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Abstract—In this paper, a sparsity-driven method of micro-Doppler analysis is proposed for dynamic hand 2 

gesture recognition with radar sensors. Firstly, sparse representations of the echoes reflected from dynamic 3 

hand gestures are achieved through the Gaussian-windowed Fourier dictionary. Secondly, the micro-Doppler 4 

features of dynamic hand gestures are extracted using the orthogonal matching pursuit (OMP) algorithm. 5 

Finally, the nearest neighbor classifier is combined with the modified Hausdorff distance to recognize dynamic 6 

hand gestures based on the sparse micro-Doppler features. Experiments with real radar data show that 1) the 7 

recognition accuracy produced by the proposed method exceeds 96% under moderate noise, and 2) the 8 

proposed method outperforms the approaches based on principal component analysis and deep convolutional 9 

neural network with small training dataset.  10 

Index Terms—dynamic hand gesture recognition, micro-Doppler analysis, sparse signal representation 11 

I. INTRODUCTION 12 

Dynamic hand gesture recognition has been regarded as an effective approach for human-computer interaction (HCI) 13 

[1]. Numerous vision-based methods for dynamic hand gesture recognition have been developed [2]. However, these 14 

methods are sensitive to the illumination condition and cannot work in conditions of low visibility. In contrast, a radar 15 

sensor is capable of detecting and classifying moving targets independent of light conditions. Recently, radar-based 16 
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approaches for dynamic hand gesture recognition have attracted much attention [3-8]. In [3], a Doppler radar system is 17 

developed for detecting three kinds of dynamic hand gestures. In [4], a portable radar sensor is employed to recognize 18 

dynamic hand gestures using application-dependent features and principal component analysis (PCA), and the results 19 

illustrate the potential of radar-based dynamic hand gesture recognition for smart home applications.  The authors of [5, 20 

6] use a frequency modulated continuous wave (FMCW) radar and analyze the range-Doppler images of dynamic hand 21 

gestures of drivers. As presented in [6], radar echoes of dynamic hand gestures contain multiple components with 22 

time-varying frequency modulations, which are referred to as micro-Doppler signatures [7-22]. In recent years, the use 23 

of micro-Doppler analysis for the hand gesture recognition has attracted growing attention. In [7], the feasibility of 24 

hand gestures recognition using micro-Doppler signatures with a deep convolutional neural network (DCNN) is 25 

investigated, and the recognition accuracy is found to be 93.1% for seven gestures. In [8], the empirical micro-Doppler 26 

features are fed into support vector machine (SVM) to accomplish dynamic hand gesture recognition.  27 

Most micro-Doppler-based methods for human activity classification contain two key phases: 1) feature extraction 28 

and 2) classification. In Phase 1), a feature vector, which usually has lower dimension than the raw radar data, is 29 

derived from the received signal via certain feature extraction techniques. In [15], some empirical features such as the 30 

maximal instantaneous frequency and the period of motion are extracted from the time-frequency spectrogram. The 31 

techniques for dimension reduction, including PCA [16-18], empirical mode decomposition [19], linear predictive 32 

coding [20] and singular value decomposition [21], have also been employed to extract micro-Doppler features. In 33 

Phase 2), the micro-Doppler features extracted in Phase 1) are inputted into a trained classifier to determine the type of 34 

the observed human activity. A variety kinds of classifiers, including k-nearest neighbor, SVM [15] and Bayes 35 

classifier [21], have been used for human activity classification. Recently, DCNN have been used in human activity 36 

classification [7, 22], which extracts micro-Doppler features from time-frequency spectrograms using convolutional 37 

filters and performs classification via fully connected perceptron functions. The experimental results in existing 38 

literatures show that the performances of these classifiers depend on applications, though generally the choice of 39 

correct features is more important than which classifier is used.  40 

The sparse signal processing technique [23] provides a new perspective for radar data reduction without 41 

compromising performance, and this technique has been used to extract micro-Doppler features of vibrating or rotating 42 

targets [24-27]. In [24], the micro-Doppler signatures induced by rotating scatterers in radar imaging applications are 43 
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extracted by the orthogonal matching pursuit (OMP) algorithm. A pruned OMP algorithm is developed in [25], which 44 

achieves the joint estimation of the spatial distribution of the scatterers on the target and the rotational speed of the 45 

target. In [26-27], the sparse signal processing technique is combined with the time-frequency analysis to obtain high 46 

accuracy of helicopter classification. The methods proposed in [24-27] are based on the analytic expressions of the 47 

micro-Doppler signals and cannot be used for dynamic hand gesture analysis, because it is difficult to analytically 48 

formulate the radar echoes of dynamic hand gestures. To the best of our knowledge, the combination of sparse signal 49 

representation and the micro-Doppler analysis for dynamic hand gesture recognition has not been sufficiently 50 

investigated yet.  51 

In this paper, we propose a sparsity-driven method of micro-Doppler analysis for dynamic hand gesture recognition. 52 

