
Journal of Physics B: Atomic, Molecular and Optical Physics

PAPER • OPEN ACCESS

Coulomb-free and Coulomb-distorted recolliding
quantum orbits in photoelectron holography
To cite this article: A S Maxwell and C Figueira de Morisson Faria 2018 J. Phys. B: At. Mol. Opt.
Phys. 51 124001

 

View the article online for updates and enhancements.

Related content
Keldysh theory of strong field ionization:
history, applications, difficulties and
perspectives
S V Popruzhenko

-

Topical Review
D B Miloševi, G G Paulus, D Bauer et al.

-

Interplay between Coulomb-focusing and
non-dipole effects in strong-field ionization
with elliptical polarization
J Dank, M Klaiber, K Z Hatsagortsyan et
al.

-

This content was downloaded from IP address 128.41.35.89 on 20/07/2018 at 11:16

https://doi.org/10.1088/1361-6455/aac164
http://iopscience.iop.org/article/10.1088/0953-4075/47/20/204001
http://iopscience.iop.org/article/10.1088/0953-4075/47/20/204001
http://iopscience.iop.org/article/10.1088/0953-4075/47/20/204001
http://iopscience.iop.org/article/10.1088/0953-4075/39/14/R01
http://iopscience.iop.org/article/10.1088/1361-6455/aaba42
http://iopscience.iop.org/article/10.1088/1361-6455/aaba42
http://iopscience.iop.org/article/10.1088/1361-6455/aaba42
http://oas.iop.org/5c/iopscience.iop.org/610391024/Middle/IOPP/IOPs-Mid-JPB-pdf/IOPs-Mid-JPB-pdf.jpg/1?


Coulomb-free and Coulomb-distorted
recolliding quantum orbits in photoelectron
holography

A S Maxwell and C Figueira de Morisson Faria 1

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom

E-mail: andrew.maxwell.14@ucl.ac.uk and c.faria@ucl.ac.uk

Received 2 February 2018, revised 10 April 2018
Accepted for publication 30 April 2018
Published 23 May 2018

Abstract
We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-
field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that
some of them exhibit clear counterparts in the standard formulations of the strong-field
approximation for direct and rescattered above-threshold ionization, and show that the standard orbit
classification commonly used in Coulomb-corrected models is over-simplified. We identify several
types of rescattered orbits, such as those responsible for the low-energy structures reported in the
literature, and determine the momentum regions in which they occur. We also find formerly
overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their
effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron
angular distributions computed with the CQSFA with the outcome of ab initio methods for high
energy phtotoelectrons perpendicular to the field polarization axis.

Keywords: photoelectron holography, electron collisions, above-threshold ionization, Coulomb
effects

1. Introduction

Laser-induced recollisions have played a vital role in strong-field
phenomena such as above-threshold ionization (ATI) for over
two decades [1]. The quintessential example of a recollision-
induced effect is the ATI plateau, which, for a monochromatic,
linearly polarized field, or a long enough pulse, may extend to a
photoelectron energy of up to 10Up, where w= ( )U I 4p

2 is the
ponderomotive energy, I denotes the driving-field intensity and
ω gives the laser frequency. This structure has been first iden-
tified in the mid 1990s [2] (for reviews see, e.g., [3, 4]), and
consists of ATI peaks with comparable intensities. It results from
a hard elastic collision of an electron, which is backscattered by

its parent ion [5, 6]. Until recently, it was accepted knowledge
that scattering in ATI was only important for intermediate and
high photoelectron energy ranges. For energies up to around
2Up, the ATI plateau is obfuscated by the contribution from the
so-called direct electrons, which result from strong-field ioniz-
ation in the absence of recollision with the core.

Recently, however, this has been called into question in
[7–9], in which it has been shown, within the framework of
the strong-field approximation (SFA), that rescattering is also
important for much lower photoelectron energy. This has
been attributed to the large scattering cross section that is
specific to the Coulomb potential for solutions of the ATI
transition amplitude that had been previously overlooked.
Among these, the importance of forward scattered trajectories
has been highlighted. In particular, low-energy rescattering
events lead to a wide range of structures in photoelectron
velocity maps that have been previously identified in
experiments, such as a cusp-like, low-energy structure (LES)
[10, 11], a fork-like structure [7] and a pronounced V-shaped
structure [12].
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The quantum interference of rescattered with direct
electrons, or of trajectories associated with different types of
rescattering, has been paramount for the development of time-
resolved photoelectron holography. The key idea behind it is
that there is a probe and reference signal, which are associated
with different types of trajectories, whose interference leads to
a wide range of patterns. Well known examples are the spi-
der-like structure that results from the interference of different
types of forward scattered trajectories [13, 14], the fishbone
structure caused by the interference of direct and back-
scattered electron wavepackets [13, 15], and the near-
threshold fan-shaped structure caused by the interference of
direct and forward deflected trajectories [16, 17]. The very
concept of ‘direct’ and ‘rescattered’ electrons has been
defined either using classical models, for which the residual
binding potentials are neglected during the electron propa-
gation, or the SFA, for which the continuum is approximated
by field-dressed plane waves and the core by a single point at
the origin. This implies that such models allow for the exis-
tence of either hard collisions, or no collisions at all.

In a realistic situation, however, the residual binding
potential does influence the electron propagation in the con-
tinuum. Thus, the difference between direct and rescattered
electron trajectories is blurred, and there may be direct trajec-
tories, deflected trajectories, soft and hard collisions. A key
question is how to determine whether a specific electron orbit
should be viewed as ‘direct’ or ‘rescattered’, using the termi-
nology implicit in the SFA, and what types of rescattering can
be identified. Only in the case of LESs have soft collisions
been categorized in terms of phase-space criteria [18–20].

In recent publications, we have explored Coulomb effects
in photoelectron holography using the newly developed
Coulomb quantum orbit strong-field approximation (CQSFA)
[21–24]. We have shown that the fan-shaped pattern that
forms near the threshold may be viewed as a holographic
structure stemming from the interference between direct and
forward deflected electron trajectories. Furthermore, we have
successfully reproduced the spider-like structure caused by
the interference of two different types of forward deflected
trajectories, and have identified a myriad of other patterns that
have been overlooked in the literature. Analytical estimates
have also been used to single out direct, deflected and soft-
scattered trajectories. They have shown that scattering plays a
vital role in the spider-like structure, and that, in the absence
of hard collisions, the acceleration caused by the residual
Coulomb potential is the key contributor to extending the ATI
signal beyond the direct-ATI cutoff of 2Up. Previous work
has also shown the existence of a specific type of orbit, which,
as the photoelectron energy increased, moved from a field-
induced deflection to a hard scattering process [24].

