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Abstract 

Multiple sclerosis is a leading cause of neurological disability in young adults which affects 

more than 2.5 million people worldwide. An important substrate of disability accrual is the loss 

of neurons and connections between them (neurodegeneration) which can be captured by 

serial brain imaging, especially in the cerebral grey matter. In this thesis in four separate 

subprojects, I aimed to assess the strength of imaging-derived grey matter volume as a 

biomarker in the diagnosis, predicting the evolution of multiple sclerosis, and developing a 

staging system to stratify patients. In total, I retrospectively studied 1701 subjects, of whom 

1548 had longitudinal brain imaging data. I used advanced computational models to 

investigate cross-sectional and longitudinal datasets. In the cross-sectional study, I 

demonstrated that grey matter volumes could distinguish multiple sclerosis from another 

demyelinating disorder (neuromyelitis optica) with an accuracy of 74%.  In longitudinal studies, 

I showed that over time the deep grey matter nuclei had the fastest rate of volume loss (up to 

1.66% annual loss) across the brain regions in multiple sclerosis. The volume of the deep grey 

matter was the strongest predictor of disability progression. I found that multiple sclerosis 

affects different brain areas with a specific temporal order (or sequence) that starts with the 

deep grey matter nuclei, posterior cingulate cortex, precuneus, and cerebellum. Finally, with 

multivariate mechanistic and causal modelling, I showed that brain volume loss causes 

disability and cognitive worsening which can be delayed with a potential neuroprotective 

treatment (simvastatin). This work provides conclusive evidence that grey matter volume loss 

affects some brain regions more severely, can predict future disability progression, can be 

used as an outcome measure in phase II clinical trials, and causes clinical and cognitive 

worsening. This thesis also provides a subject staging system based on which patients can 

be scored during multiple sclerosis.  
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1. Multiple sclerosis: diagnosis and monitoring 

“It would be nice if a physician from London, one of these days, were to gallop up hotspur, 

tether his horse to the gait post and dash in waving a reprieve—the discovery of a cure!” 

Diary of a patient with multiple sclerosis – 1917(Dr. T. Jock Murray, 2004) 

1.2. Introduction 

Multiple sclerosis (MS) is a chronic demyelinating and neurodegenerative disease of the 

central nervous system. MS affects more than 2.5 million people worldwide (Browne et al., 

2014). In many countries, MS is the main cause of non-traumatic disability in young adults. 

People with MS have different clinical presentations with unpredictable disease courses. While 

some may remain without a significant disability, others may deteriorate rapidly and become 

wheelchair-bound within a few years (Confavreux and Vukusic, 2014). Therefore, tools that 

can monitor, and ultimately predict, the course of MS could have a considerable impact on 

patient lives and society. 

Moreover, the decision to choose and later switch MS treatments is becoming more 

challenging. USA’s Food and Drug Administration has approved 14 disease-modifying 

treatments for people with MS, which could be used during different stages of MS. To decide 

on a treatment, neurologists rely on the history of patients, clinical examination, magnetic 

resonance imaging (MRI) and laboratory results. With the advancement of computer science, 

tools that may one day support the diagnosis and monitor disease progression in individual 

patients are becoming a realistic possibility (Matthews, 2015). 

1.3. Diagnosis: prime time for MRI 

Neurologists are increasingly relying on MRI to diagnose MS. The core components of MS 

diagnosis are objective evidence of dissemination of brain lesions throughout the central 

nervous system (dissemination in space) or their dissemination in time.  

Early diagnostic criteria (in the 1960s and 1980s) for MS by Schumacher and Poser were 

based on clinical presentation, neurologic examination and cerebrospinal fluid tests 

(Schumacher et al., 1965; Poser et al., 1983). In 2001, a group led by Ian McDonald, for the 
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first time, incorporated MRI into the diagnostic criteria (McDonald et al., 2001). The 

dissemination of the symptoms or lesions in space or time were the basis for MS diagnosis, 

which was only possible by multiple MRIs taken over time. In 2010, a group led by Chris 

Polman simplified the use of MRI to detect dissemination in time and space using only one 

scan (Polman et al., 2011). In 2017 an international panel led by Alan Thompson revised the 

2010 McDonald criteria to speed the diagnosis of MS (the specific changes are explained 

below) (Thompson et al., 2017).  

According to the 2017 revisions of McDonald criteria, the dissemination in space or time is 

defined as follows: 

• Dissemination in space: the presence of one or more symptomatic or 

asymptomatic lesions in at least 2 of 4 specific locations for MS on T2-weighted MRI. 

Specific lesions for MS are cortical, juxtacortical, periventricular, infratentorial or spinal 

lesions. 

• Dissemination in time: one or both of the following: 

o The appearance of new T2-weighted or gadolinium-enhancing lesions 

on follow-up MRI. There is no specific interval between baseline and follow-up 

scans. 

o The simultaneous presence of gadolinium-enhancing and non-

enhancing lesions. 

In 2014, a meta-analysis found that the effect of drugs on brain atrophy corresponds to those 

effects on disability(Sormani et al., 2014). During the same year, MRI was incorporated into 

the definition of MS phenotypes to formally define active and non-active disease(Lublin and 

Reingold, 1996). The 2010 criteria had only included asymptomatic lesions as the basis for 

diagnosis. In 2016, the MAGNIMS1 group gave more value to MRI by including lesions 

irrespective of symptoms to define dissemination in space and time, in addition to the inclusion 

                                            

1 A European committee of MRI experts in MS 
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of lesions in the optic nerve to define the dissemination of space among other changes (Filippi 

et al., 2016). Additionally, they suggested the use of advanced MRI (double-inversion 

recovery), if available, to detect cortical lesions as a sensitive marker for MS(Filippi et al., 

2016).  In 2017, revisions to 2010 McDonald criteria reinstated the use of cerebrospinal fluid 

oligoclonal bands in the diagnosis of MS. Moreover, these revisions removed the distinction 

between symptomatic and asymptomatic lesions for the dissemination in space and time 

(except for the optic nerve lesions in a patient presenting with optic neuritis).  Moreover, other 

imaging technologies such as optical coherence tomography can now be used as objective 

clinical evidence in patients who report previous (subjective) visual impairment (Thompson, 

2017). Cortical lesions can also be used in the diagnosis (equivalent to juxta-cortical lesions). 

Therefore, the role of imaging in the diagnosis of MS is expanding rapidly in parallel to the 

technological advances.  
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Figure 1-1. Evolution of the neuroimaging tools and treatment milestones in multiple 

sclerosis. 

 

Abbreviations: DIR; double inversion recovery, MS; multiple sclerosis. MRI; magnetic 

resonance imaging, FDA; Food and Drug Administration (An American regulatory body for 

approving medical treatments), CT; computerised tomography.  

1.4. Classification (MS phenotypes) 

MS is classified into different phenotypes (or subtypes) according to its clinical course(Lublin 

and Reingold, 1996). Classification is necessary for communication, and more importantly for 
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clinical decision making based on MS phenotypes. MS is classified into the following 

phenotypes: 

• Clinically isolated syndrome suggestive of MS (will be referred to as clinically 

isolated syndrome throughout this thesis) 

• Relapsing-remitting MS 

• Secondary progressive MS 

• Primary progressive MS 

1.4.1. Clinically isolated syndrome 

A clinically isolated syndrome is a single attack of a disease that resembles MS but does not 

fulfil the MS diagnostic criteria(Miller et al., 2012). Therefore, clinically isolated syndrome has 

no dissemination in time (monophasic) or no dissemination in space (monofocal)(Lublin and 

Reingold, 1996). Rarely, patients with clinically isolated syndrome may have clinical evidence 

for dissemination in time (for example, optic neuritis with Babinski reflex). On the other hand, 

some people with MS may start their disease without an attack that is suggestive of a 

demyelinating disease, such as seizures, cognitive problems or encephalopathy(Miller et al., 

2012). Majority of patients with the clinically isolated syndrome will convert to MS. The 

conversion rate of patients with the clinically isolated syndrome to MS differs between studies 

depending on the geographical location and the presenting symptoms, which ranges from 

50% to 80%(Fisniku et al., 2008; Optic Neuritis Study Group, 2008). 

1.4.2. Relapsing-remitting MS  

People with relapsing-remitting MS constitute 85-90% of all people with MS. People with 

relapsing-remitting MS have clearly defined attacks. They may completely recover, or their 

attacks may leave residual deficits. However, there is no gradual progression between the 

attacks. People with relapsing-remitting MS are either those with the clinically isolated 

syndrome who have had dissemination in time or those patients who fulfil MRI criteria with the 

first clinical presentation(Polman et al., 2011). The majority of patients with relapsing-remitting 

MS enter the progressive stage (secondary progressive MS). The relapsing-remitting stage 

provides a window of opportunity for treatments, as all the FDA approved disease-modifying 
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treatments are available for relapsing-remitting MS patients. More recently ocrelizumab has 

been approved as a disease-modifying treatment for a subgroup of early patients with primary-

progressive MS (Hauser et al., 2017). Another oral tablet, siponimod, has shown positive 

results in the secondary progressive MS (Kappos et al., 2018).  

1.4.3. Secondary-progressive MS  

If disability in patients with relapsing-remitting MS worsens independent of relapses, patients 

enter a new phase known as secondary-progressive MS (Lublin and Reingold, 1996). 

Diagnosis of secondary-progressive MS is retrospective. A study that examined hundreds of 

definitions for short-term progression against 5-year progression found that a three-strata 

progression of Expanded Disability Status Scale confirmed after three months in patients who 

had a minimum Expanded Disability Status Scale of four with a minimum pyramidal score of 

two or more was the best definition for secondary-progressive MS (Lorscheider et al., 2016). 

Three-strata definition of Expanded Disability Status Scale refers to 1.5-point progression in 

patients who had a score of 0 before progression, an increase of 1 if the last score is between 

1 and 5.5, and an increase of 0.5 if the score was more than 5.5.  The majority of patients with 

relapsing-remitting MS progress to secondary-progressive MS, for example in the Lyon MS 

cohort after 15 years from relapsing-remitting MS onset, more than half of patients progressed 

to progressive stage, although the proportion of patients who progress may be less in newer 

cohorts who have been treated over time with disease-modifying treatment (University of 

California, San Francisco MS-EPIC Team: et al., 2016) . Nonetheless, the effects of disease-

modifying treatments in slowing the progression are weak (Lorscheider et al., 2017a). People 

with secondary-progressive MS may or may not have occasional attacks (relapses). 

1.4.4. Primary-progressive MS 

People with primary-progressive MS have a gradual progression of disability from the disease 

onset, with or without relapses. There is no imaging or laboratory examination that can 

differentiate between different MS phenotypes, and therefore neurologists retrospectively 

“label” MS phenotypes based on the clinical history. Progressive-relapsing MS was a term 

used to describe people with a gradual progression from disease onset, who experience 
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relapses over time(Lublin and Reingold, 1996). However, the new definition of primary-

progressive MS includes progressive-relapsing patients, and this term is no longer used. 

Progressive MS refers to both people with secondary-progressive MS and primary-

progressive MS as they show similarities in their disease course (Stys et al., 2012).  

1.5. MS disease modifiers phenotype 

In 2013’s definition of MS disease courses, for the first time, MRI –in addition to clinical history 

and clinical examination– was incorporated into the description of MS disease phenotypes.  

For example, patients with the clinically isolated syndrome, relapsing-remitting MS or 

progressive MS may have “active” or “not active” disease course. Activity is defined as either 

(1) clinical relapses or, (2) enlarging, or new, T2-weighted MRI lesions, or contrast-enhancing 

lesions. 

International panel also added “progression” to the definition of progressive MS, which is 

defined by annual clinical assessments. For example, a patient with secondary-progressive 

MS, with new enhancing lesions but without detectable progression in clinical assessments 

will have “active secondary-progressive MS without progression” (Lublin and Reingold, 1996).  

1.6. Remaining questions and motivations for my research 

Although assessment of MRI lesions is part of the diagnosis and the definition for MS 

phenotypes (e.g., to define active and non-active disease courses), the difference between 

MS phenotypes using more objective (or quantitative) MRI measures remains unclear. 

Neuronal cells, especially in the grey matter, degenerate during MS and drive the course of 

disease toward progression(Jürgens et al., 2016). The loss of grey matter is more strongly 

associated with clinical and cognitive measures than white matter lesions, or white matter 

atrophy(Calabrese, Magliozzi, et al., 2015). This ongoing degeneration can be shown, and 

quantified, by MRI(Bermel and Bakshi, 2006; Geurts et al., 2012). Previous studies on grey 

matter in people with MS have shown important clues regarding MS diagnosis and 

progression. For example, some studies have shown more pronounced atrophy in patients 

with secondary-progressive MS that accelerates over time(Fisher et al., 2008). Others have 

shown similar rates of atrophy between MS phenotypes(De Stefano et al., 2010).  Most of 
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these studies have been performed on the whole brain, and studies based on longitudinal 

regional atrophy measures are scarce(Ceccarelli et al., 2008; Riccitelli et al., 2011; Eshaghi 

et al., 2014; Preziosa et al., 2017). For example, it remains unclear whether a more detailed 

analysis, including smaller brain regions, could show clinically relevant changes that could be 

missed by coarse measures of the whole brain– similar to other neurodegenerative 

disorders(Henneman et al., 2009). Moreover, the grey matter loss is increasingly used to 

monitor MS progression at the group level in clinical trials(Chataway et al., 2014; De Stefano 

et al., 2015; Kappos et al., 2015, p. 4; Wang et al., 2016). Therefore, there is an urgent need 

to further clarify the trajectory of regional volume loss in different MS phenotypes, and in 

people who progress faster. I will address these questions on grey matter changes in MS 

phenotypes in Chapter 4 and 5 of this thesis. 

1.7. Differential diagnosis 

MS should be differentiated from other central nervous system disorders including vascular, 

infectious, genetic, and other demyelinating disorders. Some adult central nervous system or 

systemic diseases that cause white matter lesions in the brain, and may be mistaken for MS 

are as follows: neuromyelitis optica (NMO), Sjögren syndrome, Lyme disease, systemic lupus 

erythematosus, CADASIL syndrome (Cerebral Autosomal-Dominant Arteriopathy with 

Subcortical Infarcts and Leukoencephalopathy), Behçet disease, polyarteritis nodosa, and 

sarcoidosis.  

One of the most important differential diagnoses of MS is NMO. NMO has a similar 

presentation to MS and was long considered a variant of MS until the discovery of its cause, 

anti-aquaporin-4 antibody (NMO-IgG)(Lennon et al., 2004).  

1.8. Neuromyelitis Optica (NMO) 

NMO is an autoimmune and demyelinating disease of the brain and spinal cord. Optic neuritis 

and transverse myelitis attacks are the hallmarks of NMO. NMO usually has a relapsing 

course, and patients may recover or some residual deficits may remain(Wingerchuk, 2007). 

However, unlike MS, the progressive course is extremely rare(Wingerchuk, 2007; Wingerchuk 

et al., 2007). Treatment strategies are substantially different between MS and NMO, and even 
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MS treatments may exacerbate NMO symptoms(Shimizu et al., 2010). Therefore, the 

differentiation of MS and NMO is of utmost importance in the clinical practice. Diagnosis of 

NMO is based on the Wingerchuck’s criteria (2006), which was later revised in a more recent 

2013 international consensus criteria (see Table 1-1). 

Table 1-1. Diagnostic criteria for neuromyelitis optica in 2006 and its revision in 2013. 

Diagnostic criteria Diagnostic 

terminology 

  

Wingerchuck’s 

2006 criteria 

(Wingerchuk et al., 

2006) 

Definite NMO Optic neuritis 

Acute myelitis 

Two of the three supportive criteria 1. Contiguous spinal cord lesions that 

encompass 3 or more vertebral segments  

2. Brain MRI not meeting MS criteria 

3. Positive test for aquaporin-4 antibody 

(NMO IgG) 

International 

consensus criteria 

(2013)(Wingerchuk 

et al., 2015) 

NMOSD with 

AQP4-IgG 

At least one core clinical criteria Core clinical criteria refer to the symptoms 

that implicate one of these six regions: 1) 

optic nerve; 2) spinal cord; 3) area postrema 

of dorsal medulla; 4) brainstem; 5) 

diencephalon; 6) cerebrum 

Positive test for NMO-IgG  Preferably with cell-based assay method 

Exclusion of alternative diagnoses  

NMOSD without 

AQP4-IgG or with 

unknown AQP4-

IgG 

At least two core clinical characteristics 

that meet the following criteria: 

1) One clinical characteristic should be optic 

neuritis, acute myelitis with LETM or area 

postrema syndrome; 2) 2 or more different 

core clinical characteristics; c) fulfilment of 

additional MRI requirements* 

Negative tests for AQP4-IgG  

Exclusion of alternative diagnoses  

* Additional MRI requirement are: 1) acute optic neuritis. Involvement of optic nerve on MRI or only non-specific white matter lesions. 

2) acute myelitis: Intramedullary MRI lesions extending more than 3 or more contiguous vertebral segments. 3) area postrema 

syndrome: Dorsal medulla lesions 4) acute brainstem syndrome: brain stem lesions 

Abbreviations: LETM; longitudinally extensive transverse myelitis, AQP4; anti-aquaporin 4 autoantibody, NMOSD; neuromyelitis 

optica spectrum disorder. 
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1.9. Remaining questions and motivations for this thesis 

Clinical history and examination are the most important tools to differentiate MS from NMO. 

Brain imaging fulfilling the MRI criteria (explained above) can support those clinical decisions. 

Advanced neuroimaging studies have further underlined the fundamental differences between 

NMO and MS. For example, imaging of the cortical lesions in the cortex using an advanced 

MRI sequence (double-inversion recovery)(Calabrese et al., 2012), ultra-high field 

MRI(Sinnecker et al., 2012), atrophy measures(Calabrese et al., 2012; Liu, Wang, et al., 2015) 

and ex-vivo studies have shown that cortex is relatively spared in NMO as compared to 

MS(Saji et al., 2012). 

However, the previous studies have focused on MS and NMO characteristics at the group-

level. It, therefore, remains unclear whether a more quantitative and automatic approach at 

the individual level could differentiate MS from NMO. In Chapter 3 of this thesis, I will present 

an automatic machine-learning method to measure the brain regional volumes and 

differentiate NMO from MS in a two-centre setting based on the clinical scans acquired as part 

of the routine clinical assessment of patients.  

1.10. Monitoring disease worsening in MS: the role of MRI 

Regular clinical assessment of MS patients is essential to guide treatment strategies. For 

example, the clinical effectiveness of a prescribed drug is usually assessed by the number of 

relapses, clinical examination, patient compliance and appearance of new T2-weighted white 

matter lesions or gadolinium-enhancing lesions on T1-weighted scans during follow-up 

visits(Brownlee et al., 2017). T2-weighted lesion load in the brain, and especially those of the 

spinal cord, have been shown to predict conversion from an isolated demyelination attack of 

the CNS to definite MS(Fisniku et al., 2008; Brown et al., 2017). A study with 20 years of 

follow-up showed that 79% of patients with the clinically isolated syndrome who had normal 

brain MRI did not convert to definite MS (Fisniku et al., 2008). Counts or volumes of T2-

weighted hyperintense lesions and gadolinium-enhancing lesions on T1-weighted scans have 

also been used as secondary outcome measures in phase III clinical trials(van Munster and 

Uitdehaag, 2017). T2-weighted hyperintense lesions represent MRI signal abnormalities that 



 22 

relate to either inflammation, demyelination and gliosis (or a mixture of these), and as their 

name implies, appear as hyperintense spots on the T2-weighted MRI scans. Gadolinium-

enhancing lesions that appear after injection of the contrast material (gadolinium), on the other 

hand, represent the breakage of blood-brain barrier (or active inflammation) and appear on 

T1-weighted MRI sequence. Appearance of gadolinium-enhancing lesions in a single MRI 

scan or the growth of T2-weighted hyperintense lesions in serial MRI scans, therefore, 

represents active disease course in MS.  

However, the associations between focal lesion volume and clinical outcomes are modest at 

best and not straightforward, and weaker during progressive MS (Barkhof, 2002). Even in 

early MS, focal lesions in the white matter can only show the tip of the pathological iceberg.  

Advanced MRI modalities–which are only used in research studies–can detect abnormalities 

that are more strongly associated with disability and cognitive measures than focal lesions. 

Grey matter lesions, for example, are largely missed by the clinical imaging sequences 

(Kilsdonk et al., 2016). Grey matter atrophy measures from serial brain imaging are usually 

interpreted as the neuro-axonal loss and are more strongly associated with long-term disability 

than the focal lesions (Calabrese, Magliozzi, et al., 2015). This damage differs across the 

cortical areas in the brain; it differentially affects superficial laminar layers and deep gyri of the 

cortex (Mainero et al., 2015; Haider et al., 2016a).  Other advanced modalities such as 

metabolite and sodium imaging have also shown clinically relevant changes in the brain that 

are difficult to capture by other methods (Paling et al., 2013; Cawley et al., 2015). However, 

among all the advanced and quantitative MRI measures, atrophy measures have been more 

successful as an objective tool to monitor MS worsening, especially during the drug trial 

(Chataway et al., 2014). This might be due to a wider availability of the T1-weighted MR 

sequence to measure atrophy, especially for multi-centre trials. In particular, the percentage 

change of the brain volume is a commonly used measure of atrophy which is calculated from 

the T1-weighted scans (Smith et al., 2007; Rocca et al., 2017). I will briefly introduce the 

methods to calculate percentage brain volume changes in Chapter 2 and apply them in 

Chapter 4. 
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1.10.1. Limitations of MRI to monitor MS progression  

It is important to note that although longitudinal brain volume measures extracted from MRI 

are useful to detect changes at the group level (e.g., clinical trials) their application at the 

individual level (e.g., clinical practice) is not proven because they are too variable at the 

individual level (Barkhof, 2016, 2016). This, in part, is due to the physiological variability in 

brain volumes which may follow a diurnal pattern (Nakamura et al., 2015) or hormone-

dependent changes (Franke et al., 2015). Artefacts and technical variabilities can further 

increase the measurement error; these include–but are not limited to–head motion(Reuter et 

al., 2015), inter-scanner variability (Keshavan et al., 2016), and longitudinal scanner drifts 

(Takao et al., 2011). In short, measures of the percentage brain volume change in serial brain 

imaging can be used in phase II clinical trials, however, are not ready for individual monitoring 

of disease progression. As previously mentioned, in the next chapter, I will briefly review 

available methods to measure atrophy in patients with MS.  

1.11. Pathology 

The human brain is one of the most complex phenomenon in the universe. The immune 

system is also a complex system, which is required for the normal function of any organism. 

The understanding of MS is, therefore, extremely complex as it ensues from the dysfunction 

of both. However, regardless of the cause, we know that MS pathology consists of 

autoimmune attacks on the CNS with demyelination and neurodegeneration. In this brief 

overview, I will focus on the neuronal loss (or neurodegeneration) and its relation to disability 

to lay the basis for future chapters (Figure 1-2). Loss of neurons, and the connections between 

them, or neurodegeneration, is the main driver of disability accumulation is MS(Mahad et al., 

2015). There are two competing hypotheses about MS pathogenesis. A common one states 

that aberrant peripheral activation of the immune system starts a pathological cascade with 

subsequent demyelination and neurodegeneration. An alternative hypothesis assumes that 

primary death of neuronal cells activates peripheral immune system with subsequent attacks 

on the CNS. There is evidence in favour of both. However, recent large-scale genome-wide 

association studies have found several common susceptibility genes among MS and other 
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autoimmune disorders such as Crohn’s disease, ulcerative colitis, psoriasis, rheumatoid 

arthritis and type-1 diabetes mellitus(International Multiple Sclerosis Genetics Consortium et 

al., 2011; Baranzini and Oksenberg, 2017). These findings argue against a primary 

neurodegenerative cause of MS, although they can only explain a proportion (20-30%) of the 

MS heritability. The exact chain of pathological events in MS may be controversial. However, 

there is more agreement that innate and adaptive immune dysfunction, chronic activation of 

microglia, oxidative injury, mitochondrial dysfunction, hypoxia and energy dysregulation all 

contribute to demyelination, neuro-axonal loss, and disability accumulation at different stages 

of MS(Mahad et al., 2015). MS affects both the spinal cord and the brain. The grey matter 

consists of neuronal cell bodies, myelinated and unmyelinated axons and is affected even in 

early MS (Lucchinetti et al., 2011). Despite the lower total density of myelin in the grey matter 

than the white matter, the cortical demyelination is extensive (Kutzelnigg et al., 2005).  

Pathological studies have shown that neurodegeneration is, at least partly, independent of 

inflammation and demyelination (Carassiti et al., n.d.; DeLuca et al., 2006; Frischer et al., 

2009). Based on evidence from imaging and pathological studies I can speculate that a 

proportion of neuronal death and axonal loss is secondary to inflammation (or focal lesions) 

in distant areas (Bodini et al., 2016) (such as the white matter or the spinal cord) and also 

secondary to meningeal inflammation (Magliozzi et al., 2010).  Inflammatory milieu imposed 

by the overlying meninges and cerebrospinal fluid can create a selective neuronal loss in 

specific neuroanatomical areas, such as those in the deep gyri (the insula) or the deep grey 

matter areas closer to the ventricles (the thalamus) (Haider et al., 2016b).  

The extent of damage in different MS phenotypes is different. For example, a pathological 

post-mortem study on 29 secondary progressive and seven primary progressive MS subjects 

showed that the tertiary lymphoid structures could be found in secondary-progressive MS but 

not primary progressive MS (Magliozzi et al., 2006). This might be due to the longer disease 

duration in secondary progressive population. However, the pathological differences between 

MS phenotypes are quantitative rather than qualitative, and therefore, there is no pathological 

marker to distinguish between MS phenotypes (Mahad et al., 2015).   
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The main questions that I will try to answer in this thesis will, therefore, be: Do different 

neuroanatomical areas show different rates of in vivo tissue loss? Do different MS phenotypes 

show differential rates of tissue loss? What is the spatiotemporal pattern of atrophy in patients 

who have a shorter time to disability progression? Does the increase in the white matter lesion 

load relate to the grey matter tissue loss?  

Figure 1-2. Schematic presentation of neuro-axonal loss in multiple sclerosis and its effects in 

a real patient.  

 

Neuroaxonal loss or neurodegeneration is thought to be the main substrate of disability 

progression in multiple sclerosis. The upper row shows that activation of the innate and 

adaptive immune system attacks myelin, which over the following years ends in neuronal 

death. This neuroaxonal loss, at the mesoscale, can be seen as brain atrophy. The bottom 

row shows volume loss in a real patient with relapsing remitting MS (left brain scan), who 

developed secondary progressive MS (right brain scan) after 13 years. The cortical grey 

matter is shown in blue, and the deep grey matter is shown in purple.   
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1.12. Conclusion 

In this introductory chapter, I reviewed the definitions of MS phenotypes, the clinical diagnostic 

criteria and its evolution, and the motivation for using neuroimaging in MS. The evolution of 

criteria for the diagnosis of MS parallels advances in technology. The latest 2017 revisions of 

McDonald criteria speed the diagnosis of MS by including symptomatic and non-symptomatic 

lesions to demonstration dissemination in space and underlines the value of other imaging 

technologies, such as the optical coherence tomography. Neuronal loss, which is the main 

driver of disability accumulation, can be captured at the mesoscale as brain atrophy by serial 

neuroimaging. Therefore, brain atrophy measures may have a high potential in both 

monitoring disease evolution and prognosticating patient outcomes.  
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Background: the methods  

2.1. Summary 

Computational modelling of neuroimaging data is a rapidly evolving field. The methodological 

advances can enable objective diagnoses of patients and provide more consistent measures 

of longitudinal change on a larger number of biomarkers than what is possible by a human 

observer. This chapter focuses on methodological aspects of computational diagnosis and 

longitudinal models of neuroimaging data. I will briefly review the supervised machine learning 

methods used in classification problems (e.g., patient diagnosis), the mixed effects 

longitudinal models to measure the evolution of regional brain volumes, multivariate 

mechanistic models or structural equation models to formulate scientific hypotheses as 

statistical models, the event-to-time (survival) models for predicting future progression of 

disability using baseline imaging biomarkers, and the probabilistic methods for research 

questions on underlying mechanisms. I will review several alternative methods that are 

available for specific research questions in this thesis and the rationale for adoption of specific 

methods. This chapter provides a segue to model applications in the following chapters.  
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2.2. Introduction  

In this chapter, I will briefly introduce the tools to answer the research questions presented in 

this thesis, all of which relate to diagnosis or monitoring of multiple sclerosis (MS). These 

questions include the following: 

- Can brain volumes distinguish between neuromyelitis optica (NMO) and MS?  