Firstly, the radar echoes reflected from dynamic hand gestures are mapped into the time-frequency domain through the 53 

Gaussian-windowed Fourier dictionary. Then, the micro-Doppler features of the dynamic hand gestures are extracted 54 

via the OMP algorithm and fed into the modified-Hausdorff-distance-based nearest neighbor (NN) classifier for 55 

recognition. Experiments with real data collected by a K-band radar show that 1) the recognition accuracy produced by 56 

the proposed method exceeds 96% under moderate noise, and 2) the proposed method outperforms the PCA-based and 57 

the DCNN-based methods in conditions of small training dataset. In addition, the proposed method is expected to 58 

achieve real-time processing in practical applications with optimized code and accelerated hardware. The main 59 

contribution of this paper lies in the combination of the sparsity-aware feature extraction and the 60 

modified-Hausdorff-distance-based classifier for dynamic hand gesture recognition.  61 

The reminder of this paper is organized as follows. The radar data collection is described in Section II. In Section III, 62 

we present the details about the sparsity-driven micro-Doppler feature extraction and dynamic hand gesture recognition. 63 

In Section IV, the experimental results based on the measured data are provided. Section V presents the conclusion.  64 

II. MEASUREMENT OF DYNAMIC HAND GESTURES 65 

The data analyzed in this paper are collected by a K-band continuous wave (CW) radar system. The carrier frequency 66 

and the base-band sampling frequency are 25 GHz and 1 kHz, respectively. The radar antenna is oriented directly to the 67 

human hand at a distance of 0.3 m. The following four dynamic hand gestures are considered: (a) hand rotation, (b) 68 

beckoning, (c) snapping fingers and (d) flipping fingers. The illustrations and descriptions of the four dynamic hand 69 
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gestures are shown in Fig.1 and Table I, respectively. The data are collected from three personnel targets: two males 70 

and one female. Each person repeats a particular dynamic hand gesture for 20 times. Each 0.6s time interval containing 71 

a complete dynamic hand gesture is recorded as a signal segment. The total number of the signal segments is (4 72 

gestures)(3 personnel targets)(20 repeats) = 240.  73 

 74 

  Fig. 1. Illustrations of four dynamic hand gestures: (a) hand rotation; (b) beckoning; (c) snapping fingers; (d) flipping fingers. 75 

 76 

Fig. 2. Spectrograms of received signals corresponding to four dynamic hand gestures from one personnel target: (a) hand rotation; (b) beckoning; 77 
(c) snapping fingers; (d) flipping fingers. 78 

To visualize the time-varying characteristics of the dynamic hand gestures, the short time Fourier transform (STFT) 79 

with a Kaiser window is applied to the received signals to obtain the corresponding spectrograms. The resulting 80 

spectrograms of the four dynamic hand gestures from one personnel target are shown in Fig.2. It is clear that the 81 

time-frequency trajectories of these dynamic hand gestures are different from each other. The Doppler shifts 82 
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corresponding to the gesture ‘hand rotation’ continuously change along the time-axis, because the velocity of the hand 83 

continuously changes during the rotation process. The echo of the gesture ‘beckoning’ contains a negative Doppler 84 

shift and a positive Doppler shift, which are corresponding to the back and forth movements of the fingers, respectively. 85 

The negative Doppler shift of the gesture ‘snapping fingers’ is larger than its positive Doppler shift, since the velocity 86 

corresponding to the retreating movement of the fingers is much larger than the velocity corresponding to the returning 87 

movement. The time-frequency trajectory of the gesture ‘flipping fingers’ starts with a positive Doppler shift that 88 

corresponds to the middle finger flipping towards the radar. The differences among the time-frequency trajectories 89 

imply the potential to distinguish different dynamic hand gestures. From Fig. 2 we can also see that, most of the power 90 

of the dynamic hand gesture signals is distributed in limited areas in the time-frequency domain. This allows us to use 91 

sparse signal processing techniques to extract micro-Doppler features of dynamic hand gestures. Fig. 3 shows the 92 

spectrograms of received signals corresponding to dynamic hand gesture ‘hand rotation’ from three personnel targets. 93 

