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Abstract: Phantoms with tuneable optical scattering properties are essential in the 
development and refinement of optical based imaging techniques. Mineral oil based ‘gel wax’ 
phantoms are the subject of increasing interest due to their ease and speed of manufacture, 
non-toxic nature, ability to cast into anatomically realistic shapes, as well as their cost-
effective nature of production. The addition of scatterers such as titanium dioxide powder and 
monodisperse silica microspheres to the gel wax allows for the creation of phantoms with a 
controllable optical scattering coefficient. To enable repeated use of such phantoms, the 
stability of the scattering properties must be determined–a property which has yet to be 
investigated. We present an analysis of the stability of the reduced scattering coefficient ( '

sμ ) 

of such phantoms over time. We conclude that due to the measurable reduction in scattering 
coefficient over time, gel wax phantoms embedded with silica spheres may not be suitable for 
repeated use over time, however gel wax-TiO2 phantoms are much more temporally stable. 
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, 
and DOI. 

OCIS codes: (290.0290) Scattering; (290.4020) Mie theory; (170.3880) Medical and biological imaging; (160.4760) 
Optical properties; (120.5820) Scattering measurements. 
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1. Introduction 

Phantoms are essential for the development and refinement of biomedical imaging 
techniques, including many optical techniques. Multiple matrix materials have previously 
been used in such phantoms for optical applications [1,2]. Indeed, silicone and TiO2 powder 
phantoms are widely used in biomedical optics applications, both with and without additional 
absorbers. Such phantoms are considered stable and reproducible, and have previously been 
used in, for example, optical coherence tomography [3] and elastography [4], as well as to 
create complex multi-layered tissue mimicking phantoms [5] and in the creation of general 
optical phantoms for use in the near infrared [6]. However such silicone phantoms require 
long manufacturing processes [7], as described in Section 3.1. Epoxy resin is another example 
of a phantom matrix material which also requires a lengthy manufacturing process [3]. 
Agarose is yet another matrix material which, however, requires specialist additives and 
storage methods to increase its shelf life [8]. 

Gel wax, a mineral oil based, gel like, candle making material, has gained increasing 
interest as both an optical and acoustic phantom material [9–12] due to its wide availability, 
low cost and non-toxic nature. There is particular interest in using it as a tissue mimicking 
material for developing imaging phantoms for photoacoustic imaging [9]. It can be used 
within a 3D printing system [12], however, if the specialist printing equipment is not 
available, or cost effective, then a simple manufacturing method for phantoms composed of 
gel wax with embedded scatterers and absorbers has been presented [9,10]. As well as casting 
into arbitrary shapes [11], gel wax has already been successfully used to create a variety of 
anatomically accurate phantoms in conjunction with 3D printed molds of the heart and 
placenta [10]. Optical scattering and absorption have been modulated by the addition of 
titanium dioxide (TiO2), carbon black and colored inks [9], whilst acoustic properties have 
been controlled by addition of glass spheres and paraffin wax [10] as well as graphite and 
TiO2 powder [12]. 

Silica microspheres have not yet been used in gel wax, although silica powder has 
previously been used in a mineral oil based ultrasound phantom [13]. Silica microspheres are 
often used as scatterers in optical phantoms as they are able to be made highly spherical and 
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in batches with very narrow diameter distributions. They also result in an anisotropy factor (g) 
of approximately 0.9 which is more tissue realistic than other inorganic scattering materials. 
Despite their high cost, and well documented predisposition to clumping due to charge 
interactions [7,14], silica microspheres continue to be a popular choice of optical scatterer as 
they are able to be modelled accurately using Mie and continuum theory [15]. 

TiO2 powder is a widely available and affordable scatterer and has already been adopted 
in gel wax phantoms [9,11,12]. However, their irregular shape and broad particle size 
distribution [16] means that scattering cannot be modelled with the same accuracy as silica 
microspheres. 