- Can brain volumes prognosticate disability outcomes for patients with MS?  

- Do rates of brain volume change differ between MS phenotypes? 

- Do rates of volume change differ in different neuroanatomical areas? 

- How do brain volumes, clinical, and cognitive outcomes relate to each other?  

Each following section briefly explains the specific choice of methods in relation to other 

commonly available tools.  

2.3. Computational diagnosis: a classification problem 

Over the past decade, researchers have started using MRI and machine learning to 

automatically diagnose (Stefan Klöppel et al., 2008; Klöppel et al., 2012; Stephan and Mathys, 

2014; Bendfeldt et al., 2015) or to predict future progression of neurological and psychiatric 

disorders (Wottschel et al., 2015). Machine-learning techniques can handle a large number of 

variables in a consistent way, which may not be possible for a human observer. The task of 

differentiating between two groups is known as classification, which is similar to the case when 

a neurologist has to differentiate between two similar disorders. In machine-learning classifiers 

can be used for decision (e.g., predicting diagnosis) or regression problems (e.g., predicting 

clinical scores) from the MRI data(Wang et al., 2010). The analysis pipeline, irrespective of 

MRI modality or the algorithm used as the classifier, consists of the following stages: 

1) Pre-processing of MRI: this stage is necessary to reduce the noise in data (e.g., bias 

field correction, and segmentation), or standardise between subject anatomical 

variability (e.g., registration to a template). I will explain in detail image processing 

steps for a classification problem in Chapter 3.  

2) Feature extraction, and dimensionality reduction: neuroimaging tools can provide 

high-dimensional data (e.g., millions of voxels in MRI), which are more than the number 
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of observations (study participants)(Pereira et al., 2009). Therefore, reducing variables 

is advantageous for an optimal computation time or to increase the accuracy after 

removing extraneous information.  

3) Training: the dataset is divided into train and test sets. The train set is used to 

construct the optimal parameters for the classifier that can best distinguish between 

groups (decision problem) or provide the closest prediction to the variable of interest 

(regression problem). There are several methods on how to create test and training 

sets, or how to deal with an imbalanced number of observations which are discussed 

elsewhere(Hastie et al., 2011).  

4) Testing: test set, which has been kept separate from the train set until this stage, is 

used to calculate the unbiased performance of the classifier. Figure 2-1 shows the 

classification steps. 

Figure 0-1. Classification steps for a supervised learning task that differentiates between 

group 1 and 2. 

 

Four steps of a classification algorithm are shown in the above figure.  
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Researchers have used different classifiers in neuroimaging, the most important of which are 

as follows: 

2.3.1. Supervised learning 

The outcome variables (e.g., diagnosis for MRI scan), if present, can guide the training 

process(Hastie et al., 2011). Since the training process uses outcome variables (such as the 

gold-standard diagnosis from a neurologist) to learn and construct a model, this learning 

process is called supervised learning. Most of the classifiers that are used for differential 

diagnosis in neurological or psychiatric disorders are supervised classifiers (Stefan Klöppel et 

al., 2008; Klöppel et al., 2009; Bendfeldt, Klöppel, et al., 2012; Bendfeldt et al., 2015; 

Wottschel et al., 2015). This classification can distinguish between two groups or more than 

two groups (multi-class classification). In this thesis, I only focus on the two-class classification 

– for example, to discriminate between MRI scans of people with MS from those with NMO.  

Some of the most popular supervised classifiers in neuroimaging include linear models, 

nearest neighbours, support vector machines, and random forests. 

2.3.1.1.   Linear models 

Linear models have been used extensively in neuroimaging. If the decision boundary2 In the 

problem, space is a line (two dimensions), or its surface is a hyperplane (more than two 

dimensions), the classifier is a linear model. The simplest linear model is a linear regression. 

The aim here is to construct a line that provides the least error when predicting each 

observation in the problem space. Mathematically, this could be achieved by minimizing the 

sums of the squares of the differences between real values and those predicted by the fitted 

line. This is known as the ordinary least squares. Regression models are easy to interpret and 

therefore can provide important clues on how the data has been generated. Neuroimaging 

experiments can provide millions of variables (e.g., voxels). However, only some modifications 

                                            

2 Decision boundary is a line, or a hyperplane in the feature space, that separates two groups from one another. 

The classification of observations close to the decision boundary is usually challenging. 
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of regression models can handle a large number of variables(Tibshirani, 1996; Hastie et al., 

2011). Moreover, they are sensitive to the correlation between variables (collinearity) and 

require homoscedastic data(Hastie et al., 2011). Therefore, they need careful checking of 

assumptions and selecting variables by an expert. 

2.3.1.2. Nearest neighbours 

Nearest-neighbour methods are non-parametric and model-free methods. Therefore, they are 

flexible and act as a black-box in classification. To classify an input in the test set, they use 

those observations in the training set closest to the feature space (or problem space) to the 

input in the test set. The number of neighbours is usually known as k. Closeness between 

inputs in the test and training set is a metric, such as Euclidean distance in the feature space. 

Nearest-neighbours are flexible and can accept a wide variety of inputs. However, because 

they do not construct a model their results are difficult to interpret. They are used for tasks 

that interpretation of the model is less important than the final results, such as image 

segmentation(Steenwijk et al., 2013).  

2.3.1.3. Support vector machine 

Support vector machine (SVM) finds a non-linear boundary in the problem space by searching 

for a boundary in a transformed (high-dimensional) version of the feature space to separate 

two groups (Hastie et al., 2011). SVMs have been used extensively in neuroimaging, for 

example, to differentiate between different Parkinsonian syndromes (Huppertz et al., 2016), 

predict the future course in people with clinically isolated syndrome (Wottschel et al., 2015), 

predict the response to treatment in psychiatric disorders (Redlich et al., 2016), and 

differentiate between benign and non-benign MS (Bendfeldt, Klöppel, et al., 2012). Although 

SVMs with linear kernels provide easily interpretable results, SVMs with non-linear kernels act 

as a “black box” and their results may be difficult to interpret.  

2.3.1.4. Random forest 

Flow-charts are used to demonstrate the steps one needs to take to arrive at a decision. Flow-

charts are tree-like structures and are known as the decision tree in machine learning (see 

Figure 2-2).  
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Figure 0-2. A schematic and simplified presentation of a decision tree for a hypothetical 

patient. 

 

A decision tree (Breiman et al., 1984) consists of the following sections: (1) node; (2) root; (3) 

leaf. A decision tree takes an input variable, performs a splitting on the value of the input in its 

node and outputs a target variable (e.g., classification outcome or diagnosis) as its leaf. A 

decision tree can be constructed by a recursive splitting of the input variables, and comparing 

the outcome of the leaves with the class that the data belongs to. This recursive splitting 

continues until it reaches perfect classification or a point where no improvement in its 

performance is possible. A random-forest classifier is an ensemble method3 that uses many 

decision trees to predict the outcome. Random-forest is a more recent development of 

decision trees (Breiman, 2001), which reduces the variance of their prediction and improves 

their generalization. During the training phase, a random-forest classifier constructs many 

decision trees, but for each decision tree, it uses only a random subset of the input variables 

(or features). The subset of variables is chosen randomly with bootstrapping (sampling with 

replacement). This procedure is known as “bagging”, and is necessary to reduce the variance 

from individual predictions of decision trees, and to reduce the correlation of the decision trees 

                                            

3 Ensemble methods combine results from different classifiers to improve the final prediction. 
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(Hastie et al., 2011). A random forest can calculate the importance of input features, and 

therefore the output is easy to interpret. The variable importance is based on the out-of-bag-

error. The out-of-bag-error for a variable is the mean prediction error of those decision trees 

that did not have the variable as their features. To calculate the importance of the jth feature, 

first, the out-of-bag error is calculated for the jth feature. Second, the values of the jth feature 

are permuted, and again the out-of-bag error is computed. The importance of the jth feature 

is the difference between these two out-of-bag errors. 

Random forests are easier to tune in comparison with other classifiers, are less likely to over-

fit4, their results are easier to interpret (although they are still a “black box” method)(Hastie et 

al., 2011), and have shown promise in MRI studies (Eloyan et al., 2012; Lebedev et al., 2014; 

Moradi et al., 2015). For these reasons, I will use random-forest for automatic differential 

diagnosis between MS and NMO in the next chapter of this thesis.  

2.4. Measuring the change: longitudinal modelling of neuroimaging data  

Longitudinal methods in neuroimaging aim to infer trajectory of a biomarker in different 

populations to inform about an underlying process. Several methods are available for 

longitudinal analysis of atrophy, which can be divided into 1) image-based methods, 2) 

statistical methods, and 3) combination methods.  Image-based methods are results of image-

to-image comparisons, which include boundary-shift integral (BSI), SIENA, and tensor-based 

morphometry. Statistical methods are more general, such as mixed-effects models, analysis 

of variance, growth and change models. These are not specific to neuroimaging; they have a 

longer history and have been borrowed from other fields, such as biostatistics and social 

sciences. Other authors have used “indirect” and “direct” terms to distinguish between image-

based (BSI, SIENA) and statistical methods (Frost et al., 2004). This terminology assumes 

                                            

4 When a statistical model becomes too complex, it models the noise instead of the underlying relationship 

between variables of interest. This is known as over-fitting. Over-fitted models perform poorly in predicting 

new cases; they do not generalise well.  
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that image-based methods subtract values from two visits to provide an indirect measure of 

change, whereas statistical methods rely on the value at each visit, so they are direct.  

2.4.1. Image-based calculation of atrophy (feature generating methods) 

2.4.1.1. SIENA  

SIENA is a fully automated method to calculate percentage brain volume change between two 

time-points, which is part of the FSL neuroimaging software (Smith et al., 2002). SIENA 

performs the following steps to calculate the change: 1) segmentation of the MRI scan into 

brain and skull, 2) registration and masking in the symmetric space (to avoid bias towards a 

time point), and 3) change analysis by calculating the motion of brain edge between two time-

points. SIENA has been extensively used in phase II and phase III (as the secondary outcome 

measure) clinical trials in MS. SIENA was designed to calculate the atrophy of the entire brain. 

However, its recent implementations can calculate percentage volume change in the 

ventricles (Vrenken et al., 2014).   

2.4.1.2. Boundary shift integral (BSI) 

BSI is very similar to SIENA and consists of the following steps (Freeborough and Fox, 1997): 

1) registration of two (or more) time points in a symmetric space, 2) intensity normalisation to 

adjust for scanner related changes, 3) boundary shift calculation. Some new implementations 

of BSI perform segmentation as the first step (Leung et al., 2012). BSI has been more popular 

in Alzheimer’s disease field (than MS), in which BSI is the standard to measure brain atrophy 

changes. BSI and SIENA have an excellent agreement. However, SIENA reports higher 

percentage atrophy rates (approximately 20% larger atrophy values) (Smith et al., 2007).  

SIENA and BSI are powerful in measuring global brain volume change, however, are limited 

in quantifying focal (regional) changes in brain structures and therefore may not be the best 

option if the aim is to look at regional changes in several brain regions (Hobbs et al., 2009).  

2.4.1.3. Tensor-based morphometry 

This method estimates brain volume changes based on deformation fields that are calculated 

between two (or more) time points (Ashburner and Friston, 2001; Kipps et al., 2005). The 

percentage change is calculated by taking the Jacobian determinant of the deformation field. 
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The promise of tensor-based morphometry is that it does not rely on segmentation, and 

therefore, can be useful to avoid segmentation related bias and noise. Moreover, it provides 

voxel-wise changes between two time-points which is advantageous compared to SIENA and 

BSI. Tensor-based morphometry is, however, limited by its sensitivity to non-biological 

differences (e.g., choice of brain extraction technique or registration technique) and, therefore, 

requires careful quality checking.  

2.4.1.4. Voxel-based morphometry 

Voxel-based morphometry (Ashburner and Friston, 2000) is a segmentation based method 

that can provide statistical parametric maps (Penny et al., 2011) based on a specific statistical 

model (e.g., group wise or subject wise). A typical voxel-based morphometry analysis 

constitutes of the following steps: 1) segmentation of grey and white matter, 2) normalisation 

of scans to a standard template, 3) smoothing, and 4) applying a statistical model of choice to 

produce statistical parametric maps. The voxel-based morphometry has been extensively 

used in neuroimaging and is powerful as an exploratory tool. However, the smoothing step 

and potential mis-registrations across neuroanatomical regions could reduce its precision. 

Moreover, the voxel-based morphometry introduces multiple comparisons problem when 

comparing millions of voxels, like any other method performing many comparisons. Findings 

from a voxel-based morphometry study, while extremely useful in generating new hypotheses, 

need to be validated after the discovery phase in a validation cohort.  

It is important to note that voxel-based morphometry and other methods that produce 

statistical parametric maps (e.g., tensor based morphometry or summary statistics methods) 

can be used to address multiple questions.  

 

The above methods are referred to as feature-generating methods because they produce 

features that can be further analysed by statistical methods (see below) to test specific 

hypotheses.  
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2.4.2. Statistical calculation of atrophy (methods to analyse generated features) 

2.4.2.1. Summary statistics 

This method has been borrowed from functional MRI studies. Given a set of time-points (or 

time-series in functional imaging), one can calculate a voxel-wise measure of change 

according to a statistical model for each subject (or MRI session for functional imaging), in 

what is called a first-level analysis (Penny et al., 2011). The results of the first-level analysis, 

which are statistical parametric maps, are taken to the second-level to apply between-group 

statistical models. Summary-statistics is the standard tool for the analysis of functional images. 

In the structural imaging, it can be applied to longitudinal data, in a similar vein to the functional 

imaging. However, a significant limitation is that unlike functional imaging, the longitudinal 

studies of structural changes cannot provide hundreds or thousands of scans for each subject. 

Moreover, this method can be biased when there are varying numbers of visits for different 

subjects, and cannot handle subjects with only one time-point.  

2.4.3. Mixed-effects models 

The simplest mixed-effects model includes the fixed- and random-effects that can pool 

individual trajectories together to provide a population trajectory (Fitzmaurice et al., 2011). 

Fixed-effects represent population changes (population mean trajectory), and random-effects 

represent individual deviations from the population trajectory (variance of individual 

trajectories) (Curran et al., 2010). For a linear trajectory, mean intercept (starting point) and 

the mean slope (rate of change) are the fixed effects; random effects are the estimates of 

between participant variability. Taken together, for longitudinal MRI analysis, mixed-effects 

model is an ideal framework to adjust for repeated measures, while estimating group-level 

trajectories (Bernal-Rusiel et al., 2013). Mixed-effects models are very flexible for “real world” 

longitudinal data because they are more robust to missing data (that is missed at random) 

than methods mentioned above. Mixed-effects models can handle varying intervals between 

visits for different participants, as long as this non-uniformity is random (Bernal-Rusiel et al., 

2013). For these reasons, mixed-models are preferred over more classical analysis-of-

variance (ANOVA) models for unbalanced repeated-measures studies (most studies are 
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unbalanced). Despite these strengths, like other regression models, mixed-effects models are 

designed for “group-level” predictions, and may not work well for individualised predictions 

(e.g., precision medicine). Moreover, for inference, they can introduce a multiple comparisons 

problem when applied to millions of voxels, or hundreds of regions.  

Mixed-effects models have been extensively used in neuroimaging (Bernal-Rusiel et al., 

2013). This method is the standard model in longitudinal cortical thickness analysis in the 

Freesurfer software package. Moreover, other statistics derived from a mixed-effects model 

can be useful for other purposes. For example, they have been used to adjust the effects of 

multiple scanners on longitudinal brain volumes changes in MS (Jones et al., 2013; Biberacher 

et al., 2016). In Chapter 4 I will apply mixed effects models to compare rates of volume loss 

in different brain structures across MS phenotypes.  

It is important to note that the above methods can complement each other. Therefore, the 

above classification of statistical and image-based methods is used only to simplify their 

understanding. For example, linear mixed-effects models have been used with SIENA to 

provide rates of atrophy when there are more than two time-points (Frost et al., 2004). 

Alternatively, voxel-based morphometry can be combined with linear mixed-effects models to 

provide statistical parametric maps (Penny et al., 2011). Another example is the combination 

of voxel-based morphometry and tensor-based morphometry to limit the maps of change 

calculated by tensor-based morphometry to specific structures provided by voxel-based 

morphometry (Ashburner and Friston, 2001; Eshaghi et al., 2014). Table 2-1 shows the 

methods explained here with their advantages and disadvantageous in longitudinal structural 

imaging.  
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Table 0-1. Methods to measure longitudinal changes in MRI. 

Name Pros Cons 

Feature-generating methods 

SIENA Well-established for phase II clinical 

trials in MS 

Limited use for regional atrophy 

Boundary shift 

integral  

Well-established for phase II trials 

in Alzheimer’s disease and MS 

Limited use for regional atrophy 

Tensor-based 

morphometry  

Sensitive method for voxel-wise 

changes 

Sensitive to non-biological 

changes and requires precise 

registration 

Voxel-based 

morphometry 

Sensitive method optimal for 

exploratory studies. Can be used 

with any statistical model (such as 

mixed-effects models). 

Information can be lost in 

smoothing and requires precise 

registration to a population 

template 

Methods for analysing features 

Summary 

statistics 

Simple (and powerful) method to 

provide within-subject statistical 

parametric maps 

Can be biased in unbalanced and 

smaller number of visits (than a 

time-series of a functional imaging 

experiment)  

Mixed-effects 

models 

Flexible and powerful for “real-life” 

data with missing visits, non-

uniform intervals between visits, 

and multiple centres. Can even 

handle subjects with one visit.  

Difficult to predict individual 

trajectories which differ from 

group-wise trajectories.  
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2.4.4. Structural equation models (mechanistic models) 

The statistical (and machine learning) models mentioned so far in this chapter are known as 

univariate methods, in which the outcome variable is only one variable. For example, whether 

the diagnosis of a patient is multiple sclerosis or another demyelinating disorder (categorical 

outcome variable) or the speed of walking for a patient (continuous outcome variable). 

Multivariate models, however, can handle more than one outcome variable. Therefore, a 

multivariate model can provide a straightforward answer to a more complex hypothesis than 

what is possible by multiple univariate methods, although multivariate models are more difficult 

to fit (e.g., require higher sample sizes) and require expertise. The questions I can answer 

with a multivariate model include: how do atrophy rates influence cognitive, disability 

deterioration, and patient-reported outcomes?  

Decomposing information into parts and analysis of the causal chain of interrelations of 

variables that is realised as a function is called mechanistic modelling. One of the most well-

established multivariate models for mechanistic hypotheses is the structural equation 

modelling which has been extensively applied in social sciences (Kline, 2015). A structural 

equation model simultaneously fits multiple interrelated regressions between several variables 

of interest and can be used to compare different hypotheses.  

Structural equation modelling consists of the following steps: 

1) Formulating scientific hypotheses as competing statistical models. Each statistical 

model can consist of interrelated regression models.  

2) Comparing the goodness-of-fit of the competing models and selecting the most likely 

model given data 

3) To estimate model parameters in the most likely model to provide interpretable 

associations between model variables 

Structural equation models have been extensively used in social sciences and psychology 

(Kievit et al., 2014). In Chapter 6 I will apply this method in a clinical trial to deconstruct the 

observed treatment effects as the statistical pathways linking intermediate variables to 
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outcomes. This will give insights into underlying mechanisms of drug actions and disease 

progression.  

It is important to distinguish between multivariable and multivariate methods. All of the 

univariate methods in this chapter can be multivariable, meaning they can handle more than 

one predictor (or independent) variable. However, in the literature the term multivariate has 

been interchangeably used for multivariable, which is a common mistake (Hidalgo and 

Goodman, 2013).  

2.5. Time to event models 

The questions I can answer using time to event models include: do regional atrophy at 

baseline predict an earlier disability progression? If so, what brain region can better predict 

earlier disability progression? One of the most popular methods to calculate the risk of event 

occurrence (e.g., disability progression) and assess the effects of predictors on this risk is Cox 

regression model or proportional hazards model (Singer and Willett, 2003). Cox regression 

models are closely related to survival models and have previously been applied to Alzheimer’s 

disease to test the effects of cortical thinning on the risk of conversion from mild cognitive 

impairment to Alzheimer’s disease (Devanand et al., 2012; Sabuncu et al., 2014). Three key 

terms should be defined in a Cox regression model, which for the research presented in this 

thesis were the following: 

1) Clinical event in this thesis is defined as the confirmed Expanded Disability Status 

Scale (EDSS) progression in relation to the last available clinical assessment. A more 

detailed definition is provided in Chapter 4. 

2) Metric for time is year. Atrophy rates and many of the clinical events in MS are 

expressed as annual occurrences (e.g., annual relapse rate or annual percentage 

brain volume loss)  

3) The beginning of time is the interval from the study entry. Other potential candidates 

for setting the beginning of time include years from the symptom onset, years from the 

disease onset (diagnosis), or time since birth (age). In this thesis, I have chosen the 
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study entry as the time zero, because the first available brain imaging had been 

acquired at this time.  

 

These three elements are necessary for any statistical model that predicts the time to an event.   

2.6. Probabilistic (Bayesian) and generative models 

The methods introduced so far in this chapter were deterministic. A discriminative model 

provides a value by analysing the observed variables, whereas a probabilistic model can 

provide a distribution of values. A generative model is (usually) a probabilistic model that 

generates the distribution of values for a specific phenomenon that are thought to underlie 

observed variables. Probabilistic and generative models are usually Bayesian, meaning that 

they infer posterior probability of a parameter in the model by incorporating the prior beliefs 

with the observed variables (Bayes theorem). Bayesian models provide more intuitive answers 

to research questions; however, they require more expertise, are more computationally 

expensive, and are not as widely used as deterministic (and frequentist) models. Bayesian 

models are extremely versatile and are now extensively used in machine learning and artificial 

intelligence. Some applications of generative models in neuroimaging include image 

segmentation algorithms of the brain and spinal cord (Blaiotta et al., n.d.), dynamic models of 

neurophysiological data (Friston et al., 2003, 2017; Daunizeau et al., 2011), and between-

domain image translators (Goodfellow et al., 2014; Nie et al., 2016).  

Questions that I will try to answer in this thesis by using a generative probabilistic model 

include: Is there an identifiable order of atrophy progression across different neuroanatomical 

regions in MS (note the reference to an underlying phenomenon)? If so, can I use this order 

of atrophy progression to stratify patients? Since these questions relate to an underlying 

process that cannot be directly observed, I will use a probabilistic Bayesian model to answer 

them in Chapter 5 of this thesis. In the same chapter, I will explain the mathematics underlying 

a generative model known as the event-based model that has previously been used to identify 

the sequence (or order) of atrophy progression in neuroanatomical areas of patients with 

Huntington’s (Fonteijn et al., 2012) and Alzheimer’s disease (Young et al., 2014).   
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Figure 0-3. Structure of a generative model. 

 

This figure shows that a generative Bayesian model consists of a likelihood function (forward 

model), which includes the equations on how to generate the data (the arrow from right to left). 

For mathematical reasons, there is no equation that can precisely produce the posterior 

probability of the model. Instead, numerical methods (or approximation methods) can produce 

the distribution of model parameters in a mathematical problem that is known as an inverse 

problem. The Markov Chain Monte Carlo method is one of the most powerful methods, 

however, due to computational expense other methods such as the Variational Bayes might 

be preferred.  

2.7. A note on statistical significance 

In this thesis I have used “significance” and “statistical significance” interchangeably. It is 

important to note that significant clinical effects should be interpreted from standardised effect 

sizes (e.g., Cohen’s d reported in Chapter 6) or the magnitude of the difference (e.g., figures 

in each chapter are designed to compare the magnitude of difference with error bars that 

represent 95% confidence intervals).  
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2.8. Conclusion 

In this chapter, I briefly reviewed the rationale for choosing specific methods to answer 

research questions in this thesis. Each method has its advantages and disadvantages, and in 

many circumstances, a combination of different methods can best answer a specific research 

question. I will use random forest classification technique in Chapter 3 because this method 

requires less parameter tuning. I will use the mixed-effects model in Chapter 4 because this 

model is robust to missing and unbalanced longitudinal data. In Chapter 5 I will use a 

Bayesian model because the research question relates to the underlying mechanisms that 

can generate the observed data. In Chapter 6 I will use a multivariate structural equation 

model because the research question looks at the potential hypotheses of causal chain of 

events that result in disability and cognitive score changes (mechanistic hypothesis).  

2.9.  My contributions  

This thesis utilises pre-existing datasets that have been acquired as part of other studies. I 

have collated and organised these data that constitute imaging data from more than 4000 

magnetic resonance scanning sessions from different sources as follows:  

- Chapter 3: I collated and organised imaging and clinical data from two different 

imaging centres.  

- Chapter  4 and 5: I collated and organised imaging data and clinical data from seven 

MS imaging centres across Europe.  

- Chapter 6: I collated and organised the imaging, and clinical data for the trial reported 

in this chapter.  

In each of these chapters, I have intellectually conceived ideas behind each chapter, designed 

all the experiments, performed the experiments, image analyses, statistical analyses, 

computer coding, design of the figures, writing of the thesis and associated manuscripts. I 

have used passive verbs where I have used others’ work.  
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3. Grey matter MRI differentiates neuromyelitis optica from multiple sclerosis using 

random-forest: application of machine learning methods in differential diagnosis 

3.1. Summary  

I tested whether brain grey matter (GM) imaging measures can differentiate between multiple 

sclerosis (MS) and neuromyelitis optica (NMO) using random-forest classification. Ninety 

participants (25 patients with MS, 30 patients with NMO, and 35 healthy controls [HCs]) were 

studied in Tehran, Iran, and 54 (24 patients with MS, 20 patients with NMO, and 10 HCs) in 

Padua, Italy. Participants underwent brain T1-weighted and T2-weighted/fluid-attenuated 

inversion recovery MRI. Volume, thickness, and the surface of 50 cortical GM regions and 

volumes of the deep GM nuclei were calculated and used to construct three random-forest 

models to classify patients as either NMO or MS and separate each patient group from HCs. 

Clinical diagnosis was the gold standard against which the accuracy was calculated. The 

classifier distinguished patients with MS, who showed greater atrophy especially in deep GM, 

from those with NMO with an average accuracy of 74% (sensitivity/specificity: 77/72; p < 0.01). 

When I used thalamic volume (the most discriminating GM measure) together with the white 

matter lesion volume, the accuracy of the classification of MS vs NMO was 80%. The 

classifications of MS vs HCs and NMO vs HCs achieved higher accuracies (92% and 88%). 

GM imaging biomarkers, automatically obtained from clinical scans, can be used to distinguish 

NMO from MS, even in a two-centre setting, and may facilitate the differential diagnosis in 

clinical practice. 
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3.2. Introduction 

As explained in Chapter 1 a correct and timely diagnosis of neuromyelitis optica (NMO) is 

essential for managing patients as treatment options differ considerably from multiple sclerosis 

(MS). Differential imaging characteristics include: more pronounced brain atrophy, especially 

in the cortical grey matter (GM) in MS patients than in NMO patients (Calabrese et al., 2012); 

more severe thalamic changes in MS than NMO (Matthews et al., 2015; Finke et al., 2016); 

and a lack of cortical lesions in NMO (Calabrese et al., 2012; Sinnecker et al., 2012; Kister et 

al., 2013). 

Machine-learning algorithms have shown promise in classifying MRI scans of patients with 

neurological disorders (S. Klöppel et al., 2008). Their advantage over human observers is that 

they can handle a large number of variables from each patient and lack inconsistencies (see 

Chapter 2 for further details). Hence, they offer potential in the clinical setting to support the 

diagnostic process, and have been used successfully in Alzheimer’s disease (Lebedev et al., 

2014), traumatic brain injury (Lui et al., 2014), and clinically isolated syndromes suggestive of 

MS (Wottschel et al., 2015). 

