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Abstract

Magnetic particle imaging is an imaging modality of relatively recent origin, and it exploits the non-
linear magnetization response for reconstructing the concentration of nanoparticles. Since first invented
in 2005, it has received much interest in the literature. In this work, we study one prototypical mathe-
matical model in multi-dimension, i.e., the equilibrium model, which formulates the problem as a linear
Fredholm integral equation of the first kind. We analyze the degree of ill-posedness of the associated linear
integral operator by means of the singular value decay estimate for Sobolev smooth bivariate functions,
and discuss the influence of various experimental parameters on the decay rate. In particular, applied
magnetic fields with a field free point and a field free line are distinguished. The study is complemented
with extensive numerical experiments.
Keywords: magnetic particle imaging; degree of ill-posedness; equilibrium model; singular value decay;
Sobolev smooth bivariate functions.

1 Introduction

Magnetic particle imaging (MPI) is a relatively new imaging modality [11]. The main goal is to reconstruct a
spatially dependent concentration of iron oxide nanoparticles by exploiting their superparamagnetic behavior.
Measurements are obtained from multiple receive coils where a voltage is induced by particles’ nonlinear
response to the applied dynamic magnetic field using either field free point (FFP) [11] or field free line (FFL)
[44] trajectories. These measurements can yield reconstructions with a high spatial/temporal resolution.
Since the modality is free from harmful radiation, it is especially beneficial for in-vivo applications.

So far, MPI has been used for preclinical medical applications, and holds a significant potential for clinical
applications. One application, already suggested at the beginning of the MPI development, is vascular
imaging [11]. In in-vivo experiments, the potential for imaging blood flow was demonstrated using healthy
mice [45]. Recently, it was studied for long-term circulating tracers [20]. The high temporal resolution
allows tracking medical instruments [15], e.g., in angioplasty [38]. Other potential applications include
cancer detection [47] and cancer treatment by hyperthermia [35].

In practice, MPI is usually modeled by a linear Fredholm integral equation of the first kind. This is
motivated by the suppression of particle interactions due to nonmagnetic coating, which allows postulating
a linear relationship between particle concentration and the measured voltage. However, precisely modeling
MPI respectively formulating a physically accurate integral kernel for image reconstruction is still an unsolved
problem due to various modeling errors in the particle dynamics and data acquisition, e.g., magnetization
dynamics, particle-particle interactions and transfer function for analog filter; we refer interested readers to
the survey paper [21] for further details. In the literature, the equilibrium model based on the Langevin
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function has been used extensively to predict the signal behavior in MPI [24, 26]; see Section 2 below for
details on the model, its derivation and the underlying assumptions.

The mathematical study on the MPI model is fairly scarce. The only work on FFP trajectories that we
are aware of is the work [32]. In a 1D setup with FFP trajectories moving along a line for the equilibrium
model, the authors [32] showed that in the limit of large particle diameters, the integral kernel is a Dirac-
delta function, and thus the imaging problem is well-posed. Further, they analyzed a related problem which
is independent of the FFP trajectory used, under the assumption that each spatial point is scanned multiple
times with nonparallel trajectories. The problem was shown to be severely ill-posed in general, and in the
large particle diameter limit, the smoothing property of the forward operator improves with the spatial
dimension d. Also, if a FFL is moved by a drive field in its perpendicular direction, the problem can be
formulated using Radon transform, followed by a convolution with a kernel involving the mean magnetic
moment [25]. However, the theoretical analysis of general FFL trajectories remains missing.

In this work, we present a study on the degree of ill-posedness of the MPI inverse problem. Historically,
the idea of distinguishing mildly, moderately and severely ill-posed problems can be traced at least back to
Grace Wahba [42]. Since the 1980s, the concept “degree of ill-posedness” for linear inverse problems has
been popular. Roughly, it refers to the decay behavior of the singular values (SVs) σn: ∼ n−ν with small
0 < ν < 1 for mildly ill-posed problems, with 1 ≤ ν < ∞ for moderately ill-posed ones, and otherwise
for severely ill-posed ones, e.g., e−νn with ν > 0. There are at least two reasons to look at the SV decay
rate (see, e.g., [7, 17]). First, it characterizes the degree of ill-posedness of the imaging problem, which is
one factor in determining the resolution limit of the image reconstruction step, when the data accuracy and
model accuracy etc. are given. Second, the analysis also sheds insight into how to improve the resolution
by properly changing the experimental setting. Hence, over the past few decades, SV decay estimates have
received much interest for a number of inverse problems, especially in the context of computed tomography.

In this work, we study the degree of ill-posedness of MPI via SV decay of the associated linear integral
operator. Our analysis relies crucially on the SV decay estimate for Sobolev smooth bivariate functions [14],
and its extension to less regular bivariate functions. The extension seems still unavailable and will be given
in this work, and the result is of independent interest. Our results give upper bounds on SV decay rates,
which indicate the (best possible) degree of ill-posedness of the MPI model. We discuss the following three
cases separately: nonfiltered model, limit model and filtered model, in order to illuminate the influences
of experimental parameters, e.g., particle size and the regularity of the analog filter. Further, we conduct
extensive numerical experiments to complement the analysis. When completing the paper, the authors
became aware of the work [9], where Erb et al. showed the exponential ill-posedness of a 1D MPI model. It
differs substantially from this work in the main focus (multi-dimensional model) and analytical tools.

Note that the SV decay is only one factor for the “level of recovery chances” to linear ill-posed problems,
as already emphasized by Louis [30] in 1989, with the other being “solution smoothness with respect to
the character of the forward operator”. Only both factors and their interplay allow realistic error estimates
on the reconstructions from noisy data, and the degree of ill-posedness must be put into the context of
regularization. Such an analysis is beyond the scope of this work; see the works [33, 16] for relevant results.

The remainder of the paper is organized as follows. In Section 2, we describe the equilibrium model, and
in Section 3, the SV decay estimate for Sobolev smooth bivariate functions. Then in Section 4, we analyze
the decay rate for the integral operators for nonfiltered and filtered models, and discuss the influence of
various factors, e.g., spatial dimensionality d and particle parameter β. In Section 5, we present numerical
results to support the analytical findings, and finally, in Section 6, we give concluding remarks. Throughout,
we denote by C with/without subscript a generic constant which may differ at each occurrence.

2 The equilibrium model

Now we describe the equilibrium model, one prototypical mathematical model for MPI.

2.1 Preliminaries

MPI is inherently a 3D problem, and thus vector valued functions remain 3D even if the domain Ω of the
spatial variable x is a subset of a d-dimensional affine subspace Ed ⊂ R3. Let Ω ⊂ Ed, d = 1, 2, 3, be a
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bounded domain with a (strong) Lipschitz boundary ∂Ω in Ed. Further, let T > 0 denote the maximal data
acquisition time and I := (0, T ) the time interval during which the measurement process takes place. The
temporal derivative of any function g : I → Rd is denoted by ġ.

In MPI, the measured signal v` : I → R, ` = 1, . . . , L, obtained at L ∈ N receive coils, is given by

v`(t) =

∫
I

∫
Ω

c(x)a`(t− t′)κ`(x, t)dxdt′ +

∫
I

∫
R3

a`(t− t′)µ0p`(x)tḢ(x, t)dxdt′︸ ︷︷ ︸
=vE,`(t)

, (2.1)

where the superscript t denotes the transpose of a vector, c : Ω → R+ ∪ {0} is the concentration of the
magnetic nanoparticles and κ` : Ω× I → R, ` = 1, . . . , L, represent the system functions characterizing the
magnetization behavior of nanoparticles. The positive constant µ0 is magnetic permeability in vacuum. The
scalar functions a` : Ī := [−T : T ] → R, ` = 1, . . . , L, are the analog filter in the signal acquisition chain,
and in practice, they are often band stop filters adapted to excitation frequencies of the drive field so as to
minimize the adverse influence of the excitation signal vE,` during digitization. The functions p` : R3 → R3,
` = 1, . . . , L, denote the vector field which characterizes the sensitivity profile of the receive coils and can be
spatially dependent. Throughout, it is assumed that the applied magnetic field H : R3 × I → R3 and the
filters {a`}L`=1 are chosen in a way such that all excitation signals vE,` = 0, ` = 1, . . . , L.

Remark 2.1. The assumption on the excitation signals {vE,`}L`=1 is commonly made, which, however, may
be not fulfilled in MPI applications [40, 22]. Note that in the model (2.1), we have absorbed the minus sign
into the measurement to make the notation more consistent with literature on integral equations.

The applied magnetic field H(x, t) can be characterized by a spatially dependent magnetic field g : R3 →
R3 and a time-dependent homogeneous magnetic field h : I → R3, and the field H(x, t) is given by their
superposition, i.e., H(x, t) = g(x) − h(t). The field g, named selection field, ensures that a field-free-region
is generated. Generally, g is assumed to be linear such that it can be represented by a constant matrix
G ∈ R3×3. The field h, named drive field, then moves the field-free-region along a certain trajectory. Two
MPI methodologies are distinguished by the field free region, whether a FFP is generated (rank(G) = 3) or
a FFL is used (rank(G) = 2). For the FFL approach, it was also proposed to rotate the selection field g
over time such that the FFL is rotated [44], and then the selection field is given by g : R3 × I → R3 with
g(x, t) = P (t)tGP (t)x where P (t) : I → R3×3 is a rotation matrix for all t ∈ I.