It is highly desirable that the properties of phantoms remain constant over time to enable 
repeated use. Heterogeneous gel wax phantoms containing inclusions colored with ink have 
been reported to be stable over a time period of 1 year, however, the stability was determined 
on the basis of visual inspection and was thus subjective [9]. No studies have, to date, 
attempted to quantify the optical stability of gel wax phantoms. In this study we monitor the 
scattering properties of scattering-only optical phantoms composed of silica microspheres 
embedded in gel wax, as well as TiO2 powder embedded in gel wax over approximately 10 
months after manufacture. By monitoring these properties, and with comparison to optically 
stable silicone and TiO2 phantoms, we are able to assess the suitability of such phantom 
mixtures for long term use. Ideally we would also have monitored the stability of phantoms 
made from silicone and silica microspheres. However, we were unable to produce such 
phantoms with a scattering coefficient high enough to be reliably retrieved, presumably as the 
refractive indices of the silicone and the silica microspheres are too similar. 

2. Materials and methods 

2.1 Phantom materials 

Phantoms were constructed using a mineral oil based candle wax material known as gel wax 
(Mindsets (UK) Ltd., Saffron Walden, UK) as the matrix material. Optical scattering was 
introduced by embedding either monodisperse silica microspheres of 1µm diameter (Pinfire – 
Gems and Colloids, Frankfurt, Germany) with a coefficient of variance of <5%, or TiO2 
powder of mean particle size <5µm (Product 224227, Titanium(IV) oxide, rutile, Sigma 
Aldrich, Dorset, UK). The manufacturers do not specify the nature of the distribution of TiO2 
particles diameters, however, a recent publication found that the same product, albeit 
probably from a different batch to that employed in this study, had a diameter distribution of 
734 ± 310 nm (mean ± standard deviation) [17]. The refractive index of the silica 
microspheres (nsilica) was quoted as 1.467 at 589 nm by the manufacturer. The refractive 
indices of the TiO2 (nTiO2) and gel wax (ngelwax) were not provided by their manufacturers, 
therefore 2.5082 [18] and 1.4 at 589 nm were used, respectively. The value of ngelwax = 1.4 
was used as gel wax is composed of mineral oil, which is a mixture of alkanes. Refractive 
indices at 589 nm, for a variety of alkanes and their mixtures, fall broadly between 1.35 and 
1.45 [19] and so 1.4 was used as an estimate. We note, however, that the precise value of the 
refractive index of gel wax is not required to support the conclusions of this paper. 

2.2 Phantom manufacture method 

The phantoms were manufactured using a modified version of the method presented by 
Maneas et al. [9,10] as outlined in Fig. 1. The casts were manufactured from two soda lime 
glass slides, with two stacked coverslips (thickness 0.19 to 0.25 mm) at each end as spacers 
between the slides. As gel wax begins to set immediately on contact with a cool surface, the 
slides were heated to aid casting. This method of casting created phantoms of approximate 
thickness between 0.5mm to 1mm, specifically designed for use within the spectrophotometer 
(Perkin Elmer, Lambda 750, dual beam with 100mm single integrating sphere accessory). All 
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approximately linear. One reason for this may be that at higher scatterer concentrations such 
as are present in the silica microsphere phantoms, '

sμ  can be reduced due to concentration 

dependent scattering [20]. Another explanation could be the aggregation of silica 
microspheres which we expect to be more prominent as scatterer concentration increases. 

2.4 Optical property measurement 

The values of '
sμ  were determined periodically, over the course of approximately 10 months, 

using a dual beam spectrophotometer along with the inverse adding doubling programme 
(IAD) [21,22]. The reflectance (%R) and transmittance (%T) measurements for each sample, 
along with the correction measurements, were performed in line with recommendations in the 
IAD handbook [22]. %R and %T were measured, and therefore '

sμ  was determined at 589 nm 

due to the value of nspheres being provided by the manufacturer solely at this wavelength, and 
therefore the IAD parameters used were considered more accurate at this wavelength 
compared to others. As input to IAD, the anisotropy factor (g) for gel wax and silica sphere 
phantoms was estimated as 0.9, and 0.7 for gel wax and TiO2 powder based on the refractive 
index values previous stated, along with the particle size stated by the manufacturers. 
Furthermore, the refractive index of all phantoms was estimated as being that of plain gel 
wax. We note also that dual beam corrections were applied. 

