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Compressive Sensing With Side Information: How
to Optimally Capture This Extra Information

for GMM Signals?
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Abstract—This paper studies how to optimally capture side in-
formation to aid in the reconstruction of high-dimensional signals
from low-dimensional random linear and noisy measurements, by
assuming that both the signal of interest and the side information
signal are drawn from a joint Gaussian mixture model. In particu-
lar, we derive sufficient and (occasionally) necessary conditions on
the number of linear measurements for the signal reconstruction
minimum mean squared error (MMSE) to approach zero in the
low-noise regime; moreover, we also derive closed-form linear side
information measurement designs for the reconstruction MMSE
to approach zero in the low-noise regime. Our designs suggest that
a linear projection kernel that optimally captures side informa-
tion is such that it measures the attributes of side information that
are maximally correlated with the signal of interest. A number of
experiments both with synthetic and real data confirm that our
theoretical results are well aligned with numerical ones. Finally,
we offer a case study associated with a panchromatic sharpening
(pan sharpening) application in the presence of compressive hy-
perspectral data that demonstrates that our proposed linear side
information measurement designs can lead to reconstruction peak
signal-to-noise ratio (PSNR) gains in excess of 2 dB over other
approaches in this practical application.

Index Terms—Compressive sensing, compressive sensing with
side information, random projection kernels, linear projection ker-
nel design, Gaussian mixture models (GMM), pan-sharpening.

I. INTRODUCTION

COMPRESSIVE sensing (CS) is a promising technology
that enables the successful recovery of high-dimensional
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signals from low-dimensional linear measurements. In particu-
lar, by assuming that the signals admit a parsimonious (sparse)
representation in some domain [2]–[6], the reconstruction of
the signal of interest from the signal measurements can be per-
formed with tractable �1-norm minimization methods [2], [4],
[6], or with iterative algorithms [7], [8].

Other signal models beyond sparsity that can also be lever-
aged to enable the reconstruction of a high-dimensional sig-
nal from low-dimensional linear measurements include wavelet
trees [9], [10], manifolds [11], [12], union-of-subspaces mod-
els [10], [13]–[15], or statistical models [16], [17]. A widely
used statistical model is the Gaussian mixture model (GMM)
that can be seen as the Bayesian counterpart of (linear or
affine) union-of-subspaces models, where each subspace cor-
responds to the image of the (possibly low-rank) covariance
matrix associated to each Gaussian component in the mixture.
In fact, low-rank GMM priors can also be shown to approximate
well compact manifolds [11], and they were shown to provide
state-of-the-art results in practical problems in dictionary learn-
ing [11], image processing [18], [19], image classification [20],
and compressive video acquisition [21]. In particular, GMM
priors with a moderate number of classes (≈10 to 20) have
been shown to reliably model real-world data, such as, for ex-
ample, small portions (e.g., 8 × 8 pixels) of natural images or
video frames [21], [22]. Given a set of training data, such GMM
priors can be estimated by using different learning methods
such as, for example, the well-known expectation maximization
(EM) algorithm [23] or the non-parametric approach described
in [11]. Another advantage of GMM models over other struc-
tured models relates to the fact that the reconstruction of signals
drawn from a GMM distribution can be very effectively per-
formed via an optimal conditional mean estimator available in
closed-form [11].

The use of side information – in the form of other signals that
may be related to the signal of interest – has also been recently
used to improve the performance of CS systems. For example,
recent advances in compressive sensing have proposed different
techniques to effectively incorporate side information into signal
reconstruction algorithms [24]–[31]. In particular, [24] studies
the case when side information is available at the decoder in the
form of partial information about the signal support; and [25]
the case when side information is given as an additional noisy
version of the signal of interest.
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Furthermore, [28], [29] provide a theoretical framework to
determine sufficient conditions for perfect reconstruction with
�1/�1 and mixed �1/�2 reconstruction strategies in the pres-
ence of side information. Reference [30] shows how reference
signals can be used to enhance reconstruction performance via
a reweighted �1/�1 minimization scheme that uses the sample
complexity bound to update its weights. Other related works,
including [32]–[34], provide sufficient and (occasionally) neces-
sary conditions on the number of random measurements taken
from the signal of interest and the side information signal to
guarantee that the reconstruction error tends to zero in the low-
noise regime. In particular, [33] introduces a GMM model that
generalizes the joint sparsity models JSM-1 and JSM-3 pro-
posed for distributed compressive sensing (DCS) in [35] and
[36].1 [34] studies the impact of projection kernel design asso-
ciated with the signal of interest on the reconstruction perfor-
mance in the presence of side information. Another advance in
compressive sensing relates to the use of side information at the
encoder [37].

The use of side information in CS has also led to significant
results in medical imaging. For example, [26] and [27] use in-
formation from former scans of the same patient, taken from
magnetic resonance images and dynamic tomographic images,
respectively, and prove enhanced reconstruction performance
with a smaller number of measurements than traditional CS ap-
proaches. The use of side information has also led to gains in
various other applications. For example, [31] considers RGB
images as side information to recover high-resolution hyper-
spectral images from compressive measurements. In turn, [38]
shows how side information can be used in image separation
problems arising in art-investigation applications.

The availability of side information in compressive sensing
systems also leads naturally to the question:

How can we optimally capture side information in compres-
sive sensing systems in order to aid in the reconstruction of the
signal of interest from the signal measurements?

This question is also motivated by the observation that, al-
though some devices might impose a particular structure to
the acquired measurements (e.g., magnetic resonance imaging
(MRI), computed tomography (CT), radio interferometry (RI),
seismic tonography, etc.), there exist applications where it is
possible to design the measurement matrices, at least to a cer-
tain extent. Some of these applications include compressive
imaging, fluorescence microscopy, compressive hyperspectral
imaging, and all compressive video and imaging devices based
on coded aperture snapshot architectures (e.g., coded aperture
snapshot spectral imaging (CASSI) [39], coded aperture com-
pressive temporal imaging (CACTI) [40], etc.). In fact, the de-
sign of linear measurements for CS systems has been shown to
lead to reconstruction gains in various applications [19], [41]–
[43]; however, the design of linear measurements for CS systems
in the presence of side information is less understood (note that
[34] is only applicable to the scenario where we attempt to

1Another difference between this work and the work in [33] relates to the fact
that [33] focuses on random measurement strategies whereas our work focuses
on designed ones.

optimally capture the signal of interest rather than the side in-
formation).

This paper answers this question by considering a scenario
where the signal reconstruction device has access to noisy (ran-
dom) linear measurements of the signal of interest and noisy
(optimally designed) linear measurements of the side informa-
tion. By postulating that both the signal of interest and the side
information admit a joint GMM model, our contributions are:

� Sufficient and – where possible – necessary conditions on
the number of optimal linear side information measure-
ments for the reconstruction minimum mean-square error
(MMSE) to approach zero in the low-noise regime.

� Concrete optimal or nearly optimal linear measurement
designs for the reconstruction MMSE to approach zero in
the low-noise regime.

� A case study associated with a pan-sharpening applica-
tion involving the reconstruction of a high-resolution RGB
image from a high-resolution panchromatic (gray scale)
one in the presence of low-resolution compressive hyper-
spectral measurements acquired with a CASSI camera.
This case study showcases that our proposed measure-
ment designs have the potential to considerably improve
performance in relation to random measurement strategies;
moreover, this case study also showcases that our proposed
modeling approach based on GMM models has advantages
over other state-of-the-art modeling approaches.

Finally, this work differs from our previous work in [1], [33],
[34] as follows: (a) [33] analyses the performance of com-
pressive sensing systems with side information with random
measurement strategies whereas this paper analyses the perfor-
mance of these systems with designed measurement strategies;
(b) [34] considers how to optimally capture the signal of in-
terest in compressive sensing systems with side information
whereas this paper considers instead how to optimally cap-
ture the side information in these systems; and finally (c) this
work augments the work in [1] in various ways by provid-
ing additional insights about the behavior of the reconstruction
error, additional simulation results, a case-study, and detailed
proofs.

A. Organization

The paper is organized as follows: Section II defines the
signals and system models. Section III determines sufficient
conditions and (occasionally) necessary conditions on the num-
ber of measurements required for the reconstruction MMSE
to approach zero in the low-noise regime, when the measure-
ment kernel associated with the signal of interest is random
and the measurement kernel associated with the side informa-
tion is designed, as well as closed-form measurement strategies.
Section IV presents numerical results with synthetic data drawn
from both Gaussian and GMM distributions and with real imag-
ing data that illustrate the validity of the theoretical derivations.
An application example associated with the reconstruction of
high-resolution RGB images from gray scale images using low-
resolution, compressive, hyperspectral measurements as side
information is presented in Section V. Conclusions are drawn
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Fig. 1. Compressive sensing model in the presence of side information.

in Section VI. The proofs of all theorems are reported in the
Appendices.

B. Notation

We adopt the following notation: boldface upper-case let-
ters denote matrices (X) and boldface lower-case letters de-
note column vectors (x). The symbols In and 0m×n represent
the identity matrix of dimension n × n and the all-zero-entries
matrix of dimension m × n, respectively (subscripts will be
dropped when the dimensions are clear from the context). (·)T,
(·)†, rank(·), and E[·] represent the transpose, Moore-Penrose
pseude-inverse, rank, and expectation operators, respectively.
The Gaussian distribution with mean µ and covariance matrix
Σ is denoted by N (µ,Σ). Im(·), Null(·), and dim(·) denote
the (column) image of a matrix, null space of a matrix, and
the dimension of a linear space, respectively. ‖ · ‖F denotes the
Frobenius norm of a matrix.