The functions {κ`}L`=1 can be expressed using the receive coil sensitivities {p`}L`=1 and the particles’ mean
magnetic moment vector m̄ : Ω× I → R3 as κ` = µ0p

t
`

˙̄m. This relation follows from Faraday’s law and the
law of reciprocity [24]. Then the inverse problem is to find the concentration c : Ω→ R+∪{0} from {v`}L`=1:

v`(t) =

∫
I

∫
Ω

c(x)a`(t− t′)κ`(x, t′)dxdt′, with κ` = µ0p
t
`

˙̄m. (2.2)

In the model (2.2), the linear dependence on the concentration c is derived under the assumption that
particle-particle interactions can be neglected. However, there is experimental evidence that these interac-
tions can affect the particle signal [31].

2.2 Equilibrium MPI model

To specify the MPI model, it remains to describe the mean magnetic moment vector m̄(x, t) of nanoparticles.
There are several possible models, e.g., Fokker-Planck equation or stochastic Landau-Lifschitz-Gilbert equa-
tion [21]. The most extensively studied model in MPI is based on the assumptions that the applied magnetic
field H(x, t) is static, the particles are in equilibrium, and m̄(x, t) immediately follows the magnetic field
H(x, t). Then by Langevin theory for paramagnetism, m̄(x, t) is given by

m̄(x, t) = m0Lβ(|H(x, t)|) H(x, t)

|H(x, t)|
,

where the parameter m0 is particle’s magnetic moment, | · | denotes the Euclidean norm of vectors, and
Lβ : R→ R is the (scaled) Langevin function given by

Lβ(z) = coth(βz)− (βz)−1, (2.3)
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where β is a given positive parameter. The Langevin function Lβ(z) captures the nonlinear response to the
applied magnetic field. The resulting model is termed as equilibrium model below.

Remark 2.2. Physically, the parameters m0 and β are determined by the saturation magnetization MS of
the core material, the volume VC of the single-domain particle’s core, the temperature TB, and Boltzmann
constant kB, i.e., m0 = MSVC and β = µ0m0/(kBTB). Note that β also depends on the particle diameter
D through m0. At room temperature 293 K, particles consisting of magnetite with a typical diameter D of
30 nm (20 nm) are characterized by β ≈ 2.1× 10−3 (0.6× 10−3).

The function Lβ(z) is a smooth approximation to the sign function: for any fixed 0 < β <∞, it belongs
to C∞(R), and as β →∞, it recovers the sign function sign(z).

Lemma 2.1. The Langevin function Lβ(z) has the following properties: (i) For any z ∈ R, there holds

limβ→∞ Lβ(z) = sign(z); and (ii) The function
Lβ(
√
z)√
z
∈ C∞B ([0,∞)).

Proof. First, recall the following expansions for the coth(z) :

coth(z) =
1

z
+
z

3
− z3

45
+

2

945
z5 − . . .+ 22nB2n

(2n)!
z2n−1 + . . . (|z| < π), (2.4)

where Bn is the nth Bernoulli number [1, 4.5.67, p. 85]. Meanwhile, for any z > 0, we have

coth(z) =
ez + e−z

ez − e−z
= 1 +

2e−2z

1− e−2z
= 1 + 2

∞∑
j=1

e−2jz, (2.5)

and a similar series expansion holds for z < 0. Now assertion (i) follows directly from (2.5). For part (ii), it
suffices to show β = 1. For 0 ≤ z < π2, it follows from (2.4) and the definition of L1(z) that

L1(
√
z)√
z

=
1

3
− z

45
+

2

945
z2 − . . .+ 22nB2n

(2n)!
zn−1 + . . . ,

which is smooth in z (and convergent for any 0 ≤ z < π2). The assertion for z > 1 follows from (2.5).

In summary, the inverse problem for the equilibrium model is to recover the concentration c from
v`(t) =

∫
I

∫
Ω

c(x)a`(t− t′)κ`(x, t′)dxdt′,

κ`(x, t) = µ0m0p
t
`

d

dt

[
Lβ(|H|)
|H|

H

]
,

(2.6)

for ` = 1, . . . , L and the magnetic field H : Ω× I → R3 is given by H(x, t) = g(x)− h(t), where g : Ω→ R3

and h : I → R3. For MPI, a common choice is g(x) = Gx and h(t) = A(sin(fit))
3
i=1, where A ∈ R3×3 is a

diagonal matrix with 1 ≤ rank(A) ≤ d, fi > 0, and a constant matrix G ∈ R3×3 with tr(G) = 0. Below, for
the matrix G, we distinguish two cases: (i) G has full rank such that a FFP is generated, and (ii) rank(G) = 2
such that a FFL is generated (only for 3D).

In the model (2.6), all vectors belong to R3, which reflects the intrinsic 3D nature of the MPI imaging
problem. However, for a spatial domain Ω ⊂ Rd, d = 1, 2, the dimensionality of the vectors and matrices can
be taken to be d, by properly restricting to subvectors/submatrices, which is feasible under the assumption
that G−1h(t) ∈ Ω, for any t ∈ I (i.e., field free region is contained in Ω). Specifically, the d-dimensional case,
for d = 1, 2, can be constructed by assuming that the concentration c is a Dirac δ-distribution with respect to
the orthogonal complement of the affine subspace Ed ⊂ R3, i.e., c(x) = cd(x1)δ(x2), where x = x1 + x2 with
x1 ∈ Ed, x2 ∈ E⊥d , and cd : Ω ⊂ Ed → R+ ∪ {0}. The parametrization of the domain Ω ⊂ Ed then allows
reformulating the integral in (2.6) in terms of Ωd ⊂ Rd. Given the affine linear parametrization Γ : Ωd → Ω,
(2.6) can be stated with respect to c̃d : Ωd → R+ ∪ {0}, c̃d(x) = cd(Γ(x)). This convention will be adopted
in the analysis below, by directly writing h(t) ∈ I → Rd etc.
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3 Singular value decay for Sobolev smooth bivariate functions

Now we describe SV decay for Sobolev smooth bivariate functions, which is the main technical tool for
studying degree of ill-posedness in Section 4.

3.1 Preliminaries on function spaces

First, we recall Sobolev spaces and Bochner-Sobolev spaces, which are used extensively below. For any index
α ∈ Nd, |α| is the sum of all components. Given a domain D ⊂ Rd with a Lipschitz continuous boundary,
for any m ∈ N, 1 ≤ p ≤ ∞, we follow [2] and define the Sobolev space Wm,p(D) by

Wm,p(D) =
{
u ∈ Lp(D) : Dαu ∈ Lp(D) for 0 ≤ |α| ≤ m

}
.

It is equipped with the norm

‖u‖Wm,p(D) =


( ∑

0≤|α|≤m

‖Dαu‖pLp(D)

) 1
p

, if 1 ≤ p <∞,

max
0≤|α|≤m

‖Dαu‖L∞(D), if p =∞.

The space Wm,p
0 (D) is the closure of C∞0 (D) in Wm,p(D). Its dual space is denoted by W−m,p

′
(D), with

1
p + 1

p′ = 1, i.e., p′ is the conjugate exponent of p. Also we use Hm(D) = Wm,2(D), and Hm
0 (D) = Wm,2

0 (D).

The fractional order Sobolev space W s,p(D), s ≥ 0, s /∈ N, can be defined by interpolation [2]. It can be
equivalently defined by a Sobolev–Slobodeckǐı seminorm | · |W s,p(D). For 0 < s < 1, it is defined by

|u|pW s,p(D) :=

∫
D

∫
D

|u(x)− u(y)|p

|x− y|d+sp
dxdy, (3.1)

and the full norm ‖u‖W s,p(D) = (‖u‖pLp(D) + |u|pW s,p(D))
1
p . For s > 1, it can be defined similarly.

We state a result on pointwise multiplication on Sobolev spaces [4, Theorem 7.5].

Theorem 3.1. Let D ⊂ Rd, d = 1, 2, 3. Assume that si, s (i = 1, 2) are real numbers satisfying si ≥ s ≥ 0
and s1 + s2 − s > d

2 . Then for some constant C(s1, s2, s, d), there holds

‖uv‖Hs(D) ≤ C(s1, s2, s, d)‖u‖Hs1 (D)‖v‖Hs2 (D) ∀u ∈ Hs1(D), v ∈ Hs2(D).

Suppose X is a Banach space, with the norm denoted by ‖ · ‖X . Then, for any p ∈ N, we denote by
Hp(I;X) the Bochner space of functions v : I → X such that v(t) and its weak derivatives (in time) up to
order p, i.e., v̇(t), . . . , v(p)(t), all exist and belong to L2(I;X). The norm on Hp(I;X) is defined by

‖v‖2Hp(I;X) =

p∑
j=0

∫
I

‖v(j)(t)‖2Xdt.