The main objective of this work is to investigate the role of
scattering for the Coulomb-corrected orbits encountered in
the CQSFA, in comparison with the standard SFA. We will
focus on the low- and intermediate photoelectron energy ranges
investigated in [8], due to the rich structures encountered in
this regime. We will also address how different types of
trajectories in the CQSFA relate to their Coulomb-free, SFA
counterparts. Thereby, we will use the same classification as

in [25] which singles out four different types of orbits, with
emphasis on how the initial and final momentum components
relate to each other. This article is organized as follows. In
section 2, we provide the necessary theoretical background.
Subsequently, in section 3, we perform a detailed analysis of
the CQSFA orbits as compared to the standard direct and
rescattered orbits that are present in the SFA, and refine the
standard orbit classification employed in Coulomb-corrected
models. In section 4, we investigate the overall shapes present
in single-orbit probability distributions and establish the
momentum regions occupied for the CQSFA and rescattered
SFA. In section 5, we study previously overlooked interference
features associated with backscattered trajectories and perform
comparisons with ab initio methods. Finally, in section 6 we
state our conclusions. Unless otherwise stated, we use atomic
units throughout.

2. Background

2.1. SFA for direct and rescattered electrons

Below we will briefly recall the SFA transition amplitudes for
direct and rescattered ATI, which will be compared with the
outcome of the CQSFA. For more details we refer to [26] and
the review [3]. The direct SFA transition amplitude considers a
transition from an initial bound state Y ¢ ñ = ¢ Y ñ∣ ( ) [ ]∣t I texp i p0 0

to a continuum state + ñ = ¢ + ¢ ñ∣ ( ) ( )∣ ( )( )t U t t tp A p A,V ,
which is approximated by a field-dressed plane wave, without
further interaction with the core. Thereby, ¢( )( )U t t,V is the
Volkov time evolution operator, which is related to a field-
dressed free particle, Ip gives the system’s ionization potential,
V is the binding potential and A(t) the vector potential asso-
ciated to the external laser field. Explicitly,

ò= - ¢á + ¢ Y ñ
-¥

¥
¢( ) ( )∣ ∣ ( )( )M t t Vp p Ai d e , 1d

S tp
0

i ,d

where

ò t t¢ = - + + ¢
¢

¥
( ) [ ( )] ( )S t I tp p A,

1

2
d 2d

t
p

2

is the action describing the above-mentioned process.
If, on the other hand, one incorporates up to a single act

of rescattering, the SFA transition amplitude reads

ò ò
ò

=- ¢

´ ¢

-¥

¥

-¥
( )

[ ( )] ( )

M t t

k S t t V V

p

p k

d d

d exp i , , , , 3

r

t

r k pk
3

0

where the action is given by

ò

ò

t t

t t

¢ = - +

- + + ¢

¥

¢

( ) [ ( )]

[ ( )] ( )

S t t

I t

p k p A

k A

, , ,
1

2
d

1

2
d 4

r
t

t

t

p

2

2

and all the influence of the core is incorporated in the ioniz-
ation prefactor

= á + ¢ Y ñ( )∣ ∣ ( )V t Vk A 5k0 0
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and in the rescattering prefactor

= á + + ñ( )∣ ∣ ( ) ( )V t V tp A k A . 6pk

Equation (3) includes the transition amplitudes associated
with direct and rescattered electrons [27]. It is however more
convenient to employ equation (1) instead to compute direct
electron contributions. Particularly clear in equation (3) is a
process in which an electron, initially in a bound state Y ¢ ñ∣ ( )t0 ,
is freed at an instant ¢t , propagates in the continuum with an
intermediate momentum k for t¢ < <t t and recollides with
its parent ion at a later time t. Upon recollision, it then
acquires the final momentum p. Equations (1) and (3) are
solved using the steepest descent method. This method
requires that the actions ¢( )S tp,d and ¢( )S t tp k, , ,r be sta-
tionary. The saddle point equation obtained from the direct
action ¢( )S tp,d reads

+ ¢ = - ¢[ ( )] ( )t I tp A 2 , 7p
2

which expresses the kinetic energy conservation at the time of
ionization. One should note that equation (7) has no real
solutions, which reflects the fact that tunnel ionization has no
classical counterpart. A formally identical equation is
obtained by imposing the condition ¶ ¢ ¶ ¢ =( )S t t tp k, , , 0r ,
with the final momentum p being replaced by the intermediate
momentum k. This gives

+ ¢ = - ¢[ ( )] ( )t I tk A 2 . 8p
2

The condition ¶ ¢ ¶ =( )S t t tp k, , , 0r yields the conservation
of energy

+ = +[ ( )] [ ( )] ( )t tp A k A 92 2

upon recollision, and ¶ ¢ ¶ =( )S t tp k k 0, , ,r leads to the
constraint

ò t t= -
- ¢ ¢

( ) ( )
t t

k A
1

d 10
t

t

upon the intermediate momentum k, such that it returns to the
site of its release, i.e., the origin. Equations (9) and (10) in
fact imply that the electron suffers a hard collision as it returns
to the origin. These are the same equations employed in [8].
We compute the direct transition amplitude (1) using the
standard saddle point approximation, and the rescattering
transition amplitude (3) employing the specific uniform
approximation discussed in [28]. Throughout, we will employ
the acronyms DATI and HATI for direct and high-order,
rescattered ATI, respectively.

2.2. The Coulomb quantum orbit strong-field approximation

We will now provide a brief outline of the CQSFA. For more
details we refer to our previous publications [21–23]. In order
to account for the Coulomb potential when the electron is in
the continuum, we employ a path-integral method on the
transition amplitude
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from an initial bound state Y ¢ ñ∣ ( )t0 to a final continuum state
yñ = ñ∣ ˜ ( ) ∣ ( )t tpf p . The variables = + ¢˜ ( )tp p A0 0 and =˜ ( )tpf

+ ( )tp Af give the initial and final velocity of the electron at the
times ¢t and t, respectively. The time evolution operator ¢( )U t t,
is related to the full Hamiltonian H(t)=Ha+HI(t), where
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ˆ (ˆ) ( )H V
p

r
2

12a

2

gives the field-free one-electron atomic Hamiltonian and r̂ and p̂
denote the position and momentum operators, respectively, and
HI(t) gives the interaction with the external field. The binding
potential is taken to be of Coulomb type, i.e.,

= -(ˆ)
ˆ · ˆ

( )V r
r r

1
, 13

and the interaction Hamiltonian is chosen to be in the length
gauge, so that

= -( ) ˆ · ( ) ( )H t tr E , 14I

where = -( ) ( )t t tE Ad d is the external laser field.
Equation (11) incorporates the full continuum dynamics for the
system. It is however inaccurate for transitions involving bound
states, such as excitation and relaxation.