II. SYSTEM MODEL

We consider a setting where one aims to reconstruct a high-
dimensional signal from noisy, linear, compressive measure-
ments in the presence of side information, as depicted in Fig. 1.
In particular, we wish to reconstruct the signal of interest
x1 ∈ Rn1 from measurements y1 ∈ Rm 1 , with n1 ≥ m1 , given
by

y1 = Φ1x1 + w1 , (1)

as well as noisy, linear, compressive measurements y2 ∈ Rm 2 ,
associated with another signal x2 ∈ Rn2 , with n2 ≥ m2 , given
by

y2 = Φ2x2 + w2 . (2)

The matrices Φ1 ∈ Rm 1 ×n1 and Φ2 ∈ Rm 2 ×n2 represent linear
projection kernels and w1 ∼ N (0, I · σ2

1 ) and w2 ∼ N (0, I ·
σ2

2 ) are additive white Gaussian noise (AWGN) vectors that
model possible distortion introduced by the sensing process and
noise.

We will be assuming that the signal of interest x1 and the side
information signal x2 – which are correlated – are described
by a joint Gaussian mixture model. In particular, x1 is associ-
ated with underlying class labels C1 ∈ {1, . . . ,K1}, while x2
is associated with underlying class labels C2 ∈ {1, . . . ,K2}.
The class labels obey the joint probability mass function (pmf)
PC1 ,C2 (i, k), and the signals x1 and x2 , conditioned on the un-

derlying class labels C1 = i and C2 = k, obey the joint Gaussian
probability density function (pdf):

p(x1 ,x2 |C1 = i, C2 = k) = N (µ(i,k)
x ,Σ(i,k)

x ), (3)

and so x1 and x2 follow the GMM given by

p(x1 ,x2) =
K 1∑

i=1

K 2∑

k=1

PC1 ,C2 (i, k)p(x1 ,x2 |C1 = i, C2 = k)

=
K 1∑

i=1

K 2∑

k=1

PC1 ,C2 (i, k)N (µ(i,k)
x ,Σ(i,k)

x ), (4)

where

µ(i,k)
x =

[
µ

(i,k)
x1

µ
(i,k)
x2

]
, Σ(i,k)

x =

[
Σ(i,k)

x1
Σ(i,k)

x1 2

Σ(i,k)
x2 1

Σ(i,k)
x2

]
. (5)

Here, µ
(i,k)
x1 and Σ(i,k)

x1
are the mean and covariance matrix of

x1 , conditioned on class labels C1 = i, C2 = k, and likewise
µ

(i,k)
x2 and Σ(i,k)

x2
are the mean and covariance matrix of x2 ,

conditioned on class labels C1 = i, C2 = k, respectively. The
cross-covariance between x1 and x2 given the class labels C1 =
i and C2 = k is given by Σ(i,k)

x1 2
.

We will also be assuming that the linear spaces associated with
the images of the covariance matrices Σ(i,k)

x , Σ(i,k)
x1 , and Σ(i,k)

x2

for different class labels C1 = i and C2 = k are independently
drawn at random from a continuous pdf over the correspond-
ing Grassmann manifold2 with r

(i,k)
x = rank(Σ(i,k)

x ) ≤ n1 +
n2 , r

(i,k)
x1 = rank(Σ(i,k)

x1 ) ≤ n1 , and r
(i,k)
x2 = rank(Σ(i,k)

x2 ) ≤
n2 . Note that, conditioned on class labels C1 = i, C2 = k,
such ranks can also act as proxy to measure the correlation
between x1 and x2 . In fact, for all (i, k), the overall rank
r

(i,k)
x is upper bounded by r

(i,k)
x1 + r

(i,k)
x2 and lower bounded

by max{r(i,k)
x1 , r

(i,k)
x2 }; the upper bound is attained by uncorre-

lated signals (conditioned on class labels C1 = i, C2 = k) and
the lower bound is attained by perfectly correlated ones (condi-
tioned on class labels C1 = i, C2 = k).

We also assume that the decoder has knowledge about the
joint pdf p(x1 ,x2), the linear projection kernels Φ1 and Φ2 ,
and the noise variances σ2

1 , σ2
2 .3 We are interested in optimal

mean-squared error performance. Therefore, reconstruction of
the signal of interest x1 from the measurements y1 and y2 is
obtained via the conditional mean estimator given by

x̂1(y1 ,y2) = E[x1 |y1 ,y2 ] =
∫ +∞

−∞
x1p(x1 |y1 ,y2)dx1 , (6)

where p(x1 |y1 ,y2) is the a posteriori pdf of x1 given the mea-
surements y1 and y2 , so that the minimum mean-squared error

2Note that this assumption on the linear spaces occupied by signals in different
classes reflects well the behavior of many real data ensembles for various
applications such as face recognition, video motion segmentation, and digits
classification [20], [44]. In addition, such assumption will enable us to simplify
the statement of some of our results.

3Although our analysis assumes that the decoder can access the true signal dis-
tributions, in Sections IV and V we also conduct experiments with real datasets
to assess scenarios where the decoder does not know the true distributions but
rather approximate ones, that are learnt from training data.
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is given by

MMSE(σ2
1 , σ2

2 ,Φ1 ,Φ2) = E[‖x1 − x̂1(y1 ,y2)‖2 ]. (7)

Note that we express the MMSE explicitly as a function of the
noise variances σ2

1 , σ2
2 and the linear projection kernels Φ1 and

Φ2 .
Our objective is to derive sufficient and (where possible)

necessary conditions on the number of measurements for the
MMSE to tend to zero in the low-noise regime, i.e.,

lim
σ 2

1 ,σ 2
2 →0

MMSE(σ2
1 , σ2

2 ,Φ1 ,Φ2) = 0. (8)

In particular, we consider the scenario where the measurement
matrix associated with the signal of interest, Φ1 , is randomly
constituted,4 whereas the measurement matrix associated with
the side information, Φ2 , is optimally designed as follows:

Φ�
2 = arg min

Φ2

MMSE(σ2
1 , σ2

2 ,Φ1 ,Φ2),

subject to tr(Φ2ΦT
2 ) ≤ m2 , (9)

where the trace constraint in (9) limits the average energy cor-
responding to the projection kernel.

The challenge associated with the characterization of suffi-
cient and necessary conditions on the number of measurements
for reliable reconstruction (i.e., such that (8) holds) is due to
the fact that (7) does not admit a closed form expression, even
though (6) does for GMMs (the problem is also compounded
in view of the fact that the solution to (9) cannot be analyti-
cally characterized). Therefore, our ensuing analysis will rely
on bounds on the MMSE as a means to characterize conditions
and linear projection kernel designs for reliable reconstruction.

III. BOUNDS ON THE NUMBER OF MEASUREMENTS FOR

RELIABLE RECONSTRUCTION

We focus now on determining sufficient conditions (and nec-
essary conditions in some cases) on the minimum number of
measurements m1 and m2 for reliable reconstruction in the
low-noise regime (i.e., such that (8) holds), assuming that the
measurement matrix associated to the signal of interest is ran-
domly constituted, and the measurement matrix associated to
the side information is optimally designed. We consider both
the simpler scenario where the signal of interest and the side
information obey a joint multivariate Gaussian distribution as
well as the more challenging scenario where the signals obey a
joint GMM.

A. Gaussian Sources

We start by considering the case where x1 and x2 are de-
scribed by a joint Gaussian distribution with mean µx and co-
variance matrix Σx , i.e., when K1 = K2 = 1 in (4).

4In this work, random measurement matrices are drawn from left-rotationally
invariant distributions. A random matrix M ∈ Rm ×n is said to be (left or right)
rotation-invariant if the joint pdf of its entries p(M) satisfies p(ΘM) = p(M),
or p(MΨ) = p(M), respectively, for any orthogonal matrix Θ or Ψ. A special
case of (left and right) rotation-invariant random matrices is represented by
matrices with independent identically distributed (i.i.d.), zero-mean Gaussian
entries with fixed variance commonly used in CS.

Theorem 1: Consider the measurements model in (1) and (2),
where x1 and x2 are described by a joint Gaussian distribution
with mean µx and covariance Σx , such that rx = rank(Σx),
rx1 = rank(Σx1 ), and rx2 = rank(Σx2 ). Assume that Φ1 ∈
Rm 1 ×n1 is drawn from a left-rotationally invariant distribution,
and Φ2 = Φ�

2 is the optimal projection matrix corresponding to
the solution of the optimization problem in (9). Then, it holds

lim
σ 2

1 ,σ 2
2 →0

MMSE(σ2
1 , σ2

2 ,Φ1 ,Φ�
2) = 0 ⇔

{
m1 + m2 ≥ rx1

m1 ≥ rx − rx2

.

(10)

Proof: See Appendix A. �
Note that Theorem 1 establishes conditions on the number

of measurements m1 and m2 for reliable reconstruction. These
conditions suggest that:

1) The total number of measurements m1 + m2 must be
equal to at least the dimension of the space spanned by
the signal of interest rx1 . We recall that, without side in-
formation we would need m1 ≥ rx1 , which means that
the m2 measurements taken from the side information
signal allow to decrease the number of measurements m1
required for reliable reconstruction by m2 . Note that this
does not happen in general for the case when side infor-
mation measurements are random, since, in that case, the
number of measurements m1 + m2 must be equal to at
least rx ≥ rx1 [33, Theorem 3].