Then for any s ≥ 0, we can define Hs(I;X) by means of interpolation, and equivalently using the Sobolev-
Slobodeckǐı seminorm [18]. For example, for s ∈ (0, 1), then the seminorm | · |Hs(I;X) is defined by

|v|2Hs(I;X) =

∫
I

∫
I

‖v(t1, ·)− v(t2, ·)‖2X
|t1 − t2|1+2s

dt1dt2,

and ‖v‖Hs(I;X) = (‖v‖2L2(I;X) + |v|2Hs(I;X))
1
2 . We shall use the case X = L2(D) extensively. The space

Hs(0, T ;L2(D)) is isomorphic to Hs(0, T )×L2(D) and L2(D;Hs(0, T )), i.e., Hs(0, T ;L2(D)) ' Hs(0, T )×
L2(D) ' L2(D;Hs(0, T )) (see, e.g., [18, Proposition 1.2.24, p. 25] for the isomorphism L2(I;L2(D)) '
L2(D;L2(I)), from which the general case may be derived). Then by [18, Proposition 1.3.3, p. 39], we have
L2(D;H−s(I)) ' H−s(I;L2(D)). We shall use these isomorphisms frequently below.

Now we give two results on the composition operator on Hs(I;L∞(D)) and Hs(D;W 1,∞(I)).
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Lemma 3.1. The following two statements hold.

(i) For v ∈ Hs(I;L∞(D)) ∩ L∞(I;L∞(D)) (s ≥ 0) and g ∈ CkB(R) (k ≥ [s] + 1), g ◦ v ∈ Hs(I;L∞(D)).

(ii) For v ∈ Hs(D;W 1,∞(I))∩L∞(D;W 1,∞(I)) (s ≥ 0) and g ∈ CkB(R) (k ≥ [s]+2), g◦v ∈ Hs(D;W 1,∞(I)).

Proof. By the definition (3.1) and the mean value theorem, for 0 < s < 1, since v ∈ L∞(I;L∞(D)), we have

|g ◦ v|2Hs(I;L∞(D)) =

∫
I

∫
I

‖g(v(t1, ·))− g(v(t2, ·))‖2L∞(D)

|t1 − t2|1+2s
dt1dt2

≤
∫
I

∫
I

supξ∈R |g′(ξ)|2‖v(t1, ·)− v(t2, ·)‖2L∞(D)

|t1 − t2|1+2s
dt1dt2

≤ sup
ξ∈R
|g′(ξ)|2|v|2Hs(I;L∞(D)) <∞.

The case s ≥ 1 follows similarly by the chain rule and Theorem 3.1. For example, for 1 < s < 2, by chain
rule, d

dt (g ◦ v)(t) = (g′ ◦ v)v̇. Since v̇ ∈ Hs−1(I;L∞(Ω)) and g′ ◦ v ∈ H1(I;L∞(Ω)), Theorem 3.1 implies
d
dt (g ◦ v) ∈ Hs−1(I;L∞(Ω)), showing the assertion for s ∈ (1, 2).

For any v ∈ L∞(D;W 1,∞(I)), by the chain rule, mean value theorem and triangle inequality, direct
computation gives that for any x1, x2 ∈ D

‖g(v(·, x1))−g(v(·, x2))‖W 1,∞(I) = ‖g(v(·, x1))− g(v(·, x2))‖L∞(I)

+ ‖g′(v(·, x1))v̇(·, x1)− g′(v(·, x2))v̇(·, x2)‖L∞(I)

≤ C‖(v(·, x1)− v(·, x2)‖W 1,∞(I) + C‖v(·, x1)− v(·, x2)‖L∞(I)‖v̇(·, x1)‖L∞(I),

where the constant C depends only on ‖g‖C2
B(R). By the definition (3.1), for 0 < s < 1, we have

|g ◦ v|2Hs(D;W 1,∞(I)) =

∫
D

∫
D

‖g(v(·, x1))− g(v(·, x2))‖2W 1,∞(I)

|x1 − x2|d+2s
dx1dx2

≤ C
∫
D

∫
D

‖v(·, x1)− v(·, x2)‖2W 1,∞(I)

|x1 − x2|d+2s
dx1dx2

+ C

∫
D

∫
D

‖v(·, x1)− v(·, x2)‖2L∞(I)‖v̇(·, x1)‖2L∞(I)

|x1 − x2|d+2s
dx1dx2

≤ C(|v|2Hs(D;W 1,∞(I)) + |v|2Hs(D;L∞(I))‖v‖
2
L∞(D;L∞(I))) <∞.

This shows the assertion for 0 < s < 1. The case s ≥ 1 follows similarly as part (i).

3.2 Singular value decay

Now we describe our main tool of the analysis, i.e., SV decay estimates for Sobolev smooth bivariate func-
tions. The study of eigenvalues of integral operators with a kernel function has a rather long history. The
monographs [37] and [28] contain a wealth of relevant results. However, the results in these works are
concerned with two variables defined on the same domain, which do not handle the integral kernel κ(x, t)
directly. We shall use the recent result due to Griebel and Li [14] (see [14, Theorem 3.2]), for the nonfiltered
model in Section 4.1; see [37, Chapter 2] for an introduction to the Lorentz sequence space `p,w.

Theorem 3.2. Suppose that D ⊂ Rd satisfies the strong local Lipschitz condition. Let κ(x, y) ∈ L2(Ω, Hs(D)),
s ≥ 0. Then the SVs σn of the associated integral operator satisfy

σn ≤ diam(D)sCem(d, s)
1
2Cext(D, s)

1
2 ‖κ‖L2(Ω,Hs(D))n

− 1
2−

s
d ,

where the constant Cext(D, s) depends only on D and s (for Sobolev extension), Cem(d, s) is an embedding
constant for ` d

d+2s ,1
↪→ ` d

d+2s ,∞
, and diam(D) is the diameter of the domain D.

6



Note that the result in Theorem 3.2 requires s ≥ 0, which does not cover less regular kernels for the limit
model in Section 4.2 below. For general rough kernels, the spectral theory is largely open [37, 28]. Below we
analyze the kernel f : D × I → R defined by (with d > 1 being the dimension of the domain D)

f(x, t) := |Gx− h(t)|− d2 .

We will make the following assumption.

Assumption 3.1. Suppose that the matrix G ∈ Rd×d is invertible, and the trajectory h(t) : I → Rd satisfies

(i) There exists Ch such that Ch := supt∈[0,T ] |ḣ(t)|−1 <∞.

(ii) For any t ∈ I, G−1h(t) ∈ D; and there exists at most Nh distinct t ∈ I such that h(t) = Gx, for any
x ∈ D.

Remark 3.1. The condition G−1h(t) ∈ D describes that the FFP moves within the physical domain D, and
the domain D is properly covered by the trajectories. The analysis remains valid if the condition holds for
any open subinterval of I. If for all t ∈ I, G−1h(t) /∈ D, then |Gx − h(t)|r belongs to C∞(I;L2(D)) for
smooth trajectories h(t), and the analysis in Section 4.1 applies directly.

First, by the proof of Lemma 4.1 below, we have f(x, t) ∈ L2(I;Lp(D)) for any p ∈ (1, 2). Now we
define the associated integral operator S : Lp

′
(D)→ L2(I) with f(x, t) as its kernel, and its adjoint operator

S∗ : L2(I)→ Lp(D), respectively, by

(Sv)(t) =

∫
D

f(x, t)v(x)dx and (S∗v)(x) =

∫
I

f(x, t)v(t)dt.

Let R : Lp
′
(D) → Lp(D) by R = S∗S. By construction, R is an integral operator with its kernel R ∈

Lp(D)× Lp(D) : D ×D → R given by

R(x, x′) =

∫
I

f(x, t)f(x′, t)dt. (3.2)

Now we give mapping properties of S. See [2, pp. 221–228] for an introduction to Lorentz spaces Lp,∞(D).

Lemma 3.2. For d = 2, 3, let Assumption 3.1 be fulfilled. Then the following statements hold.

(i) For all q > 2, the operator S : Lq(D)→ L∞(I) is bounded;

(ii) For all p ∈ ( 2(d−1)
d , 2) and q = 2p

d(2−p) , the operator S : Lp(D) → Lq(I) is bounded. In addition, S is

compact from L2(D) to L2(I).

Proof. By the proof of Lemma 4.1 below, v(t) := ‖f(·, t)‖L2−ε(D) ∈ L∞(I) for any ε > 0. Together with [29,
Theorem 6.1, p. 99], it implies that S is bounded from Lq(D) to L∞(I) for all q > 2.