It can be seen that the time-frequency spectrograms of the same gesture from different personnel targets have similar 94 

patterns.  95 

 96 
 97 

Fig. 3. Spectrograms of received signals corresponding to dynamic hand gesture ‘hand rotation’ from three personnel targets: (a) Target 1; (b) 98 
Target 2; (c) Target 3.  99 
 100 
 101 
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TABLE I 102 
FOUR DYNAMIC HAND GESTURES UNDER STUDY 103 

Gesture Description 

(a) Hand rotation The gesture of rotating the right hand for a cycle. 

The hand moves away from the radar in the first 

half cycle and towards the radar in the second half. 

(b) Beckoning The gesture of beckoning someone with the 

fingers swinging back and forth for one time. 

(c) Snapping fingers The gesture of pressing the middle finger and the 

thumb together and then flinging the middle finger 

onto the palm while the thumb sliding forward 

quickly. After snapping fingers, pressing the 

middle finger and the thumb together again. 

(d) Flipping fingers The gesture of bucking the middle finger under the 

thumb and then flipping the middle finger forward 

quickly. After flipping fingers, bucking the middle 

finger under the thumb again. 

 104 

III. SPARSITY-DRIVEN DYNAMIC HAND GESTURE RECOGNITION 105 

The scheme of the proposed method is illustrated in Fig.4. This method contains two sub-processes, i.e., the training 106 

process and the testing process. The training process is composed of two steps. Firstly, the time-frequency trajectory of 107 

each training signal is extracted using the OMP algorithm. Secondly, the K-means algorithm is employed to cluster the 108 

time-frequency trajectories of all training signals and generate the central trajectory corresponding to each dynamic 109 

hand gesture. In the testing process, the modified Hausdorff distances [28,29] between the time-frequency trajectory of 110 

the testing signal and the central trajectories of dynamic hand gestures are computed and inputted into the nearest 111 

neighbor classifier to determine the type of the dynamic hand gesture under test.  The details of the proposed method 112 

are presented as below. 113 

 114 

Fig. 4. The scheme the proposed method. 115 

 116 
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A. Extracting Time-Frequency Trajectory 117 

As discussed in Section II, the time-frequency distributions of the dynamic hand gesture signals are generally sparse. 118 

Denoting the received signal as an N×1 vector y, the model of the sparse representation of y in time-frequency domain 119 

can be expressed as [23], 120 

 y = x +  , (1) 

where  is an N×M time-frequency dictionary, x is an M×1  sparse vector, and  is an N×1 noise vector. When there are 121 

only P non-zero entries in x, x is called a P-sparse signal. In this paper, we use the Gaussian-windowed Fourier basis 122 

signal, which is widely used in time-frequency analysis [30], to generate the dictionary . The m-th column of 123 

dictionary  can be expressed as  124 

 [:,m] = [
m

(1),
m

(2),…,
m

(N)]
T
 (2) 

where 125 

 


m

(n) ≜  (n| tm, f
m

)

=
1

2
1
4√

exp [−
(n-tm)2

2
] exp(−j2f

m
n)

n = 1, …, N,

, (3) 

where tm and fm represent the time shift and the frequency shift of the basis signal, respectively,  is the variance of the 126 

Gaussian window. As discussed in [30], for a certain variance  of the Gaussian window, the value sets of the time shift 127 

tm and the frequency shift fm can be set to be {0.5, , 1.5, …, 0.5 ×⌊N/(0.5)⌋} and {1/, 2/, 3/,…, 2}, 128 

respectively, where ⌊⌋ is the round down function.  129 

Based on the sparse signal processing technique [23], when P≪N<M, the sparse representation vector x in (1) can be 130 

obtained by 131 

 x̂ = argmin
x

‖y − x‖
2

, s.t. ‖x‖
0≤P, (4) 

where ||||0 and ||||2 denote the L0 and L2 norms, respectively. The solution for (4) can be obtained by greedy algorithms 132 

such as the orthogonal matching pursuit algorithm (OMP) [31] or linear programming after replacing L0 norm with L1 133 

norm in (4). In this paper, we use the OMP algorithm to solve (4), which first finds the sparse support of x iteratively 134 

and then determines the nonzero coefficients of the sparse solution by the least square estimator. The sparse solution is 135 

denoted as 136 
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 x̂ = OMP(y,,P) = (0,…,x̂i1
,0,…,x̂i2