In this chapter, I tested whether GM measures, obtained from MRI scans acquired as part of 

clinical protocols, can distinguish MS from NMO. In particular, I calculated the thickness, 

volume, and surface area of the cortex, and the volume of the basal ganglia, which reflect the 

underlying GM pathology  (Minagar et al., 2013). To test whether this can be used in a multi-

centre setting, I used data from two different centres. I paid special attention to the effect of 

center by explicitly including it in the analysis and then quantifying its contribution to the final 

results. Finally, I investigated the GM measures that contributed to the discrimination of MS 

from NMO, to obtain insights into the underlying pathology of these diseases.  
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3.3. Methods 

My primary question was whether imaging biomarkers extracted from routine MRI measures 

discriminate between MS and NMO. The case-control design of this work provides class-II 

evidence. 

3.3.1. Participants 

In this retrospective study, I collected all data from consecutive patients with relapsing-

remitting MS and NMO. Participants were recruited in two tertiary centres, one in Iran (January 

2009 - December 2012)(Eshaghi et al., 2015) and one in Italy (June 2013 - December 2013): 

Ninety participants (25 patients with MS, 30 patients with NMO, and 35 healthy controls [HCs]) 

in Tehran, Iran, and 54 (24 patients with MS, 20 patients with NMO, and 10 HCs) in Padua, 

Italy. The diagnosis of MS was made according to the McDonald criteria which were revised 

in 2005 (Polman et al., 2005), and that of NMO according to the Wingerchuk’s criteria which 

were revised in 2006 (Wingerchuk et al., 2006). This study started and was completed before 

the publication of the new NMO criteria, but a retrospective evaluation showed that all NMO 

patients fulfilled the 2015 criteria for NMO spectrum disorder (Wingerchuk et al., 2015). Other 

inclusion criteria were the absences of (1) concomitant neurologic or psychiatric disorders, 

and (2) clinical relapses or IV-methylprednisolone administration at least six weeks prior to the 

study entry.  

3.3.2. Standard protocol approvals and patient consents 

 All participants gave written informed consent (Association, 2000), and for each cohort local 

ethics committee approved the project. 

3.3.3. Clinical assessment and MRI protocol 

 All patients were clinically examined and the Expanded Disability Status Scale (EDSS) was 

scored on the day of MRI scan (Kurtzke, 1983).  
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All participants underwent MRI scans that included high-resolution 3D-T1-weighted and T1-

weighted/FLAIR imaging, at 1.5T in Padua and 3T in Tehran. The MRI protocol for each cohort 

is shown in the Supplementary Table 3-1 in the Appendix. 

3.3.4. Image analysis 

I analysed the scans of both centres in the same way. The aim of image analysis was to 

calculate cortical volume, thickness and surface area in 25 cortical regions for each 

hemisphere defined by LONI Probabilistic Brain Atlas (LPBA) (Shattuck et al., 2008), and the 

volumes of deep GM nuclei (the accumbens, amygdala, caudate, pallidum, putamen and 

thalamus). I performed image analysis in ANTs software (v1.9) and FSL (v5.0) 

(http://fsl.fmrib.ox.ac.uk/fsl/). LPBA was chosen as the reference atlas because it is the default 

atlas used in ANTs. 

Hypointense lesions on T1-weighted scans can be erroneously segmented as grey matter. 

These lesions usually appear as hyperintense lesions on FLAIR/T2-weighted scans. 

Therefore, I manually constructed binary lesion maps on FLAIR/T2-weighted scans with 3D-

Slicer version 4.0, co-registered them with the T1-weighted scan, and used it to fill hypointense 

lesions of T1-weighted scans to avoid segmentation errors in patients (Sdika and Pelletier, 

2009). Next, to reduce the registration errors, I constructed a study-specific template as a 

common space for registration (Avants et al., 2010). I calculated transformation fields from the 

atlas space to the common template, and then to each participant’s native space. Next I 

applied the inverse of transformation matrices and deformation fields to LPBA labels to 

transfer them into native space to extract the imaging measures. To interpolate LPBA labels 

in the native T1-weighted space, I used nearest neighbor interpolation.  

To calculate cortical thickness, I used a new registration based approach that has recently 

been validated as part of the ANTs software package (Das et al., 2009; Tustison et al., 2014). 

This method is called Diffeomorphic Registration based Cortical Thickness (DiReCT) 

estimation, which uses Laplace equation to find one-to-one correspondence between the 

cortical/white matter and cortical/CSF mantles.  
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 I calculated the surface area, at each cortical region, by dividing cortical volume by the 

thickness. I used FSL FIRST to calculate volumes of the deep GM structures (Patenaude et 

al., 2011).  

3.3.5. Classification analysis 

I performed all statistical analysis in R version 3.1.0 and Scientific Python 2.7 libraries (Scikit-

Learn package) (Oliphant, 2007; Abraham et al., 2014). I calculated 157 variables from LPBA 

atlas regions. Variables were the cortical thickness, surface area, and volume of each cortical 

region, and the volume of each deep GM nucleus. I divided regional volumes by the total 

intracranial volume to adjust for different head sizes (Peelle et al., 2012). I adjusted each GM 

measure separately for the effect of age. I fitted a linear regression line where age was the 

independent variable and each GM measure was the dependent variable. I calculated the 

amount of the GM measure that remained unexplained by the regression model (residual of 

the fit) and used it for all the subsequent analyses.  

To investigate the effect of different centres and MRI scanners on the classification, I added 

the variable “centre” to the analysis. Next, I constructed 3 models to differentiate between 

each pair of groups: (1) MS vs. NMO; (2) MS vs. HCs; and (3) NMO vs. HCs. For each model, 

I randomly assigned participants from both centres to either the training or test set, so that 

each set contained half of the participants. Next, I performed the training step, and then the 

cross-validation on the left-out half (with 5000 repetitions). The mean and standard deviation 

of the accuracy of 5000 trained and cross-validated models were calculated. Clinical diagnosis 

of MS or NMO was the gold standard against which the classification accuracy was calculated. 

To calculate the statistical significance (or p-value) of classification accuracies, I used 

permutations with 5000 iterations (randomly permuting clinical diagnoses labels), this allows 

comparison of each classifier with a random classifier. Moreover, to adjust for the effects of 

centre in calculating statistical significance, I also used a baseline classifier based on the 

“centre” variable, and compared all the classifiers against this classifier.   

I used default values of random forest parameters as provided by the Scikit learn package, 

and calculated the importance of variables according to the original random-forest algorithm 
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(Chen et al., 2004). Moreover, when distinguishing between MS and NMO, I built models using 

cortical region volume, thickness, surface area, and deep GM nuclei volumes, first on their 

own, and then in combination, to assess the effect of each measure on the accuracy, using a 

cross-validation approach as explained above. Since a random subset of variables is chosen 

for each decision tree in a forest of decision trees, random-forest classifiers are not affected 

by collinearity (correlation between surface, thickness and volume)(Chen et al., 2004). In a 

post-hoc analysis, I simplified the model to assess the accuracy in distinguishing NMO from 

MS by including the most discriminating GM variable and white matter lesion load. Finally, I 

trained the NMO vs MS classifier with the scans of NMO patients who were AQP4-positive 

and tested it to distinguish the scans of NMO patients who were AQP4-negative from those 

with MS.  

To gain a better understanding of GM changes, boxplots of the median and 75th percentile of 

cortical thickness, surface area and volumes of the subcortical regions were calculated. 
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3.4. Results 

3.4.1. Participants 

I included 144 participants; 90 participants were recruited in Tehran, Iran (25 patients with MS, 

30 patients with NMO, and 35 HCs) and 54 in Padua, Italy (24 patients with MS, 20 patients 

with NMO, and 10 HCs). The clinical and demographic characteristics are shown in Table 3-

1 (for treatment information see Supplementary Table 3-2). 

Table 3-1. Demographic characteristics of participants from each country. 

 
Tehran cohort Padua cohort Both cohorts 

 

 
HC2 MS3 NMO4 HC MS NMO HC MS NMO P-value* 

Number 35 25 30 10 24 20 45 49 50 
 

Age  

(mean ± 

SD1) 

32 ± 9.1 32.85 ± 

8.5 

33.58 ± 

10.1 

36.04 ± 

8.4 

36. ± 7.9 42.47 ± 7 33 ± 8.9 34.4 ± 8.3 37 ± 10 0.04 

Disease 

duration 

(mean ± 

SD) 

– 7 ± 5.5 6.1 ± 3.3 – 8.1 ± 3.2 7.47 ± 2.2 – 7.5 ± 4.4 6.5 ± 3 ns** 

Median 

EDSS 

(range) 

– 2.5 (1-5.5) 3 (1-6) – 4 (2.5-7) 4.5 (0-7.5) – 3 (1-7) 3.5(0-7.5) ns 

Gender 

ratio 

(female:m

ale) 

31:4 22:3 26:4 9:1 12:12 11:9 40:5 34:15 37:13 ns 

1 Standard deviation; 2 Healthy controls; 3 Multiple sclerosis; 4 Neuromyelitis optica 

* P-values are for analysis of variance (ANOVA) for age, T-test for disease duration and EDSS, and Chi-squared test for gender. 

** ns = Non-significant 

Seventeen out of 30 patients diagnosed with NMO from the Tehran cohort tested positive for 

aquaporin-4 autoantibody (AQP4-Ab) (immunofluorescence method, 

http://www.bioscientia.de/en/), while 18 out of 20 patients from the Padua cohort were AQP4-

Ab positive (cell-based assay, http://www.euroimmun.com). Patients in the Italian cohort had 

a significantly higher disability than those studied in Iran (MS: median EDSS 4.0 vs 2.5, p < 

0.05; NMO: 4.5 vs. 3, p<0.05, respectively). Disease duration was not significantly different 
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between the two cohorts. There was a significant difference in age between groups (see Table 

3-1).  

3.4.2. Classification results 

 The average accuracy of the model for NMO vs MS trained with all GM imaging features was 

74%, with a sensitivity of 77% (i.e., 77% of patients with MS were classified as MS) and a 

specificity of 72% (i.e., 72% of patients without MS, but with NMO, were classified correctly, 

see also Supplementary Figure 3-1) (p<0.01 calculated against a classifier with randomly 

changed, or permuted, labels and corrected for multiple comparisons with Bonferroni's 

method) (see Table 3-2). When cortical volume, cortical thickness and surface area were used 

on their own to classify the two groups of patients, the average accuracy was lower (59%, 

62% and 66%, respectively) (see Figure 3-1). The results of the analysis remained the same 

when not adjusting for age. 
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Figure 3-1. Importance of variables in the classifiers differentiating MS, NMO and HCs. 

 

 (A, B, C) show the importance of each variable to classification inside the random-forest classifier. Importance is 

a relative measure, and is normalized to sum to 1 for each model, and should be used to compare the importance 

of variables to each model (not among models). (D) shows the accuracy of models with different GM measures, 

including cortical volumes, cortical surface area, cortical thickness, thickness and surface area in combination, and 

subcortical volumes. The combination of surface area and thickness obtains a higher accuracy than volume. Each 

model has been trained and tested 1000 times, after shuffling participants from two centres.  
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A high accuracy (92%) was obtained when distinguishing MS from HCs (sensitivity/specificity 

94/90; p<0.001); the accuracy of classifying NMO vs. HCs was also high (88%; 

sensitivity/specificity 89/88; p<0.001).  

Table 3-2. Classification results. 

 
Accuracy 

(average ± 

SD1) 

Sensitivity 

(average ± 

SD) 

Specificity 

(average ± 

SD) 

Positive 

predictive 

value 

(average 

± SD)  

Negative 

predictive 

value 

(average ± 

SD) 

P 

value* 

Variables: all grey matter measures 

MS1 vs NMO2  74% ± 5 77% ± 11 72% ± 10 73% ± 8 76% ± 9 <0.01 

MS vs HCs3 92% ± 4 94% ± 6 90% ± 7 91% ± 6 93% ± 7 <0.001 

NMO vs HCs 88% ± 5 89% ± 8 88% ± 8 89% ± 6 87% ± 8 <0.001 

Variables: thalami volume and white matter lesion volume 

MS vs NMO 80% ± 5 85% ± 9 76% ± 9  78% ± 6 84% ± 8 <0.001 

* Corrected for multiple comparisons with Bonferroni’s method 

1 multiple sclerosis; 2 neuromyelitis optica; 3 healthy controls 

Accuracy was defined as the percentage of patients correctly identified by the classifier as either MS or NMO. Sensitivity 

was defined as the number of subjects correctly identified by the classifier (MS or NMO) divided by all subjects diagnosed 

with each disease. Specificity is defined as the number of subjects correctly labelled as not having the disease divided by 

all subjects without the disease. 

 

Variable importance.  The volumes of the deep GM structures were the most important GM 

measures to distinguish MS from NMO, whilst the volumes of cortical regions were more 

important in distinguishing patients from HCs. In general, the GM volumes were more useful 

to the classification than the cortical thickness and surface area. 
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MS vs. NMO. The volumes of the deep GM (the thalami, right pallidum, and putamina) followed 

by the insular thickness, which showed reduction in MS compared to NMO (see Figure 3-1 

and Figure 3-2), were the most important GM measures to distinguish MS from NMO. 

Figure 3-2. Descriptive statistics of the thickness, surface and volume. 

 

Left and right hemisphere values are averaged for better visualization.  All measures have been normalised, and 

the Z-scores were calculated. 

 When looking at individual effects of GM measures (cortical and subcortical volumes, surface 

area and thickness) to distinguish between NMO and MS, the combination of all measures 
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gave the best accuracy, which was similar to the accuracy of the classification obtained using 

only the deep GM volumes (Figure 3-1), but higher than that obtained using each measure 

on its own. 

When I used the thalamic volume (the most discriminating GM measure) together with the 

white matter lesion volume (see Appendix, supplementary Figure 3-2 ) the average accuracy 

of the classification of MS vs. NMO (over 5000 permutations) was 80% (sensitivity/specificity 

85%/76%, p<0.001). 

When I trained the NMO vs MS classifier using the data from people with NMO who were 

AQP4 positive and tested on people with NMO who were AQP4 negative, the performance of 

the model was similar to that of the model that trained and tested randomly selected scans 

from all people with NMO regardless of serostatus (average ± standard deviation accuracy = 

77%±12, sensitivity=74±19, specificity=80%±15).  

NMO vs HC. The volumes of the parahippocampal gyri and the left middle frontal gyrus were 

the most important variables for this classification; these regions showed smaller volumes in 

NMO patients as compared to HCs (see Figure 3-2).  

MS vs HC. The volumes of the bilateral parahippocampal gyri and the right superior temporal 

gyrus were the most important variables for this classification (these regions showed reduced 

volumes in MS when compared to HCs).  

Effect of centre 

The variable “centre” (i.e., Tehran and Padua) was consistently found to be the least important 

feature for all the classifications including all variables related to volume, surface and 

thickness are as follows: 

- MS vs NMO classification: the ratio of the importance of the most important variable 

(right thalamic volume) to the least important variable (centre) was: 220/0.89=247, 

which means right thalamic volume was 247 times more important.  

- MS vs HC classification: the ratio of the importance of the most important variable 

(right parahippocampal volume) vs. the least important variable (centre) was: 
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338.89/0.6 = 564.81 which means that the importance of right parahippocampal 

volume was 564 times more than that of centre.  

- NMO vs HC classification: the ratio of the importance of the most important variable 

(right parahippocampal volume) vs. the least important variable (centre) was: 

243/5=48.6, which means that the importance of right parahippocampal volume was 

48.6 times more than that of centre.  

Classification was not influenced by the effect of centre 

The models that only included centre as a predictor had the following average accuracies (± 

standard deviation) over 5000 bootstrap samples: 

- NMO vs MS classification: accuracy =  47% ± 5.8  

- MS vs HC classification: accuracy = 57 ± 7.1 

- NMO vs HC classification: accuracy = 53% ± 6.2 

I have reported statistical significance (p-values) against a random classifier in Table 3-2.  All 

the three classifications remained statistically significant against a baseline classifier that had 

only centre as a variable (results are not shown).  

3.5. Discussion 

Previous imaging studies have highlighted differences in MRI characteristics between NMO 

and MS (Calabrese et al., 2012; Duan et al., 2012; Eshaghi et al., 2015; Kim et al., 2015), but 

an automatic distinction is still challenging. Here, I automatically classified patients with MS 

and NMO on the basis of their brain MRI scans routinely acquired with clinical protocols, using 

a random-forest classifier. My findings showed that GM imaging measures, such as cortical 

thickness, cortical surface area, and subcortical GM volumes, led to an accuracy of 74% when 

classifying the two patient groups, which is higher than that obtained with each GM measure 

on its own. When, in the post hoc analysis, I used both the most discriminating GM measure 

(the thalamic volume) and the white matter lesion volume, the accuracy of the model in 

classifying NMO vs MS was higher (80%) than the original model. Random forest classification 

accuracy was higher for distinguishing MS from HCs (92%) and NMO from HCs (88%), 

because the classification task is less challenging than discriminating the two diseases. 
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Therefore, this automatic approach may support the diagnostic process in clinical practice, for 

example in patients with NMOSD without AQP4. The variable “centre” did not significantly 

affect the classification. Moreover, the contribution of imaging features to the classification 

was more relevant than the differences in clinical characteristics, which may exist between 

patient cohorts. 

I demonstrated that the volumes of the deep GM, which were lower in people with MS than 

NMO (Figure 3-2), were more important features for discriminating NMO and MS than cortical 

thickness and volume. My results are in line with a recent study that failed to show significant 

thalamic atrophy in NMO when compared to HCs (Matthews et al., 2015; Finke et al., 2016, 

p. 4), whilst another study detected a mild reduction in thalamic volume in NMO when 

compared to HCs (Calabrese et al., 2012). The thalamic volume loss in MS may be related to 

secondary neurodegeneration occurring in cortical areas or may represent primary 

neurodegeneration (Calabrese et al., 2012; Minagar et al., 2013; Matthews et al., 2015), 

whereas in NMO milder neurodegeneration secondary to axonal degeneration in the spinal 

cord or visual pathways is present (Liu, Fu, et al., 2015). 

Cortical thickness represents the number of neurons in each cortical column (Sailer et al., 

2003). The thickness of the insular cortices had the second highest discriminating value (after 

the deep GM volumes) in distinguishing MS from NMO. This region shows a predilection for 

atrophy, especially as patients with MS progress (Howell et al., 2011). The insula is deep in 

the temporal lobe and may be more exposed to inflammatory mediators than other cortical 

areas (Howell et al., 2011).  

While atrophy in regions such as the thalamus and insula was only seen in MS, both 

demyelinating diseases seemed to affect the parahippocampal gyrus in a similar fashion 

(Figure 3-2). The parahippocampus is part of the limbic system and has extensive 

connections to temporal, frontal, and deep GM regions. Transection of these connections, 

which occurs as a result of white matter lesions, could lead to atrophy of this region via 

retrograde neurodegeneration in both diseases (Saji et al., 2012; Calabrese, Magliozzi, et al., 

2015). Additionally, in MS, GM damage might be the result of either non-inflammatory or 
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inflammatory processes that have occurred within the grey matter itself (Geurts et al., 2012; 

Saji et al., 2012; Calabrese, Magliozzi, et al., 2015). In NMO, the GM loss is more selective 

and depends on AQP4 expression, and the ratio of M1 to M23 proteins in astrocytes (Saji et 

al., 2012). The parahippocampus may show a different pattern of AQP4 expression or may be 

connected to areas with high AQP4 expression, although the dynamic pattern of AQP4 

expression in the brain remains unclear (Amiry-Moghaddam and Ottersen, 2003; Pittock et 

al., 2006). 

Patients with NMO may have severe relapses affecting the motor and/or visual system 

(Wingerchuk and Weinshenker, 2014). However, GM measures of both the occipital or motor 

cortices did not distinguish between NMO and MS or HCs. These findings are consistent with 

previous voxel-based morphometry studies in NMO that failed to show detectable changes in 

the GM volume of these regions when compared to MS or HCs (Blanc et al., 2012; Chanson 

et al., 2013; Matthews et al., 2015). Another study found mild thinning of the calcarine, 

precentral and postcentral cortices in NMO when compared to HCs, but no significant 

differences between NMO and MS (Calabrese et al., 2012). 

One strength of my study is that I included participants from two centres. I previously 

demonstrated, in a one-centre setting using scans from the same Iranian patients used in this 

study, that a combination of advanced MRI modalities (functional MRI and diffusion tensor 

imaging) distinguishes between MS and NMO with a high accuracy, using a technique called 

data fusion with multi-kernel learning (Eshaghi et al., 2015). The limitations of this technique 

are that it is computationally intensive, and its application in multi-centre studies is limited. The 

present work, using a random-forest classification, is more robust in a multi-centre setting, 

and is less likely to overfit (Chen et al., 2004). I included centre as a variable in my analysis 

and found that it had the lowest importance in all three classifications: NMO vs. MS, MS vs. 

HC, and NMO vs. HC. To test the effect of centre in distinguishing each pair of groups, I used 

the centre variable (Padua or Tehran) alone to predict the outcomes (NMO, MS or HC) and 

found that the resulting classifier was similar to a random classifier. Moreover, when 

calculating the p-values I used the baseline accuracies acquired from a classifier that used 
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the variable “centre” in the analysis, which did not change the results. These results confirm 

that my results are unlikely to be confounded by the effects of centre, although an indirect 

effect of centre  on imaging measures cannot be ruled out.  

I repeated the cross-validation 5000 times, which allowed the inclusion of all patients in both 

training, and test sets. This could be generalized to other centres, provided sufficient 

participants from new centres be included in the training sample.  Moreover, for an easier 

application I simplified the model including only thalamic volume and white matter lesion 

volume; this achieved 80% accuracy in distinguishing between MS and NMO. In the future, 

greater accuracy may be achieved by including additional features, such as lumbar puncture 

results, antibody status and quantitative spinal cord measures (Lucchinetti et al., 2014; Liu, 

Wang, et al., 2015).  

In this study, patients with NMO were significantly older than patients with MS, and therefore 

I adjusted GM measures for age. NMO has a later disease onset than MS (Wingerchuk and 

Weinshenker, 2014), so after I matched two groups according to disease duration, age was 

higher in NMO than MS. However, despite older age, which has the effect of reducing GM 

volume (Hedman et al., 2012), patients with NMO had higher GM volume than those with MS, 

which suggests that age is unlikely to be a confounder in my analysis. Moreover, I have built 

my model using scans of patients with a secure diagnosis of MS or NMO, with a mean disease 

duration of 7.5 years. This is because the clinical diagnosis of MS or NMO was the gold 

standard against which the classification accuracy was calculated. An important question to 

be addressed in future studies is whether this algorithm can help to classify difficult radiological 

cases or to predict the outcome after the first attack. For example, in a previous study I found 

that machine learning correctly predicted the presence (or the absence) of clinically-definite 

MS in 71.4% of patients within one year of onset of a clinically isolated syndrome (Wottschel 

et al., 2015). 

This study is not without limitations. First, the NMO group, which was recruited prior to the 

revised criteria for the diagnosis of NMOSD (Wingerchuk et al., 2015), included both AQP4 

negative and positive patients (15 negative, and 50 positive). Recent work has highlighted the 
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possible different clinical and radiological characteristics between these two groups that may 

indicate distinct subtypes (Sato et al., 2014). There were no notable differences in age, 

gender, or clinical disability between NMO without AQP4 (2 from Italy, 13 from Iran) and NMO 

with AQP4. However, the group of seronegative patients was small. In the future, this 

technique could help to identify patients with NMOSD without AQP4, since in this cohort they 

show similarities with the NMOSD with AQP4 cases; in particular, the algorithm correctly 

classified them in 77% of NMOSD-without-AQP4 cases after having learnt from only the 

NMOSD with AQP4 cases. Second, the role of GM lesions in distinguishing between the two 

diseases was not assessed, because the sequences that allow GM lesion detection are not 

routinely acquired in the clinical setting. Further studies will clarify these issues. 

I showed that the random forest classification robustly and automatically discriminates 

between MS and NMO patients on the basis of their MRI scans in a two-centre setting with up 

to 80% accuracy. Furthermore, deep GM volumes and cortical thickness of specific key 

regions may give increased power to detect subtle GM features, which may facilitate the 

differential diagnosis between MS and NMO. In the next chapter I will build up on the results 

of this chapter and look at the longitudinal evolution of brain volumes in MS patients of different 

phenotypes.   
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4. Deep grey matter volume loss drives disability worsening in multiple sclerosis 

4.1. Summary 
 

Grey matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. I investigated 

whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability 

accumulation in MS. I analysed 3,604 brain high-resolution T1-weighted MRI scans from 1,417 

participants: 1,214 MS patients (253 clinically-isolated syndrome [CIS], 708 relapsing-

remitting[RRMS], 128 secondary-progressive[SPMS], 125 primary-progressive[PPMS]), over 

an average follow-up of 2.41 years (standard deviation[SD]=1.97), and 203 healthy controls 

(HCs) [average follow-up=1.83 year, SD=1.77], attending 7 European centres. Disability was 

assessed with the Expanded-Disability Status Scale (EDSS). I obtained volumes of the deep 

GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem and cerebral 

white matter. Hierarchical mixed-models assessed annual percentage rate of regional tissue 

loss and identified regional volumes associated with time-to-EDSS progression. SPMS 

showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional 

volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio=0.73, 95% 

CIs 0.65, 0.82; p<0.001): for every standard deviation decrease in baseline DGM volume, the 

risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all 

longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in 

SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-

0.94%)[p<0.01]. The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster 

than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM 

atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%) (all p values 

<0.05). Only the atrophy rate in DGM in patients was significantly associated with disability 

accumulation (beta=0.04, p<0.001). This large multi-centre and longitudinal study shows that 

DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows 

accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development 
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between phenotypes needs to be taken into account when evaluating treatment effect of 

therapeutic interventions.  
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4.2. Introduction 

As explained in Chapter 1 the clinical course of multiple sclerosis (MS) is heterogeneous. 

Some patients experience relapses with recovery (relapsing-remitting [RR] MS), while others 

develop progressive disability either from the onset (primary-progressive [PP] MS), or after a 

period of relapses (secondary-progressive [SP] MS). RRMS patients account for 

approximately 90% of cases at onset (Browne et al., 2014), whose majority later progress to 

SPMS. The pathogenic mechanisms driving accrual of disability are beginning to be elucidate 

(Mahad et al., 2015): neurodegeneration plays a crucial role in determining accrual of disability 

over time (Geurts et al., 2012). 

As shown in a cross-sectional analysis in the previous chapter, patients with RRMS have lower 

volumes in several brain regions that can distinguish them from neuromyelitis optica and HCs. 

Over time, brain volume declines more rapidly in MS patients when compared with age-

matched healthy controls (HCs) (Bermel and Bakshi, 2006; De Stefano et al., 2010, 2015; 

Geurts et al., 2012). Across MS phenotypes, SPMS shows the fastest annual rate of brain 

atrophy, which is estimated to be 0.6% (compared to about 0.2% in age-matched HCs) (De 

Stefano et al., 2010). The role of brain atrophy in monitoring response to treatments in MS is 

evolving: whole brain atrophy has been recently used as the primary outcome measure in 

phase 2 clinical trials in SPMS (Chataway et al., 2014).  

Whole brain atrophy is mainly driven by the neuroaxonal loss in GM (see Chapter 1 for more 

details). GM volume loss is associated with long-term disability (Fisher et al., 2008; Fisniku et 

al., 2008), and explains physical disability better than white matter (Fisher et al., 2008; 

Roosendaal et al., 2011) and whole brain atrophy (De Stefano et al., 2010). Some GM regions, 

such as the cingulate cortex and thalamus, are affected by volume loss more extensively than 

others (Eshaghi et al., 2014; Steenwijk et al., 2016), and the extent of their volume loss 

correlates with disability, and cognitive impairment (Schoonheim et al., 2015). Regional 

predilection for atrophy is not unique to MS; for example, hippocampal atrophy is more 

pronounced than the whole brain atrophy in the early phase of Alzheimer’s disease 

(Henneman et al., 2009). Although cross-sectional studies have previously shown patterns of 
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regional atrophy in different types of MS (Ceccarelli et al., 2008; Steenwijk et al., 2016), studies 

on longitudinal evolution of atrophy in different structures across MS phenotypes are scarce. 