The proof of assertion (ii) is inspired by the proof of Theorem 8.10 of [29, p. 165]. It relies on Stein-Weiss
interpolation theorem (see, e.g., [29, Theorem 8.2, p. 150] and [39, Chapter 5]). First, we claim that there

is C > 0 such that for any p ∈ ( 2(d−1)
d , 2) and q = 2p

(2−p)d , there holds

‖SχA‖Lq,∞(I) ≤ C|A|
1
p (3.3)

for all measurable subsets A ⊂ D with finite measure, where χA is the characteristic function of A. If the
estimate (3.3) holds, then by Stein-Weiss interpolation theorem, S is bounded from Lp(D) to Lq(I) for all

p ∈ ( 2(d−1)
d , 2) and q = 2p

d(2−p) . Then Theorem 5.4 of [29, p. 83] implies that S is compact from L2(D) to

L2(I). Hence, it suffices to prove the estimate (3.3).
First, by Hölder’s inequality with an exponent γ ∈ ( 1

q ,
1
p ), we obtain

SχA(t) =

∫
A

|Gx− h(t)|− d2 dx =

∫
A

|Gx− h(t)|−( d2−
1
q )|Gx− h(t)|−

1
q dx

≤
(∫

A

|Gx− h(t)|−( d2−
1
q )(1−γ)−1

dx
)1−γ(∫

A

|Gx− h(t)|−
1
qγ dx

)γ
. (3.4)
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Let s := (d2 −
1
q )(1 − γ)−1, and let B(G−1h(t), ρ) := {x ∈ Rd : |x − G−1h(t)| ≤ ρ} be the ball centered at

G−1h(t) with a radius ρ satisfying |B(G−1h(t), ρ)| = |A|, which implies |A| = |Sd−1|ρd, where |Sd−1| denotes
the volume of the unit sphere in Rd. Then by equation (8.33) of [29, p. 154], we have∫

A

|x−G−1h(t)|−sdx−
∫
B(G−1h(t),ρ)

|x−G−1h(t)|−sdx

=

∫
A\B(G−1h(t),ρ)

|x−G−1h(t)|−sdx−
∫
B(G−1h(t),ρ)\A

|x−G−1h(t)|−sdx

≤|A\B(G−1h(t), ρ)|ρ−s − |B(G−1h(t), ρ)\A|ρ−s = 0.

Consequently, ∫
A

|x−G−1h(t)|−sdx ≤
∫
B(G−1h(t),ρ)

|x−G−1h(t)|−sdx. (3.5)

By the choice of γ, s := (d2 −
1
q )(1 − γ)−1 = d p−1

p(1−γ) < d. Thus, in view of the inequality |Gx − h(t)| ≥
‖G−1‖−1|x−G−1h(t)|, together with (3.5), changing to polar coordinates leads to∫

A

|Gx− h(t)|−sdx ≤‖G−1‖s
∫
B(G−1h(t),ρ)

|x−G−1h(t)|−sdx

≤‖G−1‖s|Sd−1|
∫ ρ

0

r−srd−1dr

≤‖G−1‖s|Sd−1| p(1− γ)

d(1− pγ)
ρd

1−pγ
p(1−γ) .

Therefore, with the identity |A| = |Sd−1|ρd, we arrive at∫
A

|Gx− h(t)|−sdx ≤ C(s, d, γ, p)|A|
1−pγ
p(1−γ) .

with a constant C(s, d, γ, p) = ‖G−1‖s|Sd−1|
p−1

p(1−γ) p(1−γ)
d(1−pγ) . This and (3.4) imply

‖SχA‖Lq,∞(I) ≤ C(s, d, γ, p)1−γ |A|
1
p−γ

∥∥∥(∫
A

|Gx− h(t)|−
1
qγ dx

)γ∥∥∥
Lq,∞(I)

. (3.6)

It remains to estimate the last term in (3.6). Actually, by definition,∥∥∥(∫
A

|Gx− h(t)|−
1
qγ dx

)γ∥∥∥
Lq,∞(I)

=
(∥∥∥∫

A

|Gx− h(t)|−
1
qγ dx

∥∥∥
Lqγ,∞(I)

)γ
≤
(∫

A

∥∥∥|Gx− h(t)|−
1
qγ

∥∥∥
Lqγ,∞(I)

dx
)γ

=
(∫

A

∥∥∥|Gx− h(t)|−1
∥∥∥ 1
qγ

L1,∞(I)
dx
)γ
. (3.7)

Next we fix any x ∈ A, and estimate
∥∥|Gx − h(t)|−1

∥∥
L1,∞(I)

. Let g(t) := |Gx − h(t)|−1. Then, under

Assumption 3.1, the nonincreasing rearrangement function g∗(τ) for τ ≥ 0 can be bounded by

g∗(τ) ≤ 2ChNhτ
−1, (3.8)

where the rearrangement function g∗(τ) is defined by

g∗(τ) = inf{c :
∣∣{t : |g(t)| ≥ c}

∣∣ ≤ τ}
= inf{c :

∣∣{t : |h(t)−Gx| ≤ c−1}
∣∣ ≤ τ},
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by slightly abusing the notation | · | for the Lebesgue measure of a set. Indeed, we have the trivial inclusion
{t : |h(t) − Gx| ≤ c−1} ⊂ ∪Nxj=1{t ∈ [max(0, tj−1),min(tj+1, T )] : |h(t) − h(tj)| ≤ c−1}, where the time
instances tj satisfy h(tj) = Gx, for j = 1, . . . , Nx ≤ Nh, under Assumption 3.1. Further, for any t ∈ [tj−1, tj ],

by the mean value theorem, there exists some ξj ∈ [tj−1, tj ] such that |h(t) − h(tj)| = |ḣ(ξj)(t − tj)|, then
the assertion (3.8) follows. Consequently∥∥|Gx− h(t)|−1

∥∥
L1,∞(I)

:= sup
τ>0

τg∗(τ) ≤ 2ChNh.

Now plugging this into (3.7) yields∥∥∥(∫
A

|Gx− h(t)|−
1
qγ dx

)γ∥∥∥
Lq,∞(I)

≤ (2ChNh)
1
q |A|γ ,

which, together with (3.6), directly implies

‖SχA‖Lq,∞(I) ≤ (2ChNh)
1
qC(s, d, γ, p)1−γ |A|

1
p .

Upon letting γ = p+q
2pq , we obtain the desired estimate. This completes the proof of the lemma.

The next lemma shows that the operator R : Lq(D)→ L2(D) is compact, for any q > 2(d−1)
d .

Lemma 3.3. Under the conditions of Lemma 3.2, for any q > min(1, 2(d−1)
d ), R extends to a compact

operator from Lq(D) to L2(D). Especially, R is compact on L2(D).

Proof. This follows directly from Lemma 3.2 and a duality argument.

By Lemma 3.3, the operator R is nonnegative, compact and self-adjoint on L2(D). By spectral theory
for compact operators [46], it has at most countably many discrete eigenvalues, with zero being the only
accumulation point, and each nonzero eigenvalue has only finite multiplicity. Let {λn}∞n=1 be the sequence
of eigenvalues (with multiplicity counted) associated to R, which are ordered nonincreasingly, and {φn}∞n=1

the corresponding eigenfunctions (orthonormal in L2(D)). Moreover, spectral theory implies

∀v ∈ L2(D) : Rv =

∞∑
n=1

λn(v, φn)φn, (3.9)

with (·, ·) being the L2(D) inner product. Let q∗ =∞ for d = 2, and q∗ = 4 for d = 3. Then by Lemma 3.2
and [29, Theorem 5.4, p. 83], the eigenfunctions {φn}∞n=1 have the following summability: For any q < q∗

and any n ∈ N+, φn ∈ Lq(D). This and the spectral decomposition (3.9) imply that the spectrum of the
operator R will not change if its domain is restricted to L2+ε(D) for any 0 < ε < 1.

Now we extend Theorem 3.2 to the kernel |Gx − h(t)|− d2 . This result will be used in Section 4.2. We
need a few concepts from spectral theory in Banach spaces [37]. Given two Banach spaces E and F , the
n-th approximation number an(W ) and the Weyl number xn(W ) of an operator W ∈ B(E,F ) (i.e., the set
of all bounded linear operators from E to F ) are defined by

an(W ) : = inf{‖W − L‖B(E,F ) : L ∈ F(E,F ), rank(L) < n},

and

xn(W ) : = sup{an(WX) : X ∈ B(`2, E), ‖X‖B(`2,E) ≤ 1},

respectively, where F(E,F ) denotes the set of the finite rank operators and WX is the product of the two
operators W and X. Furthermore, the following multiplicative property on Weyl numbers holds [37, Sections
2.4 and 3.6.2]:

Proposition 3.1. For all n ∈ N+, X ∈ B(E0, E), W ∈ B(E,F ) and Y ∈ B(F, F0), there holds

xn(YWX) ≤ ‖Y ‖B(F,F0)xn(W )‖X‖B(E0,E).
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Theorem 3.3. Let Assumption 3.1 hold, and f(x, t) := |Gx − h(t)|− d2 with d = 2, 3. Then λn ≤ Cn−
1
2 +ε

as n→∞ for any ε > 0.

Proof. Let S̃ := S|L2+ε(D) for some small fixed ε > 0, i.e., the restriction of S on L2+ε(D). Then by Lemma

3.2(i), the range of S is L∞(I). Hence, we can decompose S̃ : L2+ε(D) → L2+ε(I) into S̃ = IS̃, where
I is the embedding operator from L∞(I) to L2+ε(I). The multiplicative property of Weyl numbers xn in
Proposition 3.1 implies

xn(IS̃) ≤ xn(I)‖S̃‖B(L2+ε(D),L∞(I)).

By [37, Section 6.3.4, p. 250], there holds xn(I) ≤ Cn−
1

2+ε . Thus, we arrive at

xn(IS̃) ≤ Cn−
1

2+ε .

Meanwhile, Lemma 3.2(ii) and a standard duality argument indicate that the dual operator S∗ is bounded

from L2+ε(I) to L2+ε(D). Note that R̃ = R|L2+ε(D), and its eigenvalues are {λn}∞n=1, which can be bounded

by the Weyl numbers xn(R̃) according to the eigenvalue theorem for Weyl operators [37, Section 3.6.2].
Hence, we deduce

λn ≤ Cxn(R̃) = Cxn(S∗IS̃) ≤ C‖S∗‖B(L2+ε(I),L2+ε(D))xn(IS̃).

where the last step is due to Proposition 3.1. Combining the preceding estimates completes the proof.

