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Abstract
This paper evaluates the classification performance of a dual
polarised on receive, 24 GHz Frequency Modulated Contin-
uous Wave (FMCW) radar system to autonomously identify
micro-Doppler signatures of unique hand gestures. We em-
ploy an Eigen subspace feature selection technique on the cal-
culated signal subspace in order to classify each gesture. Mea-
surements using the dual polarised radar, permitting simulta-
neous recording of both the co-pol and cross-pol returns, are
evaluated with this processing technique and results are re-
ported herein. Our analysis displays the challenges presented
by the high variance in individuals gestures and the limited ad-
ditional information the cross polarised returns have provided
to the classifier. Classification performance comparisons are
presented when co, cross and dual polarised data are provided
to the classifier. With this technique we achieve autonomous
classification performance of up to 84.6% when Eigenvalue de-
rived features are used for classification.

1 Introduction
The use of radio frequency (RF) systems to autonomously in-
terpret human actions is an emerging area of research. This
new opportunity for human machine interface (HMI) shows
significant potential as a viable solution for machine control in
a number of scenarios. One of the phenomena that this tech-
nology exploits is the Micro-Doppler effect. That is, the ef-
fect describing the resulting additional frequency components
on top of a bulk Doppler motion generated by motion within
the object such as rotating or vibrating components [1]. Large
technology companies are currently investing significant funds
into these technologies which are on the verge of wide scale
commercialisation of RF sensors for this purpose, for example
the Google Soli Project [2]. This HMI method also has appli-
cations in automotive vehicle interaction, allowing hand ges-
tures in front of a steering wheel column for vehicle controls
without the need of taking your eyes off the road.

We note that optical sensors have previously been used in
numerous examples to perform hand gesture recognition [3].

However, RF sensors have several advantages over optical sen-
sors as they are unaffected by background lighting conditions,
can measure velocity of the actions directly, and produce more
anonymous data in comparison to an optical camera sensor.
For these reasons, there have been a number of research papers
published on this topic within recent years. This emphasis has
also been driven by the miniaturizations and reduced cost of
high frequency RF sensors that can produce the Doppler and
range measurement fidelity required to quantify the more sub-
tle human hand gestures.

FMCW radar has previously been shown to be suitable for ges-
ture recognition within [4], where a prototype sensor was used
to detect and track hand movements. It was also demonstrated
that sparse signal processing with Gabor atom libraries can be
used in order to classify different human gestures [5]. Large
scale experiments of full body micro-Doppler signatures were
shown within [6] but this research focused on full gait anal-
ysis of an individuals walk, not the more subtle hand gesture
features evaluated here.

Within this paper a FMCW radar system, developed by An-
cortek, is used to gather a database of human hand gestures
from multiple individuals. We process the data, see Section 2
for details, making it suitable for classification and report the
result of the performance in Section 3. We note the novel as-
pects of this collection are the dual polarised returns for this
frequency band as well as the Eigen subspace analysis tech-
nique. Conclusions and future suggested work are found in
Section 4.

2 Experimental Setup and Theory

In the section to follow we describe the experimental set-up
by which representative micro-Doppler data was collected for
processing. We then outline the complete signal processing
chain applied to the raw data highlighting key post-processing
steps along the way, defining the features that were extracted
and reviewing the classifier output results for a combination of
different scenarios.

2.1 FMCW Radar Experimental setup

The radar system operates at 24 GHz with a bandwidth set
to 750 MHz (generated via linear chirp), transmitting at +13
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dBm power using a horizontal polarisation transmit horn an-
tenna. The two receiver channels were set to receive both the
co and the cross polarised returned signals at adjacent indepen-
dent antennas. The radar sensor was mounted approximately
25 cm above desk height and horizontally aligned with the test
subject to be measured.

The gestures were performed at a distance of no more than 0.5
m from the sensor at a constant height while the individual was
sitting down using their dominant hand. The four gestures per-
formed were a pinch (between thumb and index finger), click
(single action between thumb and 2nd finger), swipe ( a sin-
gle wave of the hand/arm from left to right) and wave (three
waves of the hand palm towards the radar system). We note,
at this bandwidth, the range resolution of the system is 20 cm.
This is larger in size than the subtle hand based gestures be-
ing made hence the requirement for micro-Doppler processing
in order to differentiate the different gestures. These were se-
lected as they were either already used as part of existing HMIs
or have good potential for common applications. For example,
the Xbox Kinetic sensor uses a wave action to initialise com-
munication between the sensor and the user and the Google
SoliTM sensor observes pinch movements to emulate clicking
a button.

