 0.
Model 2 Ref �0.15 (�0.34, 0.04) �0.05 (�0.24, 0.
Model 3 Ref �0.15 (�0.34, 0.04) �0.05 (�0.24, 0.

Model 1: dietary misreporting, socioeconomic status.
Model 2: dietary misreporting, socioeconomic status, BMI, smoking status, physical activ
Model 3: dietary misreporting, socioeconomic status, BMI, smoking status, physical activ

a Imputed covariates, standardised outcome.
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PWV. There was an association between the high B-vitamin DP and
CRP and triglycerides suggesting that the high B-vitamin DP may
impact the development of CVD through pathways described by
novel markers of vascular function, including inflammation. These
markers provide information on vascular/endothelial dysfunction,
thought to represent an integrated CVD risk pathway.

The main strength of the study is the use of a nationally
representative sample containing repeated dietary measures over a
30 year period which enabled prospective investigations at various
time points. Despite some attrition, this cohort remained broadly
representative of thewhite British population born in the early post
world war II period [19,21]. One novel aspect of this study was the
examination of two vascular function markers, cIMT and PWV. This
supports examination of the relationship between diet and CVD at
an earlier stage of aetiopathogenesis. Another novel aspect was use
of RRR, with intermediate variables from both plasma measure-
ments and dietary intake to define the DP. Unfortunately, Hcy
concentrations were only available at one time point, therefore
confirmatory RRR had to be applied using weights from the 60e64
year follow-up to examine the DP at the previous time points. This
d intima media thickness.a

DP Q4 DP Q5 Ptrend

Coef (95% CI) Coef (95% CI)

1) �0.06 (�0.26, 0.13) �0.22 (�0.42, �0.02) 0.09
1) �0.06 (�0.25, 0.14) �0.21 (�0.41, �0.01) 0.12
1) �0.06 (�0.26, 0.14) �0.21 (�0.41, �0.02) 0.11

) �0.08 (�0.28, 0.11) �0.14 (�0.34, 0.06) 0.21
) �0.05 (�0.24, 0.15) �0.09 (�0.29, 0.10) 0.45
) �0.05 (�0.25, 0.14) �0.09 (�0.29, 0.10) 0.43

) �0.18 (�0.39, 0.02) �0.05 (�0.25, 0.15) 0.78
) �0.15 (�0.35, 0.06) �0.004 (�0.20, 0.20) 0.83
) �0.14 (�0.35, 0.06) �0.01 (�0.21, 0.19) 0.88

) �0.13 (�0.30, 0.04) �0.04 (�0.21, 0.13) 0.42
) �0.10 (�0.27, 0.07) �0.01 (�0.18, 0.16) 0.79
) �0.10 (�0.27, 0.07) �0.01 (�0.18, 0.16) 0.71

ity.
ity, diabetes.

wave velocity.a

DP Q4 DP Q5 Ptrend

Coef (95% CI) Coef (95% CI)

21) �0.04 (�0.26, 0.18) 0.02 (�0.20, 0.24) 0.14
19) �0.05 (�0.27, 0.17) 0.001 (�0.22, 0.22) 0.17
19) �0.05 (�0.27, 0.18) 0.001 (�0.22, 0.22) 0.17

13) �0.05 (�0.26, 0.16) 0.10 (�0.11, 0.31) 0.76
14) �0.03 (�0.24, 0.18) 0.13 (�0.08, 0.34) 0.56
13) �0.03 (�0.24, 0.18) 0.13 (�0.09, 0.34) 0.57

33) �0.12 (�0.34, 0.10) �0.06 (�0.28, 0.15) 0.22
36) �0.09 (�0.31, 0.13) �0.04 (�0.25, 0.18) 0.32
37) �0.09 (�0.31, 0.13) �0.04 (�0.25, 0.18) 0.32

13) �0.08 (�0.27, 0.11) 0.06 (�0.13, 0.24) 0.33
13) �0.07 (�0.26, 0.12) 0.07 (�0.11, 0.26) 0.25
14) �0.07 (�0.26, 0.12) 0.07 (�0.12, 0.26) 0.27

ity.
ity, diabetes.
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Table 5
Association between long-term adherence to the high B-dietary pattern sex-specific quintiles and vascular function.a

DP Q1 DP Q2 DP Q3 DP Q4 DP Q5 Ptrend

Coef (95% CI) Coef (95% CI) Coef (95% CI) Coef (95% CI)