The overarching goal of this chapter was to investigate whether there is a spatiotemporal 

pattern of GM atrophy that is associated with faster disability accumulation in MS. In a large 

multi-centre cohort, which included all MS phenotypes and HCs, I tested the following 

hypotheses: (i) some GM regions show faster atrophy rate than others and their rate may differ 

between MS phenotypes; (ii) smaller baseline volumes of brain structures, reflecting a more 

extensive neurodegeneration, predict disability accrual; (iii) the rate of regional volume loss is 

associated with the rate of disability accumulation.   
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4.3. Methods 
4.3.1. Participants 

In this retrospective study, I collected data from 7 European MS centres (MAGNIMS: 

www.magnims.eu)  from 1,424 participants who have been studied between 1996 and 2016; 

I included participants who fulfilled the following criteria: (1) a diagnosis of MS according to 

2010 McDonald Criteria (Polman et al., 2011) or a clinically isolated syndrome (CIS, see 

Chapter 1 for the diagnosis criteria and related references) ; (2) healthy controls (HCs) without 

history of neurological or psychiatric disorders; (3) at least two-MRI scans acquired with a 

minimal interval of 6 months with identical protocol, including high-resolution T1-weighted MRI 

(allowing regional grey and white matter segmentation), and T2-weighted/Fluid Attenuated 

Inversion Recovery (FLAIR), sequences. Patients were scored on Expanded Disability Status 

Scale (EDSS). To increase the number of HCs scans, which were provided by four centres, I 

collected data from age-matched HCs from the Parkinson’s Progression Marker’s Initiative 

(http://www.ppmi-info.org/data). Part of these data have previously been used in other 

publications (Roosendaal et al., 2011; Eshaghi et al., 2014; Cawley et al., 2015; Brown et al., 

2017).  

MRI scans were taken under consent obtained from each subject independently in each 

centre. The final protocol for this study was reviewed and approved by the European 

MAGNIMS collaboration for analysis of pseudo-anonymised scans.  

4.3.2. Image acquisition 

I included scans from 13 different MRI protocols; all centres except one provided 3D-T1 

weighted scans (Appendix: Supplementary Table 4-1 and Supplementary Table 4-2 show 

the MRI protocols).  

4.3.3. Image analysis 

I performed image analysis as follows: 

1) Bias field correction 

I used N4 bias field correction to correct for field inhomogeneity in T1-weighted scans using 

ANTs v2.10(Tustison et al., 2010).  
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2) Lesion filling 

Lesion masks were manually delineated on PD/T2-weighted images by different raters at each 

centre semi-automatically, except for three centres that used the same automatic lesion 

segmentation with LST toolbox (version 2.0.15) (Schmidt et al., 2012). I calculated linear 

transformation matrices to register T2-weighted/FLAIR with the T1-weighted scan using FSL-

FLIRT v5.0 (Jenkinson and Smith, 2001). Then I applied these matrices to lesion masks to 

transfer them into the accompanying T1-weighted subject-space. I used the FSL lesion filling 

method which uses a white matter mask calculated with FSL-FAST (Zhang et al., 2001, p.) to 

fill T1-weighted hypo-intensities within normal-appearing whiter matter, so to reduce 

segmentation errors, as previously done (Amato et al., 2012; Battaglini et al., 2012; Popescu 

et al., 2013). 

3) Symmetric within-subject registration 

To avoid asymmetric registration and interpolation of longitudinal scans (e.g., toward the 

baseline scan), I constructed an unbiased subject-specific template that has “equal distance” 

from each time point using FreeSurfer version 5.3 (Reuter et al., 2010, 2012; Reuter and 

Fischl, 2011). I linearly transformed T1-weighted images to this symmetric space with the 

unbiased transformation matrix for each time point and used cubic B-spline interpolation to 

reduce interpolation artefacts. I manually checked the alignment of scans in the symmetric 

space. 

4) Tissue segmentation 

Next, in the symmetric space, I segmented T1-weighted scans into the GM, white matter and 

cerebrospinal fluid with the Geodesic Information Flow (GIF) software (part of NiftySeg, 

http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=GIF) (Cardoso et al., 2015), and 

parcellated each hemisphere into regions of interest according to the Neuromorphometric 

atlas (Klein and Tourville, 2012). GIF uses an atlas propagation and label fusion strategy to 

calculate the voxel probabilities of GM, white matter and CSF (Cardoso et al., 2015); this 

method has been previously used in MS and other neurodegenerative disorders (Bocchetta 

et al., 2016; Pardini et al., 2016). The template library had 95 MRI brain scans (HCs and 
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patients with Alzheimer’s disease) with neuroanatomic labels 

(http://www.neuromorphometrics.com/). This atlas, which is similar to Mindboggle atlas, was 

developed to improve the consistency and clarity of Desikan-Killiany protocol (Klein and 

Tourville, 2012).  

To calculate brain masks and exclude segmentation errors outside of the brain I used STEPS 

(Similarity and Truth Estimation for Propagated Segmentations, 

http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=BRAIN-STEPS) based on a template 

library of 682 hand-drawn brain masks (Jorge Cardoso et al., 2013; Prados et al., 2015). These 

maps were applied to each time point separately. 

5) Regional volume calculation 

I visually assessed the segmentations to assure the quality for statistical analysis. To calculate 

regional volumes, I summed the probability of the segmented tissue voxels (GM or white 

matter) in each parcellated region and multiplied the sum with the voxel volume.  I averaged 

values between left and right hemispheres. Next, I summarised the regional volumes 

according to Neuromorphometrics protocol by summing the volume of GM regions in the 

temporal, parietal, occipital, frontal lobes, cerebellum and deep GM (DGM) [thalamus, 

putamen, globus pallidus, caudate, and amygdala]. I also obtained the volume of the 

brainstem and the cerebral white matter. Figure 4-1 shows the image analysis pipeline.  

 



 68 

Figure 4-1. Imaging analysis pipeline. 

An unbiased symmetric image registration approach was used to calculate atrophy.  

4.3.4. Statistical analysis 

Brain volumes at baseline and rates of volume changes over time 

To investigate baseline volumes (intercept) and rates (slopes) of volume change by subject 

group and region, I used linear mixed-effects models with the volume at a given time as the 

response variable, and time and interactions with time as fixed-effect covariates (Bernal-

Rusiel et al., 2013). This model estimates adjusted rate while allowing for nested correlation 

structures, such as time of visit within subject within scanner, by incorporating, in this example, 

subject and scanner random intercepts, and a random slope on time. The interaction terms 

with time (e.g., subject group X time), allows the estimation of rate differences across the 

interacting variable, in this example subject groups or clinical phenotypes. Including another 

interaction with time, such as gender X time, adjusts the rate for gender. In addition to time, 

the fixed-effect covariates were: scanner magnetic field, subject group, gender, age at 

baseline, total intracranial volume (sum of the volumes of GM, WM and CSF) at baseline; and 

the interactions of each of these with time. Disease duration was too highly correlated with 

age at baseline to give a reliable estimation, and was omitted from the final models. To 

estimate the percentage changes per unit (year) increase in time, I log-transformed the volume 

(Vittinghoff et al., 2006). I adjusted time to zero for those visits in which a patient converted 

from one phenotype to another (e.g., CIS to RRMS). I performed post-hoc analyses to identify 
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specific GM regions within the cerebral lobes and among the DGM nuclei that showed 

significant differences between MS phenotypes, as well as the default-mode network regions 

(Zhang and Raichle, 2010). 

To investigate whether there is an association between the rate of loss in specific regions and 

MS phenotypes, 3-way interactions were used, for example, clinical phenotype × region × 

time. I used R (version 3.2.2) and the NLME package (Pinheiro and Bates, 2009; R Core 

Team, 2014).  

For each model, I visually checked the heteroscedasticity (which is the unequal variance of a 

variable across the range of values of a second variable that predicts it) per group by plotting 

residuals against the fitted values.  

I corrected for multiple comparisons accounting for the number of all the tests performed with 

the false-discovery rate method (Benjamini and Hochberg, 1995). 

Effect of MRI protocols on imaging measures  

To assess the effect of the MRI protocol on MRI measures (I took into account the protocols 

rather than the centres because some centres acquired more than one protocol with more 

than one scanner) I included it as a fixed-effect variable in a separate mixed-effect model, and 

calculated the average effect sizes for MRI protocols and MS phenotypes (i.e., disease 

effects) while fixing other variables. 

Assessing associations between brain tissue volumes and disability accrual 

For easier interpretation of clinical and imaging measures, I standardised volumes by 

subtracting the mean and dividing by the standard deviation (Z-score). I analysed CIS and 

relapse-onset patients together, because some patients had converted from CIS to RRMS, or 

from RRMS to SPMS. This allowed us to take advantage of a longer follow-up period. With 

similar mixed-effects models I investigated the following three questions: (1) Are the baseline 

volumes of the DGM, the temporal, frontal, parietal, occipital and cerebellar GM, brainstem, 

and white matter, and white matter lesion load associated with EDSS at baseline? (2) Are 

changes in all these regional volumes and white matter lesion load associated with EDSS 

changes over time? (3) Do baseline volumes of all these regions and white matter lesion at 
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baseline predict time-to-EDSS progression (event=EDSS progression) during follow-up? The 

EDSS-progression event was defined as 1.5 increase in EDSS, if the baseline EDSS was 0; 

one-point increase if EDSS was less than or equal to 6; and 0.5 increase if EDSS was more 

than 6 (Healy et al., 2013). I used a Cox-regression model to explore whether baseline 

volumes of these structures predicted time to event. I performed a post-hoc analysis using all 

GM regions to determine the most important predictors of time-to-EDSS-progression (as 

defined above) and confirm that the results of the DGM were not affected by the bias of 

merging a higher number of cortical regions into the main lobes. I performed FDR correction 

to adjust for multiple comparisons (Benjamini and Hochberg, 1995). 

Additional analyses: software reliability and effects of disease-modifying treatments  

I carried out additional analyses to assess the reliability of brain volumes estimated with GIF 

software, FSL-FIRST, and SPM12, and effects of treatments on atrophy measures. 

To confirm whether the results obtained with GIF were reproduced by using more established 

pipelines, I performed additional analyses to obtain volumes of DGM structures and cortex 

using FSL (version 5.0.9) FIRST, and SPM12 (Ashburner and Friston, 2005), respectively. I 

randomly sampled half of subjects irrespective of centre or MS phenotype. I fed T1-weighted 

output images from step 3 of the pipeline into FSL-FIRST and SPM12 software. Details of 

segmentation algorithms are explained elsewher(Ashburner and Friston, 2005; Patenaude et 

al., 2011). I excluded subcortical structures from SPM segmentation by applying the inverse 

of the FSL-FIRST mask. 

I calculated total DGM volumes from GIF and FSL-FIRST, and total cerebellar and cortical 

GM volumes from GIF and SPM12 at each visit. I separately assessed between-software 

reliability for DGM and cortical GM volumes, while adjusting for repeated measures and the 

effects of centre. I constructed two multi-level mixed-effects models in which random effects 

were “software” (GIF, and SPM12 for one and GIF or FSL-FIRST for the other) nested in visits, 

which was nested in subjects, which was in turn nested in centre. I followed the procedure for 

longitudinal MRI volumetric reliability explained in Cannon et al (Cannon et al., 2014) to 

calculate intra-class correlation coefficients (ICC). I defined ICC= 
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, which is the fraction of variance attributable to centre, 

subject, and visits. This reflects longitudinal reliability between software for the same centre, 

the same subject at the same visit, in a spectrum in which an ICC of 1 indicates perfect 

agreement between software, and 0 indicates no agreement. I used NLME package and R 

version 3.2.2.  

I also performed area under the curve (AUC) analysis to examine the prognostic accuracy of 

adjusted DGM volumes at individual level. 

Effect of disease-modifying drugs  

For each MS phenotype, I constructed a mixed-effects model as explained above, and looked 

at the differences between patients who were receiving disease-modifying treatments and 

those who were not.  

Can a cut-off value for deep grey matter volume be used at the individual level to 

prognosticate patients? 

I performed the area-under-the-curve (AUC) analysis to examine whether different cut-

off values of adjusted baseline DGM volumes could be used in individuals to predict 

future EDSS-progression (as defined in the manuscript) at 6 months, 1 year, 2 year or 

5 years. This method, which is explained in detail elsewhere (Patenaude et al., 2011), 

calculates time-dependent sensitivity, and specificity to characterise prognostic 

accuracy of a biomarker (DGM volume).  

 

  



 72 

4.4. Results 

The MRI scans of 1,417 subjects were analysed (scans of three subjects were excluded due 

to significant motion artefacts on visual inspection and four due to registration issues because 

of missing MRI header information); 1,214 patients (253 had CIS, 708 had RRMS, 128 had 

SPMS, and 125 had PPMS), and 203 were HCs. In total, I analysed 3,604 T1-weighted MRI. 

Average number of scans per subject was 2.54 (SD=1.04), with an average follow up of 

2.41years (SD=1.97) for patients, and 1.83 (SD=1.77) years for HCs (see Table 1 for follow-

up information per group). The total numbers of participants with 3 or more visits for each 

group were: 90 HCs, 48 CIS, 334 RRMS, 39 SPMS, and 58 PPMS. A total of 96 patients with 

CIS (38%) converted to RRMS, and 28 patients with RRMS (4%) converted to SPMS during 

the follow-up. 

There was a significant difference in gender ratio between groups (p<0.001, see Table 4-1 for 

gender ratios). Patients with progressive MS (SPMS and PPMS) had significantly greater 

disability than patients with RRMS and CIS (Mann-Whitney tests, p<0.001, see Table 4-1), 

and were older than RRMS (p<0.001, average difference=10.7 years), CIS (p<0.01, average 

difference=15.6 years) and HCs (p<0.01, average difference=10 years). Age was similar 

between patients with RRMS and HCs. Patients with CIS were younger than HCs (p<0.01, 

average difference=4.9 years). Patients with CIS had the lowest T2-weighted lesion load, and 

patients with SPMS had the highest T2-weighted lesion load. About half of patients with RRMS 

were on disease-modifying treatments (see Table 4-1).  
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Table 4-1 Baseline characteristics of participants 

Group Healthy 

controls 

CIS RRMS SPMS PPMS 

Total number 

(number of females) 

203 (112) 253 (171) 708 (473) 128 (75) 125 (55) 

Average follow up in 

years (range) 

1.83 (0.5-7.8) 1.46 (0.5-13) 2.72 (0-13) 2.06 (0-5.5) 2.85  

(0.5-6) 

Average age (± SD) 38.7 ± 10.5 33 ± 8 38.2 ± 9.8 48.2 ± 9.8 48.5 ± 10.1 

Average disease 

duration (± SD) 

— 0.4 ± 1.4 6.7 ± 7.3 15.6 ± 9.9 6.8 ± 5.9 

Median EDSS 

(range) 

— 

 

1 (0-4.5) 2 (0-7) 6 (2.5-9) 5 (2-8) 

Median T2 lesion 

load (ml) (1st-3rd 

quartiles) 

— 2.97 

(1.01-5.04) 

5.05 

(2.05-11.79) 

11.04  

(3.18-

23.14) 

9.38 

(2.69-

22.02) 

% (number) of 

patients on DMTs 

— 20% 

(52) 

49% 

(345) 

41%  

(52) 

6%  

(8) 

 

Table legend: Abbreviations: SD, standard deviation; CIS, clinically isolated syndrome; 

RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary-progressive multiple 

sclerosis; PPMS, primary-progressive multiple sclerosis; ml, millilitre; EDSS, expanded-

disability status scale; DMTs: disease-modifying treatment. 
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4.4.1. Brain atrophy at baseline in MS and rates of volume changes over time  

At baseline, all clinical phenotypes (CIS, RRMS, SPMS, and PPMS) had significantly smaller 

cortical GM and DGM volumes than HCs. SPMS showed the lowest cortical GM and DGM 

volumes, followed by PPMS, RRMS, CIS. All clinical phenotypes, but not CIS, had significantly 

reduced whole brain and white matter volumes when compared to HCs (see Figure 2A). 

The fastest regional decline in tissue volume over time was seen in the DGM in all clinical 

phenotypes (PPMS: -1.66% per year, SPMS: -1.45%, RRMS: -1.34%, CIS: -0.88%, p<0.01) 

and in HCs (-0.94%). The rate of atrophy in the DGM was greater in RRMS, SPMS and PPMS 

than CIS and HCs (all p values <0.01) (Figure 2B and Supplementary Tables 4-3 and 4-4 

in the Appendix of thesis), but did not differ between RRMS, SPMS and PPMS. The rate of 

volume loss in the DGM in all MS patients together was significantly higher than that in the 

cortical and cerebellar GM and brainstem (although the rate of volume loss over time in these 

areas was still significant) (all p values < 0.05).  

The volume loss of the whole cortical GM was faster in SPMS (-1.11% per year), PPMS (-

0.79%), RRMS (-0.67%), than HCs (-0.34%)(all p values <0.05). Among the cortical regions, 

the temporal lobe GM showed a faster volume loss in SPMS (-1.21%) than RRMS (-0.77%) 

and CIS (-0.75%) (all p values <0.05) (Figure 4-2B and Supplementary Tables 4-3 and 4-4 

in Appendix of thesis). Similarly, the parietal GM showed a faster volume loss in SPMS (-

1.24%) than CIS (-0.63%) (p<0.05) (Figure 4-2B and Supplementary Tables 4-3 and 4-4 in 

the Appendix). No differences in rates of volume loss were seen in the frontal and occipital 

GM between clinical phenotypes. Overall, all the cortical GM regions, except for the occipital 

cortex, showed a faster rate of atrophy in MS than HCs (Figure 4-2B and Supplementary 

Table 4-4 in the Appendix). 

The white matter did not show a significant rate of volume loss in HCs or any of the clinical 

phenotypes. 

There was no heteroscedasticity in the plots of residuals against fitted values. 

In the post-hoc analyses when looking at regions and clinical phenotypes I found that among 

the DGM nuclei, the putamen showed the fastest volume loss in PPMS (-2.6%). Within the 
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temporal lobe GM, the fastest volume loss was seen in the temporal pole (-1.47%) and 

posterior insula in SPMS (-1.19%). When looking at the parietal lobe GM, the precuneus 

showed the fastest atrophy rates in SPMS (-1.28%) (Figure 2C). Whilst the fastest rate of 

atrophy was seen in DGM in SPMS, the temporal lobe GM showed the highest difference 

between SPMS and HCs (see Figure 2C).  

There was no significant effect of gender on rates of atrophy. There was no significant 

association between GM volumes and T2-weighted (or FLAIR) lesion load. 
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Figure 4-2. Baseline volumes, and annual percentage loss of brain regions in clinical 

phenotypes and healthy controls.
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Adjusted baseline values for HCs, CIS, RRMS, SPMS, and PPMS are shown in (A), where 

the adjusted mean is shown as a point, and error bars show the 95% confidence-interval. 

Adjusted P-values of pairwise comparisons between groups are shown in Supplementary 

Table 4. Longitudinal analyses are shown in (B) and (C). Bar charts of the adjusted annual 

percentage of loss are shown in (B) for the predefined regions. The height of each bar chart 

is the average estimate of the annual percentage loss from the mixed-effects model for each 

group. The error bars represent 95% confidence interval of these estimates. Adjusted P-

values for pairwise comparison between regions across clinical phenotypes and HCs are 

shown in Supplementary Table 4. White matter volumes are not shown in (B, and C) because 

they did not show a significant change over time in any clinical phenotype. Post-hoc analyses 

of annual percentage loss are shown in (C) where DGM nuclei, temporal, limbic and default 

mode network regions were selected. Similar to (B) the adjusted average annual percentage 

volume loss for these regions is the height of each bar-chart and error bars represent 95% 

confidence intervals.  

Baseline values (A) and rates (B, and C) were adjusted in a single mixed-effects hierarchical 

model including age, gender, total intracranial volume at baseline, scanner magnetic field, and 

their interactions with time as the fixed-effects. Centre, subject and visits were nested 

(hierarchical) random-effects.  

Abbreviations: HC, healthy controls; CIS, clinically isolated syndrome; RRMS, relapsing-

remitting multiple sclerosis; SPMS, secondary-progressive multiple sclerosis; PPMS, primary-

progressive multiple sclerosis. 

4.4.2. Regions showing the highest rate of loss 

When I compared the rate of volume loss across different regions in all patients (CIS, RRMS, 

SPMS, and PPMS) together, the fastest decline (or lowest slope) was seen in the DGM 

(Supplementary Tables 4-3 and 4-4 in the Appendix). The rate of loss in the cortical GM 
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regions was similar between lobes and to that of the cerebellum. The slowest rate of loss was 

seen in the brainstem.  

4.4.3. Spatiotemporal pattern of GM volume loss in clinical phenotypes 

Although SPMS showed the lowest baseline volumes of cortical GM and DGM, and the rate 

of the DGM volume loss was faster in SPMS, PPMS and RRMS than CIS and HCs, there was 

no significant association between the rate of loss in specific regions and clinical phenotypes, 

which suggests that all clinical phenotypes share a similar spatiotemporal pattern of GM loss.  

4.4.4. Effect of MRI protocols on imaging measures 

The average effects of MS phenotypes on brain volumes at baseline were higher than the 

protocol effect on the brain volumes (protocol effects: whole brain = 4.3%, cortical GM =5.1%, 

DGM = 8.5%, disease effects: whole brain = 4.8%, cortical GM =5.2%, DGM=13.7%). The 

average effects of MS phenotypes were higher than the effects of protocol on the rates of 

atrophy of the cortical GM and DGM (protocol effects: cortical GM = 0.14%, DGM = 0.21%, 

disease effects: cortical GM = 0.57%, DGM =0.53%), but not those of the whole brain (protocol 

effect = 0.51%, and disease effect = 0.38%). 

4.4.5. Association between EDSS and GM loss  

In all clinical phenotypes combined, lower DGM and cortical GM volumes at baseline were 

associated with higher disability, as measured by the EDSS (DGM 𝛽=-0.71, p<0.0001; cortical 

GM 𝛽=-0.22, p<0.0001). Under the assumption of a linear relationship between EDSS and 

GM volume, this suggests that for every Z-score decrease in the DGM and cortical volume at 

baseline, the baseline EDSS increased on average by 0.7 and 0.22, respectively.  

There was a significant progression of EDSS in both relapse-onset and PPMS patients, which 

on average increased by 0.07 and 0.2 per year, respectively. When I examined associations 

between the rate of EDSS changes and rate of changes in the volumes of cortical GM regions, 

cerebellar GM and DGM over time, only the rate of loss in the DGM was associated with 

disability accumulation (𝛽=-0.04, 95% CI: -0.02, -0.06, p=0.006). Under the assumption of a 

linear relationship between EDSS and rate of GM volume loss over time, this suggests that 
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every standard deviation (Z-score) loss in the rate of DGM volume corresponded to an annual 

EDSS gain of 0.04. 

The percentage of patients who had EDSS progression during follow-up (or who experienced 

the “event”) was 26%. When I looked at baseline predictors of disability accumulation, without 

any longitudinal imaging measure in the model, only the DGM predicted future EDSS 

progression. The hazard ratio [95% CI, p-value] for time-to-EDSS progression was 0.73 [95% 

CI 0.65, 0.82, p<0.0001], which suggests that for every standard deviation (Z-score) decrease 

in the DGM volume at baseline the risk of presenting a shorter time to EDSS worsening during 

the follow-up increased by 27% [95% CI: 18-35%]. The hazard ratio remained similar when I 

analysed relapse-onset and PPMS patients separately (0.72 and 0.73 respectively). Figure 

4-3 illustrates the survival-curve for these analyses.  

Figure 4-3. DGM volume predicts future progression of EDSS. 
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Survival curves for time to event (sustained EDSS progression, see methods for definition) 

in CIS, relapse-onset and PPMS. I have analysed CIS and relapse-onset patient together, 

because a proportion of patients convert from CIS to RRMS, or from RRMS to SPMS during 

the course of study. Hazard-ratios for models with continuous outcome variables (regional 

volumes) are reported.  

In the post-hoc analyses, baseline thalamic volume had the highest predictive value of EDSS-

progression during follow-up in both PPMS and the relapse-onset groups, by increasing the 

risk to a shorter time to EDSS worsening of 37% in relapse-onset MS and 40% in PPMS 

(Figure 4-4B and C). In this analysis, the predictive value of the thalamus was followed by 

that of the hippocampus and angular gyrus in relapse-onset MS (Figure 4-4B), and by that of 

the putamen, posterior insula and temporal pole in PPMS (Figure 4-4C). 
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Figure 4-4. Risk of EDSS-progression during follow-up for each Z-score volume loss of the 

brain regions at baseline (post-hoc analysis). 

 

Results of the post-hoc Cox-Proportional Hazards univariate models are shown for the time-

to-event analyses (event = sustained EDSS-worsening, see methods for the definition) in the 

regions of Neuromorphometrics’ atlas, which are shown in (A). The predictors were the 

baseline volumes of the regions shown in the x-axes of (B) for CIS, RRMS, and SPMS and 

(C) for PPMS. CIS, RRMS, and SPMS were analysed together, because several patients 

convert from one phenotype to another. Brain maps are shown in the left column, and bar-

charts of the same analyses are shown in the right column of (B) and (C). Only regions whose 

P-value of the survival analysis survived FDR-correction (adjusted P<0.05) are shown in (B) 
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and (C). The y-axes show the risk of progression for each Z-score loss in the volume of the 

corresponding brain region on x-axes. For example, for every Z-score loss of the thalamus 

volume at baseline, the risk of EDSS worsening during follow-up increased by 37% for the 

CIS, RRMS, SPMS group, and 40% for PPMS. Colour maps code the importance of baseline 

volumes of the regions to predict EDSS-worsening (or EDSS-progression) during follow-up. 

The absolute values of coefficients for ventricular volumes are shown in (B), because they 

have an effect in the opposite direction of other structures. Error-bars indicate the 95% 

confidence intervals. 

DGM volume measurement reliability 

The random sample included 1065 T1-weighted scans which belonged to 700 subjects of 

whom 116 were HCs, 151 were CIS, 328 were RRMS, 45 were SPMS and 60 were PPMS at 

the study entry. One visit of a subject was excluded from the analysis after failure in FIRST 

segmentation. GIF volumes showed excellent agreement with that of FSL-FIRST (ICC=0.87).  

Cortical and cerebellar GM volume measurement reliability 

GIF volumes showed excellent agreement with that of SPM12 volumes with an ICC of 0.88.  

No effect of treatment  

Treatment information is shown in Table 1. Among patients with available treatment 

information, 90% were receiving first-line injectable drugs (interferon or glatiramer acetate). 

People with CIS who were receiving disease-modifying drugs had smaller volumes in the 

cortical GM and deep grey than patients with CIS who were not (p<0.05) at the study entry. 

There was no significant difference in the baseline volumes in other MS phenotypes between 

patients who were on treatment and those who were not. The rates of atrophy in the whole 

brain, cortical GM, and DGM were similar (p>0.05) across all the MS phenotypes (including 

CIS) between patients who were on disease-modifying treatments and those who were not.  
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Predictive accuracy of DGM volume at the individual level is not significant 

AUCs for different lengths of follow-up (6-month AUC= 0.52, 1-year AUC = 0.48, 2-year AUC 

= 0.47, and 5-year AUC = 0.53) were not significantly different from a random classifier.  
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4.5. Discussion 

In this chapter I built up on the cross-sectional evidence from previous chapter and extended 

the analysis of grey matter volumes to a longitudinal setting . In this chapter in a large 

multicentre study, I have shown that volume loss in DGM over time was faster than that seen 

in other brain regions across all clinical phenotypes, and DGM volume loss was the only GM 

region associated with disability accumulation. Additionally, I found that the smaller DGM 

volume at baseline was associated with increased risk of shorter time to EDSS progression, 

in agreement with previous studies that showed smaller DGM volume associated with higher 

disability (Rocca et al., 2010; Schoonheim et al., 2015). Interestingly, I found that atrophy rates 

of the GM of cortical lobes were the fastest in SPMS, and were faster in the temporal lobe in 

SPMS in comparison with RRMS and CIS and in the parietal lobe in SPMS in comparison with 

CIS. However, no significant association between cortical regions and disability progression 

was detected. Overall, my findings suggest that the development of DGM atrophy may drive 

disability accumulation irrespective of clinical phenotypes, thereby becoming a useful outcome 

measure in neuroprotective clinical trials. Although the spatiotemporal pattern of atrophy 

remains similar across MS phenotypes, some cortical regions show accelerated atrophy in 

SPMS than RRMS and/or CIS. Moreover, this chapter extends the results of Chapter 3 to a 

longitudinal setting.  

