
1 Introduction 

The Geoweb (Haklay et al., 2008) is now taken for granted 
as part of the digital infrastructure of everyday modern life. 
Many applications and services directly benefit from user-
generated content contributed by a wide range of users 
through crowdsourcing projects. Over the past decade, it has 
become possible for a much wider group of contributors to 
create and share geographical information. 

Despite the success of many crowdsourcing projects, the 
impact of their inherent demographic biases (e.g. gender, 
educational and socio-economic background), as well as 
biases in temporal, spatial, and thematic components of the 
contributions on the data are not well understood. These 
biases, which can ultimately determine the characteristics of 
spatial data, are inevitable in many crowdsourcing projects 
and are integral to the information that is held by them (Bell et 
al., 2015; Salk et al., 2016; Brown, 2017). 

While quality issues of crowd-sourced data have been 
studied widely, the identification and estimation of biases in 
crowd-sourced projects have not received the same attention. 
This is due mainly to the lack of availability of the (geo-) 
demographic data of the contributors, which is either 
unrecorded (e.g. OpenStreetMap - OSM) or inaccessible due 
to data protection (e.g. Google MapMaker). Therefore 
understanding the impacts of demographic biases on 
crowdsourced maps is challenged by a lack of data on these 
aspects. Mullen et al. (2015) evaluated the impacts of (geo-) 
demographic characteristics on the spatial accuracy in two 
Volunteer Geographic Information (VGI) projects. However, 
the study was limited by the inference of the demographic 
structure of the population by local census data rather than 
recorded demographic data. A further study by Gardner et al., 
(2018) built on this approach but instead collected 
demographic data from individual OSM users to explore the 
impact of (geo-) demographics on VGI (in this case gender), 

conducted in the context of OSM. It revealed that men have a 
higher propensity than women to modify existing data as well 
as demonstrating more variance in their preferences for 
feature tagging. These observed differences in gendered 
crowdsourced mapping could impact on positional and 
thematic accuracy respectively (Gardner et al., 2018). Further 
work based on the same data supports this proposition. Using 
a small sample of users’ edits to the Malawian national OSM 
dataset, Gardner and Mooney (2018) found that men placed a 
much greater emphasis on the geometric accuracy of their 
edits than female editors. However, comparison to the 
authoritative dataset would be required to test this assertion. 

Crowdsourced and open data have brought an 
unprecedented opportunity to researchers to analyse and 
extract knowledge, particularly using statistical and machine 
learning (ML) techniques (Basiri et al., 2016a). Projects such 
as OSM now share over 300 Gigabytes of traces of 
movements using Global Positioning System (GPS) receivers 
in mobile devices. The maturity of this area means that rich 
information are available for further analysis, providing both 
longevity and spatial coverage that can allow change 
detection, event identification, and the extraction of 
meaningful information from the pattern of adding features 
(Neis et al., 2012) and tags over time and space (Mooney and 
Corcoran, 2014). However applying statistical and machine 
learning techniques to a potentially biased dataset may result 
in recognising patterns for a minority of users or ignoring 
some existing trends (Mooney, 1996).   

Many machine learning techniques are too complex to 
decompose bias and variance. Also in many cases the quality 
and biases in the data are insufficiently understood to use 
conventional de-biasing techniques, such as sample re-
weighting (Howard et al., 2017). Also, due to the nature of 
VGI, “Bootstrap” sampling may not practically provide a 
good measure for biases (Hinds, 1999). Finally, and more 
importantly, many crowdsourcing projects tend to protect the 
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privacy of their contributors and so it is important to know 
how the biased dataset, as is, may fit the purpose of using 
each machine learning technique. Our current study addresses 
the impacts of using biased data on the results of the analysis. 
This may help to have a better understanding of the accuracy, 
reliability and fitness-for-purpose of the outputs. 

This paper is structured as follows; The following second 
section reviews the biases and discusses some of the common 
types of biases that exist in volunteered/crowdsourced 
geographic data. The third section explains the methodology 
and experiments and discusses the results. 