Remark 3.2. The bound in Theorem 3.3 seems not sharp. The sharp one is conjectured to be O(n−1+ε).
The statement remains valid if the kernel f(x, t) is multiplied by a bounded function. This fact will be used
below in Section 4.2.

4 Degree of ill-posedness

Now we analyze the degree of ill-posedness of the equilibrium MPI model (2.6) via the SV decay rate of the
associated integral operator, and focus on three cases: (a) nonfiltered equilibrium model, (b) limit model, and
(c) filtered equilibrium model. Dependent of the problem setting, the behavior of the forward operator can
differ substantially [43]. Our analysis below sheds insights into these observations. Since the experimental
parameters for all the receive coils are comparable in practice, our analysis below focuses on one receive
coil, which allows us to simplify the notation. The decay rate given below only determines the best possible
degree of ill-posedness (i.e., upper bounds on SVs), and the results should be only used as an indicator of
the degree of ill-posedness.

4.1 The non-filtered equilibrium model

First, we consider the case in the absence of the temporal analog filter a(t), and discuss the influence of the
filter in Section 4.3 below. Then the MPI forward operator F : L2(Ω)→ L2(I) is given by

v(t) =

∫
Ω

c(x)κ(x, t)dx,

κ = µ0m0p
t d

dt

[
Lβ(|H|)
|H|

H

]
,

H(x, t) = g(x)− h(t).

(4.1)

Now we can state our first main result.

Theorem 4.1. Let 0 < β < ∞, d = 1, 2, 3, h ∈ (Hs(I))d with s ≥ 1, g ∈ (L∞(Ω))d, and p ∈ (L∞(Ω))d.

Then for the operator F : L2(Ω)→ L2(I) defined in (4.1), the SVs σn decay as σn ≤ Cn
1
2−s.
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Proof. Since h ∈ (Hs(I))d and g ∈ (L∞(Ω))d, by Sobolev embedding, the function H(x, t) = g(x) − h(t) ∈
Hs(I; (L∞(Ω))d) ⊂ L∞(I; (L∞(Ω))d), and Ḣ(x, t) = −ḣ(t) ∈ (Hs−1(I))d. Clearly, we have

ptH ∈ Hs(I;L∞(Ω)) and ptḢ = −ptḣ ∈ Hs−1(I;L∞(Ω)). (4.2)

Further, by Lemma 2.1,
Lβ(
√
z)√
z
∈ C∞B ([0,∞)) and since s ≥ 1, by Theorem 3.1, simple computation shows

|H|2 ∈ Hs(I;L∞(Ω)), and thus by Lemma 3.1(i),
Lβ(|H|)
|H| ∈ Hs(I;L∞(Ω)) and d

dt
Lβ(|H|)
|H| ∈ Hs−1(I;L∞(Ω)).

Now, by the product rule, (4.2) and Theorem 3.1, we deduce

κ = µ0m0p
t d

dt

(
Lβ(|H|)
|H|

H

)
= µ0m0

(
ptH

d

dt

Lβ(|H|)
|H|

+
Lβ(|H|)
|H|

ptḢ

)
(4.3)

∈ Hs−1(I;L∞(Ω)) ⊂ Hs−1(I;L2(Ω)).

Then the desired assertion follows from Theorem 3.2.

Remark 4.1. For p, g ∈ (L∞(Ω))d, Theorem 4.1 describes the potential influence of the trajectory h(t)
on the SV decay. For smooth trajectories, i.e., h(t) ∈ (C∞(I))d (e.g., sinusoidal trajectory, common in
experimental setup), the SVs decay rapidly, and thus the inverse problem is very ill-posed. For nonsmooth

trajectories, i.e., triangular trajectory (h(t) ∈ (H
3
2−ε(I))d, for any ε ∈ (0, 1

2 )), the decay may be slower.

In Theorem 4.1, we assume p, g ∈ (L∞(Ω))d only. It does not account for possible additional regularity
of κ(x, t) in the spatial variable x. In practice, it is often taken to be homogeneous/linear, and thus κ(x, t)
is very smooth in x. This extra regularity can significantly affect the SV decay, which is described next.

Theorem 4.2. Let 0 < β < ∞, d = 1, 2, 3, h ∈ (Hs(I))d with s > 3
2 , g ∈ (Hr(Ω))d, r > d

2 and p ∈
(C∞(Ω))d. Then for the operator F : L2(Ω)→ L2(I) defined in (4.1), the SVs σn decay as σn ≤ Cn−

1
2−

r
d .

Proof. By Sobolev embedding, for s > 3
2 , Ḣ(x, t) = −ḣ(t) ∈ (Hs−1(I))d ⊂ (L∞(I))d. Then under the given

assumptions, H(x, t) = g(x) − h(t) ∈ Hr(Ω; (Hs(I))d) ⊂ Hr(Ω; (W 1,∞(I))d) ⊂ L∞(Ω; (W 1,∞(I))d). By

Lemma 2.1,
Lβ(
√
z)√
z
∈ C∞B ([0,∞)), and by Theorem 3.1, we deduce |H(x, t)|2 ∈ Hr(Ω;W 1,∞(I)). Hence,

Lemma 3.1(ii) implies
Lβ(|H(x,t)|)
|H(x,t)| ∈ Hr(Ω;W 1,∞(I)), and d

dt
Lβ(|H(x,t)|)
|H(x,t)| ∈ Hr(Ω;L∞(I)). Further, for

r > d
2 , for small ε > 0, we have 2r − d

2 − ε > r, and thus it follows from (4.2) and Theorem 3.1 that

ptH d
dt
Lβ(|H(x,t)|)
|H(x,t)| ∈ Hr(Ω;L∞(I)) and similarly

Lβ(|H(x,t)|)
|H(x,t)| ptḣ(t) ∈ Hr(Ω;L∞(I)). These two inclusions

and (4.3) show that κ ∈ Hr(Ω;L∞(I)) ⊂ Hr(Ω;L2(I)). Thus, by Theorem 3.2, the SVs of the adjoint

operator decay as O(n−
1
2−

r
d ). Since the adjoint operator F ∗ : L2(I)→ L2(Ω)(with respect to the L2(I ×Ω)

inner product) shares the SVs [12, p. 27, eq. (2.1)], the desired assertion follows.

By Theorem 4.2, the SVs can decay fast for a nonsmooth trajectory h(t), so long as p(x) and g(x)
are sufficiently smooth. The regularity requirement might be relaxed by analyzing more precisely pointwise
multiplication in Bochner-Sobolev spaces. Since ḣ(t) and p(x) enter the kernel κ(x, t) as pointwise multipliers,
if uniformly bounded, they act as bounded operators on L2(I) and L2(Ω), respectively, and the decay rate
remains valid [12, p. 27, eq. (2.2)].

4.2 Limit model

It was reported that the spatial resolution increases with particle diameter D [43, 23], i.e., a large β value
in the model (4.1). Hence, we analyze the limit case β → ∞ below. First, we derive the expression for the
limit integral operator. Throughout this part, in Assumption 3.1, the domain D refers to Ω.

Proposition 4.1. Let h ∈ (Hs(I))d with s ≥ 1, g ∈ (L∞(Ω))d, and p ∈ (L∞(Ω))d. For β →∞, there holds

d

dt

(
µ0p

tLβ(|H|) H
|H|

)
→ d

dt

(
µ0p

t H

|H|

)
in H−1(I;L2(Ω)),
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and the limit integral operator F̃ of the operator F defined in (4.1) is given by
v(t) =

∫
Ω

c(x)κ̃(x, t)dx,

κ̃ = µ0m0p
t

(
−HH

t

|H|3
+

1

|H|
Id

)
Ḣ,

H(x, t) = g(x)− h(t).

(4.4)

Proof. First, by the assumptions on g, h and p and Sobolev embedding theorem, H(x, t) = g(x) − h(t) ∈
(L∞(Ω× I))d. Then for any φ(t) ∈ H1

0 (I) and ψ(x) ∈ L2(Ω), integration by parts yields∫
I

∫
Ω

µ0m0p(x)t
d

dt

[
Lβ(|H(x, t)|) H(x, t)

|H(x, t)|

]
φ(t)ψ(x)dxdt

=−
∫
I

∫
Ω

µ0m0p(x)tLβ(|H(x, t)|) H(x, t)

|H(x, t)|
φ̇(t)ψ(x)dxdt.

Now it follows from Cauchy-Schwarz inequality that∣∣∣ ∫
I

∫
Ω

[Lβ(|H(x, t)|)− sign(|H(x, t)|)]µ0m0p(x)t
H(x, t)

|H(x, t)|
φ̇(t)ψ(x)dxdt

∣∣∣
≤µ0m0‖p‖(L∞(Ω))d

∫
I

∫
Ω

∣∣∣Lβ(|H(x, t)|)− sign(|H(x, t)|)
∣∣∣× |φ̇(t)ψ(x)|dxdt

≤µ0m0‖p‖(L∞(Ω))d

∥∥∥Lβ(|H(x, t)|)− sign(|H(x, t)|)
∥∥∥
L2(Ω×I)

‖φ̇‖L2(I)‖ψ‖L2(Ω).