The pathological events that underpin DGM atrophy are not known, but this is generally 

interpreted as the result of neurodegeneration. Previous studies have shown that DGM 

atrophy is more severe in patients with progressive MS, longer disease duration and worse 

cognitive performance (Zivadinov et al., 2012). My post-hoc analyses showed that the 

thalamus, which is the DGM’s largest component, was a better predictor of future disability 

than other regions, and the rate of atrophy in the putamen was the highest across DGM nuclei. 

Previous studies, including those using advanced MRI, have found that thalamic damage at 

study entry was associated with higher disability (Schoonheim et al., 2015). DGM structures 

are extensively connected with cortical GM regions, and therefore DGM atrophy could be due 

to retrograde and anterograde neurodegeneration via tracts that connect GM areas. For 
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example, the extent of cellular density loss in the thalamus, is associated with 

neurodegeneration in the remote (but connected) cortical regions, over and beyond the extent 

of atrophy explained by demyelination in connecting tracts (Kolasinski et al., 2012). There is 

also evidence of other neurodegenerative mechanisms in the DGM nuclei. For example, their 

higher load of iron than other regions can accumulate oxidised lipids which are associated 

with neurodegeneration (Hametner et al., 2013). In the healthy controls, the rate of DGM 

atrophy was faster than that in other regions, suggesting that it may be a hot spot for both 

age- and disease-related atrophy in the human brain, although a methodological issue, related 

to its more uniform structure than other brain regions, cannot be excluded. In AUC analysis I 

found that at the individual level, DGM volume lacks prognostic value, which is due to the high 

variability typical of volumetric MRI studies (Barkhof, 2016). Nevertheless, the DGM volume 

holds strong promise as a marker of disease progression (at the group level) with the potential 

to respond to neuroprotective treatments that target neurodegeneration in MS.  

Interestingly, the temporal lobe showed a significant acceleration in SPMS when compared to 

both RRMS and CIS. Similarly, the parietal lobe GM showed a significant acceleration of 

atrophy in SPMS in comparison with CIS. The post-hoc analysis showed that the temporal 

pole and insula were the most affected structures in the temporal GM. Pathological studies 

have demonstrated an increase in the rate of neurodegeneration, especially in the temporal 

regions, during progressive stages of MS in comparison with RRMS and CIS (Howell et al., 

2011; Haider et al., 2016a). Overall, a global pathological process in MS (Lindberg et al., 

2004), may become more pronounced in certain regions, such as the temporal GM, because 

of other mechanisms, such as static exposure to CSF (the insula in the temporal lobe) or 

hypoxia in watershed areas (some DGM nuclei such as the pallidum). For example, meningeal 

inflammation and cortical demyelination, which may play a role in cortical atrophy, 

preferentially affect deep sulci, such as the insula, where there is more exposure to static 

inflammatory cytokines (Mahad et al., 2015). My findings also suggest that regions with more 

connections may be vulnerable to atrophy. For example, among the parietal cortical regions, 

the precuneus, a core part of an important functional brain network (default mode network), 
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showed the fastest atrophy rates in SPMS (Zhang and Raichle, 2010). Thus, acceleration of 

atrophy during SPMS may be explained by cortical network collapse with advancing of 

degeneration from initial injury sites (focal lesions in the white matter or initial DGM 

degeneration) to interconnected neocortical systems (Seeley et al., 2009). I found that MS 

phenotypes shared a common spatiotemporal pattern of volume loss (no significant 3-way 

interaction of time × region × phenotype). This shows, in line with previous studies, that the 

difference in pathology of progressive MS is only quantitative rather than qualitative in 

comparison with RRMS (Kutzelnigg et al., 2005).  

Cortical GM atrophy was seen at study entry across clinical phenotypes, even in CIS, when 

compared with HCs, and was the greatest in progressive MS, in agreement with earlier studies  

(Ceccarelli et al., 2008; Audoin et al., 2010) . My findings of faster whole brain atrophy in 

SPMS, PPMS, RRMS than CIS, who in turn, showed higher cortical atrophy than HCs, are 

similar to previous studies on longitudinal whole brain atrophy (Kalkers et al., 2002; Lukas et 

al., 2010), regional atrophy (Riccitelli et al., 2011; Lansley et al., 2013; Mallik et al., 2015), and 

pathology of MS phenotypes (Howell et al., 2011). My study confirms previous findings that 

relationships between whole brain atrophy and clinical changes are weak or absent (De 

Stefano et al., 2010), and shows DGM atrophy as a stronger marker of clinical disability. 

Although the GM volumes of cortical lobes could not predict future EDSS progression, the 

more detailed post-hoc analyses showed that regional volumes, such those of the 

hippocampus and the angular gyrus, were associated with future EDSS progression. These 

regions are highly connected to other regions, and especially the angular gyrus (like the 

precuneus) acts as a hub in the default mode network, which could make it vulnerable to 

atrophy, as explained above (Zhang and Raichle, 2010).  

This study was not designed to assess the effect of treatment on atrophy rates, but does study 

atrophy while adjusting for possible confounding effects. The rates of atrophy in all clinical 

phenotypes were similar in people who were receiving disease-modifying treatments to those 

who were not. Even though I could not ascertain the duration of treatments due to 

retrospective nature of this study, the majority (90%) of patients on disease-modifying 
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treatments, were receiving first-line injectable drugs (interferon or glatiramer acetate) before 

study entry. The effects of these drugs on brain atrophy are modest at best (Filippi et al., 2004; 

Kappos et al., 2016). Therefore, drug effects are unlikely to be confounders of my analysis. 

One strength of my study is that I included a large number of patients, who underwent the 

same protocol on the same MRI scanner over time at single sites. However, different MRI 

protocols could have an effect on atrophy measures and is a limitation of my study (Bendfeldt, 

Hofstetter, et al., 2012; Biberacher et al., 2016). I, therefore, used a hierarchical statistical 

design based on scanner. My study was powerful enough because the effects of clinical 

phenotype on the regional rates of atrophy were higher than the effects of between-centre 

variation.  

I chose GIF software to segment and parcellate the brain (Cardoso et al., 2015) because it 

allowed inclusion of 2D MRI data (which I had for one centre), and did not require any manual 

editing, unlike Freesurfer, which would have been unfeasible for such large number of scans. 

The reliability analysis showed excellent agreement between GIF-derived DGM volume and 

that obtained using FSL-FIRST, and between GIF-derived cortical volumes and those 

obtained using SPM12, respectively. Therefore, I chose to present the results obtained with 

GIF because it allowed us to rely on only one method to segment DGM and cortical GM, and 

estimate TIV. I used TIV to adjust for variations in head size, rather than the skull-size, so that 

a more reliable estimate of head size is obtained, irrespectively of the field-of-view, the choice 

of the inferior cut-off of the brain for the analysis, and demographic factors (e.g., age, or 

weight) (Malone et al., 2015). With regard to the statistical methods, I used mixed-effects 

models to calculate atrophy rates (Pinheiro and Bates, 2009), which naturally accommodated 

multiple (3 or more) time-points with varying intervals between follow-ups, and patients who 

convert from one phenotype to another (e.g., CIS to RRMS). These two issues are 

cumbersome to address with methods that rely on pairwise comparisons (e.g., SIENA, BSI) 

and suffer from higher variance in brain atrophy estimates as the interval between two scans 

increases (Smith et al., 2002, 2007). Mixed-effects modelling, instead, estimates a variance 



 88 

component to eliminate implausible inconsistencies (Frost et al., 2004; Cash et al., 2015). 

Based on my experience and the results of this study, I recommend the acquisition of high-

resolution 3D-T1-weighted images (isotropic 1mm3). Several methods can calculate DGM 

volumes, such as FSL-FIRST, and GIF. I recommend the use of the GIF software when it is 

desirable to use the same method to segment both the cortex and DGM. 

There were also limitations in this study. The majority of centres did not provide MRI scans of 

HCs, however, I included a large number of HCs including those from an external initiative 

(PPMI). My findings of volume changes in HCs were consistent with the literature. Meta-

analyses have shown, in individuals less than 70 years of age, rate of whole brain loss ranges 

from 0 to -0.5 (my study = -0.04), GM loss ranges from 0 to -0.5% per year (cortical GM in my 

study = -0.34%) (Hedman et al., 2012), and the subcortical structures may show loss of up to 

-1.12% (DGM in my study = -0.94) (Fraser et al., 2015). Cognitive functions were not tested, 

and it is unknown whether cortical patterns of GM atrophy over time were associated with 

cognitive impairment. Clinical trials in MS (and in progressive MS in particular) include 

confirmed disability progression, based on the EDSS, as primary outcome measure. Although 

for EDSS the model-estimated coefficients and their p-values and confidence intervals are 

valid for comparison between brain regions, the absolute value of these coefficients must be 

interpreted with caution, because the EDSS does not have a uniform linear interpretation. 

Since this was a retrospective study, the duration of treatments before entry to the study could 

not be ascertained for all participants. Disease-modifying drugs may have lasting effects, for 

example they may slow the accrual of disability after a decade (Kappos et al., 2016; University 

of California, San Francisco MS-EPIC Team: et al., 2016). Moreover, MRI sequences 

sensitive to cortical lesions were not available, and the effects of cortical lesions on atrophy 

measures remain unknown.  

 

In conclusion, the DGM atrophy showed the most rapid development over time– extending 

previous cross-sectional studies that showed a relationship between DGM atrophy and 

disability– was most closely associated with disability accumulation and predicted the time to 
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EDSS worsening. In phase 2 trials of neuroprotective medications in MS, DGM atrophy 

measures may therefore have greater potential to show treatment effects than other regional 

GM or whole brain measures. There was a disconnect between DGM atrophy and cortical 

atrophy rates. The temporal and parietal cortices showed a faster rate of atrophy in SPMS 

than RRMS and/or CIS, whilst DGM showed a faster rate of atrophy in SPMS than CIS only, 

suggesting that neurodegeneration in GM regions may proceed at a different rate which 

should be taken into account in the design of clinical trials. Although the results of this chapter 

underline the differential vulnerability of specific brain structures, the sequence at which brain 

regions atrophy remains unclear. In the next chapter I will apply a probabilistic data-driven 

model to identify the underlying sequence of regional progression of atrophy in MS.   
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5. Progression of regional grey matter atrophy in multiple sclerosis 

5.1. Summary 

Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal 

ordering is poorly understood. I aimed to determine the sequence in which grey matter regions 

become atrophic in multiple sclerosis and its association with disability accumulation.  

In this longitudinal study, I included 1,417 subjects: 253 with clinically-isolated syndrome, 708 

relapsing-remitting multiple sclerosis, 128 secondary-progressive multiple sclerosis, 125 

primary-progressive multiple sclerosis, and 203 healthy controls from 7 European centres. 

Subjects underwent repeated magnetic resonance imaging (total number of scans 3,604); the 

mean follow-up for patients was 2.41 years (standard deviation=1.97). Disability was scored 

using the Expanded Disability Status Scale. I calculated the volume of brain grey matter 

regions and brainstem using an unbiased within-subject template. I used an established data-

driven event-based model to determine the sequence of occurrence of atrophy and its 

uncertainty. I assigned each subject to a specific event-based model stage, based on the 

number of their atrophic regions. I used linear mixed-effects models to explore associations 

between the rate of increase in event-based model stages, and T2-weighted lesion load, 

disease-modifying treatments, comorbidity, disease duration and disability accumulation.  

The first regions to become atrophic in clinically-isolated syndrome and relapse-onset multiple 

sclerosis patients were the posterior cingulate cortex and precuneus, followed by the middle 

cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in 

primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, 

precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The 

cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis 

and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-

progressive multiple sclerosis showed the highest event-based model stage (the highest 

number of atrophic regions, p<0.001) at the study entry. All multiple sclerosis phenotypes, but 

clinically-isolated syndrome, showed a faster rate of increase in the event-based model stage 

than healthy controls. T2-weighted lesion load and disease duration in all patients were 
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associated with increased event-based model stage, but no effects of disease-modifying 

treatments and comorbidity on event-based model stage were observed. The annualised rate 

of event-based model stage was associated with the disability accumulation in relapsing-

remitting multiple sclerosis, independent of disease duration (p<0.0001).  

The data-driven staging of atrophy progression in a large multiple sclerosis sample 

demonstrates that grey matter atrophy spreads to involve more regions over time. The 

sequence in which regions become atrophic is reasonably consistent across multiple sclerosis 

phenotypes. The spread of atrophy was associated with disease duration and with disability 

accumulation over time in relapsing-remitting multiple sclerosis.  
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5.2. Introduction 

As I showed in the previous chapter, brain atrophy measured by magnetic resonance imaging, 

develops at a faster rate in people with multiple sclerosis than healthy controls. Grey matter 

atrophy is not uniform across the brain in multiple sclerosis, and some regions are more 

susceptible to atrophy than others (Steenwijk et al., 2016; Preziosa et al., 2017). The limbic 

system, temporal cortex and deep grey matter show rapid atrophy in patients with relapse-

onset multiple sclerosis (Audoin et al., 2010), while the cingulate cortex shows early atrophy 

in primary progressive multiple sclerosis (Eshaghi et al., 2014). In the previous chapter, using 

the same large cohort of multiple sclerosis patients, I have found that the deep grey matter 

showed the fastest annual rate of tissue loss in relapsing-remitting multiple sclerosis and 

progressive multiple sclerosis, and that in the cortex the rate of atrophy accelerated in the 

temporal regions in secondary progressive multiple sclerosis. However, it is unknown whether 

there is a consistent and identifiable order in which atrophy progresses affecting different 

areas over time. A key question is whether there is an association between the sequential 

development of atrophy and disability accumulation.  

One approach to investigate the sequence of atrophy progression is to employ a probabilistic 

data-driven method, such as an event-based model, which, as the name implies, identifies the 

sequence of events at which a biomarker becomes abnormal, using cross-sectional or 

longitudinal observations (Fonteijn et al., 2012; Young et al., 2014). The event-based model 

is an established method. It has given new insights into the progression of Alzheimer’s disease 

in which the hippocampal atrophy is seen before the whole brain atrophy. Similarly, in 

Huntington’s disease, the event-based model has detected the earlier atrophy in the basal 

ganglia than other regions.  

In this chapter, I have introduced a novel validation technique for the event-based model and 

then used it to investigate the progression of brain atrophy as a sequence of “events” at which 

grey matter regions become atrophic in all phenotypes of multiple sclerosis. To define when 

the volume of a region ceases to be normal and becomes atrophic, the event-based model 
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does not rely on a priori thresholds but calculates the probability of atrophy based on data-

derived model distributions of normal and atrophic regional volumes. Moreover, the event-

based model constructs a subject staging system: it assigns each subject to a stage that 

reflects how far through the sequence of regions that subject shows lower than normal 

volumes – the higher the stage, the higher the number of atrophic areas.  

In this chapter, I built on the evidence from the previous chapter and literature that 

neurodegeneration in multiple sclerosis does not affect all the grey matter regions equally  and 

those brain regions become atrophic in a non-random manner. I hypothesised that: (i) there 

is a sequence in which grey matter regions become atrophic; (ii) this sequence differs between 

relapse- and progressive-onset multiple sclerosis phenotypes; and (iii) the event-based model 

stage increases with disease duration and disability worsening.  
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5.3. Methods 

5.3.1. Participants 

Participants are the same as those reported in Chapter 4.  

5.3.2. MRI data and analysis 

I collected 3D T1-weighted scans, in addition to T2-weighted/FLAIR imaging, from all centres 

except one. Details of the 13 different magnetic resonance imaging protocols were discussed 

in the previous chapter. Moreover, I used the volumes of different brain regions from the image 

analysis as explained in the previous chapter (Chapter 4).  

5.3.3. The event-based model 

I used the event-based model, as described previously in , to estimate the most likely 

sequence in which selected regions become atrophic over time (see below for details on 

region selection). I also repeated the same analysis using all brain regions to test the 

dependence of my findings on the region selection.  

The event-based model assumes that a population of patients represents the whole trajectory 

of disease progression and reconciles cross-sectional or short-term longitudinal data into a 

picture of the entire disease course. I, therefore, created separate event-based models for (1) 

relapse-onset patients (the clinically isolated syndrome, relapsing-remitting, and secondary-

progressive multiple sclerosis); (2) progressive-onset (or primary-progressive) patients; and 

(3) all clinical phenotypes together (to develop a unique staging system for the whole cohort). 

I used the sequence estimated by the latter event-based model to stage patients by assigning 

them the most probable stage along the sequence.  

The main steps of the event-based model include (Figure 5-1): (1) model input, which consists 

of the adjustment of regional volumes for effects of nuisance variables and selection of 

regions; (2) model fitting; and (3) a cross-validation. For the last step, I used a novel cross-

validation method, used here within the event-based model for the first time, while steps one 

and two have not changed since the original event-based model implementations. Model input 

used all multiple sclerosis patients. Model fitting and cross-validation were repeated three 
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times using (1) relapse-onset and the clinically isolated patients together, (2) primary-

progressive multiple sclerosis, and (3) the whole cohort of patients. 

 

Figure 5-1. Estimating the most likely sequence of atrophy progression. 

 

The event-based model steps to estimate the most likely sequence of atrophy progression. 

The 3 steps are: (1) adjusting for nuisance variables, and region selection (2) calculating the 

best-fit probability distributions for normal and atrophic brain regions; searching for the most 

likely sequence; and (3) quantifying the uncertainty with cross validation. (i) shows the 

distribution of the volume in an example region in healthy controls and patients and the 

corresponding mixture model. (ii) shows the steps for greedy ascent search. (iii) a matrix 

showing a sequence of atrophy progression on the y-axis, and the position in the sequence of 

each region ranging from 1 to the total number of regions on the x-axis. The intensity of each 

matrix entry corresponds to the proportion of Markov Chain Monte Carlo samples of the 



 96 

posterior distribution where a certain region of y-axis appears at the respective stage of x-

axis. 

5.3.4. Model input 

I adjusted the regional volumes for the total intracranial volume, age at study entry, 

gender, scanner magnetic field and magnetic resonance imaging protocol. Since 

some centres provided data from more than one imaging protocol (see previous 

chapter), I adjusted for imaging protocol and magnetic field (instead of “centre”). I  

constructed a regression model for each region separately, entering the volume as the 

dependent variable and the remaining variables as predictors. I extracted the amount 

of each regional volume that remained unexplained in the regression (residual of the 

fit). Subsequently, I selected the regions whose adjusted volumes at the study entry 

showed a significant difference between all multiple sclerosis patients and healthy 

controls, with a Bonferroni corrected p<0.01 (non-corrected p < 0.0001). I used these 

regions in the subsequent analyses. I then repeated the analysis using all the 

segmented regions of the Desikan-Killiany-Tourville atlas for the following reasons: 1) 

to test whether the sequence in which brain regions become atrophic was not 

influenced by restricting the analysis only to the regions that showed a lower volume 

in patients than controls; 2) to detect potential subtle early changes that might not have 

survived multiple-comparison correction.  

5.3.5. Model fitting 

The event-based model considers an “event” to have occurred when a biomarker, here 

regional volume, has abnormal value (“atrophy”) in comparison with the expected values 

measured in healthy controls. The model then estimates the sequence S = S(1), S(2), …, S(l) 

in which regions become atrophic, where S(1) is the first region, and S(l) is the last to become 

atrophic. The model assumes that all patients go through the same sequence as they 

progress. The estimation procedure first fits a mixture of two Gaussians to regional volumes, 
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with one of the components fixed to be identical to the healthy distribution; the other 

component provides the model for the “abnormal” distribution. This provides probabilistic 

models for normal and abnormal volumes from which we can calculate the likelihood of 

atrophy 𝑃8𝑥:;<𝐸:> for the region i of the scan j, i.e. the probability density function (PDF) 

estimated at 𝑥:; from the abnormal component of the mixture model. The likelihood that region 

i has no atrophy or 𝑃8𝑥:;<¬𝐸:>, is the PDF of the normal component of the mixture-model 

estimated at 𝑥:;  (see Figure 5-1, section 2[i]). 

To search for the most likely sequence, I used a greedy ascent search (Young et al., 2014) 

which started at ten different random sequences and iterated by randomly flipping sequences 

for 1000 times. The final sequence was selected when ten different initial sequences 

converged to a similar likelihood after 1000 iterations. Within each iteration new (flipped) 

sequences (Figure 1, section 2[ii]) were accepted only if they increased the likelihood, which 

is defined as 

 𝑃(𝑋|𝑆) = ∏ G∑ 8𝑃(𝑘) ∏ 𝑃8𝑥:;<𝐸:>J
:KL 	∏ 𝑃(𝑥:;|M

:KJ)L ¬𝐸:)	)	M
JKN OP

;KL    (1) 

where X is the data matrix, S is the sequence of atrophy events, J is the number of scans, l is 

the number of regions, and P(k) is the prior probability of being at stage k, which means E1, 

…., Ek have occurred, and Ek+1, …., El have not occurred. I used a uniform distribution for prior 

probabilities, which assumes equal prior-probability for all possible stages; all sequences are 

equally likely a-priori. The software and codes for the event-based model are freely available 

at https://github.com/ucl-mig/ebm.  

5.3.6. Cross-validation of atrophy sequence 

After estimating the most likely sequence, the uncertainty in the position of each region in the 

sequence was estimated using cross-validation and Markov Chain Monte-Carlo. I divided the 

dataset (including baseline and follow-up visits) into ten equally-sized folds (cross-validation 

folds) and repeated the sequence estimation ten times. During each iteration, I used nine-

folds to fit the mixture-models (as explained above) and estimated the most-likely sequence. 

I kept one fold out as the test fold to assign the event-based model stages (explained below). 
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Within each iteration, I used Markov Chain Monte-Carlo to sample from the posterior 

distribution on the sequence given the nine-fold training data, as in (Fonteijn et al., 2012; 

Young et al., 2014). I then aggregated Markov Chain Monte-Carlo samples from the ten 

iterations of cross-validation (10,000 samples from each fold) to calculate uncertainty across 

cross-validation folds. Finally, I used these 100,000 sampled sequences to plot the positional 

variance diagram [as in (Fonteijn et al., 2012; Young et al., 2014)], which shows on the y-axis 

the sequence with the highest likelihood, and the x-axis enumerates the number of sequence 

positions (or the event-based model stages). The intensities of the matrix entries correspond 

to the proportion of Markov Chain Monte-Carlo samples in which the corresponding region (y-

axis) appears at the respective stage (x-axis). Therefore, if there were no uncertainty, i.e. all 

Markov Chain Monte-Carlo samples in all folds find the same sequence, the matrix would be 

black on the diagonal and white everywhere else; non-white off-diagonal and non-black 

diagonal elements indicate uncertainty in the position of the corresponding region in the 

sequence.  

5.3.7. Staging individual subjects and associations with white matter lesion load, disease 

duration and disability 

I used the most likely sequence of atrophy progression from the whole patient cohort-based 

event-based model to obtain the event-based model stage for each scan j, which is the stage 

k that maximises ∏ 𝑃(𝑥:;|𝐸:)∏ 𝑃(𝑥:;|¬𝐸:)M
:KJ)L

J
:KL . This assigned each subject an event-based 

model stage between 1 and the number of regions, l, at each visit (see Figure 5-1).   

I used a nested linear mixed-effects model to investigate the association between the event-

based model stage (dependent variable) and T2-weighted lesion load (independent variable), 

in which time was nested in subject as the random-effect (to adjust for repeated measures).  

Similarly, I used a nested mixed-effects regression model to explore the association between 

the event-based model stage (dependent variable) and disease duration (independent 

variable), in which disease duration was nested in subject as the random-effect.  
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For those clinical phenotypes that showed a significant change in the event-based model 

stage over time (relapsing-remitting, secondary-progressive and primary-progressive multiple 

sclerosis), I investigated whether longitudinal Expanded Disability Status Scale changes could 

be predicted by event-based model changes independent of disease duration. I divided the 

changes in the Expanded Disability Status Scale and event-based model by the number of 

years from the study entry and performed a linear regression analysis where the annualised 

Expanded Disability Status Scale change was the outcome variable. Annualised event-based 

model stage change and disease duration at the study entry were the predictor variables. 

Since both the event-based model stage and Expanded Disability Status Scale are ordinal 

variables, I used ordinal regression analyses to confirm the results of the linear regressions 

but presented the results of linear models (as they did not materially differ).  

5.3.8. Confounding effects of disease-modifying treatments and comorbidities 

To test whether disease-modifying treatments could affect the event-based model stages at 

baseline and over time, I used similar mixed-effects models (as above) in which the event-

based model stage was the outcome variable; time, disease-modifying treatment (as a 

categorical variable), and their interaction were the fixed-effect variables. Random-effects 

were the same as explained above. I performed additional analyses to assess the effects of 

comorbidities on the event-based model stages, which are reported in the Supplementary 

Material.  

Effects of comorbidities on atrophy measures 

I performed a subgroup analysis on the subset of patients with available comorbidity 

information. The comorbidity was defined as a categorical variable that showed the 

documented presence (or absence) of diabetes, hypertension, hyperlipidaemia, ischemic 

heart disease, stroke, other autoimmune diseases, psychiatric diagnosis (major depression 

disorder, bipolar disorder, alcohol abuse, and other psychiatric disorder), chronic lung disease, 

renal disorders, migraine, and smoking before the date of first scan (Geraldes et al., 2017; 

Marrie, 2017). I aimed to compare the effect of comorbidities on the rate of change in the 
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event-based model stage. I used a linear mixed effects model in which the event-based model 

stage was the outcome variable. Time, comorbidity, and the interaction of comorbidity with 

time were the fixed-effect variables. Time was nested in the centre as the random-effect.  
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5.4. Results 

5.4.1. Subject characteristics 

Imaging data from 1,424 subjects (the image analysis is explained in Chapter 4) were 

analysed; three subjects’ scans were excluded because of motion artefacts and four because 

of poor registration due to missing imaging header information. Therefore, data from 1,417 

subjects were included in the final modelling: 1,214 patients (253 clinically isolated syndrome, 

708 relapsing-remitting, 128 secondary-progressive, and 125 primary-progressive multiple 

sclerosis), and 203 healthy controls. The average (±standard deviation) length of follow-up for 

patients was 2.43 years (±1.97) and for healthy controls was 1.83 years (±1.77). In total, I 

analysed 3,604 T1-weighted scans (mean number of scans per patient was 2.54 [SD=1.04]).  

Table 5-1. Baseline characteristics of participants. 

Group Healthy 

control 

Clinically isolated 

syndrome 

Relapse onset 

multiple sclerosis* 

Primary-Progressive 

multiple sclerosis 

Total number (number of 

females) 

203 (112) 253 (171) 836 (548) 125 (55) 

Age (± SD1) 38.7 ± 10.5 33±8 39.7±9.8 48.5 ± 10.1 

Disease duration 

 (± SD1) 

— 0.4±1.4 8.06±8.03 6.8 ± 5.9 

Median Expanded Disability 

Status Scale (range) 

— 

 

1 (0-4.5) 2 (0-9) 5 (2-8) 

Percent (number) of patients 

receiving disease-modifying 

treatments 

— 20% (52) 47% (397) 6% (8) 

Baseline median white 

matter T2 lesion load (ml) 

(1st-3rd quartile) 

 2.97(1.01-5.04) 5.04 (2.05-11.79)** 9.38 (2.69-22.02) 

1 standard deviation 
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* Relapse onset group includes both the relapsing-remitting and secondary progressive 

patients. 

** Baseline median T2-weighted lesion loads were the following: for relapsing-remitting=5.05 

(2.05-11.79) and secondary-progressive multiple sclerosis =11.04 (3.18-23.14). 

5.4.2. Sequence of atrophy progression  

At baseline, 24 regions showed a smaller volume in multiple sclerosis than healthy controls 

(Bonferroni corrected p<0.01). They included the deep grey matter regions and the posterior 

cortices (including the precuneus and the posterior cingulate cortex), several regions in the 

temporal lobe, the precentral cortex, and the brainstem (see Figure 5-2 for the full list).  