,0,…,x̂iP
,…)

T
, (5) 

where x̂ is the P-sparse vector and the non-zero elements are x̂ip
(p = 1,2,…, P).  137 

According to (1), (3) and (5), the received signal y can be expressed as 138 

 
y(n) = ∑ x̂ip

 (n |tip ,f
ip

)P
p=1  + (n)

n = 0, 1,…, N-1
. (6) 

Equation (6) implies that the time-frequency characteristics of y can be described by a group of basis signals with 139 

time-frequency parameters (tip , f
ip

, x̂ip
) (p = 1, 2, …, P). Based on this observation, we define the time-frequency 140 

trajectory of y as, 141 

 T(y) = {(tip, f
ip

, Aip
) , p = 1,2,…, P}. (7) 

where Aip
≜ |x̂ip

| indicates the intensity at the time-frequency position (tip , f
ip

) (p = 1, 2, …, P). 142 

To explain the sparse signal representation clearer, the OMP algorithm is applied to analyze the measured signals 143 

presented in Fig.2. The length of each dynamic hand gesture signal is 0.6 s and the sampling frequency is 1 kHz, which 144 

means that the value of N is 600. The sparsity P is set to be 10. The variance  of the Gaussian window is set to be 32. 145 

The dictionary  is designed as discussed above and its size is 6002400. The OMP algorithm is used to solve sparse 146 

vector x̂ , and then the reconstructed signal is obtained by yrec= x̂ . The time-frequency spectrograms of the 147 

reconstructed signals yrec are plotted in Fig.5. By comparing Figs. 2 and 5, we can find that the reconstructed signals 148 

contain the majority part of the original time-frequency features. In addition, it is clear that the noise energy has been 149 

significantly suppressed in the reconstructed signals, which is beneficial to dynamic hand gesture recognition. The 150 

locations of time-frequency trajectory, i.e. (tip , f
ip

) (p = 1, 2, …, P), extracted by the OMP algorithms are plotted in Fig. 151 

6. By comparing Figs. 2 and 6, we can see that the extracted time-frequency trajectories are capable of representing the 152 

time-frequency patterns of corresponding dynamic hand gestures.  153 
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 154 

Fig. 5. Spectrograms of reconstructed signals yielded by the OMP algorithm with P=10: (a) hand rotation; (b) beckoning; (c) snapping fingers; (d) 155 
flipping fingers. 156 

 157 

Fig. 6. Locations of time-frequency trajectories (tip, fip
) (p = 1, 2, …, P) extracted by the OMP algorithms with P=10: (a) hand rotation; (b) 158 

beckoning; (c) snapping fingers; (d) flipping fingers. 159 
 160 
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B. Clustering for Central Time-Frequency Trajectory 161 

In the training process, a central time-frequency trajectory is clustered for each dynamic hand gesture using the 162 

K-means algorithm based on the time-frequency trajectories of training signals. The details of clustering process are 163 

presented as below. 164 

 165 

Fig. 7. (a) Locations of time-frequency trajectories extracted from 8 segments of signals corresponding to the gesture ‘snapping fingers’ with 166 
P=10, where each type of marker indicates the time-frequency trajectory of a certain signal segment. (b) Locations of the clustered 167 
time-frequency trajectory generated by the K-means algorithm. 168 
 169 

We assume there are S segments of training signals for each dynamic hand gesture, denoted as y
g
(s) (s =1,2,…, S), 170 

where s and g are the indexes of training segments and dynamic hand gestures, respectively. The time-frequency 171 

trajectory of y
g
(s) is denoted as T (y

g
(s)), which is composed of P time-frequency positions as presented in (7). In ideal 172 

case, different realizations of a certain dynamic hand gesture are expected to have the same time-frequency trajectory. 173 