 
 

2 Bias in VGI 

The purpose of many machine learning techniques is to find 
trends and patterns within data. This may mean classifying 
and clustering data as well as labelling them. While this 
process may appear to ‘stereotype’ some of the observations 
and therefore neglect minorities and micro-patterns, the 
underlying data must be as un/de-biased as possible. This is 
mainly due to the learning methods that both humans and 
machines share to some extent, i.e. learning from the past. 
Mitchell (1980), Schaffer (1994) and Wolpert (1996) showed 
that bias-free learning is futile. Therefore recognising valuable 
insights from (potentially complex) datasets could be 
vulnerable to data anomalies, errors and biases as biased 
training data may potentially send algorithms astray and make 
“the winners always win”. The inference and knowledge 
extraction are the ultimate goal of any statistical and machine 
learning algorithm and according to Sackett (1979) therefore 
any biases in such judgmental processes need to be well 
studied. This section focuses on the sources of biases in 
voluntarily contributed data and the process of knowledge 
extraction from it.  

Any observation, and therefore any data contributed through 
VGI projects, is prone to random and/or systematic errors. 
While random error can be reduced by increasing the sample 
size, the systematic errors are more to do with design, 
methodology and other procedures that lead in obtaining data 
with no significant correlation with the sample size. Any VGI 
project is biased in one or more ways. At the first glance, it 
seems that all the data contributed through VGI projects are 
“voluntary response samples”, which are always biased as 
they only include people who have chosen to volunteer 
(DeMaio, 1980). Whereas a random sample would need to 
include people whether or not they choose to volunteer 
(Goyder, 1986). Thus inferences from a voluntary response 
sample are not as trustworthy as conclusions are based on a 
random sample of the entire population. While crowdsourcing 
projects are technically open to the whole population, and of 
course, anyone should be able to contribute, recent studies 
(Mullen et al., 2015; Gardner et. al. 2018; Zhu et al., 2017) 
have shown that even the most popular crowdsourced 
projects, such as OSM, are biased by the contribution patterns 
of its contributors, i.e. that a small percentage of the 
community contribute the greatest proportion of activity (the 
‘long tail effect’ or 90-9-1 rule).  This therefore questions the 
use of the terms “crowd” and “public” used in many 
crowdsourcing and public participatory projects by virtue of 
this skewed pattern of participation. This excludes the projects 

which may require a relatively higher experience level, access 
to some resources, or may limit participation to a specific 
geography or particular time interval due to the nature of the 
project. 

In addition to voluntary response bias, the volunteers, as 
individuals, can have different aspects and levels of quality of 
judgement and decision making (Hammond, 2000). Their 
decisions, opinions, and preferences could be significantly 
represented and/or influence their contribution (e.g. data). 
Although there are some arguments based on the concepts of 
“the wisdom of the crowd” trying to undermine or counter-
balance the impacts of the individuals’ biases on the collective 
decision, there are two challenges to this notion: Firstly, the 
representativeness, i.e. the structure of the crowd and “power 
of the elites” in many crowdsourcing projects have been 
questioned. This could be an issue in terms of biases, however 
some believe that the super active contributors are experts and 
so it is better to leave some decisions in their hands. While 
Antweiler et al. (2004), Giles (2005), Rajagopalan et al. 
(2011) and Shankland (2003) showed that collective decision-
making can be more accurate than experts’ comments, 
accuracy does not necessarily show all the aspects of quality 
and might not be even loosely correlated with potential bias. 
In terms of biases Greenstein et al. (2017) found the 
knowledge produced by the crowd are not necessarily less 
biased than the knowledge produced by experts. Nematzadeh 
et al. (2017) confirmed this by using Wikipedia contents, 
however, they found both biases and data quality could be 
moderated if substantial revisions and supervisions (of the 
gatekeepers) were implemented. 