Since ‖H‖L∞(Ω×I) <∞, by Lemma 2.1(i) and Lebesgue’s dominated convergence theorem, we deduce

lim
β→∞

‖Lβ(|H(x, t)|)− sign(|H(x, t)|)‖L2(Ω×I) = 0.

By integration by parts again, and density of the product ψφ in H1
0 (I;L2(Ω)) ' L2(Ω;H1

0 (I)) (see, e.g., [37,
Section 6.2, p. 244] or [18, Lemma 1.2.19, p. 23]), we obtain the assertion.

Next we analyze the decay rate of the SVs of the limit operator F̃ . First, we give a result on the
Bochner-Sobolev regularity of the function |Gx− h(t)|r, r > −d2 .

Lemma 4.1. Let Assumption 3.1 hold, and let h(t) be sufficiently smooth. Then for any r > −d2 , the

function f(x, t) = |Gx− h(t)|r ∈ Hs(I;L2(Ω)) for any s < r + d
2 .

Proof. Let ε > 0 be sufficiently small and r = −d2 + ε
2 . Since G is invertible, by the relation |Gx − h(t)| =

|G(x−G−1h(t))| ≥ ‖G−1‖−1|x−G−1h(t)| for any fixed t ∈ [0, T ], we have∫
I

∫
Ω

|Gx− h(t)|−d+εdxdt ≤ ‖G−1‖d−ε
∫ T

0

(∫
Ω

|x−G−1h(t)|−d+εdx
)

dt.

Let B(G−1h(t), ρ) := {x ∈ Rd : |x − G−1h(t)| ≤ ρ} satisfy that |B(G−1h(t), ρ)| = |Ω|, which implies
|Ω| = |Sd−1|ρd. By (3.5) with A := Ω, we obtain∫

I

∫
Ω

|Gx− h(t)|−d+εdxdt ≤ ‖G−1‖d−ε
∫ T

0

(∫
B(G−1h(t),ρ)

|x−G−1h(t)|−d+εdx
)

dt.

Then changing to polar coordinates for the inner integral leads to∫
I

∫
Ω

|Gx− h(t)|−d+εdxdt ≤ ‖G−1‖d−εT
∫ ρ

0

r−d+εrd−1dr|Sd−1|

= ε−1‖G−1‖d−εT |Ω| εd |Sd−1|1− εd . (4.5)
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This proves f(x, t) ∈ L2(I;L2(Ω)) for all r > −d2 . Next, the derivative ḟ of f = |Gx − h(t)|r is given by

ḟ = −r|Gx− h(t)|r−2(Gx− h(t))tḣ(t). Thus, |ḟ | ≤ r|Gx− h(t)|r−1|ḣ(t)|, which, together with (4.5), implies
that for r = −d2 + 1 + ε

2 , there holds

‖ḟ‖L2(I;L2(Ω)) ≤ r
√
ε−1‖G−1‖d−εT |Ω| εd |Sd−1|1− εd ‖ḣ‖L2(I).

Thus, ‖f‖H1(I;L2(Ω)) < ∞. By interpolation, for any −d2 + ε
2 < r < −d2 + 1 + ε

2 , there holds |Gx− h(t)|r ∈
Hr(I;L2(Ω)), with s = r+ d

2 . The general case of any r > −d2 + 1 can be analyzed analogously. The desired
assertion follows since the constant ε ∈ (0, 1

2 ) can be made arbitrarily small.

Lemma 4.1 does not cover the case r = −d2 , which is treated next.

Lemma 4.2. Let Assumption 3.1 hold. Then for any p ∈ (1, 2), the function f(x, t) = |Gx − h(t)|− d2 ∈
L2−ε(Ω;Lp(I)) for any ε > 0.

Proof. We only need to show

g(x) :=

∫
I

|Gx− h(t)|−
pd
2 dt ∈ L

2
p ,∞(Ω) for all p ∈ (1, 2). (4.6)

Note that L2,∞(Ω) ⊂ L2−ε(Ω) for all ε > 0 [10, Section 6.4], and hence, f(x, t) ∈ L2−ε(Ω;Lp(I)) for any

p ∈ (1, 2). Next we prove (4.6). Since L
2
p ,∞(Ω) is a Banach space with a well-defined norm, we deduce

‖g‖
L

2
p
,∞

(Ω)
=
∥∥∥ ∫

I

|Gx− h(t)|−
pd
2 dt

∥∥∥
L

2
p
,∞

(Ω)
≤
∫
I

∥∥∥|Gx− h(t)|−
pd
2

∥∥∥
L

2
p
,∞

(Ω)
dt. (4.7)

Let w(x, t) := |Gx − h(t)|−
pd
2 . To estimate ‖g‖

L
2
p
,∞

(Ω)
, we first compute the nonincreasing rearrangement

w∗(τ, t) for any fixed t ∈ I, which, by definition, is defined for all τ ≥ 0 by

w∗(τ, t) = inf{c > 0 : |{x ∈ Ω : w(x, t) > c}| ≤ τ}

= inf{c > 0 : |{x ∈ Ω : |Gx− h(t)| < c−
2
pd }| ≤ τ}.

This and the inclusion relation {x ∈ Ω : |Gx− h(t)| < c−
2
pd } ⊂ {x ∈ Ω : |x−G−1h(t)| < ‖G−1‖c−

2
pd } (due

to the trivial inequality |Gx− h(t)| ≥ ‖G−1‖−1|x−G−1h(t)|) yield

w∗(τ, t) ≤
(
|Sd−1|‖G−1‖dτ−1

) p
2

.

Hence, for any fixed t ∈ I, we obtain∥∥∥|Gx− h(t)|−
pd
2

∥∥∥
L

2
p
,∞

(Ω)
= ‖w(x, t)‖

L
2
p
,∞

(Ω)
≤ sup

τ≥0
τ
p
2

(
|Sd−1|‖G−1‖dτ−1

) p
2

=
(
|Sd−1|‖G−1‖d

) p
2

,

which, in view of (4.7), yields (4.6). This completes the proof of the lemma.

Now we can state the degree of ill-posedness for the limit problem for FFP trajectories.

Theorem 4.3. For β → ∞, if p ∈ (L∞(Ω))d, h ∈ (Hs(I))d with s > 3
2 , d = 2, 3, for FFP trajectories, the

SVs σn of the operator F̃ defined in (4.4) decay as (for any ε ∈ (0, 1
4 )):

σn ≤
{
Cn−1+ε, d = 3,

Cn−
1
4 +ε, d = 2.

13



Proof. By the Cauchy-Schwarz inequality, there holds |κ̃| ≤ µ0m0|p||H|−1|Ḣ|. Now we discuss the cases

d = 2 and d = 3 separately. For d = 3, by Lemma 4.1, |H|−1 ∈ H
1
2−ε(I;L2(Ω)), and since s > 3

2 , by

Sobolev embedding, Ḣ = −ḣ ∈ (Hs−1(I))3 ⊂ (L∞(I))3. By Theorem 3.1 and p ∈ (L∞(Ω))3, we have

|H|−1|ḣ| ∈ H 1
2−ε(I;L2(Ω)). Then the assertion follows from Theorem 3.2. The case d = 2 is similar: since

|ḣ| ∈ L∞(I) and |p| ∈ L∞(Ω), we apply Theorem 3.3 to obtain the desired assertion.

In practice, one can also have FFL trajectories for d = 3, where G ∈ R3×3 has only rank 2. Then for any
fixed t ∈ I, the kernel function κ̃(x, t) is singular along a line in Ω, instead of at one single point. We analyze
a simplified model to gain insight. Since rank(G) = 2 and symmetric, by properly changing the coordinate,
we may assume that G is diagonal with the last diagonal entry being zero. Then the condition for any
fixed t ∈ I, there exists x ∈ Ω such that Gx = h(t) implies h3(t) = 0, and the singular kernel essentially
depends only on h1(t) and h2(t), and the third component of H(x, t) vanishes. Thus for a cylindrical domain
Ω = Ω12 × Ω3, the forward operator F̃ can be reformulated as in the 2D FFP trajectories (with respect to
the average

∫
Ω3
c(x)dx3 of the concentration c(x)):

v(t) = −µ0m0

∫
Ω12

(∫
Ω3

c(x)dx3

)
p(x)t

(
−HH

t

|H|3
+

1

|H|
I3

)
Ḣdx1dx2.

The next result analyzes the degree of ill-posedness of FFL trajectories under the designate conditions.

Theorem 4.4. Under the preceding assumptions, for β → ∞, for FFL trajectories in 3D, p ∈ (L∞(Ω))3,

and h(t) ∈ (Hs(I))3 with s > 3
2 , the SVs σn of the operator F̃ decay as σn ≤ Cn−

1
4 +ε, for any ε ∈ (0, 1

4 ).

Proof. The proof is similar to Theorem 4.3 with d = 2. Since s > 3
2 , by Sobolev embedding, Ḣ = −ḣ(t) ∈

(Hs−1(I))3 ↪→ (L∞(I))3. Since the third component of H vanishes, this and Theorem 3.3 yield the assertion.