Carotid intima media thickness n ¼ 1335
Model 1 Ref �0.08 (�0.28, 0.11) �0.24 (�0.43, �0.05) �0.21 (�0.40, �0.02) �0.17 (�0.37, 0.02) 0.05
Model 2 Ref �0.08 (�0.28, 0.11) �0.22 (�0.41, �0.02) �0.18 (�0.37, 0.01) �0.12 (�0.32, 0.07) 0.18
Model 3 Ref �0.09 (�0.29, 0.10) �0.22 (�0.41, �0.03) �0.19 (�0.38, 0.01) �0.14 (�0.33, 0.06) 0.16
Pulse wave velocity n ¼ 1081
Model 1 Ref 0.01 (�0.20, 0.22) �0.10 (�0.32, 0.11) �0.003 (�0.21, 0.21) 0.05 (�0.16, 0.27) 0.60
Model 2 Ref 0.003 (�0.21, 0.22) �0.10 (�0.31, 0.12) �0.004 (�0.22, 0.21) 0.06 (�0.15, 0.28) 0.50
Model 3 Ref 0.001 (�0.21, 0.22) �0.10 (�0.31, 0.12) �0.004 (�0.22, 0.21) 0.06 (�0.15, 0.28) 0.51

Model 1: dietary misreporting, socioeconomic status.
Model 2: dietary misreporting, socioeconomic status, BMI, smoking status, physical activity.
Model 3: dietary misreporting, socioeconomic status, BMI, smoking status, physical activity, diabetes.

a Imputed covariates, standardised outcome, restricted to those with information from �2 years of dietary intake.

Table 6
Association between long-term adherence to the high B-dietary pattern sex-specific quintiles and additional CVD risk factors.a,b

N DP Q1 DP Q2 DP Q3 DP Q4 DP Q5 Ptrend

Coef (95% CI) Coef (95% CI) Coef (95% CI) Coef (95% CI)

Systolic blood pressure (mmHg) at 60e64 yearsc 1371 Ref 0.14 (�3.91, 4.18) �2.79 (�6.68, 1.10) �1.04 (�4.99, 2.90) �0.32 (�4.40, 3.76) 0.76
Diastolic blood pressure (mmHg) at 60e64 yearsc 1372 Ref 1.14 (�1.03, 3.32) �1.06 (�3.15, 1.03) 0.48 (�1.64, 2.60) 0.93 (�1.27, 3.12) 0.61
Total cholesterol (mmol/L) at 60e64 yearsd 1345 Ref �0.03 (�0.25, 0.18) �0.03 (�0.23, 0.18) 0.02 (�0.19, 0.23) �0.12 (�0.34, 0.10) 0.45
LDL cholesterol (mmol/L) at 60e64 yearsd 1311 Ref �0.08 (�0.26, 0.11) �0.03 (�0.21, 0.15) �0.002 (�0.19, 0.18) �0.11 (�0.30, 0.08) 0.56
HDL cholesterol (mmol/L) at 60e64 years 1345 Ref 0.01 (�0.07, 0.08) 0.02 (�0.05, 0.10) 0.04 (�0.04, 0.11) 0.05 (�0.03, 0.12) 0.15
Triglycerides (ln(mmol/L)) at 60e64 yearsd 1318 Ref 4.06 (�6.86, 14.98) �6.58 (�17.05, 3.88) �2.18 (�12.91, 8.54) �11.81 (�22.81, �0.82) 0.01
C-reactive protein (ln(mg/L)) at 60e64 years 1345 Ref �10.87 (�27.22, 5.47) �21.71 (�37.48, �5.94) �8.99 (�25.04, 7.07) �25.73 (�42.22, �9.25) 0.01

a Includes eligible sample with dietary information from �2 time points.
b Adjusted for dietary misreporting.
c Censored regression, values censored for anti-hypertensive medication use.
d Censored regression, values censored for lipid lowering medication use.
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approach has been used in previous studies [35,38]. While it is
possible that different DPs may have emerged at the earlier years,
our approach has the advantage of assessing adherence to the same
defined DP over time. While the measurement of dietary intake is
not without error and may be prone to bias [33], the identification
of individual level dietary misreporting in this study attempted to
control for this.