2) The number of measurements taken from x1 must also be
at least equal to the codimension of the intersection of the
space spanned by x1 and x2 in the space spanned by x1 .
In other terms, this means that the number of measure-
ments taken from x1 must be large enough to capture the
specific attributes of x1 that cannot be inferred from the
observation of x2 .

The necessary and sufficient conditions for reliable recon-
struction for Gaussian sources in Theorem 1 also suggest a
concrete linear projection kernel to acquire the side information
(see Appendix A). Such design is obtained from the general-
ized singular value decomposition (GSVD) [45] associated with
two matrices related to the covariance matrices of the sources,
A = (Σx2 )

1/2 and B = (Σx2 − Σx2 1 Σ
†
x1

Σx1 2 )
1/2 . In partic-

ular, these matrices can be written as follows:

A = UCXT , B = VSXT, (11)

where U ∈ Rn2 ×n2 , V ∈ Rn2 ×n2 are unitary matrices, X ∈
Rn2 ×n2 is non-singular, and C = [ΛA 0] and S = [ΛB 0] are
diagonal matrices with

ΛA =

⎡

⎣
rx 1 +rx 2 −rx

I
rx −rx 1

DA

⎤

⎦ , (12)

ΛB =

⎡

⎣
rx 1 +rx 2 −rx

0
rx −rx 1

DB

⎤

⎦ , (13)

where we have reported explicitly the dimensions of the square
blocks in ΛA and ΛB .
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Then, the proposed design is given by

Φ2 =

[
Im ′

2
0m ′

2 ×(n2 −m ′
2 )

0(m 2 −m ′
2 )×m ′

2
0(m 2 −m ′

2 )×(n2 −m ′
2 )

]
X−1 . (14)

where m′
2 = min{m2 , rx1 + rx2 − rx}.

This shows – in view of the sharpness of the necessary and
sufficient conditions in (10) – that an optimal matrix design ex-
hibits the following attribute: it captures the portion of the linear
space contained in the intersection between the image of Σx2

and the null space of the matrix Σx2 − Σx2 1 Σ
†
x1

Σx1 2 . Then,
noting that the conditional distribution p(x2 |x1) is Gaussian
with covariance matrix given by Σx2 − Σx2 1 Σ

†
x1

Σx1 2 , we can
observe that an optimal matrix design is aligned with the lin-
ear space spanned by signals drawn from the distribution p(x2)
which is not occupied by signals drawn from the conditional
distribution p(x2 |x1) in order to improve the reconstruction
performance. Intuitively, such design aims to capture the most
of signal components from x2 that are maximally correlated
with x1 .

The result in Theorem 1 together with the result in [33, The-
orem 3] also showcase the merit of an optimal measurement
matrix Φ�

2 in comparison to a random one, in terms of the
number of measurements necessary and sufficient for reliable
reconstruction.

Corollary 2: Consider the measurement and source model
in Theorem 1. Let MR

G be the set of pairs (m1 ,m2) such
that limσ 2

1 ,σ 2
2 →0 MMSE(σ2

1 , σ2
2 ,Φ1 ,Φ2) = 0 for random Φ1

and Φ2 , and let MD
G be the set of pairs (m1 ,m2) such that

limσ 2
1 ,σ 2

2 →0 MMSE(σ2
1 , σ2

2 ,Φ1 ,Φ�
2) = 0 for randomΦ1 and the

optimal Φ�
2 . Then, it holds

MR
G ⊆ MD

G . (15)

Proof: See Appendix A. �
The advantage of using a designed matrix in relation to a

random one to capture side information is also illustrated in
Fig. 2. The shaded region of Fig. 2(a) represents the set MD

G ;
and the shaded region in Fig. 2(b) represents the set MR

G , as
reported in [33, Theorem 3].

We can note that, depending on the specific values of
rx , rx1 , rx2 , i.e., depending on the correlation between x1 and
x2 , proper design of the linear projection kernel Φ2 can guar-
antee a significant advantage with respect to random kernels in
terms of number of measurements required for reliable recon-
struction. In particular, it is possible to show that MR

G ⊂ MD
G

if and only if rx < rx1 + rx2 and rx > rx1 . The proof of this
result relies on a simple comparison of the expressions for the
minimum number of measurements required for reliable recon-
struction with random and designed measurements, and it is not
reported here for reasons of space.

This is somewhat surprising because it has been shown that
optimal design of the linear projection kernel used to acquire
the signal of interest does not reduce significantly the minimum
number of measurements required for reliable reconstruction
[34].

This fact can be justified by the following observation. In
the case of Gaussian sources, the MMSE associated to the

Fig. 2. Representation of the conditions on m1 and m2 for MMSE phase
transition for Gaussian sources, for the designed kernel case (a) and random
kernel case (b).

estimation of x1 from the observation of y1 and y2 is equivalent
to the estimation of the vector z ∼ p(x1 |y2) from the observa-
tion of the vector Φ1z + w1 . Moreover, as it was shown in
[22], the fundamental limits on the number of measurements
needed to verify (8) are dictated by the dimension of the linear
subspace spanned by the signal of interest, for both cases when
Φ1 is random and designed. Therefore, careful design of Φ1
does not have an impact on such limit, whereas careful design
of Φ2 can reduce the dimension of the space spanned by sig-
nals z ∼ p(x1 |y2) in the low-noise regime, thus leading to a
reduction of the minimum number of measurements needed for
reliable reconstruction.

We will next leverage the intuition derived from the analysis
of measurement designs for the Gaussian sources to analyze
measurement designs for GMM sources. In particular, by lever-
aging the measurement design in (14), it will be possible to
conceive new measurement strategies that outperform random
ones for capturing side information in joint GMM models.

B. GMM Sources

We now consider the scenario where x1 and x2 obey a
joint GMM. In this case, we only provide sufficient condi-
tions rather than sufficient and necessary conditions for reliable
reconstruction.
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Theorem 3: Consider the measurements model in (1) and
(2), where x1 and x2 conditioned on the underlying class labels
C1 = i, C2 = k obey a joint Gaussian distribution with mean
µ

(i,k)
x and covariance Σ(i,k)

x such that r
(i,k)
x = rank(Σ(i,k)

x ),
r

(i,k)
x1 = rank(Σ(i,k)

x1 ), and r
(i,k)
x2 = rank(Σ(i,k)

x2 ) ∀i, k. Consider
also that the linear spaces associated to the images of the co-
variance matrices Σ(i,k)

x , Σ(i,k)
x1 , and Σ(i,k)

x2 are independently
drawn from a continuous pdf over the corresponding Grass-
mann manifold. Assume that Φ1 ∈ Rm 1 ×n1 is random, drawn
from a left-rotationally invariant distribution, and Φ2 = Φ�

2 is
the optimal projection matrix corresponding to the solution of
the optimization problem in (9). Then, sufficient conditions on
the number of projections m1 and m2 for

lim
σ 2

1 ,σ 2
2 →0

MMSE(σ2
1 , σ2

2 ,Φ1 ,Φ�
2) = 0 (16)

are given by
m1 >

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r
(i,k)
x1 − m

(i,k)
2 , if m2 ≤ r

(i,k)
x − r

(i,k)
x1

min{r(i,k)
x − m2 ,

r
(i,k)
x1 − m

(i,k)
2 } , if r

(i,k)
x − r

(i,k)
x1 < m2 ≤ r

(i,k)
x2

r
(i,k)
x − r

(i,k)
x2 , if m2 > r

(i,k)
x2

,

(17)

for i = 1, . . . , K1 and k = 1, . . . ,K2 , where m
(i,k)
2 ∈ N are

such that m
(i,k)
2 ≤ r

(i,k)
x1 + r

(i,k)
x2 − r

(i,k)
x and

∑
i,k m

(i,k)
2 =

m2 .
Proof: See Appendix B. �
Note that Theorem 3 also establishes conditions on the num-

ber of measurements m1 and m2 for reliable reconstruction.
However, in this case the number of projections taken from
the signal of interest is expressed in terms of the number of
projections taken from the side information signal.

The sufficient conditions for reliable reconstruction for GMM
sources embodied in Theorem 3 are obtained by considering
a specific (suboptimal) design for Φ2 , which is inspired by
the projection design that achieves the necessary and sufficient
conditions for reliable reconstruction for Gaussian sources. This
suboptimal design is obtained from the GSVD associated with
the pair of matrices

A(i,k) = (Σ(i,k)
x2

)1/2 , (18)

B(i,k) = (Σ(i,k)
x2

− Σ(i,k)
x2 1

(Σ(i,k)
x1

)†Σ(i,k)
x1 2

)1/2 , (19)

for all (i, k). In particular, we write these matrices as follows:

A(i,k) = U(i,k)C(i,k)(X(i,k))T, (20)

B(i,k) = V(i,k)S(i,k)(X(i,k))T, (21)

where U(i,k) ∈ Rn2 ×n2 , V(i,k) ∈ Rn2 ×n2 are unitary matrices,
X(i,k) ∈ Rn2 ×n2 is non-singular, and C(i,k) = [Λ(i,k)

A 0] and

S(i,k) = [Λ(i,k)
B 0] are diagonal matrices with

r
(i,k)
x1 + r

(i,k)
x2 − r

(i,k)
x r

(i,k)
x − r

(i,k)
x1

Λi,k
A =

[
I

D(i,k)
A

]
, (22)

r
(i,k)
x1 + r

(i,k)
x2 − r

(i,k)
x r

(i,k)
x − r

(i,k)
x1

Λi,k
B =

[
0

D(i,k)
B

]
, (23)

where we have reported explicitly the dimensions of the square
blocks in Λ(i,k)

A and Λ(i,k)
B .