This leads to the expression
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where ¢p and r are the integration measures for the path
integrals, and the prime indicates a restriction. The action
reads as
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2
, 172

where the intermediate momentum and position have been
parametrized in terms of the time τ. Physically, equation (15)
represents a sum over all possible paths available to the
electron in position and momentum between its start and end
points. We also seek solutions for the variables ¢t , p and r
such that the action is stationary. This leads to the equation

¢ + ¢
+ ¢ = -

[ ( ) ( )] ( ( )) ( )t t
V t I

p A
r

2
, 18p

2

which is the Coulomb-corrected counterpart of equation (7),
and to the equations

t= -˙ ( ( )) ( )Vp r 19r

and

t= +˙ ( ) ( )r p A , 20

which are the classical equations of motion of the electron in
the continuum.
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The transition amplitude (15) is computed using a two-
pronged contour, whose first and second parts are parallel to
the imaginary and real-time axis, respectively. The first part of
the contour, from ¢ = ¢ + ¢t t tir i to ¢tr , describes tunnel ioniz-
ation, and the second part of the contour, from ¢tr to t,
describes continuum propagation. This specific contour has
been widely used in the implementation of Coulomb-cor-
rected approaches [29–32]. Inside the barrier, we neglect the
influence of the Coulomb potential on the electron momen-
tum, which is kept as p0.

Thus, the binding potential is neglected in equation (18),
which then becomes formally identical to its SFA counterpart
(7). The action in the first arm of the contour reads

ò
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where r0 is defined by

òt t t= + ¢ ¢
t

¢
( ) ( ( )) ( )r p A d , 22

t
0 0

which is widely known as ‘the tunnel trajectory’. The action
¢ ¢( ˜ )S t tp r, , ,r

tun inside the barrier is calculated from the origin
until the tunnel exit

= ¢[ ( )] ( )z r tRe . 23z r0 0

The action in the second arm of the contour is given by
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where the factor 2 in front of the Coulomb integral stems from
the fact that =· ˙ ( )V rr p [23, 33]. The total action is then
given by

¢ = ¢ ¢ + ¢( ˜ ) ( ˜ ) ( ˜ ) ( )S t t S t t S t tp r p r p r, , , , , , , , , . 25r r
tun prop

Within the saddle point approximation, the transition ampl-
itude is written as

å

µ -

´
¶
¶

¥
-⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

( )

( )
( )

( ) ( )( ˜ )

M

t

t
t

p

p

r

i lim

det e , 26

f
t

s

s

s s
s

S t tp r
1 2

i , , ,s s s

where ts, ps and rs are determined by the above-stated saddle
point equations and ( )ts is given by
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In practice, we use ¶ ¶( ) ( )t tp ps s s instead of the stability factor
stated in equation (26), which may be obtained employing a
Legendre transformation. As long as the electron starts from
the origin, the action will not be modified by this choice. We
normalize equation (26) so that the SFA transition amplitude
is obtained in the limit of vanishing binding potential, and
take the electron to be initially in a s1 state [21]. In order to

perform comparisons with the standard SFA, we neglect the
ionization terms á + Y ñ( )∣ ( )∣t H tp A s I s 0 in equation (27),
á + ¢ Y ñ( )∣ ∣t Vp A 0 in equation (1) and á + ¢ Y ñ( )∣ ∣t Vk A 0 in
equation (3). This is done for the sake of consistency, as the
ATI formulations using either the binding potential or the
interaction Hamiltonian are no longer equivalent beyond the
SFA. We consider the remaining term in ( )ts throughout,
which is multiplied by the stability factor in the CQSFA.
Physically, this implies that we are accounting for wave-
packet spreading in all approaches, and also for the orbit
stability in the CQSFA, but not the geometrical shape of the
initial bound state when including and referring to prefactors.
We have verified that not incorporating these terms is not
critical for initial 1s states.

The CQSFA is related, but different from other strong-
field approaches that account for the residual Coulomb
potential. For instance, the time-dependent analytic R-matrix
approach divides the space into two regions [31, 32]. In the
inner region, the core is treated accurately and the field
incorporated as a perturbation, and in the outer region the
eikonal Volkov approximation (EVA) is employed [34]. The
EVA is constructed from a laser-dressed Wentzel–Kramers–
Brillouin approximation, and requires small deflection angles.
The Coulomb-corrected strong-field approximation (CCSFA)
introduces several corrections in the SFA transition amplitude
and use complex sub barrier corrections and real trajectories
in the continuum [25, 29]. It has no restriction upon the
scattering angle. Over a million of trajectories are forward
propagated using a shooting method and subsequently binned
within specific angular and momentum ranges, with 108–109

trajectories being necessary in order to obtain converged
holographic patterns. Our approach follows from a path-int-
egral method, which conceptually is a different starting point
from those mentioned above. From the implementation
viewpoint, it does not require any approximation upon the
scattering angle and leads to converged holographic patterns
for a small number of contributed trajectories, typically one of
each of the four relevant types discussed in this work. We
solve the problem by seeking an initial momentum at the
tunnel exit for a specific (given) final momentum, so that one
contributed trajectory of each relevant type suffices. This
leads to much clearer patterns and allows the study of many
previously overlooked structures. Recently, another approach
has been developed from path-integral methods [33], using,
however, a similar forward implementation and trajectory
number as in the CCSFA.

2.3. Electron orbits

The formulation described in the previous section allows for
all kinds of recollision, and four main types of orbits. These
orbits have first been classified in [25] according to the tunnel
exit and their initial and final momentum components. Let us
call the momentum components parallel and perpendicular to
the driving-field polarization pjP, pj⊥, respectively, with
j=0, f.