The second challenge to the notion of the “wisdom of the 
crowd”, is the process of many VGI projects which is not 
based on collective decision but instead on crowd 
“participation”. The difference is relatively implicit but highly 
important; the participants do not vote for/against every single 
decision or entry. The collection of individual decisions does 
not necessarily mean the collective decision making. 
Therefore the wisdom of the crowd may not be relevant to 
such projects as the individual bias can remain at micro-level. 
As the crowd makes decisions individually in a participatory 
project, the results of an individual’s contributions could be 
biased. Therefore for these projects the case of “given enough 
eyeballs, all bugs are shallow” (Raymond 1998) is no longer 
valid as there is not enough revision/votes for each piece of 
information contributed by volunteers.  

The following section focuses on the types of biases that 
may exist in VGI projects. Nematzadeh et al. (2017) found 
that crowd-sourced content can also produce a large sample 
with a great variety of biased opinions. Next subsection looks 
at the types and sources of biases that can exist in 
crowdsourced and volunteered geographic data.  

 
 

2.1 Types and Sources of Bias 

Biases can be categorised in many ways. Tripepi et al. 
(2010) categorises them as such: unmeasured confounders, 
selection bias (Heckman, 1990) and information bias 
(Hodgins et al., 1993).. In the context of this paper, selection 
bias can occur when ‘wrong’ contributors are selected/allowed 
to contribute. For example, if the residents of rural areas were 
selected to participate in a city transportation network related 
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project. Due to the nature of VGI projects selection bias is one 
of the most important and influencing types of biases and also 
relatively hard to detect and treat. 

While Tripepi et al. (2010) and Ricketts (1990) find it 
difficult to evaluate the impacts of selection bias, other studies 
that have investigated the impacts of selection bias and 
provided some solutions, including qualitative assessment, 
quantitative bias analysis and incorporation of bias parameters 
into the statistical analyses (Heckman, 1990; Munafò et al., 
2017). From another perspective, an algorithm or method 
(including sampling method) can be categorised into 
ascertainment bias or systematic bias. Information bias, also 
known as observational bias, can occur when a type of error 
remains in a variable. For example GPS selective availability, 
if it had not been discontinued, could make GPS traces stored 
in the OSM database baised.  

From another typology and classification perspective, VGI 
may suffer from the ascertainment bias, i.e. some members of 
the contributor population are less likely to contribute or be 
included. Ascertainment bias could seem to be related to the 
sampling and selection bias. 

There are more than 300 types of bias and a wide range of 
classifications and this paper cannot and does not wish to 
review classifications of bias. While there are several 
classifications and clusters of sources of bias, this paper 
classifies the biases into two main classes of systematic and 
project level biases. Systematic biases exist in any 
crowdsourcing platform due to issues that will impact any 
project (e.g. population density or the impact of digital 
inequalities amongst age groups). The project level biases are 
due to the project nature, design and approaches (e.g. a culture 
that is not welcoming to people without high levels of 
education). Since the systematic biases are more common, we 
focus on them within trajectory data. This paper deliberately 
focuses on raw trajectory data, which is simply captured by 
the device with no further analysis of the contributors, and 
thus is likely to (a) reveal systematic biases, and (b) minimise 
the biases coming from the individual due to narrow thinking, 
shallow thinking, overconfidence, myopia and potential 
escalation of commitment (Soll et al., 2014). However this 
part provides a short list of some common/potential biases 
that can exist within VGI. 

ü Bandwagon bias (also referred to or related to 
groupthink bias and herd behavior) refers to the 
tendency of contributors to change their own 
opinion in favor or due to of an existing group 
pattern/behaviour to look they believe in the same 
way (Bikhchandani et al., 1992). This project can 
see this bias in the geography of the participants’ 
movements. As shown in figure 1, participants 
tend to follow the same area/route even though 
they are allowed to go anywhere within the 
campus. Although this may be due to common 
Points of Interest (PoIs) to visit, such as 
restaurants and lecture theatres, it may also be 
influenced by bandwagon bias. 