Few studies have examined associations between DPs and
vascular function assessed by cIMT and PWV. Findings from studies
examining the relationship between DPs derived using principal
component analysis (PCA) and PWV or cIMT have been equivocal
and difficult to compare due to the range of DPs identified [39e42].
Our observed RRR-derived high B-vitamin DP consisted of foods
(vegetables, fruit and fortified foods including breakfast cereals)
recognised as major sources of dietary folate in the UK population
[43] while food groups that are sources of vitamin B12, such as
meat and fish, did not have strong factor loadings on this pattern.
Although, we observed an increase in folate and B12 intakes in the
highest fifth of the high B-vitamin DP distribution, there was no
change in Hcy concentrations. Increased Hcy concentrations have
been associated with risk of CVD [12], and dietary modifications
have been shown to effect Hcy concentrations [44,45]. Previous
studies have demonstrated an inverse association between Hcy
concentrations and the B-vitamins, folate and vitamin B12 [46,47],
suggesting that diets high in B-vitamins may be protective against
CVD via its influence on Hcy concentrations. Results from a 4-week
intervention trial found that increased consumption of vegetables
and citrus fruits, both good sources of folate, had the dual effects of
improving folate status, while also decreasing Hcy concentrations
[48]. However in our study, folate and vitamin B12 intakes and
plasma Hcy concentrations were not correlated. The majority of
participants (92.4% and 99.6%) at 60e64 years had folate and
Please cite this article in press as: Maddock J, et al., A dietary pattern deri
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vitamin B12 intakes above the UK recommended nutrient intakes
[49]. Therefore any correlation between these nutrients and Hcy
may be reduced.

To our knowledge, only one other study used RRR to identify DPs
that were characterised by Hcy, folate and vitamin B12 [50]. In the
Coronary Risk Factors for Atherosclerosis in Women (CORA) study,
DPs were created using data from 455 women (200 coronary heart
disease cases; 255 controls). The DP identified was high in whole-
grain bread, fresh fruit, olive oil, mushrooms, cruciferous vegeta-
bles, wine and nuts and low in fried potatoes, and was positively
associated with folate and B12, but negatively associated with Hcy.
The authors observed a reduced risk for coronary heart disease
with increasing scores for the DP in both the CORA study and
prospectively in the European Prospective Investigation into Cancer
and Nutrition (EPIC)-Potsdam Study. In comparison with our study,
the authors used plasma concentrations of all three intermediate
variables, Hcy, folate and vitamin B-12, and risk of coronary heart
disease was the main outcome. Their DP explained 8.9% of the
variation in all three biomarkers, whereas our DP explained 4.5% of
the variation shared by plasma Hcy, dietary folate and vitamin B-12.

In the Multi-Ethnic Study of Atherosclerosis study, authors used
RRR to derive a DP with inflammatory markers (CRP, interleukin-6,
Hcy and fibrinogen) as intermediate variables [41]. The authors
identified an inverse association between higher adherence to the
high-inflammatory DP and higher cIMT [41]. Interestingly, we
observed an association between the high B-vitamin DP and CRP.
This suggests that the effect of diet on CVD may be mediated by
inflammation which in turn can promote endothelial dysfunction
and atherogenesis. We also observed an association between
higher adherence to the B-vitamin DP and lower triglyceride levels.
In Whitehall II, greater adherence to a RRR DP defined by serum
total and HDL-cholesterol, and triglycerides was found to predict
ved using B-vitamins and its relationship with vascular markers over
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coronary heart disease [51]. Similarly, another study found that
young people with type 1 diabetes who adhered a RRR DP using
triglycerides as one intermediate variable (other intermediate
variables: LDL, systolic blood pressure, HbA1c, CRP and waist
circumference) had higher arterial stiffness compared to those
scoring lower on the DP [52].

RRR is one method to identify DPs. It has advantages over other
DP methods such as PCA as it can examine specific mechanistic
links between diet and outcomes of interest [18]. It is important to
note that the DPs produced in our study are specific to the bespoke
pathway under investigation i.e. via intakes of folate, B12 and Hcy
plasma concentrations. To our knowledge, no other study has used
a combination of plasma and dietary intake intermediate variables
in RRR. Through this study we demonstrated the limitations of
using weakly correlated intermediate variables.

In conclusion, although we found no consistent evidence for an
association between a high B-vitamin DP and vascular function, we
did observe an association with CRP and triglycerides in secondary
analyses. Further analyses using well correlated intermediate var-
iables are required to refine investigations into diet and CVD.
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