Figure 5-2.  Comparisons of regional volumes between groups. 

 

Box plots at y-axis show z-scores of the corresponding region shown at x-axis. Lower and 

upper hinges of each boxplot correspond to 25th and 75th percentiles of data. I selected 24 

regions that showed significant difference (p<0.01 corrected) between all patients with MS 

and healthy controls at the baseline visit. 
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When I estimated the sequence in which these 24 regions become atrophic in patients with 

relapse-onset multiple sclerosis (i.e., relapsing-remitting and secondary-progressive) and the 

clinically isolated syndrome, the first regions were the posterior cingulate cortex and 

precuneus, followed by the middle cingulate cortex, brainstem, and thalamus (Figure 5-3A & 

D); the last regions to become atrophic were the pallidum and medial precentral gyrus.  

In patients with primary-progressive multiple sclerosis, among the 24 selected regions, the 

first ones to show atrophy were the thalamus, cuneus and precuneus, and pallidum, followed 

by the brainstem, precentral gyrus, and posterior cingulate cortex (Figure 5-3B & D); the last 

regions to become atrophic were the frontal operculum and middle temporal gyrus. 
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Figure 5-3. Sequences of atrophy progression and patient staging. 

 

The positional variance diagrams for (A) relapse-onset multiple sclerosis, (B) primary 

progressive multiple sclerosis and (C) merged cohort of patients, show the most likely 

sequences of atrophy and their associated uncertainty. In (A), (B), and (C) the y-axis shows 

the most likely sequence of atrophy progression, and the x-axis shows the sequence position 
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ranging from one to the total number of regions. The intensity of each rectangle corresponds 

to the proportion of Markov Chain Monte Carlo samples of the posterior distribution where a 

certain region of y-axis appears at the respective stage of x-axis. (D) shows the evolution of 

the event-based model stage (or atrophy progression staging) over time in clinically isolated 

syndrome and relapse-onset multiple sclerosis together and primary progressive multiple 

sclerosis. Each line in (D) is the prediction of mixed-effects model whose ribbon shows 

standard error of the prediction. (E) shows the same positional variance diagram as (A) and 

(B) with the only difference that the rows of the relapse-onset positional variance diagram have 

been re-ordered to have the same order of primary progressive multiple sclerosis to facilitate 

the comparison.  

When the event-based model was used to estimate the sequence of atrophy progression of 

the selected 24 regions in all patients together, additional regions were detected as showing 

early atrophy, such as the insula, accumbens and caudate (Figure 5-3C). The likelihood of 

the ten randomly chosen sequences (log-likelihood range: -149000 to -117000) converged to 

a similar range (log-likelihood range: -1000000 to -99000) after 1000 iteration 

(Supplementary Figure 5-1). For other event-based models, the likelihoods converged to a 

similar range (results are not shown).  

When all the remaining regions were included additional regions were identified. In primary-

progressive multiple sclerosis, they were the transverse temporal gyrus, cerebral white matter, 

post-central gyrus and middle frontal gyrus (see Figure 5-4, Supplementary Figures 5-2 and 

5-3). In the relapse-onset group, these regions were the superior frontal gyrus, inferior frontal 

gyrus, and middle frontal gyrus.  

When I qualitatively compared the clinically isolated syndrome and relapse-onset multiple 

sclerosis patients with primary-progressive multiple sclerosis, across all regions, the 

cerebellum, caudate and putamen showed a differential pattern of atrophy, with early atrophy 

in patients with relapse-onset disease and late atrophy in primary progressive multiple 

sclerosis (see Figure 5-4). 
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Figure 5-4. Regional atrophy and its sequence of progression in all grey matter regions plus 

brainstem in relapse-onset disease and primary progressive multiple sclerosis. 

 

The probability of atrophy in each region was calculated from the positional variance 

diagrams and colour coded, so that brighter colour corresponded to higher probability of 

seeing atrophy in the corresponding event-based model stage. 

5.4.3. Event-based model staging of individual subjects 

Patients with clinically isolated syndrome and relapse-onset multiple sclerosis and primary-

progressive multiple sclerosis had significantly higher event-based model stages at baseline 

than healthy controls (average intercept [±standard error] of the event-based model stage for 

HCs=8.02 [±0.59], relapse-onset=12.39 [±0.66], primary-progressive multiple sclerosis=12.22 

[±0.35], p<0.05); when looking at each clinical phenotype, patients with secondary-

progressive multiple sclerosis had the highest event-based model stage at the study entry 

(14.73 [±0.93], all p-values<0.001), followed by relapsing-remitting (12.60 [±0.67]), primary-

progressive  multiple sclerosis (12.22 [±0.35]), clinically isolated syndrome (8.12 [±0.76]), and 

healthy controls (8.02 [±0.59]). The annual rate of change (or slope) in the event-based model 

stage over time was significant (null-hypothesis=zero slope) for secondary-progressive 
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multiple sclerosis (average slope [± standard error]=1.02 [±0.41]), primary-progressive (0.52 

[±0.34]), and relapsing-remitting multiple sclerosis (0.37 [±0.26]), but not for clinically isolated 

syndrome (0.19 [±0.33]) and healthy controls (0.10 [±0.24]). The rate of change, although 

nominally higher in secondary progressive multiple sclerosis, was not significantly different 

between clinical phenotypes.  

5.4.4. Association of the event-based model stages with white matter T2-weighted lesion 

load, disease duration and disability accumulation  

At baseline, the highest T2-weighted lesion load was observed in secondary progressive 

multiple sclerosis, followed by primary-progressive multiple sclerosis (Table 5-1). There was 

a significant association between the event-based model stage and white matter lesion load 

(standardised β=0.11, p<0.001) in all patients, which means for every standard deviation 

(15.31 millilitre) increase in the lesion load there was 0.11 standard deviation (1.06 unit) 

increase in the event-based model stage. However, there was no association between the 

rate of change in the event-based model stage over time and the rate of increase in lesion 

load.  

There was a significant association between the rate of increase in the event-based model 

stages and disease duration in all patients with multiple sclerosis (β=0.21, standard 

error=0.03, p<0.001) using all available time points. This means that for every increase of one 

event-based model stage, disease duration increased by 4.76 years.  

At the baseline visit, there was no significant association between the event-based model 

stage and the Expanded Disability Status Scale in any clinical phenotype. Over time there was 

a significant increase in the Expanded Disability Status Scale in both relapse-onset multiple 

sclerosis/clinically isolated syndrome and primary-progressive multiple sclerosis patients (an 

increase of 0.07 and 0.2 per year, respectively, p<0.01). There was a significant association 

(independent of disease duration) between the annualised event-based model stage and the 

annualised Expanded Disability Status Scale changes in relapsing-remitting multiple sclerosis 

(beta =0.03, p <0.0001), but not in secondary-progressive and primary-progressive multiple 

sclerosis. This means that assuming a linear relationship between the Expanded Disability 
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Status Scale and the event-based model stage, for every unit increase in the annual rate of 

the event-based model stage there is 0.03 increase in the annual rate of Expanded Disability 

Status Scale worsening. 

5.4.5. Disease-modifying treatments and comorbidity did not affect the event-based model 

stages  

Information on whether or not a patient was receiving a disease-modifying treatment was 

available for 98% of patients (n=1,179) at baseline. Of these, 38% (n=457) were receiving a 

disease-modifying therapy; 47% of patients with relapse-onset MS, 20% of patients with CIS 

and 6% of patients with primary-progressive MS were on treatment (Table 5-1). Information 

on the type of disease-modifying treatment was available for 56% of these patients (n=255), 

of whom 86% (n=220) were receiving either interferons or glatiramer acetate, and the 

remaining 14% (n=35) patients were on other treatments, including natalizumab, fingolimod, 

mitoxantrone, and teriflunomide. Linear mixed-effects models showed that at baseline 

(estimated average ± standard error) the event-based model stage was not significantly 

different (p=0.21) between patients who were on disease-modifying treatments (12.63±0.32) 

compared to those who were not (11.98±0.52). The same model showed that the annual rate 

of change (estimated range ± standard error) in the event-based model stage was not 

significantly different (p=0.45) between patients who were on disease-modifying treatments 

(0.53±0.17) and those who were not (0.39±0.10).  

5.4.6. There was no effect of comorbidities on event-based model stages after 

accounting for age 

The data on comorbidities were available for 28% of patients (n=340) at baseline. Out of these 

patients, 183 patients (18 primary-progressive multiple sclerosis, 110 relapsing-remitting 

multiple sclerosis, 22 secondary-progressive multiple sclerosis, and 33 clinically isolated 

syndrome), had at least one comorbidity and the remaining 157 (23 primary progressive 

multiple sclerosis, 86 relapsing-remitting multiple sclerosis, 8 secondary-progressive multiple 

sclerosis, and 40 with the clinically isolated syndrome) had no comorbidity.  At baseline, 
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patients without comorbidity were significantly younger than those with comorbidity 

(37.27±9.79 vs 40.2 ±11.56, p=0.01). The number of atrophic brain regions (or the event-

based model stage) did not differ between patients with and without comorbidity (11.03 (9.41) 

vs 9.08 (9.01), p=0.18). Similarly, the estimated annual rate of change (±standard error) in the 

event-based model stage did not differ between the two groups (0.575 (±0.22) vs 0.76 (±0.32), 

p=0.55, adjusted for age). 
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5.5. Discussion 

In this study, I used a data-driven method to determine the most likely sequence in which brain 

regions become atrophic in multiple sclerosis. This sequence is consistent in key regions 

across multiple sclerosis phenotypes: the posterior cingulate cortex, precuneus, and thalamus 

were among the earliest regions to become atrophic in both relapse-onset phenotypes and 

primary-progressive multiple sclerosis. The event-based model staging system was applied 

to individual patients, and the rate of increase in the event-based model stage was associated 

with the disease duration in all multiple sclerosis phenotypes and with the Expanded Disability 

Status Scale in patients with relapsing-remitting multiple sclerosis independent of the disease 

duration. My findings in this chapter confirm those of the previous chapter, and provide novel 

insights into the mechanisms of disease worsening in multiple sclerosis 

The order of atrophy progression in the event-based model for most regions was similar 

between primary-progressive multiple sclerosis and the clinically isolated syndrome/relapse-

onset multiple sclerosis. This may support the evidence from histological studies that the 

pathological processes are regionally consistent between early relapsing-remitting and 

progressive multiple sclerosis (Mahad et al., 2015). These results showed that areas with an 

early atrophy were the posterior cingulate cortex, precuneus, thalamus and brainstem in both 

groups, thereby extending the results of previous studies, which have limited their 

investigation to specific multiple sclerosis subtypes (Gilmore et al., 2009; Audoin et al., 2010; 

Calabrese, Reynolds, et al., 2015; Steenwijk et al., 2016). When all patients were included 

together, the insula, accumbens and caudate were predicted as becoming atrophic early on.  

The cingulate cortex and insula have extensive connections with other regions. Possible 

factors for their early atrophy, therefore, can include disconnection secondary to white matter 

lesions, inflammation, and more specifically meningeal inflammation. I, therefore, calculated 

white matter T2-weighted lesion volumes and showed that there was an association between 

increasing lesion load at baseline and the event-based model stages. Since assessing 

meningeal inflammation is very challenging in vivo I can just speculate that structures in 
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cortical invaginations, can be exposed to meningeal inflammation, cortical demyelination, and 

neurodegeneration (Gilmore et al., 2009; Howell et al., 2011; Haider et al., 2016a). The 

cingulate cortex and precuneus are part of a network of active regions during rest (the default 

mode network) (Raichle, 2015). These regions are interconnected with other areas, have the 

highest energy consumption in the brain, and are affected by multiple sclerosis and other 

neurodegenerative disorders (Bonavita et al., 2011). In multiple sclerosis, neurons with 

demyelinated axons consume more energy to adapt to demyelination, which creates a 

microenvironment similar to that of hypoxia (“virtual hypoxia”) (Trapp and Stys, 2009). 

Neurons that survive in a state of persistent virtual hypoxia are more vulnerable to 

degeneration (Zhang and Raichle, 2010), and this may explain the higher vulnerability of the 

cingulate and precuneus cortex to atrophy.  

Other regions that showed early atrophy were the thalamus and the brainstem in both relapse-

onset multiple sclerosis and primary-progressive multiple sclerosis. In the previous chapter, I 

found that the deep grey matter showed the fastest rate of atrophy over time, while brainstem 

had the highest atrophy (the lowest volume) at study entry, but its atrophy progressed at a 

slower rate than that occurring in other regions. This may suggest that during early stages of 

multiple sclerosis, the rate of atrophy in the brainstem is higher than later stages, while the 

rate of atrophy in the thalamus remains high throughout the disease course. The brainstem is 

in close contact with the spinal cord, whose atrophy is seen from early stages of multiple 

sclerosis independent of the cortex or deep grey matter (Ruggieri et al., 2015).  

Several mechanisms may underlie neurodegeneration in the deep grey matter, including 

mitochondrial failure, iron deposition, retrograde degeneration through white matter lesions, 

and meningeal inflammation (for structures closer to cerebrospinal fluid) (Calabrese, 

Magliozzi, et al., 2015; Bodini et al., 2016; Pardini et al., 2016). Network overload and collapse, 

similar to the cingulate and precuneus cortex, could also explain preferential atrophy of the 

deep grey matter in multiple sclerosis (Minagar et al., 2013). 

There were a few regions showing a differential pattern of atrophy between relapse- and 

progressive-onset phenotypes. The cerebellum, caudate and putamen were predicted to have 
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early atrophy in relapse-onset disease and late atrophy in primary-progressive multiple 

sclerosis. In the cerebellum, this different behaviour can be explained by a more inflammatory 

phenotype of patients with relapse-onset multiple sclerosis. In patients with multiple sclerosis, 

more than any other brain region, demyelination is seen in the cerebellar grey matter, which 

is five times more than the white matter demyelination (Gilmore et al., 2009). This may be a 

consequence of overlying meningeal inflammation in the deep folia, which accommodate a 

static inflammatory milieu (such as cytokines, and immunoglobulins) (Kutzelnigg et al., 2007; 

Howell et al., 2011). Therefore, in the cerebellum overlying inflammation may play a role and 

amplify other pathological mechanisms, such as retrograde neurodegeneration secondary to 

white matter lesions. Thus, the cerebellum could be susceptible to inflammatory damage from 

the cerebrospinal fluid. Previous studies have reported in relapse-onset multiple sclerosis, but 

not primary-progressive multiple sclerosis, tertiary lymphatic follicles in cortical invaginations, 

which may suggest a more inflammatory cerebrospinal fluid milieu than primary-progressive 

multiple sclerosis (Kutzelnigg et al., 2007; Choi et al., 2012). This could explain earlier atrophy 

of the cerebellar grey matter in people with relapse onset disease, while in primary-

progressive multiple sclerosis, neurodegeneration in a less inflammatory cerebrospinal fluid 

milieu might cause a gradual progression of atrophy (Choi et al., 2012; Mahad et al., 2015). 

However, this is speculative, and it remains unclear whether meningeal inflammation has a 

causative effect on demyelination and neurodegeneration.  

The caudate and putamen, which are histologically similar, constitute a structure that is known 

as the neostriatum. A previous histopathological study has shown that the greatest extent of 

demyelination and lesions in the deep grey matter can be seen in the caudate even in early 

multiple sclerosis, although the pattern was not different between multiple sclerosis 

phenotypes (Haider et al., 2014). Moreover, the putamen receives significant inputs from the 

motor cortex and the caudate from the association cortices. Therefore, I could speculate that 

retrograde neurodegeneration secondary to a higher lesion load in relapse-onset disease 

(compared to primary-progressive multiple sclerosis) may perform as an additive factor on 

demyelination to explain the higher vulnerability of these structures.  
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I extended my analysis from regions that showed significant atrophy at baseline to the all 

segmented areas to test the dependence of my findings to region selection. Another reason 

was to explore early, but subtle, changes in brain regions, which might have been missed by 

just looking at a snapshot at the study entry to choose specific areas whose adjusted volumes 

showed a significant difference between all multiple sclerosis patients and healthy controls, 

based on stringent multiple-comparison correction. For example, a brain region may show 

mild volume loss earlier than another part with a greater (but later) volume loss through the 

course of multiple sclerosis. Whole brain event-based model analysis predicted an early 

involvement of the posterior cortices (posterior cingulate and precuneus) along with the 

brainstem. New additional regions in the whole brain event-based model were also identified 

as showing atrophy at an early stage, including the superior, middle, and inferior frontal gyri 

in relapse-onset phenotypes, and the transverse temporal gyrus, white matter, and post-

central gyrus in primary-progressive multiple sclerosis. These findings suggest that the 

changes in these structures may happen early, but with a lower intensity than other regions 

that were selected initially (24 areas).  

This study was not designed to investigate the effects of disease-modifying drugs and 

comorbidities on the atrophy stages. However, it does study the sequence of regional atrophy 

in the presence of these confounders. There were no significant differences at baseline or 

during the follow-up in the event-based model stages of patients who were receiving disease-

modifying treatments and those who were not, extending the results of Chapter 4 of the same 

group of patients which demonstrated, using a different statistical method, that the rates of 

atrophy in neuroanatomical regions were not confounded by disease-modifying treatments 

(see Chapter 4, Results). As discussed in the previous chapter, most of the patients were 

receiving the injectable first-line therapies (interferon beta and glatiramer acetate), whose 

effects on atrophy rates are weak. Although the information on comorbidities was only 

available for about a third of patients, I found that patients with at least one comorbidity were 

older at baseline than those without. This is in line with the literature showing that comorbidities 

are prevalent in patients with multiple sclerosis and increase with age (Marrie and Horwitz, 
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2010; Geraldes et al., 2017). There was no significant effect of comorbidity on event-based 

model stage at baseline or its rate of change during the follow-up. One reason that age 

influenced the frequency of comorbidities, but not the number of atrophic regions, was that I 

had regressed out the effects of age on the regional volumes. Therefore, I conclude that 

disease-modifying treatments and comorbidity did not significantly influence my findings. 

The event-based model has a potential for clinical use as it does not rely on time and can be 

applied to individual (cross-sectional) brain scans. To have a unique staging system across 

all clinical phenotypes, I created an event-based model from the whole patient cohort. I 

showed that patients with secondary-progressive multiple sclerosis had the highest event-

based model stage –or the highest number of atrophic regions– at the study entry. This, in line 

with previous studies, suggests that secondary-progressive multiple sclerosis has more 

advanced neurodegeneration across multiple sclerosis phenotypes (Ceccarelli et al., 2008). 

When I performed the event-based model staging using follow-up scans of patients and 

healthy controls, I found a significant increase in event-based model stages in all multiple 

sclerosis phenotypes, but not in the clinically isolated syndrome or healthy controls (although 

the baseline event-based model stage was nominally higher in the clinically isolated syndrome 

than healthy controls). The clinical relevance of the event-based model was confirmed by a 

significant association between stages and Expanded Disability Status Scale in relapsing-

remitting multiple sclerosis, after adjusting for disease duration. Therefore, the sequential 

pattern of atrophy may explain disease worsening in relapsing-remitting multiple sclerosis. I 

did not find the same association between the changes in event-based model stages and 

Expanded Disability Status Scale in other patient groups. However, patients with secondary-

progressive multiple sclerosis had the highest event-based model stages at the study entry 

and the highest (nominal) rate of increase in the event-based model stage. 

In this study I applied the current implementation of the event based model, which has been 

originally developed for the analysis of cross-sectional data (e.g., (Fonteijn et al., 2012)), 

although it has also been used in longitudinal analysis (Young et al., 2014). This 

implementation has been extensively validated (Oxtoby, Alexander, et al., 2017; Oxtoby, 
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Garbarino, et al., 2017; Oxtoby et al., 2018; Wijeratne et al., 2018) and is feasible for clinical 

application because it does not require the availability of follow-up scans. However, a limitation 

of the current implementation of event-based model is that it does not take into account the 

within and between subject variance components. In this study I applied mixed-effects models 

to the results of event-based model stages with subject as random effects to address this. 

However, the explicit modelling of variance components are not included in the event-based 

model. Future implementations of event-based model will integrate within- and between-

subject covariance components. At the time of writing of this thesis, the mixed-effects 

implementation of event based model is under development. 

Although this is a retrospective and multi-centre study, I have adjusted for the effects of MRI 

protocol and scanner magnetic field, and, as reported in the previous chapter, the effect of 

multiple sclerosis phenotypes on regional measures was higher than that from these variables. 

A possible limitation is that event-based model assumes that all brain regions eventually 

become abnormal (all regions show atrophy at the last stage). Therefore, an implicit 

assumption is that patients with relapse-onset disease (the clinically isolated syndrome, 

relapsing-remitting, and secondary-progressive multiple sclerosis) represent the whole 

continuum of progression when analysed separately; future implementations of this model 

could remove this assumption. I used the Expanded Disability Status Scale as the clinical 

outcome, but both the Expanded Disability Status Scale and event-based model provide 

measures that are ordinal, and may not have a uniform interpretation. Therefore, the 

coefficients of associations should be interpreted relatively (e.g., to compare clinical groups) 

rather than absolutely.   

I showed that the sequence of atrophy progression in relapse-onset disease and primary-

progressive multiple sclerosis are similar in many key regions, while the cerebellum, caudate 

and putamen show an earlier atrophy in relapse-onset multiple sclerosis than primary-

progressive multiple sclerosis, perhaps due to a more inflammatory milieu. The sequence of 

atrophy progression can be used to score patients during multiple sclerosis automatically. 
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6. Brain atrophy mediates the simvastatin effect on disability: a mechanistic 

modelling study 

6.1. Summary 

Neurodegeneration is the substrate of disability worsening in multiple sclerosis. A recent 

clinical trial has shown that brain atrophy is delayed by high-dose simvastatin in patients with 

secondary progressive multiple sclerosis. However, the common analysis of trial outcome 

measures precludes a mechanistic understanding of drug actions. Here I investigated the 

causal chain of events that link the treatment to brain atrophy and disability. I also investigated 

the spatiotemporal pattern of brain atrophy and whether it was altered by simvastatin. I re-

analysed the double-blind, randomised controlled trial of placebo vs high-dose simvastatin 

(MS-STAT trial) in which 140 patients with secondary progressive multiple sclerosis 

underwent imaging, clinical and cognitive assessments at baseline, after one and two years. 

Patients who completed the trial (n=131) at baseline had on average (±standard deviation) 

51.2 (±6.97) years of age, 21.17 (±8.65) years of disease duration, and a median Expanded 

Disability Status Scale of 6 (range=4-7). Participants were assessed on the cognition (Block 

Design test), a patient-reported outcome measure (Multiple Sclerosis Impact Scale 29), and 

the Expanded Disability Status Scale. I longitudinally processed anatomical scans to calculate 

annual percentage changes of the whole brain, cortical, and subcortical volumes with mixed-

effects models. I performed multivariate mechanistic modelling to quantify interrelations of 

ongoing brain atrophy, with concomitant changes in the disability, Block Design test and 

Multiple Sclerosis Impact Scale 29. The simvastatin group showed slower rates of disability 

worsening than the placebo, as measured by the Expanded Disability Status Scale 

(beta=0.08, standard error=0.04 vs. 0.21±0.03, p=0.002), Block Design test (0.92±0.45, vs. -

0.13±0.33, p=0.04) and the physical subtest of Multiple Sclerosis Impact Scale 29 (0.43±0.72 

vs. 2.05±0.56, p=0.03). The most likely model indicated that simvastatin directly slowed 

atrophy rates and disability. Slowing of atrophy caused an additional effect on clinical outcome 
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measures; 33.4% of the total treatment effect on Block Design test, and 30.9% of the effect 

on clinical disability were mediated by atrophy. Simvastatin reduced the annualised rate of 

atrophy in several brain regions, with the highest effect reaching 50% in the transverse 

temporal gyrus (annual rate [95% confidence interval]; placebo = -1.58% [-1.17%,-1.98%]; 

simvastatin=-0.79% [-0.22%,-1.35%]; p=0.002). In conclusion, I showed that the slowing of 

clinical and cognitive worsening is caused by a reduction in brain atrophy rate in following a 

cascade of events that slows the worsening of the patient reported outcome. My findings 

suggest that simvastatin delays brain atrophy by a global neuroprotective effect.  
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6.2. Introduction 

An unmet need for multiple sclerosis research is the discovery of mechanisms underlying 

disability worsening. The substrate of disability worsening is neurodegeneration, which is 

captured as brain volume loss (or atrophy) on serial magnetic resonance imaging (see 

previous chapters for detailed discussion on this). The treatment effect on brain atrophy is 

correlated with the effect on disability accrual in relapsing-remitting multiple sclerosis (Sormani 

et al., 2014) and brain atrophy is a primary outcome measure in phase 2 clinical trials in 

secondary progressive multiple sclerosis. 

A double-blind, controlled, phase 2 clinical trial in long-standing secondary progressive 

multiple sclerosis (MS-STAT) has shown that high-dose simvastatin reduced the whole brain 

atrophy rate by 43% with positive effects on frontal lobe function, physician (Expanded 

Disability Status Scale) and patient-reported (Multiple Sclerosis Impact Scale-29) outcome 

measures (Chataway et al., 2014; Chan et al., 2017). The MS-STAT trial, like any other 

randomised-clinical trial, gathered a wealth of information. However, its analysis was limited 

to separate (univariate), pre-planned outcomes, thereby precluding a mechanistic 

understanding of the treatment response (Douaud et al., 2013). The pathways via which 

simvastatin impacts brain atrophy, clinical and cognitive outcomes remain unclear.  

Commonly used methods in clinical trials only establish whether one variable affects another 

but fail to explain how such a causal relationship arises. Multivariate mechanistic models can 

elucidate the causal chain of events by simultaneous analysis of multi-modal data that link 

intermediate variables to outcomes of interest (Bollen and Long, 1992). They have been 

employed in clinical trials of Alzheimer’s disease (Bollen and Long, 1992) and more 

extensively in social and political sciences (Imai et al., 2011; Kievit et al., 2014). The MS-STAT 

phase 2 trial offers the unique opportunity to apply multivariate mechanistic models to 

elucidate the causal sequence of events, in which changes in one variable drive changes in 

the next one, to explain pathways resulting in the observed treatment effects. Such an 

understanding is essential to stimulate further mechanistic research in progressive multiple 

sclerosis to develop new therapies.  
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A primary characteristic of long-standing progressive MS is a diffuse and extensive 

neurodegeneration (Frischer et al., 2009; Ransohoff, 2016). By studying a large cohort of 

secondary progressive patients with a disease duration of 15.6 years, in Chapter 5 I have 

demonstrated that there is a sequence in which grey matter regions become atrophic, and 

some regions, such as the basal ganglia, are more atrophic than others (Chapters 3, 4, and 

5). The spatiotemporal patterns of brain atrophy in patients with secondary progressive 

multiple sclerosis and very long disease duration are unknown. The patients recruited in the 

MS-STAT trial offer the opportunity to address this issue, as their mean disease duration was 

21.2 years. Additionally, it is unclear whether these patterns are altered by a medication, such 

as simvastatin, which significantly reduces the annualised rate of whole brain atrophy.  

In this chapter, I re-analysed the MS-STAT trial data and estimated the pathways in which 

simvastatin causes changes in clinical, cognitive and patient-reported outcome measures, 

either directly or indirectly via brain atrophy. I also investigated whether simvastatin reduces 

whole brain atrophy rates by a general effect on all brain regions, or focal areas were 

differentially affected by simvastatin.  
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6.3. Material and Methods 

6.3.1. Participants 

This was a post hoc study that included all participants of the MS-STAT trial [ClinicalTrials.gov 

registration number: NCT00647348] performed between 2008-2011 at three research centres 

and two brain imaging centres in the UK. MS-STAT was a phase-2 double-blind randomised 

controlled trial whose primary and pre-planned analyses have been reported previously 

(Chataway et al., 2014; Chan et al., 2017). Briefly, the eligibility criteria were: (i) age between 

18-65 years, (ii) Expanded Disability Status Scale of between 4.0 and 6.5, (iii) fulfilling revised 

2005 McDonald criteria (see Chapter 1 for MS diagnostic criteria), and (iv) secondary 

progressive MS defined by clinically-confirmed disability worsening over the preceding two 

years. Patients were ineligible if they had corticosteroid treatment or relapse within three 

months of recruitment, or had received immunomodulatory or immunosuppressive 

medications within six months of recruitment. Detailed eligibility criteria are available 

elsewhere (Chataway et al., 2014). 