We then define the matrix

Φ̄2 = [(Φ̄(1,1)
2 )T , . . . , (Φ̄(K 1 ,K 2 )

2 )T ]T (24)

and the matrices

Φ̄(i,k)
2 =

[
I
r

( i , k )
x 1 +r

( i , k )
x 2 −r

( i , k )
x

0
]
(X(i,k))−1 . (25)

Finally, the suboptimal measurement matrixΦ2 is given by pick-
ing any m2 rows from Φ̄2 . More specifically, Φ2 is obtained by
picking m

(i,k)
2 rows from Φ̄(i,k)

2 so that
∑

i,k m
(i,k)
2 = m2 .5 In

fact, the m
(i,k)
2 measurements picked from Φ̄(i,k)

2 capture the
portion of the linear space spanned by signals drawn from the
distribution p(x2 |C1 = i, C2 = k) which is not occupied by sig-
nals drawn from the distribution p(x2 |x1 , C1 = i, C2 = k). The
remaining m2 − m

(i,k)
2 measurements act as random measure-

ments for signals in class C1 = i, C2 = k. We note in passing
that the derivation of the sufficient conditions for reliable recon-
struction in Theorem 3 does not follow immediately from the
proof of Theorem 1, since, in the GMM case, it is necessary to
quantitatively determine the effect that measurements designed
for a specific Gaussian class have on a different Gaussian class
within the Gaussian mixture model. The details of such deriva-
tion are reported in Appendix B.

Via Theorem 3 and [33, Theorem 4] it is also possible to
showcase the merit of an optimal measurement matrix Φ�

2 in
comparison to a random one, in terms of the number of mea-
surements that guarantee reliable reconstruction.

Corollary 4: Consider the measurement and source model
in Theorem 3. Let MR

GM M be the set of pairs (m1 ,m2)
that verify the sufficient conditions for limσ 2

1 ,σ 2
2 →0 MMSE

(σ2
1 , σ2

2 ,Φ1 ,Φ2) = 0 in [33, Theorem 4] for random Φ1 and
Φ2 , and let MD

GM M be the set of pairs (m1 ,m2) that verify the
sufficient conditions for limσ 2

1 ,σ 2
2 →0 MMSE(σ2

1 , σ2
2 ,Φ1 ,Φ�

2) =
0 in Theorem 3, for random Φ1 and optimal Φ�

2 . Then, it holds

MR
GM M ⊆ MD

GM M . (26)

Proof: See Appendix B. �

5It is also possible to tighten further the sufficient conditions in Theorem 3

by choosing the values of m
(i ,k )
2 that minimize the maximum value of the right

hand side of (17) for all (i, k), subject to the constraints m
(i ,k )
2 ≤ r

(i ,k )
x1 +

r
(i ,k )
x2 − r

(i ,k )
x , ∀(i, k) and

∑
i ,k

m
(i ,k )
2 = m2 .
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We note in passing that the sets MR
GM M and MD

GM M are ob-
tained as the intersection of the regions associated to Gaus-
sian distributions corresponding to the different class labels
(i, k). Moreover, it is easy to verify that, if r

(i,k)
x < r

(i,k)
x1 +

r
(i,k)
x2 ,∀(i, k), r

(i,k)
x > r

(i,k)
x1 ,∀(i, k) and m

(i,k)
2 > 0,∀(i, k),

then MR
GM M ⊂ MD

GM M . This means that, if at least one de-
signed measurement is associated to each class in the GMM,
then side information designed kernels guarantee reliable re-
construction with a strictly lower number of measurements than
random ones. The proof of this results is also based on a sim-
ple comparison of the expression of the minimum number of
measurements required for reliable reconstruction for random
and designed measurements, and it is not reported here due to
reasons of space.

We also note that, as for Gaussian sources, designed projec-
tion kernels Φ2 for GMM sources allow to capture the infor-
mation contained in the side information x2 , which is mostly
correlated with x1 . In fact, designed kernels aim at neglecting
the information contained in the space spanned by signals drawn
from the distribution p(x2 |x1), which can be interpreted as the
innovation component of x2 with respect to x1 .

Finally, we emphasize that our proposed measurement de-
signs in (14), (24), and (25) are applicable to any GMM model
independently of the subspaces dimension or the ambient dimen-
sion. In the sequel, we apply our approach to problems involv-
ing imagery data where it is typical to extract low-dimensional
patches from the high-dimensional images to be modeled via a
GMM [22], [33].

IV. NUMERICAL RESULTS

We now provide numerical results to showcase that our anal-
ysis is aligned with practice. We first report results for synthetic
data, considering both cases of Gaussian sources and GMM
sources, that highlight the value of using designed measure-
ment kernels with respect to random ones. Then, similar trends
are also reported for real world imaging data. In all experiments,
we set σ2

1 = σ2
2 = σ2 .

A. Synthetic Data: Gaussian Sources

We start by considering the case when x1 and x2 are drawn
from a joint Gaussian distribution. We assume that signal di-
mensions are n1 = 14 and n2 = 6. Both signals x1 and x2 are
zero-mean, i.e., µx = 0, and the corresponding covariance ma-
trices are independently drawn from a continuous pdf over the
corresponding Grassmann manifold such that rx = 5, rx1 = 4,
and rx2 = 3. We assume that the projection kernel Φ1 is gener-
ated with i.i.d., zero-mean, Gaussian entries with fixed variance.
We fix the number of measurements extracted from the side in-
formation signal, m2 = 2, and we consider three different cases:
i) the case when Φ2 is random, with i.i.d., zero-mean, Gaussian
entries with fixed variance; ii) the case when Φ2 is obtained via
numerical solution of the problem (9); iii) the case when Φ2 is
obtained via the projection kernel design in (14).

Fig. 3 illustrates the MMSE vs. 1/σ2 . We can note that
the MMSE tends to zero when m1 ≥ 3 and m2 = 2 for the
case of random projection kernels, thus matching the condi-
tions reported in [33, Theorem 3]. In contrast, we observe that

Fig. 3. MMSE vs. 1/σ2 for m1 = 1, 2, 3 and m2 = 2 for joint Gaussian
sources. Side information with random projection kernel (solid lines). Side
information with designed projection kernel Φ�

2 (numerical solution) (triangles)
and suboptimal design in (14) (circles).

designed projection kernels guarantee that the reconstruction
MMSE approaches zero in the low-noise regime when m1 ≥ 2
and m2 = 2, as predicted by Theorem 1.

The results in Fig. 3 also show that both kernel designs ii) and
iii) provide similar values of MMSE. Moreover, as predicted by
the theory developed in Section III, the numerical solution of (9)
provides a measurement kernel that requires the same number of
measurements as the design in (14) in order to drive the MMSE
to zero in the low-noise regime.

We also note in passing that it is possible to characterize
further the MMSE in the moderate SNR regime by leverag-
ing a first-order expansion of the MMSE. This is obtained
by leveraging (49) in Appendix A and the result in [22,
Theorem 1]:

MMSE(σ2
1 , σ2

2 ,Φ1 ,Φ�
2) = AG + BG · σ2

1 + o(σ2
1 ), (27)

where AG and BG are obtained by defining

Σz = Σx1 − Σx1 2 (Φ
�
2)

T(Φ�
2Σx2 (Φ

�
2)

T + Iσ2
2 )†Φ�

2Σx2 1 ,
(28)

and by considering the following eigenvalue decomposition:

Θ = Σ
1
2
z ΦT

1 Φ1Σ
1
2
z = UΘΛΘUT

Θ . (29)

Namely, on defining rΘ = rank(Θ), on recalling rz =
rank(Σz), on writing ΛΘ = diag(λΘ ,1 , . . . , λΘ ,rΘ , 0, . . . , 0),
and on denoting by uΘ ,t the t-th column of UΘ , we have

AG =
rz∑

t=rΘ +1

uT
Θ ,tΣzuΘ ,t , (30)

and

BG =
rΘ∑

t=1

1
λΘ ,t

uT
Θ ,tΣzuΘ ,t . (31)

Then, we note that, when the number of measurements m1
is such that AG = 0, i.e., such that the conditions in Theorem 1
are verified, we have

log MMSEG (σ2
1 , σ2

2 ,Φ1 ,Φ�
2) ≈ logBG + log σ2

1 , (32)
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where the term logBG represents a power offset (in a dB-dB
scale) and the term log σ2

1 explains the linear behavior of the
MMSE as a function of the SNR. In fact, in this case the ex-
pression of BG could in principle be leveraged in order to opti-
mize further the measurement designs in terms of power offset.
Namely, on denoting by DG the set of matrices Φ2 obtained
from the expression (14) by replacing Im ′

2
with a diagonal ma-

trix with nonzero diagonal elements, we can further optimize
the measurement designs by solving the optimization problem:

arg min
Φ2 ∈DG

BG, (33)

subject to tr(Φ2ΦT
2 ) ≤ m2 . (34)

We also note that the MMSE behavior is consistent with that
in [46] and our analysis generalizes that in [47] because we
provide a closed-form expansion for the behavior of the MMSE
whereas [47] provide only fixed-point equations to characterize
the MMSE.

B. Synthetic Data: GMM Sources

We now consider a joint GMM distribution for signals x1 and
x2 , with dimensions n1 = 14 and n2 = 6, K1 = K2 = 2, and
PC1 ,C2 (1, 2) = PC1 ,C2 (2, 1) = 0. All means associated with

the various Gaussian distributions are zero, i.e., µ
(i,k)
x = 0,

and the covariance matrices are randomly generated such that
r

(i,k)
x = 6, r

(i,k)
x1 = 3 and r

(i,k)
x2 = 5 for i = 1, 2 and k = 1, 2.