ü Confirmation bias and congruence bias which can 
occur when a contributor looks for confirmatory 
patterns or interprets information in a way that 
confirms their assumptions and passes the 
hypothesis (Nickerson, 1998).  

ü Déformation professionnelle and Dunning-Kruger 
biases refer to the two extreme ends of level of 
expertise and knowledge which prevents a view of 
the world with the same eye as the crowd’s (i.e. 
ignoring/forgetting the broader point of view) due 
to several reasons including overconfidence, 
getting used to the disciplines frameworks, 
illusion of superiority and lack of critical thinking 
(wu et al., 2018), (Friedman, 2017). These have 
been observed frequently in the attributes 
associated with the trajectory data that the 
participants contributed, i.e. over detailed 
information, relatively explanatory comments and 
in some cases overly analytical and interpretative 
opinions that only Geospatial Information 
Scientist would think of. Although this project 
tried to ignore the majority of the attributes 
associated with trajectory data, some of them need 
to be included or compared with inferred 
information (to assess the accuracy of the 
predictive analytics). They include  speed of 
movement and travel mode, which are reported 
with too much detail. For example in some cases 
the participant measured the speed using three 
devices and reported the average of three. Also, 
some of the participants also tried to challenge the 
project by going to “hard to recognise” areas as 
they did know how the positioning system works. 
The exact opposite to this intentional deviation of 
the ordinary movement could be: 

ü Extreme aversion bias can occur when the 
participants would rather contribute in their 
“comfort zones” both metaphorically and 
geographically. This is basically due to the 
tendency of people to go to great lengths to avoid 
choosing an option that lays on the extremes of 
thinking (Madan et al., 2014).  

ü Framing bias leads to different conclusions from 
the same observations depending on how the 
observations are represented. This is very 
important for remote mapping projects where the 
base datasource could be represented in different 
ways. The tracking app was developed and 
deployed for both Android and iOS devices and so 
the difference in underlying maps and 
chipsets  could influence the results. 

ü Selective reporting may occur when some 
features/events are more likely to be 
reported/contributed (Ioannidis et al., 2014). 
Many only report their activities or add a 
feature/attribute if they are thought to be 
interesting. This is particularly the case for social 
media check-ins and location sharing. In this 
project the participants tend to report their work-
related travel way more than personal trips, even 
though they had expressed no objections to do 
with their privacy.  

ü Neglect of probability bias. This refers to the 
tendency to completely disregard the probability 
and uncertainty when making a decision under 
uncertainty (Fiedler et al., 2000).  
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ü Status quo bias (related to loss aversion and 
endowment biases) refers to the tendency of 
contributors to focus on the same things 
(Samuelson et al., 1988), (Kahneman et al., 1991). 
Status quo bias could also result in a biased 
geographic distribution of PoIs. 

ü Lake Wobegon, self-serving and overconfidence 
bias is about reporting, believing and adding 
features about oneself and their properties in a 
self-promoting way (Kruger, 1991; Forsyth, 
2008). For example adding features and self-
promoting attributes/tags about their own 
properties. This is the opposite to modesty bias 
(Daniel et al., 2018). 

 
Figure 1. Trajectories of movements, consisting on 9982 

segments (after noise reduction, outliers detection and 
Douglas-Peucker simplification and smoothing) 

 
In addition to the cognitive biases that contributors might 

display, there are several technological biases that make the 
measurements as well as the equipment (such as positioning 
devices) biased. However, since this paper focuses on raw 
trajectory data, which is simply captured by the device with 
no further analysis of the contributor, these types of biases are 
not detectable and so may be better to assume that except the 
cognitive and social biases that might have an impact on the 
associated attributes and survey results, there are no further 
biases included in the raw trajectory data and their associated 
attributes. 