However, in realistic scenarios, a human can hardly repeat one dynamic hand gesture in a completely same way. 174 
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Therefore, there are minor differences among the time-frequency trajectories extracted from different realizations of 175 

one dynamic hand gesture. In order to explain this phenomenon more clearly, we plot the locations of the 176 

time-frequency trajectories extracted from 8 segments of signals corresponding to the gesture ‘snapping fingers’ in 177 

Fig.7(a) for an example. It is clear that the time-frequency trajectories of different signal segments are distributed 178 

closely to each other with slight differences. In order to extract the main pattern from the time-frequency trajectories of 179 

training data, the K-means algorithm, which is a clustering technique widely used in pattern recognition [32,33], is 180 

employed to generate the central time-frequency trajectory of each dynamic hand gesture. The inputs of the K-means 181 

algorithm are the time-frequency positions on the time-frequency trajectories of S training signals and the total number 182 

of input time-frequency positions is PS. With the K-means algorithm, P central time-frequency positions are 183 

produced to minimize the mean squared distance from each input time-frequency position to its nearest central position. 184 

The K-means algorithm is capable of compressing data and suppressing disturbances while retaining the major pattern 185 

of input data. More details about the K-means algorithm can be found in [33]. We denote the central time-frequency 186 

trajectory of dynamic hand gesture g generated by the K-means algorithm as:  187 

 
Tc,g = K-means (T (y

g
(1)) ,T (y

g
(2)) , …, T (y

g
(S)))

= {(tc,g
(p)

, f
c,g

(p)
, Ac,g

(p)) ,  p =1,2,…,P}
 (8) 

where 𝑡𝑐,g
(𝑝)

, 𝑓𝑐,g
(𝑝)

, and 𝐴𝑐,g
(𝑝)

 denote the time shift, the frequency shift and the magnitude of the p-th time-frequency 188 

position on the central time-frequency trajectory, respectively, and the superscript g is the dynamic hand gesture index. 189 

Fig.7(b) shows the location of the central time-frequency trajectory generated by the K-means algorithm using the 190 

time-frequency positions in Fig.7(a). It is clear that the majority of time-frequency positions in Fig.7(a) are located 191 

around the central time-frequency trajectory in Fig.7(b), which implies that the central time-frequency trajectory is 192 

capable of representing the major time-frequency pattern of a dynamic hand gesture.  193 

C. Nearest Neighbor Classifier Based on Modified Hausdorff Distance 194 

In the testing process, the type of dynamic hand gesture corresponding to a given testing signal is determined by the 195 

NN classifier. The modified Hausdorff distance, which is widely used in the fields of pattern recognition [28, 29], is 196 

used to measure the similarity between the time-frequency trajectory of the testing signal and the central 197 

time-frequency trajectory of each dynamic hand gesture.  198 
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For a testing signal y(*), the classification process can be divided into three steps.  199 

Firstly, the time-frequency trajectory T(y(*)) is extracted using the OMP algorithm as described in Section III-A.  200 

Secondly, the modified Hausdorff distances between T(y(*)) and the central time-frequency trajectories Tc,g (g = 201 

1,2,…,G) are computed according to the following formula [28], 202 

 
MHD(T(y(*)),Tc,g)= ∑ dH((*),Tc,g)

(*)ϵT(y(*))

 
(9) 

where (∗)is an element in set T(y(*)), i.e., (∗)is a parameter set composed of the time shift, the frequency shift and the 203 

amplitude as described in (7), and dH(,) represents the Hausdorff distance, which is defined as [29], 204 

 dH((*),Tc,g)= min
ϵTc,g

‖(*)-‖
2
 (10) 

where  is an element in set Tc,g. More details about modified Hausdorff distance can be found in [29].  205 

Thirdly, the type of the dynamic hand gesture corresponding to y(*) is determined by the following NN classifier, 206 

 g(*)= argmin
g∈{1,2,…,G}

MHD(T(y(*)),Tc,g) (11) 

where G represents the total number of dynamic hand gestures and g(*) indexes the recognition result.  207 

IV. EXPERIMENTAL RESULTS 208 

In this section, the real data measured with the K-band radar are used to validate the proposed method in terms of 209 

recognition accuracy, which is defined as the proportion of correctly recognized dynamic hand gesture signals among 210 

all the testing signals.  211 

A. Analysis about the Recognition Accuracies and the Sparsity 212 

In this experiment, we evaluate the recognition accuracies of the proposed method with different values of sparsity P. 213 