The images of the covariance matrices associated with different
classes are drawn uniformly at random from the corresponding
Grassmann manifold. We also assume that the projection kernel
Φ1 has i.i.d., zero-mean, Gaussian entries with fixed variance.
We fix m2 = 3 and we also consider three different cases: i)
the case when Φ2 is random, with i.i.d., zero-mean, Gaussian
entries with fixed variance; ii) the case when Φ2 is obtained via
numerical solution of the problem (9); iii) the case when Φ2 is
obtained via the projection kernel design in (25). In this last case,
we report numerical results for two different measurement con-
figurations: the first one is obtained by setting m

(1,1)
2 = 1 and

m
(2,2)
2 = 2, whereas the second one corresponds to choosing

m
(1,1)
2 = 2 and m

(2,2)
2 = 1.

Fig. 4 reports the MMSE vs. 1/σ2 . We observe that random
projection kernels guarantee reliable reconstruction when m1 +
m2 > r

(i,k)
x = 6, as predicted by the results in [33, Theorem 4].6

On the other hand, designing the projection kernel Φ2 leads to
reliable reconstruction with a lower number of measurements,
as the MMSE is observed to approach zero in the low-noise
regime when m1 > 2 and m2 = 3. Such behavior is well aligned
with the sufficient condition expressed in Theorem 3, since
r

(i,k)
x1 − m

(i,k)
2 ≤ 2, ∀(i, k). Moreover, we observe that, in this

case, it turns out that the design in (25) requires the same number
of projections as the optimal design in (9) in order to guarantee
reliable reconstruction, but this may not always be the case.

6The analysis carried out in [33] considers a slightly different signal model in
which x1 and x2 obey only an approximately low-rank joint GMM distribution
and linear measurements are noiseless. However, the results on the number
of random measurements required for reliable reconstruction can be easily
modified to fit the signal model considered in this work.

Fig. 4. MMSE vs. 1/σ2 for m1 = 1, 2, 3, 4 and m2 = 3 for joint GMM
sources. Side information with random projection kernel (solid lines). Side
information with designed projection kernel Φ�

2 obtained via numerical solution
of the problem (9) (triangles). Side information with suboptimal design in (25)

with m
(1 ,1)
2 = 1 and m

(2 ,2)
2 = 2 (circles). Side information with suboptimal

design in (25) with m
(1 ,1)
2 = 2 and m

(2 ,2)
2 = 1 (squares).

We also note that, in this case, different choices of the number
of measurements assigned to each Gaussian class, m

(1,1)
2 and

m
(2,2)
2 , do not have an impact on the asymptotic behavior of

the MMSE in the low-noise regime. However, such different
measurement configurations can lead to different values of the
MMSE in intermediate noise regimes.

Akin to the Gaussian case, we can provide a characteriza-
tion of the MMSE for the case of GMM sources in the fi-
nite noise regime. Such characterization builds upon an expan-
sion of a lower bound on the MMSE, which we denote by
MSELB

GM M (σ2
1 , σ2

2 ,Φ1 ,Φ�
2). Such expansion, which is akin to

that reported in [33, Lemma 1] is given by:

MSELB
GM M (σ2

1 , σ2
2 ,Φ1 ,Φ�

2)=AGM M +BGM M · σ2
1 +o(σ2

1 ),
(35)

where AGM M and BGM M are obtained in a similar way as done
for AG and BG . In particular, we have

AGM M =
∑

(i,k)

pC1 ,C2 (i, k)A(i,k) , (36)

and

BGM M =
∑

(i,k)

pC1 ,C2 (i, k)B(i,k) . (37)

Then, the terms A(i,k) and B(i,k) are obtained by defining

Σ(i,k)
z = Σ(i,k)

x1
− Σ(i,k)

x1 2
(Φ�

2)
T

· (Φ�
2Σ

(i,k)
x2

(Φ�
2)

T + Iσ2
2 )†Φ�

2Σ
(i,k)
x2 1

, (38)

and by considering the following eigenvalue decomposition:

Θ(i,k) = (Σ(i,k)
z )

1
2 ΦT

1 Φ1(Σ(i,k)
z )

1
2

= U(i,k)
Θ Λ(i,k)

Θ (U(i,k)
Θ )T . (39)

Namely, on denoting r
(i,k)
Θ = rank(Θ(i,k)), on recall-

ing r
(i,k)
z = rank(Σ(i,k)

z ), on writing Λ(i,k)
Θ = diag(λ(i,k)

Θ ,1 ,
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. . . , λ
(i,k)
Θ ,rΘ

, 0, . . . , 0), and on denoting by u(i,k)
Θ ,t the t-th col-

umn of U(i,k)
Θ , we have

A(i,k) =
r

( i , k )
z∑

t=r
( i , k )
Θ +1

(u(i,k)
Θ ,t )TΣ(i,k)

z u(i,k)
Θ ,t , (40)

and

B(i,k) =
r

( i , k )
Θ∑

t=1

1

λ
(i,k)
Θ ,t

(u(i,k)
Θ ,t )TΣ(i,k)

z u(i,k)
Θ ,t . (41)

Moreover, such expansion of the lower bound of the MMSE for
GMM sources is shown to be tight when the number of mea-
surements m1 is such that the conditions in [33, Lemma 4] are
verified. Therefore, also in this case, the expression of BGM M

could in principle be leveraged in order to optimize further the
measurement designs in terms of power offset. Namely, on de-
noting by DGM M the set of matrices obtained from (24) and
(25) by replacing the identity matrix I

r
( i , k )
x 1 +r

( i , k )
x 2 −r

( i , k )
x

with a

diagonal matrix with nonzero diagonal entries, we can express
the power-offset designed kernel as:

arg min
Φ2 ∈DG M M

BGM M , (42)

subject to tr(Φ2ΦT
2 ) ≤ m2 . (43)

C. Real Imaging Data

It is now natural to ask whether the measurement designs
identified in (9) and (25) lead to better reconstruction results
with real data. We use a high-resolution image “Lena” (512 ×
512 pixels) as the input signal, and a low-resolution version of
the same subject (128 × 128 pixels) as side information. Both
images are partitioned into non-overlapping patches, so that
vectors x1 represent 8 × 8 non-overlapping patches extracted
from the high-resolution image, and vectors x2 represent 2 × 2
patches from the side information image, which correspond to
the same spatial portion of the subject. The vectors x1 and
x2 are assumed to be described by a joint GMM prior with
K = K1 = K2 = 20 classes. The parameters of the joint GMM,
i.e., prior class probabilities, class-conditioned means and class-
conditioned covariance matrices, are estimated using the EM
algorithm [23] over a set of patches extracted from images in
the “Caltech 101” dataset [48]. Also in this case, we assume that
the projection kernel Φ1 has i.i.d., zero-mean, Gaussian entries
with fixed variance.

In Fig. 5 we report reconstruction examples obtained with
m1 = 10 and m2 = 4 linear measurement for each non-
overlapping patch, and with noise level σ2 = −40 dB. From
left to right, the reconstruction images correspond to different
scenarios: (a) Φ2 is random, with i.i.d., zero-mean Gaussian
entries with fixed variance; (b) Φ2 is obtained numerically via
the solution of the problem in (9); (c) Φ2 is designed via the
GSVD-based design in (25).7

7In this case, the matrix Φ̄2 ∈ R80×4 was generated by picking the first 4
rows of the matrix (X(i ,k ) )−1 in (25), for all (i, k). Then, Φ2 was obtained
by picking the m2 = 4 rows from Φ̄2 that corresponded to the lowest recon-
struction MMSE. In general, Φ2 could be formed by randomly picking m2 = 4
rows from Φ̄2 .

Fig. 5. Reconstruction results of image “Lena” for σ2 = −40 dB. From left
to right, the reconstruction PSNR values are 25.4 dB, 28.1 dB, and 28.1 dB.
Note that, in this case, the GSVD-based design described in (25) achieves
approximately the same PSNR as the design corresponding to the numerical
solution of the problem in (9).

The reconstruction results for both designed cases in Fig. 5(b)
and (c) exhibit a peak signal-to-noise ratio (PSNR) gain of
approximately 3 dB with respect to the case of random pro-
jection kernels (Fig. 5(a)). Moreover, we observe that the de-
sign described in (25) achieves similar PSNR values as when
the projection kernel is designed via more computationally
expensive numerical solution of the optimization problem in
(9). This suggests that (25) can be used as an off-the-shelf mea-
surement design procedure applicable to compressive sensing
systems with side information where the signals are modeled via
GMMs.

Finally, it is also instructive to describe the computational
complexity of the proposed approach as a function of the
total ambient dimension n1 + n2 , the number of Gaussian
components in the mixture K1K2 ,8 the total number of lin-
ear measurements m1 + m2 , and the number of training sam-
ples T . In particular, there are three major computational as-
pects: (1) the first relates to the complexity associated with
learning the Gaussian mixture model, (2) the second relates
to the complexity associated with the measurement design
method, and (3) the third is associated with the reconstruction
procedure.

The expectation maximization algorithm is well established
in the pattern recognition literature (see, for example, [23, Chap-
ter 9]). The EM algorithm is an iterative method, where the
computational complexity of each iteration depends on the am-
bient dimension of the signal vectors, the number of Gaussian
components in the mixture, and the number of training samples,
as follows: O((n1 + n2)T + K1K2T

2).
The reconstruction method, i.e., the conditional mean esti-

mator, can be written in closed form. It involves the inversion
of K1K2 matrices with dimension (m1 + m2) × (m1 + m2).
Therefore, the complexity of the reconstruction method is
O(K1K2(m1 + m2)3).

