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Abstract

Our study contributes to the debate on the evolution of cooperation in the single-
shot Prisoner’s Dilemma (PD) played on networks. We construct a model in which
individuals are connected with positive and negative ties. Some agents play sign-
dependent strategies that use the sign of the relation as a shorthand for determining
appropriate action toward the opponent. In the context of our model in which network
topology, agent strategic types and relational signs coevolve, the presence of sign-
dependent strategies catalyzes the evolution of cooperation. We highlight how the
success of cooperation depends on a crucial aspect of implementation: whether we apply
parallel or sequential strategy update. Parallel updating, with averaging of payoffs
across interactions in the social neighborhood, supports cooperation in a much wider
set of parameter values than sequential updating. Our results cast doubts about the
realism and generalizability of models that claim to explain the evolution of cooperation
but implicitly assume parallel updating.
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1 Introduction

The defining characteristics of Complex Adaptive Systems (CAS) is that they are made of
a large number of interacting components that - together - generate results which are not
observable at the level of each single element (Anderson et al. 1972). In such systems, even
relatively simple local interaction rules can result in very complex behaviors of the aggregate
system (Helbing 2012). Moreover, small variations in the local rules of interaction can result
in large (non-linear) changes at the system scale. Thus, when studying complex systems, it
is important to understand the impact of changes in the rules of interaction on the aggregate
system properties.

One of the most elaborate complex system known is the human society. The human
society is composed of individuals who are already complex in themselves and who interact
with each other in highly complex ways and patterns. The results of these interactions are
emerging structures, whose behavior can hardly fit simple or linear models (consider, for
instance, financial markets and traffic in cities that are well studied examples).

What makes social systems uniquely complex is that their components are self-aware and,
as such, act with a certain degree of intentionality. Game theory, that first attempted to
model formally the complexity of interdependent intentional decisions (Von Neumann and Morgenstern
1944), made drastic assumptions initially that (1) humans act rationally and (2) small scale
interactions can be aggregated to the system level through simple extrapolation. These
assumptions, however, have been relaxed progressively and now social systems are studied
considering individuals that lack perfect foresight about the future consequences of their
actions (March 1978; Simon 1982) and are affected by emotions and feelings (Camerer 2003;
Gigerenzer 2008). In this context, an interesting approach to the problem of studying social
interactions is provided by evolutionary game theory that tries to explain which strategies
disappear, survive or thrive in the long run where strategies with higher payoffs tend to
diffuse. This strain of literature allows to identify reasons and situations in which strategies
that are rational in static games, are not the most successful ones in an evolutionary context.
One of the problems to which this literature has been applied is the theoretical justification
of the continuing existence of selfless cooperative behavior in both nature and society.

The survival and extent of cooperative behavior in human society has for a long time been
considered as one of the main and most difficult questions in social science (Axelrod and Hamilton
1981; Axelrod 1997, 1984). Social dilemma games describe situations in which the self-
interest of agents is in contrast with the one of their interaction partners. The most studied
and puzzling among them is the Prisoner’s Dilemma (PD). Individuals have two options in
the PD: the dominant strategy - defection - guarantees a higher payoff regardless of what the
partner does, but the alternative strategy - cooperation - if played mutually, offers a payoff
that is higher than the payoff from mutually playing the dominant strategy. It has been
shown that unstructured populations with individuals interacting with randomly selected
partners are unable to solve the puzzle of cooperation as natural selection generates uniform
populations of defectors (Taylor and Jonker 1978; Hofbauer and Sigmund 1998). Recently,
particular interest was devoted to the issue of evolutionary games in structured (networked)
populations. On the one hand, studying interactions on networks increases significantly the
realism of models, as this formalism allows to explicitly consider their inherent locality. On
the other hand, limiting the possible interactions of agents (given the sparseness of interac-
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tions), proved to be able to increase cooperation in the population (Nakamaru et al. 1997;
Nowak and May 1992).

The structure of interactions is important because many relevant mechanisms are chan-
neled through network ties and because behavioral influence spread differently in different
structures. Similarly, reputational mechanisms such as image scoring (Wedekind and Milinski
2000) also flow via network ties. It has been studied which network topologies are most ef-
ficient for the emergence and diffusion of cooperation (Hauert 2004; Santos and Pacheco
2005; Johnson et al. 2003). Having formal analytical proofs, however, is difficult in this
context. Most contributions, therefore, use numerical simulations and agent-based models.
This is especially true for the case in which the co-evolution of network topology and agent
types (Santos et al. 2006; Yamagishi and Hayashi 1996; Yamagishi et al. 1994) is studied.
Among the mechanisms that improve the conditions of cooperation in dynamic networks are
the possibility of parter selection, exclusion of defecting agents, and exit from relationships
(Schuessler 1989; Vanberg and Congleton 1992; Yamagishi and Hayashi 1996).