3. Results 

3.1 Silicone and TiO2 powder 

The silicone (Elastosil RT 601 A/B – Wacker Chemie AG., Munich, Germany) and TiO2 
phantoms were manufactured using a previously developed method for silicone and silica 
microspheres [7] which we describe here briefly. The method begins by adding the required 
mass of TiO2 scatterers to the required mass of silicone part A. These two masses are 
calculated to achieve a design concentration of scatterer by weight. However, the final 
concentration (1.4% in this study) is calculated using the weighed masses, rather than the 
design masses, which may vary due to experimental limitations. Hexane is then added to the 
mixture at a volume ratio of 1:1 with the silicone part A. The mixture is mechanically stirred 
for an hour, placed in an ultrasound bath for an hour and then placed in a vacuum chamber for 
two hours to remove air bubbles. The mixture is then placed in the ultrasound bath for a 
further hour. The silicone part B is then added at a ratio of 9:1 (A:B), and it is assumed that 
the hexane has completely evaporated by this stage. The mixture is then gently stirred for ten 
minutes, to avoid the introduction of air bubbles, before placing the mixture into the vacuum 
chamber for ten minutes. The mixture is then poured into casts made of microscope slides and 
cover slips as described in section 2.2. However, in the case of silicone phantoms, it was 
necessary to heat the microscope slides to above 200°C and then allowed to cool, to prevent 
the phantoms from adhering to the surface. Once poured into the cast, the phantoms were 
cured at 70°C before being removed from their casts 

The silicone had a refractive index of 1.409 at 589 nm which was obtained from the 
manufacturer, and the value of g for the combination of silicone and TiO2 particles was 
estimated to be 0.7. Figure 3 shows the high temporal stability of '

sμ  for these phantoms over 

a prolonged time. This data was obtained using dual beam spectrophotometer along with the 
IAD program as described in the previous section. Due to the high temporal stability of 
optical scattering in these phantoms we consider them the gold standard for this study. In 
particular, we have used them as a reference to ensure the consistency of all other 
measurements made within this study. Figure 3 also contains a plot of the distribution of 
absorption coefficients, aμ , retrieved by the IAD program, which shows that the silicone has 

a low absorption coefficient, as expected. The stability of the scattering also means that these 
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in the phantoms containing silica microspheres, we would expect comparable gravitational 
settling in the phantoms made of gel wax and TiO2 microspheres. 

We note that this work is limited to thin samples as are required for analysis by the 
spectrophotometer. It would interesting in future work to consider whether the phenomenon 
reported in this manuscript occurs for thick samples also. This, however, will be difficult to 
quantify due to the lack of reliable methods for making spatially resolved measurements of 
the scattering coefficient. Despite this, we are unable to observe by visual inspection any 
scatterer concentration gradient in thick phantoms that we have produced for other purposes. 

The phantom with the lowest concentration of spheres reached a plateau with its '
sμ  value 

after approximately 150 days. This believe this is because, as the concentration of spheres 
increases, the likelihood of aggregation also increases since the spheres are much closer to 
each other, and therefore, are more likely to undergo a charge interaction and aggregate. It 
would be expected that, eventually, aggregation will reach a maximum due to the distance 
between neighbouring spheres increasing leading to the value of '

sμ  plateauing for all the 

sphere concentrations. 
Titanium dioxide particles tend towards aggregation due to Van der Waals forces [24] that 

can form between them when they come into close proximity. The percentage of scatterer by 
weight values for the TiO2 phantoms are all below 1%. The distance between the TiO2 
particles means that the likelihood of such Van der Waals interactions and, therefore, 
aggregation is low. If the concentration of TiO2 were to be significantly increased, then a 
similar decrease in '

sμ  may possibly be observed, however, at concentrations required to 

obtain tissue realistic scattering coefficients, they appear to be temporally stable. 
Due to the instability of scattering properties in the gel wax and silica sphere phantoms, if 

the same gel wax and silica microsphere phantoms are to be used over a prolonged time 
period, their optical scattering properties should be regularly measured. Although gel wax and 
TiO2 phantoms offer much greater optical stability than those made of gel wax and silica 
spheres, it is still prudent to measure their optical properties before each use, as this study 
found these values to vary by a small amount over time. 

5. Conclusion 

Gel wax has proven to be a simple and affordable phantom matrix material, in which 
exogenous scatterers can easily be added. However the poor temporal stability of silica 
microspheres embedded within such a matrix material preclude their repeated use over time 
without their repeated characterisation. It is therefore recommended that TiO2 is used as an 
alternative, more stable scattering medium when the long-term scattering stability is 
imperative to gel wax based phantom design. 
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