Remark 4.2. In Theorems 4.3 and 4.4, the trajectory h(t) is assumed to be (Hs(I))d, with s > 3
2 . This

restriction comes from the requirement ḣ(t) ∈ (L∞(I))d to simplify the analysis. The estimates in Theorem
4.4 and Theorem 4.3 for d = 2 are conservative, due to suboptimal bound in Theorem 3.3 (see Remark 3.2).

4.3 Filtered model

In practice, the signal is first preprocessed by an analog filter to remove the excitation so that the true signal
is not lost during digitalization. This can be achieved by a band stop filter. Mathematically, it amounts to
convolution with a given kernel a(t) : Ī := [−T, T ]→ R defined by

κ̂(x, t) =

∫
I

κ(x, t′)a(t− t′)dt′ ∀t ∈ I. (4.8)

However, the precise form of the filter a(t) remains elusive, which currently constitutes one of the major
challenges in realistic mathematical modeling of MPI [21]. To analyze the influence of the filtering step, we
recall a smoothing property of the convolution operator [5, Theorem 3]. Below the notation (·)+ denotes the
positive part. We refer to [41] for a treatise on Besov spaces Bsp,θ(R).

Lemma 4.3. For −∞ < `1, `2 <∞, 1 ≤ p1 ≤ p2 ≤ ∞, 0 < θ1, θ2 ≤ ∞, with 1
p = 1

p′1
+ 1
p2

and 1
θ ≥ ( 1

θ2
− 1
θ1

)+,

then for f ∈ B`2−`1p,θ (R) and g ∈ B`1p1,θ1(R), the convolution f ∗ g exists and

‖f ∗ g‖
B
`2
p2,θ2

(R)
≤ C‖f‖

B
`2−`1
p,θ (R)

‖g‖
B
`1
p1,θ1

(R)
.

Last, we describe the influence of filtering: the SVs σn of the filtered model decay faster than the
nonfiltered one by a factor r, the regularity index of the filter.

Theorem 4.5. Suppose that the zero extension of the filter a(t) : Ī → R belongs to Br1,θ(R), for some r ≥ 0

and 0 < θ ≤ ∞, and the conditions in Theorem 4.1 hold. Then the SVs σn of the operator F̂ for the kernel
κ̂(x, t) defined in (4.8) decay as σn ≤ Cn

1
2−s−r.
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Proof. Let κ̄ be any bounded extension of κ from Hs−1(I;L2(Ω)) to Hs−1(R;L2(Ω)), and denote by ā
the zero extension of a : Ī → R to R \ Ī. Then we can extend κ̂ from I to R, still denoted by κ̂, by
κ̂(x, t) =

∫
R κ̄(x, t′)ā(t− t′)dt′. Clearly, the restriction of κ̂(x, t) to I coincides with κ̂ defined in (4.8), by the

construction of the extension ā. This and the fact Hs(R) = Bs2,2(R) [41, Remark 4, p. 179] imply

‖κ̂‖Hs+r−1(I;L2(Ω)) = ‖κ̄ ∗ ā‖Hs+r−1(I;L2(Ω)) ≤ ‖κ̄ ∗ ā‖Hs+r−1(R;L2(Ω))

≤ C‖κ̄‖Hs−1(R;L2(Ω))‖ā‖Br1,θ(R) ≤ C‖κ‖Hs−1(I;L2(Ω))‖ā‖Br1,θ(R),

where the second inequality is due to Lemma 4.3 and the last one due to the bounded extension. Then the
assertion follows from Theorem 3.2.

5 Numerical results

Now we illustrate the theoretical results with numerical examples for the non-filtered FFP and FFL cases. We
do not study the influence of analog filter, since its mechanism and precise form are still poorly understood.

5.1 Setting of numerical experiments

In our numerical simulation, we use parameters that are comparable with real experiments. We parameterize
problems (4.1) and (4.4) analogously to the Bruker FFP scanner, and obtain the parameter values from a pub-
lic dataset [27]. Sinusoidal excitation patterns are used to move the FFP along Lissajous trajectories, which
are often employed in practice due to its fast coverage of the domain of interest. In the FFP case, the gradient
field g : R3 → R3 is taken to be linear, i.e., g(x) = Gx with G ∈ R3×3 diagonal and trace(G) = 0. The drive
field h : I → R3 is taken to be trigonometric, i.e. h(t) = −(A1 sin(2πf1t), A2 sin(2πf2t), A3 sin(2πf3t))

t,
Ai, fi > 0, i = 1, 2, 3. By Theorem 4.2, for 0 < β < ∞, the good spatial regularity of the kernel κ(x, t)
precludes examining the influence of trajectory smoothness on the SV decay. Nonetheless, we consider also
triangular trajectories, i.e., h(t) = −(A1tri(2πf1t), A2tri(2πf2t), A3tri(2πf3t))

t, Ai, fi > 0, i = 1, 2, 3, where
the function tri : R→ [−1, 1] is defined by

tri(z) =


2
π θ θ = (z mod 2π) ∈ [0, π/2),

2− 2
π θ θ = (z mod 2π) ∈ [π/2, 3π/2),

−4 + 2
π θ θ = (z mod 2π) ∈ [3π/2, π/2).

We refer to Fig. 1 for an illustration of Lissajous excitation with sinusoidal and triangular trajectories.

(a) sinusoidal (b) triangular

Figure 1: FFP trajecories Lissajous curve for sinusoidal (a) and triangular (b) excitation in 2D.

The scanner is equipped with three receive coil units, each sensitive to one component of the mean
magnetic moment vector m̄(x, t). The coil sensitivities p are assumed to be homogeneous in the simulation.
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The particle’s magnetic moment m0 is set to m0 = µ−1
0 in order to avoid diameter-dependent numerical

errors, and the remaining particle parameters are chosen following [6].
The forward operators F , F̃ : L2(Ω) → (L2(I))L are discretized by a Galerkin method with piecewise

constant basis functions on a rectangular partition of the spatial domain Ω and uniform partition of the time
interval I. The integrals are computed using a quasi Monte-Carlo quadrature rule in the spatial variable x,
with a Halton sequence with 3d points, for which a good accuracy was reported [34]. It can also approximate
singular integrals [36] arising in the limit case. The time integral is computed by a Gaussian quadrature
rule, and interval splitting is performed if necessary such that discontinuities lie at the interval boundaries
only. MATLAB’s built-in function svd is used to compute SVs of the discrete model.

There are several sources of errors in computing SVs: discretization error of the integral operator, quadra-
ture error by Gauss quadrature in time / quasi Monte Carlo method in space and possibly also numerical
error with MATLAB function svd for computing matrix SVs. The first two sources seem dominant. The
discretization error by the piecewise constant Galerkin method is of order O(h), where h is the mesh size, if
the integrand is smooth, and the quadrature error is analyzed for well behaved functions. In the nonfiltered
model, the kernel function is well behaved, so existing theory may be applied. In the limit case, the kernel is
highly singular, so one can only expect low-order convergence. A complete analysis of these errors is beyond
the scope of the present work.

These observations indicate that one should not put a lot of confidence into the accuracy of the trailing
part of small singular values and try to draw conclusions from this part, since these values are not reliably
computed. In practice, researchers have been using leading SVs to determine the decay rate [13]; see also
[48] for quantitative estimates on the percentage of reliable eigenvalues for the Laplacian by the Galerkin
method (equivalently, SVs for the integral operator with Green’s function as the kernel). The discussions
below focus on leading SVs (note that the theoretical results hold for all n).

5.2 Numerical results and discussions

First, we compare the SV decays for the FFP case using sinusoidal excitation patterns moving the FFP
along a Lissajous trajectory in the 2D and 3D cases. In all cases, for d = 1, 2, 3, the first d receive coils were
used to compute the SVs. The parameters used in the numerical simulation are summarized in Table 1. In
all the figures, the whole range of the SVs of the discrete problem is presented, where the small SVs are not
reliable. The FFP results including the limit cases (2D/3D) are presented in Fig. 2, where for the purpose of

comparison, the reference decay rates O(n−
1
2 ) and O(n−1) are also shown. It is observed that as the particle

diameter D increases, the decay rate approaches the theoretical one from Theorem 4.3, and for small D, the
decay is exponential. The numerical results for the 2D FFP limit case agree well with the predictions from
Theorem 4.3 and the conjecture in Remark 3.2. In the 3D FFP limit case, the decay of the leading SVs is
slightly slower than the theoretical rate in Theorem 4.3. Similar observations hold for triangular excitations
in the drive field and when using one single receive coil only. These results can be found in Figs. 3 and 4.

(a) FFP 1D (b) FFP 2D (c) FFP 3D

Figure 2: SV decay for sinusoidal excitation patterns and different particle diameters in (a) 1D, (b) 2D, and
(c) 3D domains.

Next we consider the FFL case. We use a field free line in affine planes of the e1-e2-plane, following [25],
where ei denotes the ith canonical Cartesian coordinate. We use a dynamic selection field g : R3 × I → R3,
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Table 1: Physical parameters used for the simulations. The parameters can be found in: FFP scanner setup
[27] and particle parameters [6].