 
3 Experiments and Results 

This paper examines the impact of biases imposed on or 
already existing in the trajectory data on the output of spatio-
temporal data mining process. The trajectories of movements, 
captured in Hanover over two months (July 2013 to August 
2013) are used by another project (Basiri et al., 2016b) for 
automatic feature extraction and clusters recognition. This 
project examines the impact of biases on predicting the very 
same variables, i.e. the recognised features (PoIs) and travel 
mode.  

To do so, the biases are gradually added to the data to see 
how the result of the very same data mining process would 
change. Each data mining process requires a training sample 
and control/test sample set. Input data are randomly divided 
into two sets and the patterns, rules, clusters etc are identified 

among the training sample (first set) and then they are used on 
the control data set to see how the results can predict the 
available data. However, in this paper, this random division 
has been intentionally ignored. The data are divided into two 
sets of training and control sets based on the identified sources 
of biases.  

In order to intentionally make the training data biased, the 
input trajectories are divided into two sets of training and 
control datasets but not randomly (unlike the usual procedure 
of data mining). The two datasets are divided into training and 
control with respect to (a) time of the day, (b) day of the 
week, (c) weather conditions, (d) gender of contributor and (e) 
spatial and temporal density of trajectory in each 1kn grid 
square.  These factors are identified by the Random Forest 
technique as the most important predictive variables. This 
means using a Random Forest method whereby the relative 
importance of each source of bias is identified. The 
parameters of weather conditions, length of the trajectory, 
time of day and gender are ranked with the highest importance 
(77.43%, 69.43%, 45.29%, and 11.4% respectively). The 
reason for applying Random Forest to recognise these factors 
is due to higher prediction accuracy (to predict travel mode 
and points of interests) in comparison with other Machine 
Learning methods (see figure 2). In fact, the impacts of biases 
are examined on the best performing technique for the 
available dataset, i.e. Random Forest. 

4  

Figure 2. Prediction accuracy of various machine learning 
methods (elevation excluded) 

 
Having training datasets selectively generated, the 

predictive models can be now trained and the models applied 
to predict the values of the control data. Then, firstly, the 
accuracy of the predictive model is compared against the 
accuracy of the predictive model that is based on random 
division (of training and control datasets). Secondly, the 
biases in the training dataset are gradually being moderated, 
i.e. balancing with supervision the skewness of the 
determining variable(s) distribution in both datasets. This will 
help to see (a) how the accuracy of predictive models are 
changing and (b) how the results would be different in terms 
of the nature of the micro/macro clusters of trajectories. Note 
that such gradual bias removal/moderation is different from 
holdout set or n-fold cross validation data split (Kohavi, 
1995). As shown in figure 3, Cross-validation divides data 
into n subsets and then the model building and error 
estimation process is repeated n times.  
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While there is a best-practice of 30-70 percent split for 
holdout set or 1:n for cross-validation, as shown in figure 3, 
this paper divides the whole dataset into two (potentially equal 
but not necessarily with a pre-determined proportion) subsets 
with supervised bias imposed, and then gradually moderates 
the biases by continuously mixing the members of training 
and control sets. The important factor to divide the input 
trajectory data into two sets of training and control/test 
datasets is to have the maximum bias in terms of time of day, 
day of the week, weather conditions, gender and spatial and 
temporal density. The first round of data division could 
therefore have any ratio. The two sets will, of course, get 
moderated in the next rounds and could potentially 
increase/decrease in terms of size in order to make the 
datasets less and less skewed.   

 

 
Figure 3. Stepwise fold (here 5-fold) cross validation 

(Kohavi, 1995) 
 
Figure 4 shows the change in the accuracy of the predictive 

models with respect to the level of bias embedded in the 
training and control datasets. As shown in figure 4, the 
optimum level of accuracies for both the training and control 
data is 0.7001 (R2). This accuracy is surprisingly close to the 
level of accuracy of the Random Forest model where training 
and control data were generated randomly from the whole 
dataset.  

 

 
Figure 4. Accuracy of the predictive model for the training 

and control datasets, with respect to the rainy vs. cloudy or 
sunny weather conditions. 