2.2 Measurement Data Pre-Processing

To prepare the measured data for classification several pre-
processing steps are applied, the complete list of these steps are
shown in Algorithm 1. Each data capture represented a record-
ing of multiple repeats of the same gesture and individual over
a period of 30 seconds, which was then manually spliced into
individual gestures. The measurement database consisted of
10 sets of 30 second recordings of each gesture from each in-
dividual, some pre-processing steps were required to extract
the features from the data for classification. The total quantity
of measurements of all four gestures from the five individuals
was 1153 for each the feature sets. As there was a frequency
and time domain hermitian feature set for both receive chan-
nels this generates a total feature set size of 4412.

We begin with suitably sampled in-phase and quadrature data
samples from the receiver which are ingested into Matlab. The
first step, then, is to format the data into the Range Time In-
tensity (RTI) domain which was then converted into a Mov-
ing Target Indication (MTI) signal. The MTI processor ap-
plied was a high-pass 4th order Butterworth filter along the
slow-time dimension. We note the MTI processing removes
background static clutter leaving a signature that is dominated
by the moving gesture. This processing step is important for
this analysis as it removes the dominant static clutter compo-
nent that can degrade classification performance. The very nar-
row Butterworth MTI filter is useful here as the gestures pass
through 0 Hz and having a narrow filter maintains the conti-
nuity of the signals of interest. However, this pre-processing
limits the classifier to non-zero Doppler gesture recognition.
For example, a static gesture such as holding the hand open
and still would not be recognized.

Algorithm 1 Processing Steps
1: for all Measurements Sets do
2: Read Range Time Intensity Format (2-Channel)
3: Filter Moving Target Indication 4th order Butterworth
4: Apply Short Time Fourier Transform
5: Splice Individual Gestures of Each Measurement Set
6: Perform Feature Extraction (1 of 3 subspace methods)

• Singular value feature extraction

• Eigenvalue subspace feature extraction

7: Train Discriminant Analysis Classifier
8: Perform Classification
9: end for

The next pre-processing step is to apply a Short Time Fast
Fourier Transform (STFT) with window length of 0.2 sec,
overlap 95% and padding of a factor of 4 on the MTI processed
data. These selected processing parameters have been suc-
cessfully applied in previous papers classifying human micro-
Doppler [6, 7]. This processing is performed on the coherent
summation of the ranges bins of interest (i.e, where the signa-
tures were observed), typically up to 3 or 4 in our experiments.
Example spectra generated with and without MTI processing
are shown in Figure 1(a) and Figure 1(b) respectively. The
MTI processing improves signal-to-noise ratio (SNR) in this
domain to produce data that is dominated by the signal of in-
terest, the hand gesture motion, instead of static clutter. It is
this Doppler spectrogram that is used to extract information
(i.e. features) in order to classify the different actions. Pre-
vious published classification techniques, [7], have employed
methods that manually extracted empirical features from these
signals, such as the period of walking gait, but in this case
the focus was on generating a fully automated processing and
feature extraction data pipeline which has greater potential for
practical implementation.

2.3 Signal Subspace Determination

After MTI and Fourier processing we perform two feature ex-
traction methods on the data. In the first method, we compute
the singular value decomposition (SVD) on the data matrix
X ∈ Rm×n where m,n are the number of rows and columns,
corresponding to the Doppler and time dimensions. The sec-
ond method performs an Eigen decomposition on the hermi-
tian matrix of the received data X̂ = 1

2 (X
∗.X) and derives

features from the entire Eigen spectrum. The Eigen spectrum
is then decomposed into the frequency and time domain her-
mitian components of the received data. This is restricted to
a signal subspace, whose rank is determined by the computed
Minimum Description Length (MDL) as described in [8]. This
is to observe the consequence of removal of noise on the clas-
sification performance.