For type 1 orbits, the electron leaves from a tunnel exit
on the same side as the detector, i.e., >z p 0f0 , and the

4
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transverse momentum component does not change sign, so
that >^ ^p p 0f 0 . These are the direct orbits, for which
rescattering may not occur and along which the electron will
be decelerated by the residual binding potential. In contrast,
for type 2 and 3 orbits, the electron is freed on the opposite
side of the target, i.e., <z p 0f0 , with the difference that the
transverse momentum changes sign for obit 3, but remains in
the same direction for orbit 2. These orbits are known as
forward scattered trajectories, and this scattering may in
principle range from a light deflection to a hard collision. In
particular, we have verified that orbit 3 is considerably
accelerated by the Coulomb potential, and it is not possible to
reproduce many features associated with the spider-like
structures if we do not include at least some type of recolli-
sion. This has been shown in our previous publication [24], in
which analytical models have been constructed for disen-
tangling different features in the CQSFA. Finally, for orbit 4,
the electron leaves in the direction of the detector, but its
transverse momentum changes direction. This means that it
will undergo some kind of backscattering. Since, however,
the transition amplitude associated with this orbit was small in
the parameter range of interest, it has not been investigated in
our previous work [21, 23, 24]. For clarity, in table 1, we
provide a summary of how the different types of orbits
behave.

3. Orbit properties

The orbit classification introduced in the previous section is
however too coarse, as we will argue next. This statement is
enabled by an improved method of solving the saddle point
equations (7), (19) and (20). This is exemplified in figure 1,
by keeping the initial conditions fixed for a particular orbit
and varying the final angle θf at which the final momentum pf
is detected from 0 to 2π. The initial conditions are chosen so
that the tunnel exit and the perpendicular initial momentum
are positive, (z0> 0, >^p 00 ). Thus, following the classifi-
cation used in [25], the orbits will be categorized as type 1, 2,
3 and 4 for 0<θf<π/2, π/2<θf<π, π<θf<3π/2 and
3π/2<θf<2π, respectively.

As θf moves from one quadrant to the other, the electron
trajectories change smoothly from 1 to 4. Hence, the orbits are
degenerate precisely at the boundaries between quadrants, i.e.
on the axes. These boundaries are crossed when the thick
dashed arrows in the figure become vertical. In fact, a resem-
blance can be seen very clearly for orbits 1 and 2, as the

boundary θf=π/2 is crossed (see upper two far right panels in
figure 1). This also holds for orbits 2 and 3, as the boundary
θf=π is crossed (see left panels for which θf=0.957π and
θf=1.040π), and for orbits 3 and 4, as the boundary θ=3/2π
is crossed (two lower far right panels). Orbits 1 and 4 cannot be
degenerate at =∣∣p 0f , θf=2π, 0, despite the electron’s initial
and final momentum being in the same direction for the
two orbits. This is because in orbit 4 the electron undergoes a
full 2π rotation around the ion, making the orbits qualitatively
different.

The degeneracy between the four types of orbits at the
boundaries can be exploited when solving the saddle point
equations (7), (19) and (20). Starting from orbit 1 up to orbit
4, one computes each orbit up to the boundary, and uses it to
provide initial conditions for the subsequent orbit type. For
example, orbit 1 can be used to provide initial conditions for
orbit 2 in the neighbourhood of θf=π/2. Next, orbit 2 may
be used near θf=π for solving orbit 3 and so on. This
property is more useful with increasing orbit number, as the
CQSFA orbits behave less like the DATI orbits in the stan-
dard SFA. In fact, this approach is essential for obtaining
convergent solutions for orbit 4.

Given that the CQSFA spans these different orbit types,
we would like to explore the idea that the CQSFA provides
orbits that lie qualitatively between the two extremes of DATI
(no collisions) and HATI (hard collisions). In figure 1 one can
see that for low final angle θf the electron trajectories behave
qualitatively similarly to DATI trajectories. The electron does
not revisit the ion and the initial and final momentum are
almost the same. For high θf the electron trajectories resemble
HATI orbits. The electron revisits the core, passing very close
to the origin and undergoing what looks like a ‘hard’ col-
lision. There is almost no perpendicular momentum during
the collision, in agreement with the saddle point equation (10)
that gives the electron’s intermediate momentum within the
SFA. The orbits in between these angles are less well defined
and may be strongly deflected or undergo soft collisions such
as those seen in [18, 19, 35]. As such, the CQSFA can be seen
to blur the distinction between direct and rescattered ATI and
softly colliding orbits.

In addition, the CQSFA will behave more like the SFA
for high energy orbits as there will be less interaction time
with the core. We have in fact verified, in a previous pub-
lication [23], that the direct SFA is the high energy limit of
the CQSFA for orbits 1 and 2. The angle θf will determine
whether the CQSFA orbit will tend towards its DATI (low
angles) or HATI (high angles) counterpart. In the CQSFA,
there can never be any truly ‘hard’ collision (except in the
limiting case θf=2π) as the electron trajectory will always
miss the origin by some amount. In order to make a com-
parison with the DATI and HATI limits we have identified
three important parameters, which determine the kind of
collision we are dealing with:

(i) The Bohr radius, whose perimeter is marked on figure 1
as a solid black circle, and which is indicated in
figures 2(a) and (b) as a solid line.

Table 1. Summary of the main types of orbits identified for
Coulomb-corrected strong-field approaches. The + and − signs on
each cell indicate a positive or negative product, respectively.

Orbit z pf0 ^ ^p pf 0

1 + +
2 − +
3 − −
4 + −
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Figure 1. Electron trajectories calculated using equations (19) and (20) for fixed energy, E=1.3 a.u. or =E U3 p, and values of the angle θf
associated with the final momenta in the range 0<θf<2π. Each orange line represents an electron trajectory after tunnelling, while the
dotted arrows point in the direction of increasing θf. The initial and final momentum vectors are marked on the figure by black and red arrows,
respectively. The angles related to the initial and final momentum are given by θi and θf (top left), while their difference is given by θs (top
right). The orbit type, defined in section 2 and summarized in table 1, is marked in the top right corner of each panel. As guides, circles whose
radii are the Bohr radius and the tunnel exit are marked in solid black and in dashed black, respectively. We consider a field of wavelength
λ=800 nm, intensity = ´I 2 100

14 W cm–2 and a model atom with ionization potential =I 0.5p a.u. This gives a ponderomotive energy of
=U 0.439p a.u.
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(ii) A circle whose radius is the tunnel exit, displayed in
figure 1 in dashed black. This radius is also plotted as
the black dashed lines in figures 2(a) and (b).

(iii) The electron’s distance rc of closest approach after
tunnelling, indicated in figure 1 by a blue spot.