The design method involves the computation of the GSVD
of K1K2 pairs of matrices of dimension n2 × n2 . There-
fore, the computational complexity of the design method is
O(K1K2n

3
2).

8In general, the number of Gaussian components in the GMM is given by
K1 K2 . However, in the numerical examples reported in Sections IV-C and V,
the class labels associated to the signal of interest and the side information signal
are assumed to be perfectly correlated. In this case, the total number of classes
in the GMM is equal to K = K1 = K2 .
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V. CASE STUDY: PAN-SHARPENING OF RGB IMAGES WITH

COMPRESSIVE HYPERSPECTRAL SIDE INFORMATION

Finally, we present an example of how the linear projection
design scheme used to capture side information can also
be leveraged in order to improve the performance of real
world imaging applications. In particular, we consider a
pan-sharpening application, which involves the recovery of a
high-resolution, color image from a high-resolution panchro-
matic snapshot and low-resolution hyperspectral images of the
same scene.

This problem arises often in the context of remote sensing ap-
plications [49], where panchromatic sensors are typically used
to produce high-resolution images, and hyperspectral cameras
are used to provide lower resolution images. The use of spa-
tial information from the high-resolution panchromatic image
and color information from the low-resolution hyperspectral
snapshots can then be combined in order to generate a high-
resolution RGB image of the scene. Our case study involves
the use of a compressive hyperspectral camera (the CASSI in
[39]) – in lieu of a standard hyperspectral camera – that provides
for a mechanism to design the hyperspectral measurements in
order to improve performance further.

A. System Model

We consider a high-resolution (512 × 512 pixels), RGB im-
age of a scene as the signal of interest (Fig. 6(a)), and a lower
resolution version (256 × 256 pixels) of a hyperspectral dat-
acube (Nλ = 33 different channels) of the same scene as the
side information signal (Fig. 6(d)).

In this case, vectors x1 represent 8 × 8 patches extracted from
the signal of interest and vectors x2 represent 4 × 4 patches
corresponding to the same spatial location extracted from the
hyperspectral image datacube. In particular, vectors extracted
from the signal of interest and the side information are subdi-
vided into overlapping patches with overlap stride equal to 4
and 2 pixels,9 respectively.

The vector y1 constains high-resolution, panchromatic mea-
surements associated with patches of the image of interest (an
example of panchromatic measurements is reported in Fig. 6(b)).
The linear projection kernel Φ1 models the conversion from
high-resolution RGB images to a gray scale, panchromatic,
high-resolution version of the same image. In particular, on
neglecting the effect of gamma compression and expansion,10

and by arranging the RGB channels of the image patches in the
vectors xR

1 ,xG
1 , and xB

1 , so that,

x1 =

⎡

⎢⎣
xR

1

xG
1

xB
1

⎤

⎥⎦ , (44)

9The overlap stride denotes the distance between corresponding pixel loca-
tions in adjacent image patches.

10Gamma compression and expansion are one-to-one, nonlinear transforma-
tion of the RGB components in each pixel, hence they can be ignored in our
measurement model [50].

Fig. 6. (a) Original RGB image, (b) gray scale image, (c) CASSI measure-
ment, (d) hyperspectral images corresponding to different wavelengths.

we can express Φ1 as

Φ1 =
[
crI cg I cbI

]
. (45)

Here, cr , cg , cb are constant values that are determined by the
measured intensity perception of human eyes associated to the
three RGB channels. Typical values of such constants are cr =
0.2126, cg = 0.7152, cb = 0.0722.

Finally, the vector y2 contains the side information mea-
surements captured by the compressive hyperspectral imaging
device, i.e., the CASSI camera (an example of CASSI measure-
ments is reported in Fig. 6(c)). Such measurements are based on
spectrally shifting the 3D spatio-spectral information (i.e., hy-
perspectral datacube), through a coded aperture and a dispersive
element onto a 2D detector. More precisely, a scene is imaged
through imaging optics onto a binary-value coded aperture over
all different wavelengths and a dispersive element [51]–[53]
then projects these multiplex signals of the coded scene with
wavelength-dependent shifts (Fig. 8).11 Then, on writing the
vectors x2 , which contain the data in the hyperspectral datacube
corresponding to patches, as

x2 =

⎡

⎢⎢⎣

x1
2
...

xNλ
2

⎤

⎥⎥⎦ , (46)

11For more details on the actual implementation of the CASSI camera, please
refer to [39].
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Fig. 7. Training dataset.

Fig. 8. CASSI architecture.

where xn
2 contains the pixels associated to the n-th wavelength

channel, we can express Φ2 as follows

Φ2 =
[
M1 , . . . ,MNλ

]
. (47)

Here, the matrices M1 , . . . ,MNλ are diagonal with binary di-
agonal entries that take values 0 and 1 according to the corre-
sponding pixel values in the coding mask.

It is important to note that, since the effects of the coding
mask for different wavelengths are obtained by translations of
the coded aperture in the device, the elements in the diagonal
entries of the different matrices M1 , . . . ,MNλ are related one
to the other, so it is not possible to choose them independently.
In particular, in order to increase the diversity of compressive
hyperspectral measurements, and in order to decrease the com-
pression ratio, several snapshots of the same scene can be cap-
tured with the CASSI device, by changing the coding mask used
for each snapshot. This means that that the design of the mea-
surement matrix Φ2 for the CASSI architecture involves the
choice of the coded masks pixel values, i.e., the diagonal entries
of the matrices M1 , . . . ,MNλ .

B. Numerical Results

We report MMSE reconstruction results associated with this
pan-sharpening applications, by modeling the vectors x1 and
x2 via a joint GMM with K = K1 = K2 = 20 classes. The
parameters of the corresponding distributions, i.e., prior class
probabilities, class-conditioned means, and class-conditioned
covariance matrices, are learnt by using the EM algorithm on
the training set described in [39], which contains RGB images

Fig. 9. Reconstruction examples for random and designed CASSI measure-
ments, 1 snapshot (m2 = 16) and 2 snapshots (m2 = 32).

and hyperspectral snapshots of 6 different scenes, where 33
hyperspectral images corresponds to 33 different wavelengths
(Nλ = 33) from 400 nm to 720 nm (the training scenes are
shown in Fig. 7).

We also report MMSE reconstruction results corresponding
to two different measurement settings. In the first case, binary
coding mask values for CASSI measurements are random, in
particular, they are drawn i.i.d. from a Bernoulli distribution with
parameter 0.5. In the second case, the elements of the coding
mask are designed according to the construction described in
Section III.

However, in view of the fact that the CASSI architecture only
permits one to constitute a certain class of coded apertures (see
(47)) – our design is obtained as follows:

ΦCASSI
2 = argmin

Φ2 ∈FC A S S I

∥∥Φ2 − ΦGSVD
2

∥∥
F
, (48)

where ΦCASSI
2 embodies the CASSI coded aperture design,

ΦGSVD
2 embodies the design in (25), and FCASSI denotes the

set of coded aperture designs consistent with the CASSI archi-
tecture. That is, the proposed design ΦCASSI

2 is the closest in
Frobenius norm to the GSVD design ΦGSVD

2 in (25), that is
consistent with the CASSI constraints.12

Fig. 9 shows reconstruction examples of the RGB image
in Fig. 6(a). Figs. 9(a) and (b) show reconstructions obtained
with random and designed CASSI measurements, respectively,
obtained with a single snapshot. We can observe that designed
CASSI measurements can guarantee significant improvement
with respect to random measurements. In particular, designed

12Note that the optimization problem (48) can be solved with computational
complexity growing linearly with the number of binary pixel values corre-
sponding to the coding mask. In fact, the diagonal elements of the matrices
M1 , . . . , MN λ in Φ2 are generated by shifting the binary pattern in the cod-
ing mask. In particular, on considering single pixel shifts in a given direction,
patches of size 4 × 4 and Nλ = 33 channels, the total number of pixels used
to code a given patch is 4 × (4 + 33 − 1) = 144. Moreover, we have used the
same mask for all patches contained in the image of interest.



CHEN et al.: COMPRESSIVE SENSING WITH SIDE INFORMATION: HOW TO OPTIMALLY CAPTURE THIS EXTRA INFORMATION 2325

TABLE I
PSNR VALUES OF THE RECONSTRUCTION EXAMPLES IN FIG. 9 AND FIG. 10

Fig. 10. Reconstruction examples for coupled dictionary learning (CDL)
based approach, 1 snapshot (m2 = 16) and 2 snapshots (m2 = 32).

measurements are particularly effective in reducing the red
color artifacts which are easily observable in Fig. 9(a).
Figs. 9(c) and (d), which contain reconstructions examples
for random and designed measurements corresponding to two
CASSI snapshots, depict similar effects. In fact, as reported in
Table I, for both cases of one and two CASSI snapshots, the
proposed measurement design scheme leads to a PSNR gain of
approximately 2 dB.