The performance of the proposed method is compared with that of the Sparse-SVM method proposed by the same 214 

authors [34]. With the Sparse-SVM method, the time-frequency trajectories of the dynamic hand gestures are extracted 215 

by the OMP algorithm as described in Section III-A and inputted into SVM for recognition. The sparsity P is varied 216 

from 7 to 21 with a step size of 2, and the recognition accuracies are computed using cross-validation. For each value of 217 

sparsity P, we randomly select a certain proportion of measured signals for training, and the remaining data are used for 218 

testing. The recognition accuracies are averaged over 50 trails with randomly selected training data. The variance  of 219 
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the Gaussian window is set to be 32. The recognition accuracies yielded by the proposed method and the Sparse-SVM 220 

method using 30% and 70% of data for training are illustrated in Fig. 8, and the confusion matrix yielded by the 221 

proposed method with P=17 with 30% training data is presented in Table II.  222 

TABLE II.  223 
CONFUSION MATRIX YIELDED BY THE PROPOSED METHOD WITH P=17 AND 30% OF DATA FOR TRAINING   224 

 
Hand 

rotation 

Beckon

-ing  

Snapping 

fingers 

Flipping 

fingers 

Hand rotation 96.67% 2.32% 0.72% 0 

Beckoning 3.21% 95.42% 3.45% 0 

Snapping fingers 0.12% 2.26% 95.71% 0 

Flipping fingers 0 0 0.12% 100% 

 225 

 226 

Fig. 8. Recognition accuracies of the proposed method and the Sparse-SVM method versus different values of sparsity P. 227 

It is clear from Fig. 8 that the recognition accuracies of the proposed method increases as the sparsity P increases 228 

when P15. This is because more features of the dynamic hand gestures are extracted as the sparsity P increases. The 229 

recognition accuracies change slightly as the sparsity P increases when P17. This is because no more useful features 230 

can be extracted in this condition. Therefore, the sparsity P is selected to be larger than 15 for the experimental dataset 231 

in this paper to achieve satisfying recognition accuracy. If the proposed method is applied to other dataset, the sparsity 232 

P should be selected large enough to extract the micro-Doppler features sufficiently. However, a too large value of 233 

sparsity P results in more computational burden. In order to determine the proper value of sparsity P, we suggest to 234 

employ the training scheme proposed in [35]. With this training scheme, the training dataset is used for selecting the 235 

value of sparsity P, i.e., the sparsity-driven method for dynamic hand gesture recognition is evaluated under different 236 
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values of sparsity P by conducting multi-fold validation within the training dataset off-line, and the value of sparsity P 237 

corresponding to the highest recognition accuracy is selected in the final recognition system.  238 

In addition, it can be seen from Fig. 8 that the proposed method outperforms the Sparse-SVM method under each 239 

value of sparsity. Furthermore, the recognition accuracies corresponding to 70% of training data are higher than that 240 

corresponding to 30% training data. 241 

 242 

Fig. 9. Recognition accuracies yielded by the proposed method versus different variances of the Gaussian window: (a) using 30% of data for 243 
training; (b) using 70% of data for training.  244 

B. Analysis about the Recognition Accuracy and the Variance of the Gaussian Window 245 

In this experiment, the performance of the proposed method versus the window size of the time-frequency dictionary 246 

is evaluated under different proportions of training data and different values of sparsity. The variance  of the Gaussian 247 

window is varied from 8 to 48 with a step size of 8. The sparsity P is chosen from {17, 19, 21}, with which the proposed 248 
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method obtains the highest recognition accuracy when the variance  of the Gaussian window is 32 as presented in 249 

Section IV-A. The recognition accuracies yielded by the proposed method using 30% and 70% of data for training are 250 

illustrated in Figs. 9(a) and (b), respectively. It can be seen that the proposed method achieves the best performance and 251 

the recognition accuracy changes slightly when the variance  of the Gaussian window is in [16, 40], which implies 252 

that the proposed method is quite robust to the window size of the time-frequency dictionary. The performance of the 253 

proposed method declines when the variance   is less than 16 or larger than 40, this is because the frequency resolution 254 

or the time resolution of the Gaussian-windowed Fourier dictionary are poor when the variance of the Gaussian 255 

window is too small or too large [30], respectively, which leads to the quality reduction of micro-Doppler feature 256 

extraction.  257 

C. Analysis about the Recognition Accuracy and the Size of Training Dataset 258 

In this experiment, the performance of the proposed method is analyzed with different sizes of training dataset. We 259 

compare the recognition accuracies yielded by the proposed method with that yielded by the Sparse-SVM method, the 260 