If an electron trajectory goes within the region determined by
the Bohr radius, we assume it will undergo a ‘hard’ collision
as then it will interact as strongly with the core as a bound
electron. Furthermore, orbits that do not enter region (ii) can
be called direct as outside this perimeter the laser field
dominates strongly over the potential. Finally, if the
electron’s trajectory closest point as defined in (iii) is between
regions (i) and (ii), one may view it as softly recolliding.
Using these radii as a guide, one can see that orbit 1 may be
always classified as a direct electron trajectory. In contrast, an

electron along orbit 2 goes from direct to softly rescattered
with increasing θf. Orbit 3 will change from softly recolliding
to a hard collision. Finally, for the parameter range of the
figure, orbit 4 always corresponds to a hard collision.

In addition to the above-stated parameters, one may also
use the time tc associated with rc, the time of ionization and
the initial momentum p0 to compare the CQSFA orbits with
the DATI and HATI models. These are presented in figures 2
and 3. In figure 2(a), we plot rc for fixed photoelectron energy
as a function of the final angle θf. For the CQSFA at low
angles, rc (blue line) is the same as the tunnel exit (black
dashed line) and the behaviour will mimic DATI (orange
line). However, at θf=π/2, when the electron trajectory
becomes a type 2 orbit, the distance of closest approach
moves away from the tunnel exit as the electron goes into the

Figure 2. Distances rc and time tc of closest approach are plotted for the CQSFA, DATI and HATI. In panel (a), the distance of closest
approach rc is plotted for a fixed energy E=0.26 a.u., and increasing angle θf. The tunnel exit for the CQSFA is plotted in a black dashed
line and the Bohr radius is marked with a solid black line. In panel (b), rc is plotted for three fixed angles for the CQSFA. The indices i, ii and
iii correspond to the angles, 0.25π, 1.10π and 1.75π, respectively. The tunnel exit for the CQSFA in case iii is plotted with a black dashed
line. For the DATI and HATI, rc is plotted for a fixed angle of θf=1.75π. In panel (c), the time of closest approach tc is plotted for a fixed
energy of E= 0.26 a.u. for the CQSFA, DATI and HATI. The same field and atomic parameters have been used as in figure 1. For HATI we
compute θf as given in [8].

Figure 3. Ionization times and initial momenta for the CQSFA, DATI and HATI, for a fixed photoelectron energy E=0.055 a.u. and the
same field and atomic parameters as in figure 1. In panels (a) and (b), the real and imaginary parts of the time of ionization are plotted. In
panels (c) and (d), we display the components of the initial momentum parallel and perpendicular to the laser field polarization.
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softly recolliding region (see figure 1). At θf≈1.1π, there is a
change in behaviour, marked by a discontinuous derivative in
rc. As θf increases further, the distance of closest approach
falls rapidly, until it reaches the Bohr radius, where it levels
off. This is not related to the change in orbit type from 2 to 3
at θf=π. Instead, it is due to the nature of the orbit changing
from deflection to hard collision. For π<θf<1.1π, the
electron moves entirely through the soft recolliding region
defined by (ii) and the trajectory has a similar initial and final
momentum. In contrast, for θf>1.3π, the trajectory is initi-
ally moved outside of the softly recolliding region by the laser
field. Subsequently, the field drives back the electron into the
hard collision region. In this latter case, the initial and final
momentum are quite different as the electron gains energy in
the collision and is scattered through a larger angle. This kind
of trajectory closely resembles HATI orbits. This transition
can also be seen in the third row of figure 1. A similar
behaviour is displayed for the time tc of closest approach in
figure 2(c). For tc at low angles the CQSFA very closely
follows the DATI ionization time, with a discontinuity for
θf≈1.1π. The time of closest approach jumps up at this point
as the electron trajectory is now first taken away from the core
before revisiting it. Hence, the closest approach occurs later in
the orbit. After the transition, tc follows the HATI recolli-
sion time.

The CQSFA distance of closest approach rc is also
plotted for three fixed angles over increasing photoelectron
momenta in figure 2(b). For θf=0.25π, the CQSFA follows
the DATI curve and stays on its tunnel exit. For θf=1.1π, in
the region where orbit 3 undergoes a transition, the CQSFA
trajectory remains a softly colliding orbit for all energies
staying just above the Bohr radius. For θf=1.75π, the
CQSFA orbit behaves like a HATI orbit and quickly falls
below the Bohr radius with increasing energy. Nonetheless,
one should note that, for very low energy, this is a softly
colliding orbit. In this region it behaves similarly to the softly
colliding orbits discussed in [18, 19] that are responsible for
the LES.

In figure 3 we plot the initial time and momentum
components for the CQSFA, DATI and HATI (upper and
lower panels, respectively). In panel (a), one can see that the
real parts of the ionization times t′ are different for the three
approaches. This is due to the effect of the Coulomb potential,

that favours shorter times for the CQSFA. However, as
before, for low θf the CQSFA follows the DATI line, but as θf
increases the behaviour tends towards the HATI curve.
Similarly, in panel (b) ¢[ ]tIm is different for the three
approaches. This is because the Coulomb potential alters the
tunnelling probability and hence shifts the imaginary comp-
onent of the tunnelling time. Nonetheless, the qualitative
behaviour of the CQSFA outcome also mirrors DATI for low
angles and HATI for high angles. The same angular beha-
viour is present for the parallel and perpendicular initial
momentum components p0 and ^p0 . In the perpendicular
momentum case, the CQSFA momentum even tends
asymptotically to its DATI and HATI counterparts as q  0f

and q p 2f , respectively. It is remarkable that this beha-
viour is already present for low photoelectron energy, such as
that employed in figure 3. In all cases, we also see that the
reflection symmetry about θf=π that exists in the Coulomb-
free cases breaks for the CQSFA. This is expected as the
dynamics of the system is no longer determined by the laser
field alone.

Other types of orbits that have been made accessible by
our new solving method and which are important in the low-
energy regime include those with multiple passes and tra-
jectories whose dynamics are mainly determined by the
Coulomb potential. In our previous work [23] we stated that
the soft recolliding forward scattered trajectories that form the
inner spider [36] and LES [18–20, 35] bear similarity to some
type 3 orbits. Furthermore, we can make the same statement
for softly colliding backscattered trajectories and some type 4
orbits.

