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Abstract: A general homogenization technique is developed to stuglilear and nonlin-
ear properties of 2D graphene-based metasurfaces. Thiésrelsaw the effective nonlinear
susceptibility of graphene metasurfaces can be enhanceebhyrders of magnitude.
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1. Introduction

We introduce a general linear and nonlinear homogenizatiethod for 2D graphene-based metamaterials to over-
come some shortcomings of existing linear homogenizatiethods. Based on our novel method, a graphene cruci-
form metasurface is studied and the results show its effethird-order susceptibility can be enhanced by more than
two orders of magnitude as compared to that of a homogeneapkene sheet.

As is well known, homogenization methods are key tools tdytovel properties of metamaterials [1, 2]. So far,
the scattering-parameter approach and the field-averggotgdure are the two most commonly used homogeniza-
tion methods [3]. However, they have been mostly appliethtple 3D metamaterials (linear, dispersive, and isotropic
case), and almost no efforts have been devoted to the nankfiective properties of 3D metamaterials [4]. As for
metasurfaces, relevant work is even more scarcely found.dDthe main reasons is that the high-order susceptibility
of 2D materials exhibits optical anisotropy, which nontally challenges the existing linear homogenization meth-
ods. To overcome these challenges, an auxiliary physiaattify is introduced here to develop a general linear and
nonlinear homogenization method for 2D graphene-baseadsudaces.

2. Linear Homogenization of Graphene M etasurfaces

In a widely used linear field-average homogenization mefl3jdthe effective permittivity is evaluated &8V =
D{V/E®. Apparently, this method is only applicable to some palticanisotropic materials, whose permittivity tensor
is diagonal. In order to extend the field-average method tmeergeneral case, we introduce here a new auxiliary
quantity,d;j, defined asl; = &jE;. Based on this auxiliary quantity, the constitutive relatbf a general anisotropic
material is expressed & = 3 ; d;;. If we define the average value of each auxiliary quantity gonent asl?’(w) =

Jy &ij(r,w)Ej(r,w)dr /V, whereV is the volume of the unit cell, the corresponding compongéetfective permittivity
tensor can be evaluated &8 (w) = d7’(w)/EY(w).
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Fig. 1. Validation of linear homogenization: (a) Compansdintrinsic graphene permittivity, the ef-
fective metasurface permittivity, and the effective pdtivity constructed from the Kramers-Kronig
relation. (b) Comparison of linear response of the grapmestasurface and homogenized one.



In order to validate our proposed linear homogenizatiorr@ggh, a graphene cruciform metamaterial has been
studied by the FDTD method, the relevant results being ptedén Fig. 1. The comparison of intrinsic and effective
permittivities shown in Fig. 1(a) clearly demonstrated tha optical properties of the graphene array differ signifi
cantly from those of the homogeneous graphene sheet, ctigflyo the presence of plasmon resonances. Moreover,
the effective permittivity satisfies the well-known Krarad{ronig relation, which further proves the accuracy of the
proposed linear homogenization method. In Fig. 1(b), thegarison between the linear response of the structured
and homogenized metasurfaces proves that a complex grmpietasurface can be replaced by a homogenized sheet
with specific optical constants.

3. Nonlinear Homogenization of Graphene Metamaterials

Similarly to the linear case, we introduce an auxiliary ditgng;ji, defined in third-harmonic case agj =
Xi(ji)l EjExE . Based on the field-average method, we hafjig(w) = J, Xi(ji)l (r,w)Ej(r,w)Ex(r,w)E (r,w)dr /V. To

generate the same THG intensity from an effective uniforeeshwe assume each componenqﬁf}j in a homoge-
neous uniform sheet is equal to thatﬁ(I in the graphene cruciform metasurface. Based on this aggumwe have

Xi%’e” = o /(E;"'ESTES"T). Using an in-house developed GS-FDTD code [5], we have téted the nonlinear
optical response of the structured and homogenized méassr the main results being summarized in Fig. 2. In-
specting the plots in Fig. 2(a), we find that, at the resonarmselength of % pm, the effective((® is more than two
orders of magnitude larger than the intrinsic third-ordesceptibility of graphene. Moreover, we have compared the
nonlinear optical response of the structured and homogdmgraphene metasurfaces and the results are summarized
in Fig. 2(b). The good agreement proves the effectivenedsaaouracy of our proposed nonlinear homogenization
method.
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Fig. 2. Validation of the nonlinear homogenization meth@) Comparison of intrinsic and effective
third-order susceptibilities. (b) Comparison of thirdam@nic generated by the two metasurfaces.

To conclude, we prove that the third-order susceptibilityhomogenous graphene sheet can be enhanced more
than two order of magnitude by designing a graphene met=igroperly. This remarkable enhancement can find
important applications to active nanodevices, as it offer®@w avenue to design metasurfaces with extremely large
nonlinear susceptibilities at desirable frequencies.
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