Finally, we also compare our GMM approach to linking the
two different data modalities, i.e., the signal of interest and the
side information signal, to another approach based on sparse rep-
resentations induced by coupled dictionary learning (CDL) [38],
[54] (note that this approach to linking different data modalities
generalizes the JSM-1 and JSM-3 models proposed in [35] and
[36]). In particular, we consider dictionaries with 512 atoms and
common and innovation components with sparsities equal to 4
and 2, respectively. We use the training data shown in Fig. 7
to learn dictionaries that link the hyperspectral patches and the
RGB patches using the method described in [38], [54]. The di-
mensions and strides of the patches used for dictionary learning
are the same as those used in the previous experiment. We then
use the testing data (as shown in Fig. 6(a)) to determine the re-
construction performance. In particular, we use the orthogonal
matching pursuit (OMP) algorithm to reconstruct the signal of
interest from noisy random linear projections of the signal of
interest as well as noisy random linear projections from the side
information. Here, note that we consider random measurements
(as described earlier) rather than designed ones because it is not
immediate how to conceive optimized linear measurement de-
signs to capture the side information for this approach to linking
the different data modalities. We note again that our proposed
design leads to PSNR gains of about 2 dB in relation to the CDL
approach. See Table I and also Fig. 10.

Overall, these gains are particularly significant by taking into
account that the optimization of the measurement procedure
has been effected under the strong constraints imposed by the
CASSI architecture. Therefore, this also leads us to conclude
that (25) or (48) for GMM sources can be used to guide how to
capture side information in compressive sensing systems.

VI. CONCLUSION

This paper has investigated how to capture side information
to aid in the reconstruction of a high-dimensional signal from
low-dimensional linear measurements. In particular, by assum-
ing that both the signal of interest and the side information
signal are described by a joint GMM distribution, the paper has
provided concrete linear side information measurement designs
that guarantee the signal reconstruction error to approach zero
in the low-noise regime.

It was shown that these proposed designs capture the informa-
tion contained in the side information which is mostly correlated
to the signal of interest. It was also shown that these designs can
lead to substantial gains over random linear designs. This is
somewhat surprising because it has been established that op-
timization of the acquisition process for the signal of interest
does not have a significant impact on the number of measure-
ments required for reliable reconstruction [34], but in contrast
optimization of the side information acquisition process does.

We have also considered how to apply our measurement de-
signs to a real-world pan-sharpening application in the presence
of compressive hyper-spectral data. We have shown that our
linear measurement designs deliver better reconstruction results
in relation to random ones, both when one couples the differ-
ent data modalities using a GMM model or else a CDL model.
Of particular relevance, one of the advantages of using GMM
models in relation to the CDL ones is that one can come up with
concrete strategies to define optimal measurement designs.

APPENDIX A

A. Proof of Theorem 1

We now provide necessary and sufficient conditions on the
number of measurements m1 and m2 , for the MMSE to ap-
proach zero in the low-noise regime.

We will use the symbol MMSE(x|y) to explicitly denote the
MMSE in recovering x from the observation of y. Then, by
noting that the Gaussian MMSE does not depend on the value
of the mean of the input signal, and by taking the expectation
in the MMSE expression with respect to the random variables
x1 |y2 and y2 , separately, it is possible to show that

MMSE(x1 |y1 ,y2) = MMSE(z|Φ1z + w1), (49)

where z ∼ p(x1 |y2). By leveraging [22], we observe that
MMSE(z|Φ1z + w1) tends to be zero as σ2

1 → 0, if and only if

m1 ≥ rank(Σz) = rz . (50)

Note that the covariance matrix Σz can be written as

Σz = Σx1 − Σx1 2 Φ
T
2 (Φ2Σx2 Φ

T
2 + Iσ2

2 )†Φ2Σx2 1 , (51)

and in particular, when σ2
2 → 0, Σz tends to

Σz = Σx1 − Σx1 2 Φ
T
2 (Φ2Σx2 Φ

T
2 )†Φ2Σx2 1 . (52)

Note that Σz in (52) is the generalized Schur complement
[55] of the block Φ2Σx2 Φ

T
2 of the positive semidefinite matrix

Σx1 Φ2 x2 =

[
Σx1 Σx1 2 Φ

T
2

Φ2Σx2 1 Φ2Σx2 Φ
T
2

]
, (53)
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so that we have [55]

rank(Σx1 Φ2 x2 ) = rz + rank(Φ2Σx2 Φ
T
2 ). (54)

In addition, on considering the matrix

ΣΦ2 x2 x1 =

[
Φ2Σx2 Φ

T
2 Φ2Σx2 1

Σx1 2 Φ
T
2 Σx1

]
, (55)

and on applying the same rank computation, we also have

rank(ΣΦ2 x2 x1 ) = rx1 + rank
(
Φ2(Σx2 − Σx2 1 Σ

†
x1

Σx1 2 )Φ
T
2
)
.

(56)

By substituting (54) and (56), we can express rz as

rz = rx1 − rank(Φ2Σx2 Φ
T
2 )

+ rank(Φ2(Σx2 − Σx2 1 Σ
†
x1

Σx1 2 )Φ
T
2 ). (57)

The sufficient conditions for the MMSE phase transition can
be obtained by considering the MMSE associated to a subopti-
mal projection matrix Φ2 with respect to the optimization prob-
lem (9). Based on the GSVD of two matrices Σx2 and Σx2 −
Σx2 1 Σ

†
x1

Σx1 2 , the projection matrix Φ2 is obtained in (14).
Then, it is straightforward to verify that rank(Φ2Σx2 Φ

T
2 ) =

m′
2 and rank(Φ2(Σx2 − Σx2 1 Σ

†
x1

Σx1 2 )Φ
T
2 ) = 0, thus imply-

ing that, when adopting the side information projection matrix
Φ2 in (14), the corresponding MMSE approaches zero in the
low-noise regime if

m1 ≥ rx1 − min{m2 , rx1 + rx2 − rx}, (58)

which is equivalent to the condition (10).
Conversely, we can show that the condition in (58) is also

necessary to achieve the MMSE phase transition when Φ2 =
Φ�

2 . In order to do that, we show that, for any choice of Φ2 ∈
Rm 2 ×n2 , it holds

rz ≥ rx1 − min{m2 , rx1 + rx2 − rx}. (59)

In particular, on leveraging the Sylvester’s rank Theorem
[56], which states that

rank(AB) = rank(B) − dim(Im(BT) ∩ Null(A)), (60)

we can write

Δ(Φ2) = rank(Φ2Σx2 Φ
T
2 )

− rank(Φ2(Σx2 − Σx2 1 Σ
†
x1

Σx1 2 )Φ
T
2 ) (61)

= dim(Im(ΦT
2 ) ∩ Null(Σx2 − Σx2 1 Σ

†
x1

Σx1 2 ))

− dim(Im(ΦT
2 ) ∩ Null(Σx2 )). (62)

Then, on observing thatΣx2 − Σx2 1 Σ
†
x1

Σx1 2 is the generalized
Schur complement of Σx1 in Σx [57], and by leveraging [57,
Lemma 4.1] in conjunction with [58, Theorem 4.3], we have
that

Null(Σx2 ) ⊆ Null(Σx2 − Σx2 1 Σ
†
x1

Σx1 2 ), (63)

and

dim(Null(Σx2 − Σx2 1 Σ
†
x1

Σx1 2 )) = n2 − rx + rx1 , (64)

dim(Null(Σx2 )) = n2 − rx2 . (65)

Finally, on leveraging the following lemma, we can prove that
Δ(Φ2) ≤ min{m2 , rx1 + rx2 − rx}.

Lemma 5: Consider two linear spaces D1 ,D2 ∈ Rn , such
thatD2 ⊆ D1 , with dimensions d1 and d2 , d1 ≥ d2 , respectively.
Consider a third linear space V ∈ Rn , with dimension v. Then,

dim(V ∩ D1) − dim(V ∩ D2) ≤ min{v, d1 − d2}. (66)

Proof: It is straightforward to note that the difference in (66)
is always upper bounded by v, since dim(V ∩ D1) ≤ dim(V)
= v.

Then, we divide the proof into two cases. In the first case,
we assume dim(V ∩ D1) ≤ d1 − d2 , from which (66) follows
immediately. In the second case, we assume dim(V ∩ D1) >
d1 − d2 , and we write dim(V ∩ D1) = d1 − d2 + k, with k ∈
{0, 1, . . . , d2}. Then, we have that

dim(V ∩ D2) ≥ dim((V ∩ D1) ∩ D2) (67)

≥ [d1 − d2 + k + d2 − d1 ]+ = k, (68)

where, in the last inequality, we have used fact that both V ∩ D1
and D2 are linear spaces contained in D1 , which has dimension
d1 . Therefore, from (68) we obtain dim(V ∩ D1) − dim(V ∩
D2) ≤ d1 − d2 , which concludes the proof of (66). �

B. Proof of Corollary 2

Note that, given any value of m2 , the minimum value of
m1 that verifies the necessary and sufficient conditions for the
MMSE to approach zero in the low-noise regime when both Φ1
and Φ2 are random can be written as [33, Theorem 3]

mR
1 = rx1 − min{m2 , rx2 } + min{m2 , rx − rx1 }, (69)

whereas the minimum value of m1 that verifies the necessary
and sufficient condition in Theorem 1 can be written as

mD
1 = rx1 − min{m2 , rx1 + rx2 − rx}. (70)

Then, the proof of Corollary 2 is obtained by comparing (69)
and (70) for different values of m2 :

� If m2 ≤ rx − rx1 , we have mR
1 = rx1 ≥ rx1 −

min{m2 , rx1 + rx2 − rx} = mD
1 ;

� If rx − rx1 < m2 < rx2 , we need to consider two further
cases: if m2 ≥ rx1 + rx2 − rx , then mR

1 = rx − m2 >
rx − rx2 = mD

1 ; on the other hand, if m2 < rx1 + rx2 −
rx , then mR

1 = rx − m2 ≥ rx1 − m2 = mD .
� If m2 ≥ rx2 , then mR

1 = rx − rx2 = mD
1 .