Figure 4 in fact illustrates that classifying orbits into type
3 or type 4 is an over-simplification. Therein, we show three
examples of orbits with very distinct dynamics, the same final
momenta and which fall into the same classification according
to the criteria in table 1. Apart from the standard case for these
orbits, in panel (a), there are type 3 and 4 orbits that are driven
past the core many times (multi-pass) before softly scattering
(see panel (b)), and also directly recolliding trajectories that
hard-scatter off the core before the laser field has time to
change sign (see panel (c)). As these orbits will lead to the
same final momentum, they will potentially interfere. How-
ever, combining these orbits would require a careful analysis
of the orbits and potentially a new asymptotic expansion,

Figure 4. Different subtypes of orbits 3 and 4 that can occur for a final momentum pf=(0.086, 0.22) a.u., computed using the CQSFA.
Panels (a), (b) and (c) show the standard trajectories, the multi-pass orbits (denoted i) and the directly recolliding orbits (denoted ii),
respectively. The Bohr radius is marked by a black circle. The same field and atomic parameters have been used as in figure 1.
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which is beyond the scope of this work. The low-energy
(multi-pass) orbits are similar to longer HATI orbits that
undergo a few passes before colliding with the core. In this
way it seems possible to map each types of HATI long and
short orbits onto single CQSFA orbits. The directly recol-
liding orbits may be loosely related to the L orbits in the SFA
[37], as both undergo a collision before the laser has changed
sign. However, the underlying dynamics are fundamentally
different as the acceleration by the Coulomb potential plays a
key role in CQSFA case.

Using our new method of solving the saddle point
solutions (using previous orbit types to solve the next), we are
able to carefully choose initial conditions such that we can
probe these orbits deriving from different energy ranges. If we
start the solver in a medium energy range, »∣ ∣p U1.6f p

panel (a), we find the standard orbits that return after a single
laser cycle and scatter off the core, as shown in figure 4. If we
start the solver in a low-energy region, »∣ ∣p U0.3f p panel
(b), we find orbits that softly scatter after multiple laser cycles
and are deflected or softly scattered by the core. However, if
we start the solver in a high energy region, »∣ ∣p U3.0f p

panel (c), we find the directly recolliding orbits.

4. Cutoff comparisons

In this section, we have a closer look at the contributions from
different types of recolliding orbits to the photoelectron
momentum distributions. This includes not only their shapes
but the momentum regions in which they are dominant or
even present. Figure 5 shows CQSFA single-orbit probability
distributions computed for the three different types of orbit 3
and 4 presented in figure 4. This is a good indicator of the
regions in which they are important. The grey areas in the
figure mark drastic topological changes in the saddle point
solutions. At the boundaries of such areas, the solutions may
no longer be present, coalesce, become degenerate, split or
diverge. This type of behaviour is closely associated, but is
not the sole indicator, of cutoffs, and it is usually followed by
a cusp. A direct consequence is that the present asymptotic
expansion used in the CQSFA breaks down, and alternative
expressions will be required. This situation is more complex,
but bears some similarity to the nearly coalescent saddles
followed by the Stokes transition encountered and described
in our early work [28].

Panels (a) to (f) show the contributions from the three
variants of orbit 3. The standard case of a single pass orbit 3
displayed in panels (a) and (d) has been already addressed
elsewhere [23, 24]. These contributions occupy a large
momentum range, but are restricted for large transverse
momenta. The prefactor concentrates these distributions along
the pfP axis. If orbit 3 has two passes, the corresponding
probability distributions occupy a much more restricted region
close to the axes, whose V shape resembles the LES reported in
[36]. Similar structures are also present for the contributions of
single pass or direct recolliding orbit 3 variants (see panels (a)

and (c), respectively). The grey regions in panels (a) and (b)
that start at the angle 0.1π corresponds to the transition from a
soft recollision to a hard scattering event. In fact, if this angle is
transformed such that >^p 00 and z0>0, we find θf≈1.1π,
i.e. the same angle at which orbit 3 begins to qualitatively
change to become more like HATI (see discussion in the
previous section). In panels (b) and (c), this angle marks a
sharp cutoff. One should note, however, that despite the
probability drop there is no topological change in the directly
recolliding type 3 orbits, whose contributions are displayed in
panels (c) and (f). Physically, this may be understood as hard
scattering will always take place in this case, regardless of the
photoelectron energy.

In panels (g)–(l) we present the single-orbit distribution
for orbit 4. The probability distribution associated with this
orbit has not been studied before. If the prefactors are
excluded (panel (g)), the orbit has a very large flat probability
distribution that extends beyond the parameter range of
interest. Once the prefactors have been added (panel (j)), it is
restricted to mainly around the p⊥ axis, with some small spots
on the pP axis. There is a sharp V-shaped cutoff and cusp that
is similar to those found for backscattered HATI orbits in [8].
The directly rescattering orbit 4 probability plots show only a
small tulip shaped distribution with and without prefactors
(panels (i) and (l)). This resembles the tulip shape in panel (b),
for the probability plots associated with the multi-pass orbit 3.
The tulip shapes that arise for both orbits 3 and 4 look similar
to the cutoffs found for backscattered and forward scattered
orbits in [8].

In order to compare the regions outlined by the single-
orbit distributions in figure 5 with those from the HATI case,
we combine pairs of orbits using the uniform approximation
in [28]. Since, in [8], it is emphasized that the Coulomb
scattering cross section plays a very important role in this
regime, we include the ionization and rescattering prefactors
associated with the Coulomb potential.

In figures 6(a) and (b) we plot the probability densities
obtained with the first and second shortest HATI pair of
backscattered orbits that are first sent in the opposite direction
to the detector, respectively. This means that the resulting
probability distributions will share features that are common to
both orbits 3 and 4. Striking examples are the V-shaped
structure near the pf⊥ axis and cusps in the low-energy region.
These distributions are compared in more detail in figure 7,
where the contours related to the HATI distributions in figure 6
and the CQSFA orbits 3 and 4 distributions are plotted.
Figure 7(a) shows that the shapes determined by the back-
scattered HATI orbits and orbit 3 from the CQSFA are not so
different. They both have off-centre distorted ellipses/side-
lobes along the parallel momentum axis. There is also a
V-shaped structure where these distorted ellipses meet in both
models. Despite the fact that orbit 3 is forward scattered and
the HATI orbits are backscattered, one should note that both
types of orbits are first displaced in the opposite direction to the
detector. A striking feature is that the cusps near the origin
are exactly at the same place. In HATI, the cusps are due to
Stokes transitions, and if the Coulomb potential is taken into
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consideration, this corresponds to the region in which LES
have been identified. This strongly suggests that the appro-
priate asymptotic expansion will change in this region for the
CQSFA. In panel (b), one can clearly see that, despite being
backscattered, orbit 4 leads to very different distributions than
those obtained for HATI backscattered orbits. However, there
is some similarity on the pfP axis in the form of two off-centre
spots. This all indicates that the initial direction followed by
the electron is more important than the type of scattering
it undergoes.