PCA-based methods, and the DCNN-based method. With the PCA-based methods, the micro-Doppler features of 261 

dynamic hand gestures are obtained by extracting the principal components of the received signals and inputted into 262 

SVM for recognition. Two kinds of PCA-based methods are considered here: 1) the PCA in the time-domain, which 263 

extracts the features in the time-domain data [18]; 2) the PCA in the time-frequency domain, which extracts the features 264 

in the time-frequency domain as presented in [16, 17]. As for the DCNN-based method, the time-frequency 265 

spectrograms are fed into a deep convolutional neural network, where the micro-Doppler features are extracted using 266 

convolutional filters and the recognition is performed through fully connected perceptron functions. The structure of 267 

the DCNN used in this paper is similar with that used in [7]. The proportions of training data are set to be varied from 268 

10% to 90% with a step size of 10%, the sparsity P is set to be 17, and the variance  of the Gaussian window is set to 269 

be 32. The resulting recognition accuracies are shown in Fig. 10, where the proposed method obtains the highest 270 

recognition accuracies under different sizes of training set. In addition, the advantages of the proposed method over the 271 

PCA-based and the DCNN-based methods are remarkable especially when the proportion of the training data is less 272 

than 50%. This implies the proposed method is more applicable than the PCA-based and the DCNN-based methods 273 

when the training set is small. 274 
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 275 

Fig. 10. Recognition accuracies yielded by the proposed method, the Sparse-SVM method, the time-domain PCA-based method (denoted as 276 
PCA-Time), the time-frequency domain PCA-based method (denoted as PCA-TF) and the DCNN-based method (denoted as DCNN) under 277 
different sizes of training set. 278 

D. Analysis of Recognition Accuracy and Noise Level 279 

In this experiment, the proposed method, the PCA-based and the DCNN-based methods are validated under different 280 

levels of additive Gaussian white noise (AWGN). The signal received by the radar are mixed with simulated AWGN 281 

according to the following expression,  282 

 s = 
𝐲

√‖𝐲‖2

+   , (12) 

where y represents the received signal,  ||y||2 represents the L2 norm of y,  is a non-negative amplitude coefficient, and 283 

 is an AWGN with zero mean and  unit variance.  According to (12), the ratio between the power of the received signal 284 

and the AWGN equals to 1/2 in the mixed signal s.  It is worth emphasizing that the signal to noise ratio (SNR) of the 285 

mixed signal s is not 1/2, because the received signal y also contains noise components as depicted in Fig. 2.  286 

The value of  is varied from 0 to 1 with a step of 0.2. Under each value of , the recognition accuracies yielded by 287 

each method are measured by averaging over 100 trials of cross-validations. Here the sparsity P is set to be 17, and the 288 

variance  of the Gaussian window is set to be 32. The experimental results corresponding to 30% and 70% of data for 289 

training are depicted in Figs. 11 (a) and (b), respectively. It can be seen that the recognition accuracy yielded by the 290 

proposed sparsity-driven method is higher than 90% when the value of  is less than 1. Moreover, the proposed method 291 

outperforms the PCA-based and the DCNN-based methods in conditions of small training dataset under moderate noise. 292 
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In addition, the descent speed of recognition accuracies along the -axis of the proposed method is faster than that of 293 

the PCA-based and the DCNN-based methods, which implies that the performance of the proposed method may be 294 

worse than the PCA-based and the DCNN-based methods in conditions of serious noise.  295 

 296 

Fig. 11. Recognition accuracies yielded by the proposed method under different levels of additive Gaussian white noise: (a) using 30% of data for 297 
training; (b) using 70% of data for training.  298 

E.  Recognition Accuracy for Unknown Personnel Targets 299 

As described in Section II, the dynamic hand gesture signals are measured from three personnel targets, denoted as 300 