6.3.2. Randomisation  

Patients were randomised (1:1) with a centralised server to placebo and high-dose simvastatin 

(80 mg per day) groups.  The randomisation software automatically minimised the following 

variables between placebo and treatment groups: age (<45 and >= 45 years), gender, 

Expanded Disability Status Scale (4-5.5, and 6.0-6.5), centre (or MRI scanner), and assessing 

physician. Patients, treating physicians, and outcome assessors were blind to treatment 

allocation. The treatment allocation was masked to the lead author (Arman Eshaghi) who 

performed the image analysis. Protocol for compliance with treatment and other details are 

explained elsewhere (Chataway et al., 2014). 

6.3.3. Outcomes 

Patients underwent magnetic resonance imaging (MRI), clinical and cognitive assessments at 

baseline, after one year and two years from the study entry. This study was performed 

following the Declaration of Helsinki (Association, 2000) and Good Clinical Practice. Berkshire 
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Research Ethics Committee approved the protocol. Participants gave written informed 

consent before screening.  

6.3.4. Imaging protocol  

Patients were scanned at each visit (three visits in total) with 3D T1-weighted, double-echo 

proton density (PD) and T2-weighted MRI at two imaging centres in the UK with 1.5 Tesla and 

3 Tesla scanners. Scanner and MRI protocol remained unique for each participant throughout 

the trial. “Scanner” was a minimisation variable (as explained above) between treatment and 

placebo groups. I reported acquisition protocols in the Appendix (Supplementary Table 6-1).   

6.3.5. Clinical and cognitive outcomes 

Patients underwent comprehensive clinical and cognitive assessments. Here, I studied those 

outcomes that had shown significant (or marginally significant) changes in previous reports, 

which were the following: The Expanded Disability Status Scale, The Multiple Sclerosis Impact 

Scale 29v2 (total score and physical subscale)(Hobart et al., 2001), The Wechsler Abbreviated 

Test of Intelligence (WASI) Block Design (T-score) test (Wechsler, 2011), Paced-auditory 

serial addition test (PASAT) (Gronwall, 1977), and Frontal Assessment Battery (FAB) (Dubois 

et al., 2000). Block Design T-score had been calculated against an age-matched reference 

healthy group from the test manual (Dubois et al., 2000).  

6.3.6. Image analysis 

I performed image analysis based on the established pipeline for patients with MS (explained 

in the Methods of Chapter 4). My goals were to extract regional volumes, T2-weighted lesion 

masks and the whole brain percentage volume change with SIENA (Smith et al., 2001). Briefly, 

the pipeline included N4-bias field correction of T1-weighted scans to reduce intensity 

inhomogeneity (Tustison et al., 2010), constructing a symmetric within subject template for 

unbiased atrophy calculation (Reuter and Fischl, 2011), rigid transformation of T1-weighted, 

PD, and T2-weighted sequences to this space, automatic longitudinal lesion segmentation of 

visible T2-weighted lesions with Bayesian Model Selection (BaMoS) (Sudre et al., 2015; 

Carass et al., 2017), manual editing of these lesion masks and quality assurance with 3D-
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Slicer, filling of hypointense lesions in T1-weighted scans (Prados et al., 2016), brain 

segmentation and parcellation with Geodesic Information Flows (GIF) software (Cardoso et 

al., 2015).  Technical details are explained in detail in the Supplemental Methods. 

Supplemental Figure 6-1 shows the steps of this pipeline. Outputs of this pipeline were the 

following: (i) percentage whole brain volume change (SIENA PBVC), (ii) T2-weighted lesion 

masks, and (iii) regional brain volumes according to Neuromorphometrics' atlas, which is 

similar to the Desikan-Killiany-Tourville (Klein and Tourville, 2012) atlas available at 

http://braincolor.mindboggle.info, for each region. I summed volumes of the left and right 

hemispheres. 

6.3.7. Statistical analysis 

SIENA  

I used a linear regression model in which the percentage brain volume change between 

baseline and two-year follow-up visits was the response variable. This model included 

treatment allocation as the variable of interest, and the following nuisance variables:  age, 

gender, centre, and Expanded Disability Status Scale. I calculated treatment effect defined as 

the adjusted difference between percentage whole brain volume change of the two treatment 

groups, divided by the adjusted percentage whole brain volume change in the placebo group. 

I set alpha level at 0.05 for all the analyses presented in this work and adjusted univariate 

analyses for multiple comparisons with the false discovery rate method. I calculated the 

adjusted difference of the percentage whole brain volume change between placebo and 

treatment groups and compared it with the original report of this trial (Chataway et al., 2014) 

Univariate analysis of T2-weighted lesion load, clinical and cognitive changes 

Since the focus of this study was on dynamic changes, I extended the previous analyses  of 

clinical and cognitive outcomes–which were performed as pairwise average comparisons at 

each baseline and year two visit–to the analyses of rates of change in the two treatment and 

placebo groups. I aimed to identify variables with a significant difference in their rates of 

changes between the two groups including all the three visits, and to include them in 
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multivariate mechanistic models (see below). I used univariate linear mixed-effects models in 

which fixed-effects were time (years from the study entry), and the interaction of time with 

treatment allocation. I did not include a separate fixed-effects for treatment group; on the 

assumption that randomisation had worked flawlessly and both groups had similar values for 

dependent variables at baseline. I confirmed this assumption by comparing baseline values 

with a separate model including treatment group as an extra fixed-effect and reported the p-

values. Random effects included time nested in “participant”. To allow for repeated measures, 

I included random intercept and slope as correlated random effects. In these models, 

dependent variables were cognitive or clinical outcomes (seven separate models for T2-

weighted lesion load, PASAT, Block Design, Expanded Disability Status Scale, FAB, and 

Multiple Sclerosis Impact Scale 29v2 total and its physical subscale). I included age, gender, 

and centre as extra fixed-effects (nuisance) variables. I used NLME package (Pinheiro et al., 

2017) version 3.1-131 inside R version 3.4.0 (R Core Team, 2014).  

Multivariate analysis 

I performed multivariate analyses in the following steps: 

(i) Variable selection: to limit the analysis to measures with significant rates of change. 

(ii) Model construction: to formulate mechanistic models as statistical hypotheses. 

(iii) Model selection: to choose the most likely hypothesis. 

(iv) Parameter estimation: to quantify, in the most likely model, pathways between 

imaging, cognitive, patient-reported, and clinical variables. 

Variable selection and model construction  

I implemented multivariate analysis with structural equation modelling using Lavaan package 

version 0.5-23 (Rosseel, 2012) in R. I chose to include those outcomes from the univariate 

analyses (explained above) that had significant differences in their rate of change between 

two groups. Since nuisance variables (age, gender, and centre) did not affect the above 

univariate analyses, I did not include them in multivariate models. I hypothesised seven a priori 

models to explain relationships between these variables according to the literature and my 
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opinion (Bosma et al., 2015; Larochelle et al., 2016). In these models, the change in brain 

atrophy (percentage whole brain volume change) was the primary mediator variable that 

transmitted  the  treatment effects with different pathways in different models to Expanded 

Disability Status Scale, Block Design and Multiple Sclerosis Impact Scale (e.g., 

TreatmentèSIENAèEDSS or TreatmentèSIENAèBlock Design in Figure 6-3). I 

only included the physical subtest of the Multiple Sclerosis Impact Scale (instead of the total 

score), because changes in this subtest drove the change in total score.  I also tested 

treatment effects on the outcomes independent of atrophy, which I refer to as direct treatment 

effects (e.g., TreatmentèEDSS or TreatmentèBlock Design in Figure 6-3). Multiple 

Sclerosis Impact Scale was always assumed to be the last in the cascade of changes because 

it is a subjective patient-reported questionnaire expected to reflect consequences of clinical 

and cognitive improvements. Figure 6-3 shows a priori models in order of the increasing 

complexity from A to G. These models are as follows: 

(A) Full mediation model: treatment effects on disability, cognition and patient-

reported outcomes are completely transmitted via brain volume loss. There are 

no direct treatment effects on disability outcomes. 

(B) Treatment effect is transmitted via brain volume loss to cognitive and clinical 

outcomes. Clinical and cognitive changes in turn affect the patient-reported 

outcome. There are no direct effects on clinical or disability outcomes. 

(C) Treatment effect is partially transmitted to slow disability via brain volume loss. 

Brain volume loss has no effect on the cognitive outcome.  

(D) Treatment effect is partially transmitted to the cognitive outcome, in addition to 

a direct treatment effect on the cognitive outcome. There is only a direct (but 

not indirect) treatment effect on the clinical disability.  

(E) Treatment effect is directly and indirectly (via brain atrophy) transmitted to the 

cognitive and clinical disability outcomes. The patient-reported outcome is only 
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affected by changes in clinical disability, but not changes in cognition or 

atrophy.  

(F) Treatment effect is directly and indirectly (via brain atrophy) transmitted to the 

clinical disability and cognitive outcome. The patient-reported outcome is 

affected by the changes in the clinical disability and brain atrophy but not in 

cognition.  

(G)  Partial mediation model: cognition and disability are affected by direct and 

indirect treatment effects (via brain volume loss). The patient reported outcome 

is affected by changes in cognitive, disability and brain volume loss.  

In these models, I calculated the difference between baseline and second-year values for each 

variable and divided it by two. I refer to this as the annualised change throughout this chapter. 

In case of SIENA, I entered the percentage whole brain volume change calculated between 

second-year and baseline scans.  

Model selection and parameter estimation 

I fitted all the above seven models using full-information maximum likelihood to adjust for 

missingness, and with the robust standard-errors to account for non-normality (e.g., Expanded 

Disability Status Scale). I assessed the goodness-of-fit for each model and reported the 

parameters for the most likely model. To evaluate overall fit of a model I used comparative fit 

index (CFI; compares the fit of the model with a model with uncorrelated variables; acceptable 

fit>0.95, good fit >0.97), standardised root mean square residual (SRMSR; square root of the 

average of the covariance of residuals, good fit<0.08) and root-mean-squared error of 

approximation (RMSEA; discrepancy between the model and population covariance; good fit 

<0.06) (Hu and Bentler, 1999). To estimate the relative quality of a model given the data, I 

calculated information criteria (Akaike information criterion [AIC], and Bayesian information 

criterion [BIC]) of each model. Interpreting raw AIC and BIC values are cumbersome; 

therefore, I calculated Akaike and Schwarz weights to represent conditional probability of each 

model given the data directly (Wagenmakers and Farrell, 2004). To have an unbiased 
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estimate I calculated fit measures (all those listed above) iteratively on 1000 bootstrap 

samples and reported the median of bootstrap results.  

6.3.8. Regional rates of atrophy 

I performed analyses to calculate and compare regional atrophy rates with a univariate mixed-

effects model including age, gender, centre, and total intracranial volume to adjust for the head 

size (Malone et al., 2015). I reported brain regions that had a significant rate of change in the 

combined treatment and placebo groups as well as separate rates for each treatment group. 

Further details of statistical modelling are in the Appendix.   
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6.4. Results 

6.4.1. Baseline characteristics  

A total of 140 participants were randomised, 9 of whom were lost to follow-up. I, therefore, 

analysed 131 participants (see Figure 6-1 for available data at each visit), whom had been 

scanned with 3 Tesla (total=88, placebo=45, treatment=43) and 1.5 Tesla (total=43, 

placebo=19, treatment=24) scanners. In the combined analysis of treatment and placebo 

groups at baseline, the median Expanded Disability Status Scale was 6 (range=4-7), average 

years (±standard deviation) for age was 51.2 (±6.97), for disease duration was 21.17(±8.65), 

and for progression duration was 7.14 (±5.21). There were twice as many women in this trial 

as men (ratio=2.04). At baseline, there was no significant difference in age, gender ratio, 

duration of MS and duration of progression, average years of education, and Expanded 

Disability Status Scale between treatment and placebo groups. Table 6-1 shows baseline 

characteristics of the participants.  

Figure 6-1. Trial profile and available data. 

 

This diagram shows the flow of participants from screening to inclusion in the MS-STAT trial. 

Available clinical, cognitive, and imaging variables are shown in the table for all the three 
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visits. EDSS; Expanded Disability Status Scale, MRI; magnetic resonance imaging, MSIS; 

Multiple Sclerosis Impact Scale.  

 

Table 6-1. Baseline characteristics of the participants. 

 Treatment Placebo Combined 

No. of participants  67 64 131 

Average age in years (SD) 51.58 (7.03) 50.9 (6.94) 51.2 (6.97) 

Females (males) 46 (21) 42 (22) 88 (43) 

Duration of SPMS in years 

(SD) 

7.41 (5.74) 6.87 (4.62) 7.14 (5.21) 

Duration of MS in years 

(SD) 

22.32 (8.27) 19.97 (8.94) 21.17 (8.65) 

 Median EDSS (range) 6 (6-6.5) 6 (4-7) 6 (4-7) 

Average years of education 

(SD) 

13.69 (3.07) 13.42 (3.2) 13.56 (3.16) 

Abbreviations: SD; standard deviation, SPMS; secondary-progressive multiple sclerosis, MS; 

multiple sclerosis,  

EDSS; Kurtzke’s Expanded-Disability Status Scale.  

6.4.2. The rate of brain atrophy was slower in the treatment group 

The average annual percentage whole brain volume change between baseline and second-

year in the placebo group was -0.657 (SD=0.62), which was significantly lower (faster atrophy, 

P=0.002) than the treatment group (average = -0.42, SD=0.50). This means that there was a 

significant reduction of atrophy (Cohen’s d = 0.409, which shows mild to moderate effect) as 

measured by SIENA percentage whole brain volume change when comparing simvastatin and 

placebo groups (Figure 6-2). The adjusted difference was 0.245 (95%CI=0.087 to 0.403), 
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which was indistinguishable from the original report of this trial 0.254 (95% confidence interval 

[CI]: 0.087 to 0.422).  

6.4.3. There was no treatment effect on the rate of change in T2-weighted lesion volume 

At baseline, lesion volume in the placebo group was 22.14 mL (95%CI: 18.82 to 25.46), which 

was not different (p=0.33) from the treatment group (average=19.3, 95% CI: 13.48 to 25.12). 

Lesion volumes had a significant rate of change in each group: average [95%CI] for the 

treatment group was 0.55 ml/year [0.25 to 0.85], and the average for the placebo group was 

0.72 ml/year [0.55 to 0.87]). However, rates of change were similar between treatment and 

placebo groups. 

6.4.4. Rate of change was different in some of the clinical and cognitive measures 

At baseline, there was no significant difference in the Expanded Disability Status Scale 

between placebo and treatment groups. However, there was a significant (P=0.002) difference 

in the rate (predicted rate ± standard-error) of annual Expanded Disability Status Scale 

worsening between placebo (0.21 ± 0.03) and treatment groups (0.08 ± 0.04). While there 

was no significant difference in the physical subtest of Multiple Sclerosis Impact Scale 29 at 

baseline, there was a significant (P=0.03) difference in its annual rate of change between the 

placebo (2.05 ± 0.56) and treatment groups (0.43 ± 0.72). Similarly, the total Multiple Sclerosis 

Impact Scale-29 score did not show a significant difference at baseline between groups, but 

its annual rate of change was significantly different (P=0.03) between placebo (2.37 ± 0.75) 

and treatment (0.26 ± 0.97) groups. In Block Design T-score, there was no significant 

difference at baseline between groups, but there was a significant (P=0.04) difference 

between annual rates of change in placebo (-0.13 ± 0.33) and treatment (0.92 ± 0.45) groups. 

There were no differences in rates of change between treatment and placebo groups in 

PASAT and FAB. Figure 6-2 shows the rate of change between baseline and second-year 

visits.  
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Figure 6-2. Outcomes with a significant treatment effect. 

 

The annual rate of changes for MRI, clinical, cognitive and patient-reported outcomes included 

in the mechanistic models (EDSS rates are jittered vertically by 0.1 to enable visualising 

overlapping values). In each of the four plots, horizontal black lines show the medians of the 

variable shown on y-axes, for placebo (blue) and statin groups (red). EDSS; Expanded 

Disability Status Scale, MSIS; Multiple Sclerosis Impact Scale, PBVC; percentage brain 

volume change.  
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6.4.5. Model G was the most likely among seven a priori models. 

Model G showed the best overall fit among the seven models. Bootstrapped fit measures for 

model G are the following: CFI = 0.95, SRMR = 0.042, 𝜒R= 4.46 [p =0.28], RMSEA = 0.09 

[90%Ci=0, 0.18], Akaike weight =0.71, Schwarz weight = 0.46). Model G was 3.43 times 

(STUVM	W	XJY:JV	ZV:[\]
	STUVM	^	XJY:JV	ZV:[\]

= 	 N.`L
N.RN

) more likely than the second-best model, and 15.71 times more 

likely than the third best model (E) regarding Kullback–Leibler discrepancy. Model G was 1.8 

time (STUVM	W	ab\ZYcd	ZV:[\]
	STUVM	^	ab\ZYcd	ZV:[\]

= 	 N.ef
	N.Rg

) more likely regarding Schwarz weights than the second-

best model (B), and 3.43 times more likely than the third best model (F). Figure 6-3 shows fit 

measures for other models.  

Figure 6-3. Candidate models and their fit measures. 

 

 

Seven models in order of increasing complexity from A to G are shown. Annualised variables 

represent rates of change between baseline and second-year follow-up visits. Each rectangle 

represents a variable. Arrows correspond to regressions between variables, where an arrow 

starts from a predictor and points to the dependent variable. The bar plots in the bottom row 
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compare fit-measures that are shown on the y-axis of each bar plots and the seven models 

on the x-axis. Each colour corresponds to one of the seven models shown in the preceding 

rows. According to these fit-measures, model G was the most likely model given data, because 

it had the highest Akaike and Schwarz weights, highest CFI, lowest SRMR, and lowest 

RMSEA. EDSS; Expanded Disability Status Scale, PBVC; percentage brain volume change, 

MSIS; Multiple Sclerosis Impact Scale. CFI; confirmatory factor index, SRMR; standardised 

root mean square residual, RMSEA; root mean squared error of approximation. 

Model G showed that both direct (non-standardised estimate=-0.086, standard error 

[SE]=0.044, p=0.047) and indirect effects of simvastatin on the Expanded Disability Status 

Scale, which were mediated by brain atrophy (beta=-0.039, SE=0.019, p=0.038), were 

significant. Since the estimate of the total effect of simvastatin on the Expanded Disability 

Status Scale was -0.126 (SE=0.046), this means that 30.9% (-0.039 / -0.126) of the treatment 

effect on Expanded Disability Status Scale was mediated by percentage whole brain volume 

change (atrophy), and the remaining 69.1% was direct (not explained by atrophy). Although 

there was a significant association between SIENA percentage whole brain volume change 

and Block Design T-score (beta=1.44, SE=0.530, p=0.006), evidence for the indirect treatment 

effect (that was mediated by brain atrophy) on Block Design T-score was weak (beta=0.338, 

SE=0.190, p =0.075), which was 33.4% of the total effect of simvastatin on Block Design 

(beta=1.01, SE=0.52, p=0.05). According to the standardised estimates (see Figure 6-4) of 

model G, treatment slowed atrophy to 0.205 SD above the average (holding Expanded 

Disability Status Scale constant); but only part of this effect was transmitted to Expanded 

Disability Status Scale, such that for each standard deviation reduction in atrophy (faster loss) 

there was 0.364 SD faster Expanded Disability Status Scale worsening (holding other 

variables constant). Treatment slowed the rate of Expanded Disability Status Scale worsening 

to 0.164 SD below the average. Since SD of brain atrophy rate was 0.57, every annual 0.57 

reduction in atrophy rate (faster atrophy) corresponded to 0.364 increase in the annual rate of 

Expanded Disability Status Scale worsening and 0.325 reduction in annual rate of Block 
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Design scores. According to residual variances (  in Figure 6-4) model G explains the 

following shares of variance: 4.2% of SIENA PBVC, 18.4% of annualised Expanded Disability 

Status Scale change, 5.9% of physical Multiple Sclerosis Impact Scale, and 13.4% of Block 

Design T-score. Figure 6-4 shows other estimates.  

 

Figure 6-4. Parameter estimates of the most likely model. 

 

 

This figure shows the parameter estimates of model G (see also Figure 6-3). Each arrow is a 

regression “path” where the arrow starts from the predictor(s) and points to the dependent 

variable(s). Significant paths (p<0.05) are shown with bold arrows, while non-significant paths 

are thinner and grey. Triangles represent intercepts of the model, which are the average 

changes for the merged placebo and treatment groups for each variable. Black numbers on 

each arrow represent regression coefficients and their P-values. Blue numbers represent 

standardised regression coefficient, which can be interpreted as changes in standard 

deviation (SD). For example, the combined group of placebo and treatment on average has -

0.658 of annual PBVC, which is 0.23 higher in the treatment group (p=0.019). Treatment 

increases the PBVC (or slows atrophy) by 0.205 SD.   Indicates standardised residual 
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variances. For example, the residual variance of annualised EDSS change is 0.816, which 

means 18.4% (1-0.816) of annualised EDSS change is explained in the model. PBVC; 

percentage brain volume change, EDSS; Expanded Disability Status Scale, MSIS; Multiple 

Sclerosis Impact Scale (physical subtest). 

6.4.6. Regional analysis 

In the analysis of the merged treatment and placebo groups several regions showed 

significant rate of loss over time, the fastest of which was the lateral ventricle (1.95% annual 

expansion [1.53%, 2.38%]), and then the transverse temporal gyrus (estimated annual rate= 

-1.17% [95% CI: -0.88%, -1.46%]. Rates of volume loss in the postcentral and precentral gyri, 

frontal regions, anterior and middle parts of the cingulate cortex, precuneus, and the thalamus 

were also significant (see Figure 6-5 for the full list). When comparing placebo and simvastatin 

groups, the rates of atrophy were numerically slower in several regions in the simvastatin 

group (see Figure 6-5), however, only the transverse temporal gyrus showed a significant 

difference (p=0.002) in rates of change (estimated annual rate [95% CI] in placebo group = -

1.58% [-1.17%, -1.98%]), simvastatin group = -0.79% [-0.22%, -1.35%]) (50% treatment 

effect). 
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Figure 6-5. Atrophy rates in areas with significant ongoing change. 

 

 

 

This graph shows the adjusted annual rates of volume loss (or expansion for the lateral 

ventricles) which are calculated from the coefficient of the interaction of time and treatment 

group in the mixed-effects models constructed separately for each region. Only regions with 

significant volume change in the combined placebo and treatment analysis are shown 

(adjusted for multiple comparisons with the false-discovery method). Different colours 

correspond to different regions that are shown with the same appearance in left on the T1-

weighted scan of one of the patients (chosen at random) and, in the right, as bar plots. Two 

bar plots are shown; the above shows the rate of change in the combined analysis of placebo 
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and treatment groups on the horizontal axis and different regions on the vertical axis. The 

lower bar plot shows the rate of change for the same areas for placebo and simvastatin groups 

separately. This bar plot shows that only the transverse temporal gyrus shows a significant 

difference in the rate of change when comparing simvastatin and placebo groups. The error 

bars indicate 95% confidence interval of the rate of change. 
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6.5. Discussion 

In this study, I compared a series of mechanistic hypotheses to investigate how a potential 

neuroprotective drug can influence imaging, clinical, cognitive, and patient-reported 

outcomes. Simvastatin directly and indirectly, by way of slowing the atrophy rate, slowed the 

worsening of Expanded Disability Status Scale. It also slowed the worsening of patient-

reported outcomes by slowing the rates of atrophy and Expanded Disability Status Scale 

worsening. Slowing the atrophy rate also led to delaying the deterioration of Block Design test. 

Moreover, I showed that in long-standing secondary progressive multiple sclerosis, the 

spatiotemporal pattern of ongoing atrophy was generalised, in that the highest rate of change 

was seen in the lateral ventricles which is a non-specific and generalised measure of atrophy. 

The simvastatin effect on brain volume loss was driven by a general reduction in volume loss 

in multiple regions, but a significant effect was only seen in a region with the highest rate in 

the grey matter (the transverse temporal gyrus). To the best of my knowledge, this study was 

the first to explore mechanistic pathways that give rise to clinical and cognitive changes in 

secondary progressive multiple sclerosis with a potential neuroprotective treatment. The 

results on the concomitant changes of imaging and clinical outcomes in late-stage secondary 

progressive MS provide novel insights into in vivo pathomechanisms of progressive MS, which 

have rarely been investigated before. I also reproduced the findings of the original simvastatin 

study (Chataway et al., 2014), independently, with a novel and blinded image analysis 

pipeline.  

Mechanistic models showed that a reduction in the rate of Expanded Disability Status Scale 

worsening was partly explained by the treatment effects on brain atrophy, and partly by a 

separate direct treatment effect. This means that simvastatin reduced the rate of disability 

worsening via other pathways (not measured directly in the model), which could include 

vascular, anti-oxidative, diffuse anti-inflammatory effects, or effects on spinal cord atrophy, 

and are not explained by the treatment effects on brain atrophy alone. A major difference 

between my study and the previous analyses of MS-STAT, is that I calculated rates of change 
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in imaging and clinical outcomes, rather than average differences between treatment groups 

at each visit which have been reported before (Chataway et al., 2014; Chan et al., 2017). While 

Frontal Assessment Battery (FAB) was found to be significantly different between placebo and 

treatment groups at the last visit in the report of pre-planned statistical analysis of this trial, I 

did not find a significant difference in its rate of change in this study. I, therefore, included 

Block Design scores in the mechanistic models but not FAB. Block design evaluates the 

visuospatial memory and depends on fine motor coordination (as it is timed) (Groth-Marnat 

and Teal, 2000). While there was an association between the rate of brain volume loss and 

Block Design test, evidence for an indirect treatment effect on this cognitive outcome was 

weaker than Expanded Disability Status Scale. Mechanistic multivariate models, therefore, 

have a high potential to quantify and elucidate interrelations between multi-modal measures 

acquired during a clinical trial.  

A novelty of my study was that in contrast to previous studies on convenience samples of 

patients with (early) progressive multiple sclerosis, I focused on the spatiotemporal pattern of 

ongoing atrophy in a homogenous population of long-standing secondary progressive multiple 

sclerosis –a group that has been neglected in multiple sclerosis research (Thompson, 2015). 

The regional analysis showed that localised atrophy in the temporal lobe, frontal lobe, limbic 

cortex, and the basal ganglia continues relentlessly in long-standing secondary progressive 

multiple sclerosis, but the pattern of ongoing atrophy was generalised. Regional susceptibility 

of neuroanatomical areas to neurodegeneration manifests by faster percentage of atrophy 

rates than that of the entire brain. Annual percentage volume loss is up to 4% in the 

hippocampus in Alzheimer’s disease (Henneman et al., 2009; Josephs et al., 2017) , while it 

is up to 1% for the entire brain. In Huntington’s disease, the caudate has 2.1% atrophy rate, 

while this rate is 1.2% for the entire brain (Tabrizi et al., 2012). In progressive supranuclear 

palsy, the midbrain shows atrophy rate of 2.2% while this is up to 1.2% in the entire brain 

(Paviour et al., 2006).  In multiple sclerosis, the basal ganglia atrophy rates can be up to 1.5% 

(see Chapter 4), while the whole brain atrophy is 0.6%. In this study, I found that the highest 

rate of atrophy across different structures was in the lateral ventricle, which is a non-specific 
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generalised measure of atrophy. Unlike earlier secondary progressive or primary progressive 

multiple sclerosis patients, none of the deep grey matter nuclei showed a higher rate than total 

brain rate (the thalamic atrophy rate was 0.24%), while the whole brain volume loss on 

average was similar to previous studies (0.65%). My results are in line with pathological 

observations that generalised neurodegeneration may dominate long-standing secondary 

progressive multiple sclerosis and become independent of focal inflammation and the lack of 

effectiveness of anti-inflammatory treatments in late progressive patients (Carassiti et al., n.d.; 

Hawker et al., 2009), while a more selective pattern of atrophy is seen in earlier multiple 

sclerosis alongside a more focal inflammation that can respond to immunomodulation 

(Montalban et al., 2017). These findings support the notion that neuroprotective treatments 

should become the primary target of drug development in late progressive multiple sclerosis.  