The second technique is applied to observe only the compo-
nent of the signal that contains the target response. If the signal
and noise can reasonably be considered complex, independent,
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Example Micro-Doppler on RTI data
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Example Micro-Doppler on MTI data
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Fig. 1: Micro-Doppler spectrogram generated from a swipe
gesture generated from the (a) Pre-MTI (b) MTI pro-
cessed data, showing multiple repeats of the gesture.

stationary and ergodic Gaussian random processes then these
assumptions would give a general Gauss-Gauss model. This
is a common assumption in signal processing as it allows the
model to be mathematically tractable. However, other distribu-
tions on the signal and noise are permitted, but would require
a reformulation of the maximum likelihood estimate used to
compute the rank of the signal subspace with this technique.

As is the case in many signal processing problems involving
radar, detection of the number of signals (embedded in addi-
tive noise) is an important issue. For our concerns, when given
a sample spectrogram we desire to make a classifier decision
using information dominated by the signal of interest. Accu-
rate estimation of the rank of the signal subspace allows for
separation of the signal from the noise in order to use suitable
limited features for classification from the measured data.

Within Figure 2 the largest N eigenvalues are highlighted in
green which have been defined by the MDL model order de-
termination. This method has been shown to be good at isolat-
ing the key components of the micro-Doppler data and hence
should be suitable for feature extraction and then classification.
The example shown has a clear delineation between signal and
noise which makes the task of isolating the key components
easier, but this will not always be the case and through the
automated application of this proposed MDL processing this
decision can be made using sound information theoretic con-
cepts.

The four features taken from the signal subspace eigenvalue

Fig. 2: Representation of eigenvalues of the length of the
model order.

were :

• Rank of data

• Sum of the signal subspace eigenvalues (analogous to the
signal power)

• The first and second moments of the sample eigenvalues.

As described above, in order to extract these features from the
micro-Doppler signatures the data is transformed using Eigen-
decomposition processing which takes the initial Doppler
spectrogram from a single gesture and evaluates the gener-
alised eigenvalues for its Hermitian matrix in both dimensions
(time and frequency e.g. X∗X or XX∗). The eigenvectors
represent the key components of the data and the MDL thresh-
old method enables a selection of only a subset of these values
in-order to define features by which the original data are repre-
sented. Hence there are 2 lots of these 4 features from both the
time and frequency projected Hermitian matrices. As there is
also two channels of data (co and cross polarised) this results
in a total possible feature set of 16 different features.

For comparison a set of Singular Value Decomposition (SVD)
features were also extracted from micro-Doppler signatures.
The application SVD processing allows the data to be decom-
posed from it’s original matrix to a reduced dimensional space.
SVD analysis performed on the original data matrix X pro-
duces X = USV T , where S is a diagonal matrix with the
singular values of X , and V and U are the matrices contain-
ing the right and left singular vectors of X .

The features selected to extract from U and V have been pre-
viously applied within [7, 9]. These five empirically selected
SVD features were the sum of the first 10 columns of U , the
standard deviation of first 10 columns of U and V and the
mean and standard deviation of the diagonal component of U .
These have been applied successfully to micro-Doppler clas-
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Fig. 3: Example of the Micro-Doppler signatures for the four
actions (a) Click (b) Pinch (c) Swipe (d) Wave

sification previously and will be used to baseline the perfor-
mance of the MDL feature sets in this paper.

An example of an extracted signal action spectrogram for each
of the four actions can be seen in Figure 3. There are clear
differences in frequency spread, duration and overall shape
from one action to the next. There was also a level of variation
between repeats of the same action and indeed in how each
test subject performed the actions. It is important to extract
fundamental features that can be robust to these changes.

3 Classification

A series of different classification tests were performed on the
total dataset generated. This includes all 5 individuals and
all 4 gestures, only 2 of the gestures from all the individuals
and data from just one individual performing all gestures. In
the full gesture classification examples this challenge repre-
sents a 4 class problem while the two gesture examples are the
less challenging 2 class problem. The classifier that has been
applied, for both MDL and SVD approaches, is a K-Nearest
Neighbour (K-NN) classifier using 5 nearest neighbours. This
is a simple classifier which measures the Euclidean distance
between a given feature space sample and those surrounding it.
Further details on this classifier can be found here [10]. Other
options included linear or quadratic discriminant analysis but
due to the irregular clustering of the samples present in the
feature space these methods were found to be not as effective
as the K-NN. The K-NN classifier was trained on a randomly
selected subset percentage of the whole feature set and then
tested on the remaining data. 50 Monte Carlo repetitions were
used to obtain an average classifier result for a given training
set size, each with a randomly selected training feature subset.