Target 1, 2 and 3, respectively. In Sections IV-A, B and C, the data measured from Target 1, 2 and 3 are mixed together, 301 

and a part of the data are used for training and the remaining data are used for testing. In this experiment, the data 302 

measured from one of Target 1, 2 and 3 are used for training, and the data measured from the other two personnel 303 

targets are used for testing. This experiment aims to validate the proposed method in condition of recognizing the 304 

dynamic hand gestures of unknown personnel targets. Cross-validation is employed in this experiment. We randomly 305 
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select 70% of the data measured from one of Target 1, 2 and 3 for training and 70% of the data measured from the other 306 

two personnel targets for testing. The recognition accuracies are averaged over 50 trails with randomly selected 307 

training data and testing data. The sparsity P is set to be 17, and the variance  of the Gaussian window is set to be 32. 308 

The resulting recognition accuracies are listed in Table III. It can be seen that the proposed method obtains the highest 309 

recognition accuracies under all conditions. This implies that the proposed method is superior to the Sparse-SVM 310 

method, the PCA-based methods and the DCNN-based method in terms of recognizing dynamic hand gestures of 311 

unknown personnel targets. 312 

TABLE III.  313 
RECOGNITION ACCURACIES FOR UNKNOWN PERSONNEL TARGETS 314 

 
Training data from 

Target 1 Target 2 Target 3 

Proposed Method 96.96% 96.88% 95.48% 

Sparse-SVM 90.54% 90.54% 88.21% 

DCNN 94.38% 95.25% 91.87% 

PCA-TF 92.14% 91.80% 91.14% 

PCA-Time 84.68% 84.59% 81.07% 

 315 

F. Analysis about the Time Consumption 316 

In the sparsity-driven method for dynamic hand gesture recognition, the OMP algorithm performs P inner iterations 317 

for each received signal to extract the micro-Doppler feature, where P is the sparsity of the received signal. As 318 

presented by the experimental results in Section IV-A, the sparsity P can be selected less than 21 to achieve satisfying 319 

recognition accuracies. Therefore, the number of inner iterations of the OMP algorithm is less than 21, and the time 320 

consumption is controllable.  321 

The computational time consumed by the dynamic hand gesture recognition methods are measured in this subsection. 322 

The hardware platform is a laptop with an Intel(R) Core(TM) i5-4200M CPU inside, and the CPU clock frequency and 323 

the memory size are 2.5 GHz and 3.7 GB, respectively. The software platform is MATLAB 2014a and the operation 324 

system is Windows 10. For each method, the running time for training and classifying are measured by averaging over 325 

100 trials. The results of running time are presented in Table IV. It can be seen that the sparsity-driven method and the 326 

DCNN-based method consume the longest time for classifying and training dynamic hand gesture signals, respectively, 327 

among all the tested approaches. In realistic applications, the dynamic hand gesture recognition needs to be real-time 328 

processing. Considering that the training process can be accomplished off-line, the bottleneck of real-time processing is 329 
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the time consumption for classifying. Since the running time for classifying one hand gesture by the proposed 330 

sparsity-driven method with the non-optimized Matlab code is only 0.22 second, it is promising to achieve real-time 331 

processing with optimized code on DSP or GPU platforms in practical applications.  332 

TABLE IV.  333 
TIME CONSUMPTION OF THE DYNAMIC HAND GESTURE RECOGNITION METHODS 334 

 
Training time 

for one sample 

Testing time 

for one sample 

Proposed Method 650 ms 220 ms 

Sparse-SVM 130 ms 154 ms 

DCNN 850 ms 18 ms 

PCA-TF 4 ms 11 ms 

PCA-Time 0.1 ms 0.5 ms 

 335 

V. CONCLUSION  336 

In this paper, we have investigated the feasibility and performance of sparsity-driven micro-Doppler extraction 337 

method for dynamic hand gesture recognition. Taking advantage of the sparse properties of radar echoes reflected from 338 

dynamic hand gestures, the OMP algorithm was used to extract the micro-Doppler features of dynamic hand gesture 339 

signals. The extracted features were inputted into modified-Hausdorff-distance-based NN classifier to determine the 340 

type of dynamic hand gestures. Real data collected by a K-band CW radar are used to validate the proposed method. 341 

Experimental results show that the proposed method obtains recognition accuracy higher than 96% and outperforms 342 

the PCA-based and the DCNN-based methods in conditions of small training dataset under moderate noise. In addition, 343 

the proposed method is expected to achieve real-time processing with optimized code and accelerated hardware. 344 

Application of the proposed method to a larger database with more types of dynamic hand gestures will be included in 345 

future work.  346 

 347 
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