Fig. 11 illustrates with different shading colors the different
sets of values (m1 ,m2) considered in the proof of Corollary 2.

APPENDIX B

A. Proof of Theorem 3

When the signals x1 ,x2 are described via a joint GMM, the
corresponding MMSE can be expressed as

MMSE(x1 |y1 ,y2) = E [MMSE(z|Φ1z + w1)] , (71)

where z ∼ p(x1 |y2) and where the outer expectation is taken
with respect to y2 . Note that, for a given value of y2 , p(z) is a
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Fig. 11. Representation of the conditions on m1 and m2 for MMSE phase
transition for Gaussian sources.

GMM distribution with the same number of classes as the joint
GMM p(x1 ,x2), since it holds

p(z) =
K 1∑

i=1

K 2∑

k=1

p(C1 = i, C2 = k|y2)

· p(x1 |y2 , C1 = i, C2 = k) (72)

=
K 1∑

i=1

K 2∑

k=1

p(C1 = i, C2 = k|y2)

· p(x1 ,y2 , C1 = i, C2 = k)
p(y2 , C1 = i, C2 = k)

. (73)

Therefore, by leveraging [22, Theorem 3], we can conclude that
a sufficient condition on the number of projections m1 required
for MMSE(z|Φ1z + w1) → 0 when σ2

1 → 0 is given by

m1 > max
(i,k)

rank(Σ(i,k)
z ) = max

(i,k)
r(i,k)
z , (74)

where Σ(i,k)
z is the covariance matrix of z conditioned on classes

C1 = i, C2 = k. We also note that the covariancesΣ(i,k)
z depend

only on the statistical description of x1 ,y2 , and not on the
particular realization of y2 . Therefore, we can conclude that (74)
represents also a sufficient condition for MMSE(x1 |y1 ,y2) →
0 when σ2

1 → 0. The covariance matrix Σ(i,k)
z can be written as

Σ(i,k)
z = Σ(i,k)

x1
− Σ(i,k)

x1 2
ΦT

2 (Φ2Σ(i,k)
x2

ΦT
2 + Iσ2

2 )−1Φ2Σ(i,k)
x2 1

.
(75)

Moreover, we are interested in determining the behavior of the
MMSE in the low-noise regime, that is when both σ2

1 → 0 and
σ2

2 → 0. In particular, when σ2
2 → 0, the matrices Σ(i,k)

z can be
expressed as

Σ(i,k)
z = Σ(i,k)

x1
− Σ(i,k)

x1 2
ΦT

2 (Φ2Σ(i,k)
x2

ΦT
2 )†Φ2Σ(i,k)

x2 1
, (76)

due to continuity of the Schur component of a matrix with
respect to its eigenvalues. Therefore, sufficient conditions for the
MMSE to approach zero in the low-noise regime are obtained
by expressing the quantities r

(i,k)
z = rank(Σ(i,k)

z ) as a function
of the sources parameters and the number of side information
measurements m2 .

In particular, we obtain sufficient conditions for the MMSE
phase transition on the number of projections m1 and m2 by
considering a (possibly suboptimal) measurement matrix de-
sign for Φ2 , which is inspired on the design which achieves

the optimal phase transition for Gaussian sources. In par-
ticular, we define Φ̄(i,k)

2 as in (25). Then, we define Φ̄2 =
[(Φ̄(1,1)

2 )T , . . . , (Φ̄(K 1 ,K 2 )
2 )T ]T as the matrix obtained by stack-

ing all the matrices Φ̄(i,k)
2 for all indexes i and k. Finally, the

projection kernel Φ2 is obtained by m2 rows from Φ̄2 . More
specifically, Φ2 is obtained by picking m

(i,k)
2 rows from Φ̄(i,k)

2

and
∑

i,k m
(i,k)
2 = m2 .

We will now determine the value of the rank r
(i,k)
z when Φ2

is obtained by the construction previously described. On using
(54) and (56), we can write

r(i,k)
z = r(i,k)

x1
− Δ(i,k)(Φ2), (77)

where

Δ(i,k)(Φ2)

= rank(Φ2Σ(i,k)
x2

ΦT
2 )

− rank(Φ2(Σ(i,k)
x2

− Σ(i,k)
x2 1

(Σ(i,k)
x1

)†Σ(i,k)
x1 2

)ΦT
2 ) (78)

= dim(Im(ΦT
2 ) ∩ Null(Σ(i,k)

x2
− Σ(i,k)

x2 1
(Σ(i,k)

x1
)†Σ(i,k)

x1 2
))

− dim(Im(ΦT
2 ) ∩ Null(Σ(i,k)

x2
)). (79)

Then, by leveraging the expression of the dimension of the
intersection of two linear spaces, we can write

dim(Im(ΦT
2 ) ∩ Null(Σ(i,k)

x2
− Σ(i,k)

x2 1
(Σ(i,k)

x1
)†Σ(i,k)

x1 2
))

= rank(Φ2) + rank(N(i,k)
1s ) − rank[ΦT

2 N(i,k)
1s ] (80)

= m2 + n2 − (r(i,k)
x − r(i,k)

x1
) − rank[ΦT

2 N(i,k)
1s ], (81)

where the columns of N(i,k)
1s ∈ Rn2 ×(n2 −(r ( i , k )

x −r
( i , k )
x 1 )) form a

basis of the linear space Null(Σ(i,k)
x2 − Σ(i,k)

x2 1 (Σ(i,k)
x1 )†Σ(i,k)

x1 2 ).
Consider now the last term in (81). We can note that

rank[ΦT
2 N(i,k)

1s ] = rank[(Φ̂(i,k)
2 )TN(i,k)

1s ], (82)

where Φ̂(i,k)
2 is obtained from Φ2 by removing the m

(i,k)
2 rows

which are also rows of the matrix Φ̄(i,k)
2 , since all rows in

Φ̄(i,k)
2 are contained in Null(Σ(i,k)

x2 − Σ(i,k)
x2 1 (Σ(i,k)

x1 )†Σ(i,k)
x1 2 ).

Moreover, on leveraging the assumption that the linear spaces
associated to the images of the covariance matrices of different
Gaussian classes (i, k) are independently drawn from a contin-
uous distribution over the Grassmann manifold, we also have

rank[ΦT
2 N(i,k)

1s ] = min{n2 ,m2 − m
(i,k)
2

+ n2 − (r(i,k)
x − r(i,k)

x1
)}. (83)

By following similar steps, we can also observe that

dim(Im(ΦT
2 ) ∩ Null(Σ(i,k)

x2
)) (84)

= m2 + n2 − r(i,k)
x2

− rank[ΦT
2 N(i,k)

2 ], (85)

where the column of the matrix N(i,k)
2 ∈ Rn2 ×(n2 −r

( i , k )
x 2 ) form a

basis of Null(Σ(i,k)
x2 ). Then, from the definition of Φ̄(i,k)

2 in (25),

we can observe that the rows of Φ̄(i,k)
2 span a linear space which

is contained in Null(Σ(i,k)
x2 − Σ(i,k)

x2 1 (Σ(i,k)
x1 )†Σ(i,k)

x1 2 ) but which
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has zero-dimensional intersection with Null(Σ(i,k)
x2 ). Moreover,

on leveraging the assumption that all the linear spaces associated
to the images of the covariance matrices of different Gaussian
classes (i, k) are randomly drawn from a continuous distribution
over the Grassmann manifold, we also have

rank[ΦT
2 N(i,k)

2 ] = min{n2 ,m2 + n2 − r(i,k)
x2

}. (86)

Finally, on putting together (77), (79), (81), (83), (85), and
(86), we can write

r(i,k)
z = min{r(i,k)

x − m2 , r
(i,k)
x1

− m
(i,k)
2 }

+ max{m2 − r(i,k)
x2

, 0}. (87)

Therefore, on considering separately the cases when m2 ≤
r

(i,k)
x − r

(i,k)
x1 , r

(i,k)
x − r

(i,k)
x1 < m2 ≤ r

(i,k)
x2 , and m2 > r

(i,k)
x2 ,

we have
r

(i,k)
z =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r
(i,k)
x1 − m

(i,k)
2 , if m2 ≤ r

(i,k)
x − r

(i,k)
x1

min{r(i,k)
x − m2 ,

r
(i,k)
x1 − m

(i,k)
2 } , if r

(i,k)
x − r

(i,k)
x1 < m2 ≤ r

(i,k)
x2

r
(i,k)
x − r

(i,k)
x2 , if m2 > r

(i,k)
x2

,

(88)

which concludes the proof.

B. Proof of Corollary 4

Note that, given any value of m2 , the sufficient conditions for
the MMSE to approach zero in the low-noise regime when both
Φ1 and Φ2 are random reported in [33, Theorem 4] can be also
expressed as

m1 >

⎧
⎪⎪⎨

⎪⎪⎩

r
(i,k)
x1 , if m2 ≤ r

(i,k)
x − r

(i,k)
x1

r
(i,k)
x − m2 , if r

(i,k)
x − r

(i,k)
x1 < m2 ≤ r

(i,k)
x2

r
(i,k)
x − r

(i,k)
x2 , if m2 > r

(i,k)
x2

,

(89)

for all (i, k). Then, the proofs of Corollary 4 is obtained by
comparing (89) with (17), and recalling that m

(i,k)
2 ≥ 0,∀(i, k).
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