The K-NN classifier was initially applied to all datasets us-
ing the 16 feature array of data from all 4 MDL features for
both the time and frequency domain eigenvalues from both the
co and cross polarised datasets, as well as the 10 compara-
tive SVD features. The results from this are shown in Figure
4. These results for four gesture recognition show a relatively
low classification success rate between 45% and 60%, in com-
parison to a random chance success of 25%.

These first results show that the Eigen features defined by
the MDL have an consistently improved performance over the
SVD based feature sets by and average of 5%. The MDL
extracted features results for the independent co and cross po-
larised feature sets were comparable, while the best result was
obtained when using both the co and cross polarised feature
sets jointly in the single classifier. For the SVD features the
cross polarised results were 5% lower than the independent co
or both polarisations.

We believe the relatively low classification rate is partly due
to the large intra-class variance, which was produced by the
different way the 5 individuals performed the gestures. This
shows that RF gesture recognition may require user specific
training on the gestures to ensure it is recognising that specific
person’s action, or improved selection and pre-processing on
the extracted features.

Figure 5 shows the result when the database was limited to a
two gesture problem (the click and wave gestures) but still us-
ing data from all 5 individuals. This improved the success rate
significantly although it is still lower than that seen in other
full body motion human micro-Doppler classification prob-
lems [9]. The MDL Eigen values again out performed the SVD
features by up to 10%. The difference between co, cross and
both polarisations was very limited for these features showing
that the cross polarised features were not adding much addi-
tional information for the classifier to make a decision.

The data from a single person over all 4 gestures was then
evaluated in Figure. 6. This showed the greatest difference
between the MDL Eigen features and the SVD, with the MDL
based features showing > 20% in some results.

In all the results shown so far the input features sets from the
MDL extracted Eigen space data are taken from both the fre-
quency and time domain space. Within Figure 7 the mean
classification success across 40% to 80% was evaluated for
the time, frequency and joint time-frequency Eigen space fea-
tures. These results were generated by separating out features
that were derived solely from either the time or frequency do-
main Eigen space or both used jointly. This result shows that
the worst performance was obtained from the frequency Eigen
space feature set of the cross polarised data, and the best re-
sults was from the joint set of time and frequency feature Eigen
feature sets from both polarisations; although the difference
across these results was limited to only 6%.
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(a) MDL selected Eigen Features
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Fig. 4: 5 person 4 gesture K-NN Classifier results
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Fig. 5: 5 person 2 gesture K-NN Classifier results

4 Conclusions

This paper has demonstrated the classification potential of a
24 GHz FMCW radar sensor in recognising various hand ges-
tures. A novel application of an information theoretic approach
using features derived from the MDL limited eigen-space met-
ric of the micro-Doppler data was demonstrated. The results
from a K-NN classifier have shown that similar classification
performance was obtained with co, cross and both polarization
datasets.

The results have shown that using both co and cross polarised
data can provide slightly higher classification rates but this ad-
ditional gain was found to have less influence in comparison to
other factors such as selected feature sets, or whether Eigen-
MDL or SVD inputs are used. This is likely to be due to
the high level of mutual information within the two channels,
which could be reduced by separating the receiver antenna lo-
cation to provide a more diverse perspective of the gesture.

In the data generated, the signatures of the micro-Doppler ac-
tions had SNR levels of > 30dB which does allow for clear
observation of the movements however for the MDL subspace
extraction this may not be its optimum use case. In the case
where there is a low SNR signal embedded in noise then us-

ing this MDL method to define the area of the subspace should
show greater benefits over traditional techniques.

The extraction of the gesture action in time is an important
aspect of this processing; the methods used did not attempt
to align the gestures in time for each spliced section that was
extracted thus making a greater variability and a more chal-
lenging dataset to classify on. Future research will look into
resilience to temporal alignment. In a practical real-time sys-
tem the classification algorithms will need to be operative very
quickly over a sliding window of data which is constantly
streaming, future work will look into the implementation of
these methods.
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Fig. 6: 1 person 4 gesture K-NN Classifier results
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