In Righi and Takács (2014) we study the conditions for the emergence of cooperation on
dynamic signed networks. Virtually all co-evolutionary models of networks and cooperation
before assumed the presence of positive relations only. We have relaxed this assumption
and interpret signed ties as expressing the (positive or negative) emotional content of the
social relationship between two individuals. This interpretation is consistent with evidence
that emotions evolved in humans due to their their function in social interactions (Darwin
1965; Frank 1988; Keltner et al. 2013; Trivers 1971). Signed relations help guaranteeing the
diffusion of reputational information about agent’s past conduct, thus providing a guiding
light for partners in choosing the correct behavioral response. While relational signs could be
interpreted as a form of memory (Szolnoki et al. 2013), they constitute a cognitively much
less costly mechanism, which can be used as a shorthanded tool that condenses the past
history of a relationship. The sociological intuition behind why negative ties should also be
considered for the evolution of cooperation is the relevance of altruistic punishment of de-
fectors (Bowles and Gintis 2004; Dreber et al. 2008; Ernst and Gaechter 2005; Fowler 2005;
Fowler et al. 2005) and the process of stigmatization and social exclusions of these individ-
uals (Kerr and Levine 2008; Kurzban and Leary 2001). These mechanisms could result in
negative interpersonal ties that in turn help the spread of cooperative behavior.

In Righi and Takács (2014) we thus construct an evolutionary model where agents play
the Prisoner’s Dilemma on signed networks (where links can be either positive or negative).
We assume that tense relationships can be resolved either by changing the sign or being erased
and rewired. We analyze a setup in which network topology co-evolves with relational signs
and agent strategies. Our major conclusion is that the introduction of conditional strategies,
that utilize the emotional content embedded in network signs, can act as catalysts and in
general create favorable conditions for the spread of unconditional cooperation. We notice,
however, that the introduction of conditional strategies is successful in eliciting increased
cooperation only if the network is dynamic (i.e. only if there is some positive probability
of updating the network topology). Our results are summarized in Table 1.1 In line with
the literature, we find that the evolution of unconditional cooperation occurs most likely in

1This table and the results proposed for the parallel updating case are taken from Righi and Takács
(2014).
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networks with relatively high chances of rewiring and low likelihood of strategy adoption (or
strategy evolution). While some rewiring enhances cooperation, too much rewiring limits
its diffusion. Finally, we provide evidence that, unlike in networks with positive ties only,
cooperation becomes more prevalent in denser networks.

Without rewiring With rewiring
Without emotional
strategies

No cooperation Cooperation through
clustering of strategies

With emotional
strategies

Some cooperation,
only if most agents
are emotional

The emergence and

diffusion of cooper-

ation

Table 1: Summary of main findings in Righi and Takács (2014). A positive rewiring proba-
bility and the initial presence of conditional strategies are both required for the evolution of
cooperation.

In the present study we use this general setup to analyze the influence of the update
rule, which essentially defines how and when agents interact, on the chances of cooperative
behavior to become widespread in the population. In this way, our research follows the
pathway of earlier studies that examined synchronous vs real-time interactions in social
dilemmas (Huberman and Glance 1993). Two different types of updating are proposed.
The first is sequential, where single couples of agents are selected for interaction and as a
consequence, the payoffs obtained in their interaction drive evolutionary and network update.
The second is parallel, in which all agents play at the same time and average payoffs from
the interactions with neighbors are calculated and used to drive the evolutionary process.

We show how the survival and diffusion chances of cooperation depend strictly on the
type of updating rule used. We provide evidence that under a rather general set of parame-
ters combinations, the parallel updating rule provides better conditions for the diffusion of
cooperation as it allows conditional strategies that makes use of emotions to act as catalyst of
virtuous behavior. Where the sequential update is applied instead, unconditional defection
progressively diffuses and comes to dominate the population.

The remaining of the paper is divided as follows. In the next section, we describe our
model and its characteristics as they were proposed in Righi and Takács (2014). In addition,
we describe the details of the two updating rules that we study. The following Section 3
presents our new results, while a discussion concludes (Section 4).

2 The Model

We consider the model first introduced in Righi and Takács (2014). We study a population
of N agents. Agents are connected initially in a random network (Erdős and Rényi 1959)
where each possible edge exists with probability ρ ∈ [0, 1]. The cardinality ki of Fi is the
degree (or number of network contacts) of agent i. The network is signed and each network
tie is labelled either negative or positive. In this paper, we report results from setups where
each link is initialized with the same probability (1/2) as either negative or positive.
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Each agent in the population can interact and play the single-shot Prisoner’s Dilemma
(with binary options of cooperation or defection) with partners selected from its first order
social neighborhood. Among the social dilemmas, the Prisoner’s Dilemma is the one that
sets the stakes the most against the emergence of cooperation since it is characterized by
the classical payoff structure Temptation(T) > Reward(R) > Punishment(P) > Sucker(S)
(Table 2).