5. Interferences in the CQSFA

In figure 8 we plot interference patterns from combining each
orbit with orbit 4, which have been neglected until now. Panel
(a) shows interference between orbits 3 and 4, which gives
rise to a spiral-like pattern. Including the prefactors, as shown
in panel (d), causes the signal from orbit 3 to be mainly
located on the pfP axis and that from orbit 4 to be mostly along
the pf⊥ axis. Since there is not much overlap between these
regions, the interference fringes are relatively faint.

Figure 5. Single-orbit probability distributions for standard, multi-pass and directly recolliding orbits 3 and 4 (left, middle and right column,
respectively). The orbit type is labelled in the top left corner. The first and second row give the distributions related to orbit 3 without and
with prefactors, respectively. The third and fourth row show the distributions related to orbit 4 without and with prefactors, respectively. All
distributions are normalized by their peak intensity. A logarithmic scale has been used. The same field and atomic parameters have been used
as in figure 1.

Figure 6. Probability distributions computed using HATI backscattered orbits. Panels (a) and (b) correspond to the shortest and second
shortest possible backscattered orbit pairs starting from first half cycle. All distributions are normalized by their peak intensity. A logarithmic
scale has been used. The same field and atomic parameters have been used as in figure 1.
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The fringes’ faintness, along with the fact they could be
confused with intercycle interference rings, may explain why
they have been overlooked in experiments or other theoretical
computations. In panel (b) we see the interference pattern that
arises from orbits 1 and 4. Once prefactors have been inclu-
ded (panel (e)), the V-shaped structure is very distinctive. The
interference fringes are truncated circles, which also may be
confused with ATI rings. Interference between orbits 2 and 4
(panels (c) and (f)) also leads to a faint V-shaped structure.
The fringes for the mid-energy orbit 4 trajectories plot are fan-
like on the left side and resemble off-centre circles on the
right. One should note that in figure 8 no restrictions have
been imposed upon the ionization times and no symmetrisa-
tion has been used. It is however common in the literature that
holographic patterns are obtained by imposing such restric-
tions [15, 38].

In figures 9 and 10, we show several patterns that may be
obtained by considering specific types of trajectories and
well defined ranges of ionization times. In figure 9, we
denote the interference obtained using time differences of
< D <∣ ∣t T0 2 and < D <∣ ∣T t T2 , where T=2π/ω is a

field cycle, as type A and type B interference, respectively.
This notation has been used in our previous publication [23].

An alternative classification is required in figure 10, in which
the both orbits’ tunnel exits lie in the same direction. The
prime indicates that the ionization time of a specific orbit has
been delayed by a field cycle. Otherwise the orbits will leave
within the same quarter cycle.

In both figures we identify two main types of patterns,
diverging (figures 9(a) and (f), and 10(a) and (f)) or conver-
ging (all remaining panels except figures 9(c) and (h)).
Diverging patterns include three fan-shaped structures and the
well known spider-like structure in figure 10(a). They seem to
be present when the time tc of closest approach of both orbits
are similar. For instance, for orbits 2 and 4, if the ionization
time is delayed for orbit 2 (figure 9(f)). This delay compen-
sates for the fact that orbit 4 must go around the core. A
similar scenario occurs for orbits 1 and 4, if the former is
delayed by a cycle (figure 10(f)). No delays are required for
orbits 1 and 2 (figures 9(a)), and 2 and 3 (10(a)). Both sce-
narios have been extensively studied in previous publications
[22–24]. Converging patterns resemble different types of
superimposed rings, and occur when the times of closest
approach differ by at least half a cycle. Rings show the
influence of the kinetic energy in the overall phase. Border-
line cases are shown in figures 9(c) and (h).

Figure 7. Comparison of CQSFA (black) and HATI (red dashed) contours, including the prefactors, using the HATI contours from
figure 6(a). Panels (a) and (b) relate to the standard orbits 3 and 4, respectively. The same field and atomic parameters have been used as in
figure 1.

Figure 8. Photoelectron angular distributions computed using pairwise combinations of the first three types of orbits with orbit 4 to produce
interference patterns. The orbit combinations are labelled in the top left corner. The upper and the lower panels neglect and incorporate
prefactors, respectively. The left, middle and right column employ orbits 3 and 4, 1 and 4, and 2 and 4, respectively. All distributions are
normalized by their peak intensity. A logarithmic scale has been used. The same field and atomic parameters have been used as in figure 1.
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Figure 9. Photoelectron angular distributions computed using pairwise combinations symmetrized with regard to pP=0 with specific time
restrictions, denoted by A and B and explained in the main text. The combination of orbits and interference types are given in the top left of
each panel. The yield in each panel has been normalized to its peak value. A logarithmic scale has been used. The same field and atomic
parameters have been used as in the previous figure. No prefactors have been employed in the figure.

Figure 10. Photoelectron angular distributions computed using pairwise combinations of orbits starting in the same direction. The prime
denotes orbits starting one cycle later, with regard to their counterparts, and the combinations of orbits are given in the top left of each panel.
The yield in each panel has been normalized to its peak value. A logarithmic scale has been used. The same field and atomic parameters have
been used as in the previous figures. No prefactors have been employed in the figure.
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Holographic patterns that are somewhat related to those
in figures 9 and 10 have been studied in [15]. A direct
comparison is however quite difficult due to underlying dif-
ferences in the models. First, in [15], the tunnel exit is kept
fixed and the trajectories are equally weighted, while in our
model this does not hold. This means that interference may be
blurred in the latter case. Second, our model includes the
Coulomb potential, which is absent in [15]. This means that
(i) the distinction between direct and rescattered orbits
becomes blurred; (ii) in general a one-to-one time mapping
for Coulomb-free and Coulomb-distorted orbits is not possi-
ble. For an extensive discussion of these issues see [38].
Nonetheless, loosely speaking some patterns are related in
both models. For instance, figure 9(c) is related to figure 3(b)
in [15], but the ring pattern is more pronounced in the latter.
This happens because in our results the residual Coulomb
potential decelerates the direct orbit and accelerates the for-
ward scattered trajectory. This leads to a smaller difference
between the times of closest approach t(1)c and t(3)c of orbits 1
and 3 than in the Coulomb-free case.