Although there was a general reduction in several regions in the simvastatin group, only the 

treatment effect on the transverse temporal gyrus was significant–which also had the highest 

rate of volume loss in the grey matter. Therefore, a general effect of slowing atrophy rate 

became detectable in a region with a higher rate. Temporal lobe shows an acceleration in 

volume loss during secondary progressive multiple sclerosis, which is mostly seen in the 

insula and deeply located temporal sulci (Haider et al., 2016b). I can speculate that transverse 

temporal gyrus is spared until later stages of secondary progressive multiple sclerosis, and 

showed a higher rate after exhaustion of other areas with earlier atrophy. 

I used a novel image analysis pipeline alongside SIENA and reproduced the original findings 

of the MS-STAT trial independently, which was conducted by boundary-shift integral (BSI) and 

a different segmentation method and registration. The differences between rates of atrophy 

between placebo and treatment groups were in perfect agreement (average [95%CI] 

difference between groups in my study: 0.245 [0.087 to 0.403], and in the original report: 0.254 

[0.087 to 0.422]). It was initially reported that treatment effect was 43%; however, the 

treatment effect for this study was 35%. This is a methodological artefact due to a slightly 

faster average atrophy rates calculated by SIENA (compared to BSI). A previous 

methodological comparison showed that SIENA produces 20% faster atrophy rates, while 
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these two methods had an excellent agreement otherwise (Smith et al., 2007). The treatment 

effect was calculated based on atrophy rates as hMYbViTj]cVY]kVl]
hMYbViT

. SIENA reduced the 

treatment effect by increasing the denominator of fraction while the numerator (difference) 

remained almost the same.  

This study had a few limitations. First, information on cardiovascular comorbidities, in which 

statins have proven effects, was not collected in this trial. Therefore, it remains unclear 

whether this can influence the treatment response to simvastatin in multiple sclerosis. 

Secondly, my study is limited by its post hoc nature. While pre-planned statistical analyses of 

clinical trials are the gold-standard to compare treatments, post hoc analyses may 

nevertheless provide information to generate new hypotheses from the wealth of information 

collected as part of a trial.  

In this chapter, I showed that simvastatin mainly affects motor functioning directly, and 

indirectly by slowing atrophy rates, both of which contribute to improved patient-reported 

outcomes. A weaker simvastatin effect on visuospatial memory may also exist that is mediated 

by slowing atrophy rates. I also showed that in long-standing SPMS the ongoing atrophy shifts 

from a localised a more generalised pattern, and that simvastatin had a general effect to 

reduce the whole brain atrophy rates. 
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7. Conclusions and future directions 

7.1. Novel contributions to the field 

In this thesis, I showed that imaging derived measures of brain atrophy have diagnostic and 

prognostic values and may be used in stratifying patients with multiple sclerosis. The novel 

contributions of this thesis, which to my knowledge have been reported here for the first time, 

are as follows: 

1) Regional grey matter volumes can be used in automatic classification algorithms to 

distinguish multiple sclerosis from neuromyelitis optica. 

2) The rate of atrophy in secondary progressive multiple sclerosis accelerates in the cortical 

regions, most notably in the parietal and temporal lobes. 

3) Among the grey matter regions, the thalamic volume has the best prognostic value for 

predicting time to disability progression. This is similar between relapse-onset and 

primary-progressive multiple sclerosis.  

4) Longitudinal pattern of regional atrophy progression follows an identifiable sequence 

which is similar in many regions between relapse-onset and primary progressive multiple 

sclerosis. This sequence starts from the thalamus, precuneus, posterior cingulate, and 

brainstem in both relapse-onset and primary progressive multiple sclerosis. The 

cerebellum showed a differential pattern, which was an early atrophy in relapse-onset 

multiple sclerosis and a later atrophy in primary progressive multiple sclerosis.  

5) The sequence of atrophy progression can be used to stratify patients by assigning a stage 

according to the “number of atrophic brain regions”.  

6) As reported before, relentless loss of grey matter in secondary progressive multiple 

sclerosis can be delayed by a potential neuroprotective drug (simvastatin). Here, I showed 

for the first time that the effects of simvastatin seem to be global, with the highest effect 

seen in the region with the highest rate of atrophy (transverse temporal gyrus).  

7) I applied mechanistic multivariate models to test several hypotheses of how simvastatin 

affects neuroimaging, clinical and cognitive outcomes. I found that the following causal 

chain of events was the most plausible: treatment slows brain atrophy, which in turn slows 
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the deterioration of cognitive functioning and disability accrual. Reduction in brain atrophy 

rate, in addition to the reduction of clinical and cognitive deterioration, may cause an 

improvement in the patient-reported outcome measure.  

 

7.2. Future directions 

7.2.1. Large prospective studies  

Longitudinal prospective studies of large numbers of patients are lacking in the field of multiple 

sclerosis. I have therefore retrospectively analysed a large number of patients to calculate 

rates of change across brain regions (Chapters 4 and 5). Nonetheless, these findings have to 

be replicated when future prospective studies of multiple sclerosis become available. 

Prospective longitudinal studies have already been performed in Alzheimer’s (Weiner et al., 

2017) (Alzheimer's Disease Neuroimaging Initiative) and Parkinson’s disease (Parkinson’s 

Progression Markers Initiative) which are success stories for study designs in multiple 

sclerosis.  

7.2.2. Mechanisms of disease progression 

An important aim of progressive multiple sclerosis research is the discovery of underlying 

mechanisms that lead to disability accrual and disease progression (Ontaneda et al., 2017). I 

expect multivariate mechanistic models (such as the one used in Chapter 6) to become more 

common in research studies. These models have the potential to formulate complicated 

scientific hypotheses as tractable statistical models and can, therefore, provide a 

straightforward answer to research questions of underlying mechanisms. I aim to continue this 

specific strand of research following my PhD.  

7.2.3. Specific and more precise imaging modalities 

A major challenge in applying atrophy at the individual patient level was the high variability 

(e.g., wide confidence intervals of atrophy rates reported in Chapter 4). I, therefore, only 

showed the importance of imaging-derived atrophy to assess the evolution of atrophy over 

time in groups of patients. I expect in future by understanding the mechanisms of the 
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physiological variance of structural measures (Nakamura et al., 2015) and improvement in 

image acquisition techniques (e.g., reducing motion artefacts) to have atrophy measures that 

can be applied at the individual subject level. Another solution to this problem is the integration 

of multimodal data to look at the underlying driver of atrophy (which is neurodegeneration). 

For example, one can look at the rate of neurodegeneration by integrating cerebrospinal fluid 

markers of neurodegeneration (neurofilament level), with ophthalmological imaging (optical 

coherence tomography) and magnetic resonance imaging. Other specific neuroimaging 

modalities such as the positron emission tomography have the potential to address this 

challenge (Freeman et al., 2015).  

7.2.4. Large healthcare records and Big Data analytics 

The availability of a large number of digital health data, if tied with available imaging data, can 

facilitate a better understanding of disease progression in multiple sclerosis (Kalincik et al., 

2017; Lorscheider et al., 2017b; Wijnands et al., 2017). These studies will become more 

informative in future by addition of imaging data to the available large health registries in 

developed countries (Melão, 2017). Retrospective inspections suffer from inherent limitations. 

This, in future, can be addressed by real-time monitoring of disability by the analysis of digital 

sensors that can report several mobility measures using simple digital gadgets (smartphones 

or watches) (Lopez-Martinez and Picard, 2016; Moon et al., 2017), which may facilitate the 

understanding of multiple sclerosis disease progression.  
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Appendix 

Chapter 3 

Supplementary Table 3-1. Imaging protocol for each cohort at Tehran and Padua. 

Parameter Tehran Padua 

Field strength 3T 1.5T 

Head receiver coil 12 channel 16 channel 

Sequence: T1 -

weighted 

  

TR/TE 2530 / 3.44 ms 25/4.6 ms 

Voxel size 1x1x1 mm 1x1x1 mm 

TI 1100 ms 2500 ms 

FOV 265 mm 250 mm 

Sequence: T2-

weighted/FLAIR 

  

TR/TE 4000/91 ms 1000/120 

Slice thickness 3 mm 3 mm 

FOV 220 mm 250 mm 

Number of slices 42 50 
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Supplementary Table 3-2. Disease-modifying treatments for each centre. 

 Italy Iran 

 NMO 

(N=20) 

MS 

(N=24) 

NMO 

(N=30) 

MS 

(N=25) 

No treatment 

 

7 3 4 5 

Treatments: 

 

    

Cyclophosphamide 6 – 1 – 

Rituximab 3 – – – 

Azathioprine 3 – 18 2 

Methotrexate 1 – 1 – 

Mitoxantrone – – 1 1 

Interferon beta – 14 – 17 

Mycophenolate 

mofetil 

– – 5 – 

Fingolimod – 4 – – 

Natalizumab – 2 – – 

Copaxone – 1 – – 
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Supplementary Figure 0-1. Flow diagram for the diagnostic accuracy of the random-forest classifier in people with multiple 

sclerosis and neuromyelitis optica. 
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Supplementary Figure 0-2. Standardised lesion volume in people with multiple sclerosis and neuromyelitis optica. 
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Chapter 4  

 
Supplementary Table 4-1.  T1-weighted MRI parameters and acquisition sites of the 

included participants. 

Centre London Milan Graz Barcelona Amsterdam Rome Siena PPMI 

Magnetic 

field 
1.5 Tesla 3 Tesla 1.5 Tesla 3 Tesla 3 Tesla 1.5 Tesla 3 Tesla 1.5 Tesla 1.5 Tesla 1.5 Tesla 3 Tesla 

Vendor 
General Electric 

Signa 

General 

Electric Signa 

General 

Electric 

Signa 

Philips 

Achieva 

Siemens, 

Avanto 

Philips  

Intera 

Siemens 

Tim Trio 

Siemens 

Symphon

y 

Siemens 

Tim Trio 
Siemens Vision 

Siemens 

Avanto 

Philips 

Gyroscan 

Siemens 

Tim Trio 

Years of 

recruitment 
1999-2006 1998-2005 

1998-

2010 

2011-

2016 

2007-

2014 

2008-

2015 
2006-2013 

2013-

2016 
2010-2016 2004-2007 

2012-

2016 
1999-2013 

2010-

2015 

Included 

studies 
1 1 2 2 1 1 1 1 1 1 1 1 1 

Voxel 

dimension 

3D (1.2x1.2x1.5 

mm) 

3D 

(1.2x1.2x1.2) 

3D 

(1.2x1.2x

1.5) 

3D 

(1x1x1 

mm) 

3D 

(1x1x1 

mm) 

3D 

(0.89x0.

89x1  

mm) 

3D (1x1x1 

mm) 

3D 

(1x1x1 

mm) 

3D (1x1x1.2 

mm) 
3D (1x1x1 mm) 

3D 

(1x1x1 

mm) 

2D 

(0.97x0.97x3

mm) 

3D 

(1x1x1m

m) 

TR 13.3 ms 14.3 ms 29 ms 6.8 ms 2000 ms 25 ms 1900 ms 1980 ms 2300 ms 4000 ms 9000 ms 35 ms 2300 

TE 4.2 ms 5.1  ms 15  ms 3.1 ms 3.93 ms 4.6 ms 2.6 ms 3.1 ms 2.98 ms 20 ms 89 ms 10 ms 2.52 

Matrix size 256x256 256x256 256x256 256x256 256*224 256*256 176*221 256x256 256x240 180x256 192x256 256x256 176x240 

Number of 

slices 
124 156 124 256 208 220 256 176 128 256 160 50 256 

Number of participants 

HCs 39 10 0 102 0 0 0 0 0 0 0 23 29 

CIS 0 22 60 0 11 0 78 0 76 4 1 1 0 

RRMS 33 0 93 46 30 37 77 57 14 141 64 110 0 

SPMS 0 6 5 34 11 17 7 5 0 43 6 0 0 

PPMS 44 0 0 42 14 0 1 0 0 24 0 0 0 

TR, repetition time; TE, echo time; ms, milliseconds; mm, millimetre; HCs, healthy controls; CIS, clinically isolated syndrome; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary-progressive multiple sclerosis; PPMS, 

primary-progressive multiple sclerosis. 
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Supplementary Table 4-2. MRI sequence used for lesion delineation. 

Centre London Milan Graz Barcelona Amsterdam Rome Siena PPMI 

Magnetic field 1.5 Tesla 3 Tesla 1.5 Tesla 3 Tesla 3 Tesla 1.5 Tesla 3 Tesla 1.5 Tesla 
1.5 

Tesla 
1.5 Tesla 3 Tesla 

Vendor 
General Electric 

Signa 

General 

Electric Signa 

General 

Electric 

Signa 

Philips 

Achieva 

Siemens 

Avanto 

Philips  

Intera 

Siemens 

Tim Trio 

Siemens 

Symphon

y 

Siemens 

Tim Trio 
Siemens Vision 

Siemen

s 

Avanto 

Philips 

Gyroscan 

Siemens 

Tim Trio 

Sequence T2-weighted 
PD-T2-

weighted 

PD-T2-

weighted 

PD-T2-

weighted 

PD-T2-

weighted 

PD-T2-

weighte

d 

FLAIR FLAIR FLAIR T2-weighted FLAIR  FLAIR – 

TE 80 ms 17-102 ms 
17-102 

ms 
19-85 ms 

28-113 

ms 

24-120 

ms 
69 ms 95 ms 93 ms 20 ms 89 ms 150 ms – 

TR 1720 ms 2000 ms 2000 ms 3500 ms 2560 ms 3350 ms 10000 ms 8500 ms 9000 ms 4000 ms 
9000 

ms 
9000 ms – 

TI –  – – – – 2500 ms 2440 ms 2500 ms 108 ms 
2500 

ms 
2725 ms – 

Matrix size 256x256 256x256 256x 256 240x240 256x256 256x256 192x256 192x256 400x512  256x256 
192x25

6 
256x256 – 

Slice 

thickness 
5 mm 5 mm 5 mm 3 mm 2.5 mm 3 mm 3 mm 3 mm 3 mm 3 mm 3 mm 3mm – 

Number of 

slices 
28 28 28 50 50 44 44 46 6 44 44 50 – 
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Supplementary Table 4-3. Rate of annual percentage change in volume.  

Mean  

HCs CIS RRMS SPMS PPMS 
predicted-slope  

(95% confidence-

interval) 

Whole brain 
-0.05 -0.16 -0.34 -0.38 -0.46 

(0.12, -0.22) (0.01, -0.33) (-0.17, -0.51) (-0.21, -0.55) (-0.29, -0.63) 

Cortical GM 
-0.34 -0.64 -0.67 -1.11 -0.79 

(-0.1, -0.59) (-0.4, -0.89) (-0.43, -0.91) ( -0.87, -1.35) (-0.55, -1.03) 

Frontal lobe GM 
-0.28 -0.62 -0.64 -1.17 -0.86 

(0.03, -0.59) (-0.3, -0.93) (-0.33,0.95) (-0.86, -1.48) (-0.55, -1.17) 

Temporal lobe 

GM 

-0.52 -0.75 -0.77 -1.21 -0.91 

(-0.23, -0.8) (-0.47, -1.04) (-0.48, -1.05) (-0.93, -1.5) (-0.63, -1.2) 

Parietal lobe GM 
-0.23 -0.63 -0.76 -1.24 -0.9 

(0.06, -0.52) (-0.34, -0.92 (-0.47, -1.05) (-0.95, -1.52) (-0.61, -1.18) 

Occipital lobe 

GM 

-0.43 -0.87 -0.79 -1.08 -0.61 

(-0.09, -0.77) (-0.53, -1.21) (-0.45, -1.13) (-0.73, -1.41) (-0.27, -0.95) 

Deep GM 
-0.94 -0.88 -1.34 -1.45 -1.66 

(-0.54, -1.33) (-0.49, -1.27) (-0.95, -1.73) (-1.06, -1.84) (-1.27, -2.05) 

Cerebellar GM 
-0.34 -0.52 -0.58 -0.97 -0.84 

(-0.03, -0.64) (-0.21, -0.82) (-0.28, -0.89) (-0.66, -1.27) (-0.53, -1.14) 

Brainstem  
-0.31 -0.34 -0.67 -0.98 -0.85 

(0.01, -0.62) (-0.03, -0.66) (-0.35, -0.98) (-0.66, -1.29) (-0.54, -1.17) 

 

White matter rates are not shown because the slopes of change were not significant.  

GM; grey matter, HC; healthy control, CIS; clinically isolated syndrome, RRMS; relapsing-

remitting multiple sclerosis; SPMS; secondary-progressive multiple sclerosis, PPMS; 

primary-progressive multiple sclerosis 
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Supplementary Table 4-4. Pairwise comparison of baseline volumes and rates of change 

adjusted for multiple comparisons with FDR method. 

Regions HC CIS RRMS SPMS PPMS 

Baseline 

volume 

Rate of 

change 

Baseline 

volume 

Rate of 

change 

Baseline 

volume 

Rate of 

change 

Baseline 

volume 

Rate of 

change 

Baseline 

volume 

Rate of 

change 

Whole brain volume 

HC - - ns ns <0.001 <0.01 <0.001 <0.01 <0.001 <0.001 

CIS   - - <0.001 <0.01 <0.001 <0.05 <0.01 <0.01 

RRMS     - - <0.001 ns ns ns 

SPMS       - - <0.05 ns 

PPMS         - - 

GM of the whole cortex 

 HC - - <0.05 ns <0.001 <0.05 <0.001 <0.01 <0.001 <0.01 

CIS   - - <0.001 ns <0.001 <0.05 <0.05 ns 

RRMS     - - <0.001 ns ns ns 

SPMS       - - ns ns 

PPMS         - - 

Frontal lobe GM  

HC - - ns ns <0.01 <0.05 <0.001 <0.01 <0.01 <0.01 

CIS   - - <0.001 ns <0.001 ns <0.01 ns 

RRMS     - - <0.001 ns ns ns 

SPMS       - - ns ns 

PPMS         - - 

Temporal lobe GM           

HC - - <0.01 ns <0.001 <0.05 <0.001 <0.001 <0.001 <0.01 

CIS   - - <0.001 ns <0.001 <0.05 <0.05 ns 

RRMS     - - <0.001 <0.05 ns ns 

SPMS       - - ns ns 

PPMS         - - 

Parietal lobe GM           

HC - - <0.05 ns <0.001 <0.01 <0.001 <0.01 <0.001 <0.01 

CIS   - - <0.001 ns <0.001 <0.05 <0.01 ns 

RRMS     - - <0.001 ns ns ns 

SPMS       - - <0.05 ns 

PPMS         - - 

Occipital lobe GM           

HC - - <0.001 ns <0.001 <0.05 <0.001 <0.01 <0.001 ns 

CIS   - - <0.01 ns <0.01 ns ns ns 

RRMS     - - ns ns ns ns 

SPMS       - - ns ns 

PPMS         - - 

Deep GM           

HC - - <0.001 ns <0.001 <0.01 <0.001 <0.01 <0.001 <0.01 

CIS   - - <0.001 <0.01 <0.001 <0.01 <0.05 <0.01 

RRMS     - - <0.001 ns ns ns 

SPMS       - - <0.001 ns 

PPMS         - - 

Cerebellar GM           

HC - - <0.05 ns <0.001 ns <0.001 <0.05 <0.01 <0.05 

CIS   - - <0.001 ns <0.001 <0.05 ns ns 
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RRMS     - - <0.001 ns ns ns 

SPMS       - - ns ns 

PPMS         - - 

Brainstem           

HC - - <0.001 ns <0.001 <0.05 <0.001 <0.001 <0.001 <0.01 

CIS   - - ns <0.05 <0.001 <0.01 <0.01 ns 

RRMS     - - <0.01 <0.05 <0.05 ns 

SPMS       - - ns ns 

PPMS         - - 

 

Each cell shows the corrected p-values of the comparison between the groups in the corresponding column and row. 

 

Abbreviations: HC, healthy control; CIS, clinically isolated syndrome; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary-progressive multiple sclerosis; PPMS, primary-

progressive multiple sclerosis; ns, non-significant. 
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Chapter 5 

Supplementary Table 1. MRI protocols for each participating centre.  

 T1-weighted MRI Sequence for lesion delineation 

 Magnetic 

field 

Vendor Voxel 

dimension 

TR TE Matrix 

size 

Slices MR 

Sequence 
TE TR TI Matrix size 

Slice 

thickness 

London 1.5T General Electric 

Signa 

3D  

(1.2x1.2x1.5 

mm) 

13.3 ms 4.2 ms 256x256 124 T2 80 ms 1720 ms – 256x256 5 mm 

 1.5T General Electric 

Signa 

3D 

 (1.2x1.2x1.2) 
14.3 ms 5.1 ms 256x256 156 PD-T2 17-102 ms 2000 ms  256x256 5 mm 

 1.5T General Electric 

Signa 

3D  

(1.2x1.2x1.5) 
29 ms 15 ms 256x256 124 PD-T2 17-102 ms 2000 ms – 256x 256 5 mm 

 3T Philips Achieva 3D  

(1x1x1 mm) 
6.8 ms 3.1 ms 256x256 256 PD-T2 19-85 ms 3500 ms – 240x240 3 mm 

Milan 1.5T Siemen Avanto 3D  

(1x1x1 mm) 
2000 ms 3.93 ms 256*224 208 PD-T2 28-113 ms 2560 ms – 256x256 2.5 mm 

 3T Philips Intera 3D  

(0.89x0.89x1 

mm) 

25 ms 4.6 ms 256*256 220 PD-T2 24-120 ms 3350 ms – 256x256 3 mm 

Graz 3T Siemens Tim 

Trio 

3D  

(1x1x1 mm) 
1900 ms 2.6 ms 176*221 256 FLAIR 69 ms 10000 ms 

2500 

ms 
192x256 3 mm 

Barcelo

na 

1.5T Siemens 

Symphony 

3D  

(1x1x1 mm) 
1980 ms 3.1 ms 256x256 176 FLAIR 95 ms 8500 ms 

2440 

ms 
192x256 3 mm 

 3T Siemens Tim 

Trio 

3D 

 (1x1x1.2 mm) 
2300 ms 2.98 ms 256x240 128 FLAIR 93 ms 9000 ms 

2500 

ms 
400x512  3 mm 

Amster

dam 

1.5T Siemens Vision 3D 

 (1x1x1 mm) 
4000 ms 20 ms 180x256 256 T2 20 ms 4000 ms 108 ms 256x256 3 mm 

Rome 1.5T Siemens Avanto 3D  

(1x1x1 mm) 
9000 ms 89 ms 192x256 160 FLAIR 89 ms 9000 ms 

2500 

ms 
192x256 3 mm 

Siena 1.5T Philips Gyroscan 2D 

(0.97x0.97x3mm

) 

35 ms 10 ms 256x256 50  FLAIR 150 ms 9000 ms 
2725 

ms 
256x256 3mm 

PPMI 3T Siemens Tim 

Trio 

3D  

(1x1x1mm) 
2300 ms 2.52 ms 176x240 256 – – – – – – 
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Supplementary Figure 0-3. Greedy ascent search. 

 

The most likely sequence of atrophy progression in relation to 10 randomly chosen 

initial sequences. The y-axis shows the data likelihood (calculated from Equation 1). 

The x-axis shows the number of iterations at which two events are randomly swapped 

in search for a higher sequence likelihood. This procedure was repeated during each 

cross-validation (10 times). 
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Supplementary Figure 0-4. Positional variance diagram for CIS/relapse-onset MS based on all brain regions. 
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Supplementary Figure 0-5. Positional variance diagram for PPMS based on all brain regions. 
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Chapter 6 

Supplemental methods 

Image analysis 

N4-bias field correction 

I used ANTs software version 2.2 (Tustison et al., 2010) to correct for the scanner-

field inhomogeneity in T1-weighted scans. I used Montreal Neurological Institute 

intracranial mask (Boyes et al., 2008) transferred with diffeomorphic registration 

(Avants et al., 2008) to the native space to limit the correction to the cranium.  

Symmetric within-subject template construction 

I constructed an isotropic symmetric template per subject using available time-points 

with iterative rigid registration (Reuter and Fischl, 2011; Leung et al., 2012). This step 

is necessary to avoid bias towards a time-point (e.g., baseline) since it distributes 

interpolation and segmentation errors across time-points for an unbiased atrophy 

calculation (Fox et al., 2011).  

Symmetric transformation 

I transferred T1-weighted, PD and T2-weighted scans to the within-subject template 

by applying the symmetric transformation matrix. I reconstructed scans with B-spline 

interpolation to minimise blurring artefacts.  

Automatic lesion segmentation  

I used Bayesian Model Selection (BaMoS) to segment white matter lesions 

longitudinally and produce lesion masks (Sudre et al., 2017). BaMoS is a multimodal 

method that integrates PD, T2-weighted, and T1-weighted segmentations to provide 

lesion masks. 
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Manual editing 

I used 3D-Slicer (https://www.slicer.org) version 4.6 to manually edit lesion masks 

acquired from BaMoS. 

White matter segmentation 

I used Geodesic Information Flows (GIF) version 3.0 to segment T1-weighted scans 

and calculate (normal-appearing) white matter masks. This mask enables filling 

hypointense white matter lesions while avoiding any change in ventricular sizes 

(Prados et al., 2016).  

T1-weighted hypointense lesion filling 

I used a longitudinal patch-based method to fill hypointense lesions on T1-weighted 

scans (Prados et al., 2016). I used white matter mask from the previous step as a 

reference to fill hypointense lesions. This step minimises erroneous segmentation of 

hypointense-lesions as grey matter and increases the precision of atrophy estimates 

as explained elsewhere (Prados et al., 2016). 

Brain segmentation and parcellation 

I used GIF to segment lesion-filled T1-weighted scans into grey matter, white matter, 

and CSF and to parcellate the brain to ~120 regions according to the Desikan-Killiany-

Tourville protocol (http://braincolor.mindboggle.info/index.html). I calculated the 

volume of each parcellated region by multiplying segmentation probability maps with 

the voxel volume.  

To calculate whole brain percentage atrophy I used SIENA (part of FSL version 5.0) 

(Smith et al., 2001). SIENA estimates the rate of atrophy by measuring the shift of 

brain edge over two separate time-points. To have consistent results between regional 

and global atrophy that were not limited by the differences in segmentation methods, 
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I used GIF masks within SIENA instead of BET (Smith, 2002) and FAST (Zhang et al., 

2001).  

Statistical analysis 

Regional analysis 

To explore regional treatment effects, and primary drivers of the total brain atrophy I 

summed respective regions from left and right hemispheres and constructed linear 

mixed-effects models for each area (~60 models), where the volume of a given area 

was the dependent variable. Independent variables (fixed effects and random effects) 

were similar to the models used for cognitive and clinical outcomes with an additional 

variable for total intracranial volume to adjust for the head size and scanner (1.5 Tesla 

or 3 Tesla). First, I extracted rates of atrophy for those regions that had a significant 

rate of change (significant slope), after adjustment for multiple comparisons with the 

false-discovery rate (Benjamini and Hochberg, 1995). With a similar model, I 

calculated the rate of change for treatment and placebo groups.  
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Supplementary table 6-1. MRI protocol.  

Sequence: T1-weighted 

Centre One Two 

Vendor General electric Signa Siemens 

Magnetic field 3 Tesla 1.5 Tesla 

Voxel dimension 3D (0.93x0.93x1.1 mm) 3D (1.25x1.25x1.2) 

Repetition time 

(TR) 

7.808 ms 2400 ms 

Echo time (TE) 3.004 ms 3.45 

Acquisition matrix  256x256 192x192 

Inversion time 450 ms 1000 ms 

Flip angle 20 8 

Field of view  192x192 

Number of slices 170 160 

 

Sequence: dual echo proton density and T2-weighted 

Centre One Two 

Voxel dimension 0.97x0.97x3.0 0.48x0.48x3.0 

Acquisition type 2D 2D 

Repetition time (TR) 2600 ms 4220 ms 

Spacing between slices  3 mm 3 mm 

Echo train length 10 5 

Acquisition matrix  256x256 424x512 

Flip angle 90 150 

Number of slices 46 46 
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Supplementary Figure 0-6. Image analysis pipeline. 
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