C D
C (R = 3, R = 3) (T = 5, S = 0)
D (S = 0, T = 5) (P = 1, P = 1)

Table 2: The Prisoner’s Dilemma payoff matrix. The numerical payoffs used here are the
same of Axelrod (1984)

As discussed, we assume that network signs, embedding an emotional content that follows
from previous interaction, can affect behavior. From this point of view, we can characterize
three types of strategies:

• Unconditional Defection (UD);

• Unconditional Cooperation (UC);

• Conditional Strategy (COND): cooperate if the tie with the interaction partner is
positive; and defect otherwise.

While UC always cooperates and UD always defects, the strategy COND is conditional
on the sign of the link between the interaction partners. The COND strategy, therefore,
can be interpreted as a differentiated emotional reaction or affectional response towards
others with harmonic or disharmonic interaction record as it prescribes cooperation with
agents connected with a positive tie, and defection with partners connected with a negative
relation. Below, we report results for initialization in which agents are assigned with one of
the three strategies randomly in equal proportions: (1/3 = µUC = µUD = µCOND = 1/3).

As discussed, our model allows for the co-evolution of network signs, agent strategies and
network topology. Network signs and agent behavior influence each other and the latter also
affects the evolution of network topology. Each of these modules requires some clarification.

Sign update: agent behavior influences relational signs. Relational sign update
simulates the consequences of behavior on the emotional relationship with peers. This type
of update happens automatically, i.e. it is not part of individual strategies. It is relatively
straightforward to assume that a relationship in which both agents defect turns negative
and one in which both agents cooperate turns positive. When actions differ, we have a more
complex case. In this situation an asymmetric tension arises since the cooperator could be
frustrated of having a positive tie with a defector and the defector could be shamed of its
action towards someone who shares a positive sign with him. In this case we assume that
the link could change its sign. Specifically, we assume that a frustrated positive link can
turn negative with probability Pneg and a frustrated negative link can turn positive with
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probability Ppos. Given the payoff structure of the PD (where a cooperator always obtains
a very low payoff when its partner defects obtaining a high payoff), it is logical to assume
that the frustration from disappointment is larger than the frustration from shame, that is
Pneg >> Ppos. In particular we fixed Pneg = 0.2 and Ppos = 0.1.

Network topology update: rewiring. In addition, we allow for an endogenous update
of network topology (as suggested, for example by Santos et al. 2006). It means that behav-
ior can influence the network structure directly. With a probability Prew (named rewiring

probability) the frustration, emerged as a consequence of different strategies played in the
PD game, can lead the frustrated agent to sewer its relationship and to search for a new
partner. From the technical point of view, the rewiring assumes a certain degree of transi-
tive closure (Granovetter 1973), meaning that we allow new connections to be created only
between friends of friends. This modeling choice naturally follows from sociological observa-
tions. Still, with a small but positive probability (fixed in the following to Prand = 0.01) the
new link can be constructed with a randomly selected new partner.

Strategy update: parallel vs dyadic update. Individual payoffs measure the efficiency
of an agent’s strategy in its social neighborhood. In this paper, we focus on how the choice
of the timing of this update changes the results regarding the emergence of cooperation in
signed networks. In particular, two alternative types of updating rules are studied:

• Sequential Update: At each time t, two connected agents are selected randomly
for playing the PD. After playing and observing the relative payoffs, the agent with a
strictly lower payoff (if any) updates its type and adopts the strategy of the more suc-
cessful partner with probability Padopt (assumed to be equal for all agents). Therefore,
only the current dyadic payoff matters in the determination of the survival chances of a
strategy. Including the modules discussed above, Algorithm 1 reports the pseudo-code
of the intra-step dynamics with sequential updating.

Select randomly two connected agents (i and j);
Play the PD and compute payoffs;
Update relational signs between i and j;
if link is tense then

Rewire link between i and j (with probability Prew);
end

if link is tense and not rewired then
The agent with (strictly) lower payoff adopts the strategy of the partner (with
probability Padopt);

end

Algorithm 1: Intra-step dynamics, repeated at each time step t, in the sequential update
case.