If we compute the photoelectron angular distributions
combining all orbits and compare them to those obtained with
the coherent superposition of the first three, we can see what
effect orbit 4 has. This has been done in figure 11 for one and
four laser cycles, in which the CQSFA is also compared with
the ab initio solution of the time-dependent Schrödinger
equation (TDSE) [39]. Comparing panels (a) and (b) we can
see that adding orbit 4 does little to change the central fringes
that are dominated by the fan- and spider-like structures.
These structures are well known in the literature and have
been discussed in previous publications [22–24]. They are
mainly due to the interference of orbits 1 and 2, and 2 and 3,
respectively. However, above this region there are clear spiral
fringes, which are also visible near the pf⊥ axis for the
ab initio solutions (see panel (c)). Additionally, the V-shaped
structure is very visible in the high energy region near the pf⊥
axis for the CQSFA.

If four laser cycles are taken into account, as shown in
panels (d) and (e), again there is little change to the main
fringes. However, the coherent superposition of the spiral-like
patterns and ATI rings causes chopped up fringes that appear
to be interlocking. This more closely matches solutions from
the TDSE in this region, shown in panel (f), where the ATI
rings are not solid but exhibit some interlocking gaps. The
V-shaped structure is not explicitly identifiable in the TDSE
results. However, the inclusion of orbit 4 introduces a faint
signal in the very high energy regions, and improves the
agreement with the TDSE results.

6. Conclusions

We have performed an in-depth analysis of recollision in the
Coulomb-distorted orbits that arise in the CQSFA model
[21–23, 25, 30]. This includes (a) understanding the various
types of collision that are present in the CQSFA orbits, (b) a
comparison with direct and rescattered ATI orbits within the
scope of the standard SFA, (c) an extensive discussion of
additional types of back- and forward scattered trajectories,
and (d) their influence on holographic patterns that form in
ATI photoelectron angular distributions (PADs).

We use the distance rc of closest approach of an electron
to the core to determine whether a specific Coulomb-distorted
trajectory is a direct, softly recolliding or hard scattered orbit.
If this distance is smaller than the Bohr radius, the collision is
hard, and if rc is between the Bohr radius and the tunnel exit,
the collision is soft. The classification we use differs from that
in [18–20], where the separation of zeros in the transverse
coordinate determine the collision type. However we still
yield the same class of softly recolliding orbits responsible for
the LES and VLES as found in [18–20, 35, 40]. We find that
some CQSFA orbits have analogues in direct and rescattered
ATI. Thereby, the angle θf associated with the final momen-
tum determines whether the CQSFA orbit will tend to direct

Figure 11. Full CQSFA photoelectron angular distributions calculated excluding and including orbit 4 (left and middle columns,
respectively), compared with the TDSE solution (right column). The distributions in the top and bottom row have been calculated over a
single and four laser cycles, respectively. The orbits included in each distribution are marked in the top left, and the prefactors have been
included in all cases. The freely available software Qprop [39] was used to perform the TDSE calculation. All distributions are normalized by
their peak intensity. A logarithmic scale has been used. The same field and atomic parameters have been used as in figure 1.
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or rescattered ATI in the high energy limit. Low and high
values of θf will lead to direct and rescattered trajectories,
respectively, while for angles in between we find softly col-
liding orbits. It is worth noticing that even for relatively low
photoelectron energies the CQSFA orbits behave like
rescattered ATI. They undergo hard collisions, which take
place very close to the core, with similar ionization and
rescattering times. This is the reason why many LESs can be
explained by standard rescattered SFA orbits [8].

Our analysis also shows that the classification introduced
in [25] for Coulomb-corrected methods, which singles out
four types of orbits, is an over-simplification. We have in fact
identified several topologically different orbits that would fit
under a single type. These include multi-pass orbits that leads
to cusps in the low-energy ATI region. A proper treatment of
these structures in ATI photoelectron distributions, however,
will require the development of novel asymptotic expansions
and is beyond the scope of this work. Nonetheless, we have
identified angular regions for which the topology has chan-
ged. These features are also present for orbits undergoing
single hard collisions. The limitations of the CQSFA for these
orbits have been pointed out in our previous work [23].

We go further than previous studies, in that we include
the backscattered electron trajectory, which, under the clas-
sification in [25] is known as orbit 4, and obtain formerly
overlooked interference patterns. In previous publications the
signal of orbit 4 was considered too low for it to have any
effect on the photoelectron momentum distribution [21–23].
However, we have shown that, although orbit 4 has little
effect on medium energy ranges, beyond this the interference
between orbits 3 and 4 produces a spiral-like pattern. This
pattern interplays with the intercycle ATI rings to make
interlocking fringes, which are visible in the TDSE solution.
There is also a V-shaped cusp in the very highest energy
region spanned by orbit 4, that cannot be seen with the
same prominence in the TDSE results. However, a similar
V-shaped structure was found in [8], even though, therein,
this feature occurs in a different parameter range. We also
investigate different interference types in the PADs and
identify common patterns that can be linked to how the times
of closest approach behave for specific pairs of orbits. These
include several divergent, fan- or spider shaped patterns, and
converging patterns that resemble superposed rings. Poten-
tially, this analysis facilitates a comparison with several
holographic structures reported in the literature [15, 38].

One should also note that, while in the rescattered SFA
the orbits occur in pairs, which are defined around a field
crossing as long and short and almost merge at local energy
maxima [28], the presence of the Coulomb potential disrupts
this pattern and introduces additional complexities that are not
fully understood. We have however verified that the orbits in
the CQSFA become degenerate along the axes, and exploited
this property to find solutions for the corresponding saddle
point equations. This is what has enabled a solution of orbit 4
and also made it easier to find multi-pass orbits. It should be
noted that the degeneracies at the boundaries will invalidate
the use of the standard saddle point approximation, which is
only applicable for well separated saddles. However, the size

of the region for which the approximation is no longer valid is
possibly quite small, as these boundaries can be asymptoti-
cally approached without issue. Despite the above-mentioned
differences, we have identified some similarities between the
PADs computed with the standard rescattered SFA and the
CQSFA. The HATI cutoffs, as found in [8], for orbits 3 and 4,
lie within similar ranges. This is expected as both types of
orbits share key features that will influence the momentum
regions identified by both types of distributions. This possibly
the reason why a Coulomb-distorted scattering prefactor such
as that employed in [8] reproduces key features encountered
in experiments.
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