Parameter Value

Magnetic permeability µ0 4π × 10−7 H/m

Boltzmann constant kB 1.38064852× 10−23 J/K

Particle

Temperature TB 293 K
Sat. magnetization MS 474000 J/m3/T

Particle core diameter D ∈ {20, 30, 40} × 10−9 m
Particle core volume VC 1/6πD3

m0
1
µ0

β
µ0VCMS
kBTB

Geometry d 1 2 3

FOV e1 [−12.5, 12.5] mm [−12.5, 12.5] mm [−12.5, 12.5] mm
e2 − [−12.5, 12.5] mm [−12.5, 12.5] mm
e3 − − [−6.5, 6.5] mm

Cuboid size ∆x 0.1 mm 0.5× 0.5 mm2 1.0× 1.0× 1.0 mm3

Scanner FFP case

Excitation frequencies f1 2.5/102× 106 Hz 2.5/102× 106 Hz 2.5/102× 106 Hz
f2 − 2.5/96× 106 Hz 2.5/96× 106 Hz
f3 − − 2.5/99× 106 Hz

Excitation amplitudes A1 0.012 T/µ0 0.012 T/µ0 0.012 T/µ0

A2 − 0.012 T/µ0 0.012 T/µ0

A3 − − 0.012 T/µ0

Gradient strength G1,1 −1 T/m/µ0 −1 T/m/µ0 −1 T/m/µ0

G2,2 −1 T/m/µ0 −1 T/m/µ0 −1 T/m/µ0

G3,3 2 T/m/µ0 2 T/m/µ0 2 T/m/µ0

Measurement time T 0.04× 10−3 s 0.653× 10−3 s 21.54× 10−3 s

∆t 0.01× 10−6 s 0.2× 10−6 s 0.4× 10−6 s

Scanner FFL case

Excitation frequencies f1 − − −
f2 − 2.5/96× 106 Hz 2.5/96× 106 Hz
f3 − − 2.5/96/25/20× 106 Hz

Field rotation frot − 2604.17 Hz 2604.17 Hz
Excitation amplitudes A1 − − −

A2 − 0.012 T/µ0 0.012 T/µ0

A3 − − 0.06 T/µ0

Gradient strength G1,1 − 0 T/m/µ0 0 T/m/µ0

G2,2 − −1 T/m/µ0 −1 T/m/µ0

G3,3 − 1 T/m/µ0 1 T/m/µ0

Measurement time T − 0.77× 10−3 s 19.2× 10−3 s

∆t − 0.2× 10−6 s 0.4× 10−6 s

(a) FFP 1D (b) FFP 2D (c) FFP 3D

Figure 3: SV decay for triangular excitation patterns and different particle diameters in (a) 1D, (b) 2D, and
(c) 3D domains.

i.e., g(x, t) = P (t)tGP (t)x, with P : I → R3×3 given by

P (t) =

 cos(2πfrott) sin(2πfrott) 0
− sin(2πfrott) cos(2πfrott) 0

0 0 1


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(a) FFP 1D (b) FFP 2D (c) FFP 3D

Figure 4: SV decay for sinusoidal excitation patterns and different particle diameters D, with one single
receive coil in (a) 1D, (b) 2D, and (c) 3D domains.

for frot > 0. A translational movement is performed by using a drive field perpendicular to the FFL at any
time t ∈ I. Assuming G1,1 = 0, the non-rotated FFL is the e1-axis and we obtain the rotated drive field

h(t) = −P (t)th̃(t) = −A2 sin(2πf2t)(− sin(2πfrott), cos(2πfrott), 0)t −A3 sin(2πf3t)e3.

for a non-rotated drive field h̃(t) = (0, A2 sin(2πf2t), A3 sin(2πf3t), A2, A3, f2, f3 > 0. The parameters
used to obtain the FFL results are given in Table 1. We use measurement times comparable to the FFP
case. The rotation frequency frot is chosen such that two complete rotations are performed during the
whole measurement time in 2D. In 3D, a slowly varying field moves the FFL plane in e3-direction. The
corresponding frequency f3 is chosen such that the field’s period is the whole measurement time. Since
the rotation matrix P (t) depends smoothly on time t, it does not influence the analysis in Theorem 4.4.
The numerical results are given in Fig. 5. It is observed that the SVs decay slower, when the particle
diameter D increases. In 2D we observe a decay rate slightly slower than O(n−

1
2 ) for the leading SVs for

the largest diameter. Qualitatively, the 3D limit case agrees with the prediction in Theorem 4.4 but it does
not completely approach O(n−

1
4 ) (the sharp one is conjectured to be O(n−

1
2 ); see Remark 4.2).

(a) FFL 2D (b) FFL 3D

Figure 5: SV decay for sinusoidal FFL excitation patterns and different particle diameters in (a) 2D and (b)
3D domains.

Last, we compare the FFP and FFL cases. The comparative results in Fig. 6 show clearly the slower SV
decays for the leading SVs for the FFL case for one example particle diameter in 2D and the limit case in
3D. Equivalently, for a given noise level, there are more significant singular values in the FFL case than in
the FFP case, which potentially allows obtaining higher resolution reconstructions.

6 Discussions and concluding remarks

In this work, we have analyzed the nonfiltered MPI equilibrium model with common experimental setup,
and studied the degree of ill-posedness of the forward operator via SV decay for Sobolev smooth bivariate
functions. Our analysis gives rise to the following findings. The standard setup in MPI using trigonometric
drive field patterns and a linear selection field leads to a severely ill-posed problem. For the nonfiltered
model, even if the trajectories h(t) are nonsmooth, for the linear selection field, Theorem 4.2 predicts a
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(a) FFP vs. FFL 2D (b) FFP vs. FFL 3D

Figure 6: The comparison of SV decay for the FFP and FFL cases with sinusoidal excitation patterns in (a)
2D and (b) 3D domains.

SV decay faster than any polynomial. The resolution improvement for larger diameters reported in [43, 23]
can be explained by considering the limit case. Two different MPI methodologies, i.e., FFP and FFL, are
distinguished in this work, where the FFL case has not been studied theoretically before. The FFL approach
can potentially lead to a less ill-posed problem than the FFP approach (Theorems 4.3 and 4.4). In the
discrete setup, the temporal behavior of the FFL needs to be chosen more carefully to fully exploit the
potential benefits predicted by the limit case. In particular, this has to be considered when parameterizing
the FFL case with respect to hardware limitations, e.g., rotation frequency [3]. Further, a theoretical result
for the filtered problem exhibits a faster SV decay for analog filters with high (temporal) regularity.

The theoretical findings in this work build the basis for several directions of further research of both
theoretical and empirical nature. First, the predicted severe ill-posedness for small particle diameters opens
the avenue for developing more efficient algorithms based on low-rank approximations of the forward operator.
Second, the techniques are fairly general and might also be employed to analyze other more refined models for
MPI, which include particle dynamics and particle-particle interactions [21]. Last, for image reconstruction,
it is natural to analyze regularized formulations in the context of regularization theory [8, 19].
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[12] I. C. Gohberg and M. G. Krĕın. Introduction to the Theory of Linear Nonselfadjoint Operators. AMS,
Providence, R.I., 1969.

[13] M. Griebel and H. Harbrecht. Approximation of bi-variate functions: singular value decomposition
versus sparse grids. IMA J. Numer. Anal., 34(1):28–54, 2014.

[14] M. Griebel and G. Li. On the decay rate of the singular values of bivariate functions. SIAM J. Numer.
Anal., 56(2):974–993, 2018.

[15] J. Haegele, J. Rahmer, B. Gleich, J. Borgert, H. Wojtczyk, N. Panagiotopoulos, T. Buzug,
J. Barkhausen, and F. Vogt. Magnetic particle imaging: visualization of instruments for cardiovas-
cular intervention. Radiology, 265(3):933–938, 2012.

[16] B. Hofmann and S. Kindermann. On the degree of ill-posedness for linear problems with non-compact
operators. Methods Appl. Anal., 17(4):445–461, 2010.

[17] B. Hofmann and O. Scherzer. Factors influencing the ill-posedness of nonlinear problems. Inverse
Problems, 10(6):1277–1297, 1994.

[18] T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach Spaces. Springer, 2016.

[19] K. Ito and B. Jin. Inverse Problems: Tikhonov Theory and Algorithms. World Scientific, Hackensack,
NJ, 2015.

[20] A. Khandhar, P. Keselman, S. Kemp, R. Ferguson, P. Goodwill, S. Conolly, and K. Krishnan. Evaluation
of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging.
Nanoscale, 9(3):1299–1306, 2017.

[21] T. Kluth. Mathematical models for magnetic particle imaging. Inverse Problems, 34(8):083001, 27 pp.,
2018.

[22] T. Kluth and P. Maass. Model uncertainty in magnetic particle imaging: Nonlinear problem formulation
and model-based sparse reconstruction. Int. J. Magnetic Particle Imag., 3(2):707004, 10 pp., 2017.

[23] T. Knopp, S. Biederer, T. Sattel, and T. M. Buzug. Singular value analysis for magnetic particle
imaging. In Nuclear Science Symp. Conf. Record, 2008. NSS’08. IEEE, pages 4525–4529, 2008.

[24] T. Knopp and T. M. Buzug. Magnetic Particle Imaging: An Introduction to Imaging Principles and
Scanner Instrumentation. Springer, Berlin/Heidelberg, 2012.

[25] T. Knopp, M. Erbe, T. F. Sattel, S. Biederer, and T. M. Buzug. A Fourier slice theorem for magnetic
particle imaging using a field-free line. Inverse Problems, 27(9):095004, 14 pp., 2011.

20
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