 

Predictably a predictive model which is fitted/trained based 
on a training dataset that only includes data belonging to a 
rainy day cannot predict the rest of data very accurately. 
However it doesn't necessarily mean that the accuracy for the 
control data is complementary, i.e. 1-(accuracy for extremely 
biased training set), as the variables are not independent and 
also the relationships might not be linear.  

The overall accuracy of the predictive model for the training 
and control datasets could be optimised with variety of 
techniques, such as Bias-variance decomposition (Rodriguez 
et al., 2010; James et al., 1984). However for a relatively 
structured dataset, without a significant level of bias, the 
simplest approach could be division of the set randomly. As 
shown in figure 4, the optimum accuracy, i.e. where the two 
curves meet, is very close to the achieved accuracy of the 
Random Forest with random sampling (68.41% vs 70.01%).  

Beside the overall accuracy, there is a potentially interesting 
outcome that seem good to discuss, however requires further 
studies. Using some clustering algorithms the trajectories 
could be clustered. A general clustering approach represents 
some trajectories with a feature vector, which denotes the 
similarity between trajectories by the distance between their 
feature vectors. This paper replicates the same approach used 
by Basiri et al (2016b), i.e. using the clustering of trajectory 
based on Hausdorff Distance (CTHD) metric to identify 
similarity with an adopted Micro- and Macro-clustering 
framework. In the CTHD, the similarity between trajectories 
is measured by their respective Hausdorff distances and they 
are clustered by the Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) clustering algorithm 
(Birant et al., 2007).  The Hausdorff Distance metric is to 
identify similarity with an adopted Micro- and Macro-
clustering framework.  

The result of this experiment shows there are some micro-
clusters, which are normally recognised as anomalies in less-
biased data, and may have some meaningful patterns or 
features. However, they will be rejected/ignored by control 
datasets as a valid microcluster by very high level of 
confidence. This is mainly due to the fact that such micro-
cluster only exist as minority and it would be unlikely to have 
them in the control dataset too. So when very biased data are 
used, the number of micro-clusters increases and the number 
of macro-clusters decreases. However, in the control mode, 
only macro clusters remains. The confidence for micro-
clusters is relatively low while the confidence for the macro-
cluster is even higher than standard data mining process. It 
seems the less biased data increase the confidence in general, 
although they may miss some micro-clusters. Figure 5 shows 
some of the biggest micro/micro clusters/PoIs, a few of which 
still ignored by the less/de-biased dataset. 
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Figure 5. Green lines: Macro clusters trajectories, Purple: 

valid/confirmed PoIs, Red: disapproved or rejected PoIs 
 
Conclusion 

Crowdsourced and voluntarily gathered data have brought 
an unprecedented opportunity to researchers to analyse and 
extract knowledge, particularly using statistical and machine 
learning techniques. However, all VGI and crowdsourcing 
projects are in biased some way, most obviously due to 
voluntary response samples rather than random sampling. 
There are also other types and sources of bias within the 
crowdsourced datasets. This project studies the impacts of 
biases on the results of ML algorithm and evaluates how the 
input biased data can influence the results, in terms of 
accuracy and reliability, of the learnt patterns.  To do so, the 
biases in the raw trajectory data are intentionally added and 
then the accuracy of the training and control data for several 
ML techniques are measured. This paper found the random 
selection of the training and control datasets result in the level 
of accuracy that is very close to the accuracy that optimises 
both training and control models while biases are intentionally 
being imposed to the Random Forest training and control 
datasets. In addition, the results of trajectory mining from 
very biased data showed the recognition of some micro-
clusters, which are normally recognised as anomalies in less-
biased data that may have some meaningful patterns or 
features. However, they are not visible in the control datasets, 
as such micro-clusters may only exist as minorities to also 
have them identified in the control dataset. So less biased data 
increases the confidence in general, although some micro-
clusters maybe missed. 
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