• Parallel Update: At each time t, for each agent i the average payoff across all its
interactions is calculated. Each agent then compares its payoff with the one of all peers
in its first order social neighborhood. If a subset of these agents has a payoff higher
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than its own, then agent i will adopt the strategy played by one of them, selected
uniformly at random. Evolutionary update happens, for each agent, with probability
Padopt, which is assumed to be equal for all players. In order to avoid that the order in
which we select the agents influences the outcome, each of them refers to the situation
at t − 1 when changing either its relational signs or the network topology at time t.
Moreover, the update of strategies happens for each agent after observing payoffs, at
time t, of every other agent. Again, including the modules discussed above, Algorithm
2 reports the pseudo-code for our model intra-step dynamics with parallel update.

for each agent i do
Compute its social neighborhood F t−1

i ∈ N ;
for each agent j ∈ F t−1

i do

Play the PD and compute payoffs;
Update relational signs between i and j;
Rewire link between i and j if tense (with Probability Prew);

end

Compute average payoff of agent i;

end

for each agent i do
Observe the average payoffs of each agent j ∈ F t

i ;
Adopt a random (strictly) better strategy (with probability Padopt);

end

Algorithm 2: Intra-step dynamics, repeated at each time step t, in the parallel update
case.

One can immediately appreciate that the sequence of events is identical in the two imple-
mentations. The number of agents that play at each time step and the rule used to determine
the evolutionary update, however, are different. While these differences seem minimal, they
are consequential for the chances of cooperation to evolve in dynamic signed networks.

3 Results

3.1 Evolution with sequential and parallel updating

The main objective of this paper is to figure out whether the rule of update influences the
chances of emergence for cooperation in the single-shot PD played on signed networks.

We find that the two implementations differ radically with regard to the chances of
cooperation to emerge (Figure 1). Using the sequential update, all forms of cooperation
(both in conditional and unconditional strategies) are progressively eliminated from the
population and remaining strategies all defect. Indeed, while the disappearance of CONDs
is slowlier than the one of UCs (due to their relatively better performance against UDs),
given that all signs progressively become negative, all remaining conditional strategies act
as defectors and are effectively impossible to discern them from universal defectors. This
type of evolution, whose statistical relevance for the selected parameters set is shown in the
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Figure 1: Upper Panels: dynamic evolution of the proportions of agent types and network
signs in typical simulations. The left panel shows the evolutionary process with sequential

updating and the right panel with parallel updating. The lower panels depict the distribution
of the final proportions of UDs, UCs, and negative ties in the sequential (left panel) and
parallel (right panel) update dynamics (calculated on 100 simulations each). For all simula-
tions: N=200 and Prew = Padopt = 0.1. The initial population is divided equally among UC,
UD, and COND strategies. Moreover, the network signs are randomly initialized positive or
negative with equal probability and the probability of existence for each tie is Plink = 0.05.

lower panel of Figure 1, is not limited to these conditions, and it holds in general. This
system level evolution follows from the nature of the micro-level interactions. The COND
players safeguard themselves from direct exploitation from UDs by exploiting the emotional
content of the relationship embedded in the link. In a dyadic comparison, however, they can
never outperform the latter as they progressively diffuse in the population. As a matter of
fact, while UCs are systematically exploited by UDs and thus destined to disappear rather
quickly, CONDs have the ”choice” of either progressively turning their links to UD players to
negative, thus becoming functionally equivalent to them; or being progressively eliminated.

The mechanism of rewiring of tense connections has been shown to help the survival of
cooperation in networks (Yamagishi and Hayashi 1996; Yamagishi et al. 1994). It does so
by segregating agents by type and thus increasing the probability that a cooperator plays
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with another cooperator (Becker 1976; Nowak 2006; Németh and Takács 2007). The level of
rewiring, however, that is proposed in Figure 1 is not sufficient to guarantee the survival of
cooperation. We will provide a more comprehensive study of the impact of this variable in
the following.

When parallel update is applied, things change in favor of the emergence of cooperation.
Now the UCs tend to dominate the population at the end of a significative number of
simulations. COND players are able to obtain payoffs that are higher than those obtainable
by an UD in a mixed population, because averages are calculated from all interactions in the
social neighborhood. While the CONDs do not gain dominance themselves, their presence
allows for the evolution of unconditional cooperation. Again, a look at the interaction level
is pivotal to understand these results. The mechanism allowing this emerging behavior,
described in Righi and Takács (2014), relies on the fact that conditional players tend to
develop a collaborative relationship with UCs while not being systematically cheated by
UDs. This ensures good performances of those COND players that act as interphase between
the two pure strategy types. Dynamically, the UDs progressively become CONDs and these,
in turns tend to become UCs (which in a connected and clustered world dominated by
cooperation is the strategy with the highest average payoff). This effect is reinforced by
the presence of the possibility of sewering the relationship and rewiring it with a friend of a
friend as negative links can also be erased, which tends to isolate defectors from cooperators.

3.2 The two main dynamics: adoption vs rewiring

Let’s now discuss the results of the previous section in a more systematic fashion. Our
model’s evolution is driven by two major forces. First, agents with lower average payoff
adopt strategies in their social neighborhood that perform better (adoption, or evolutionary,
dynamics). Second, stressed relationships can be rewired (rewiring dynamics). In order to
analyze the joint influence of these two important forces, we study their effects systematically
changing their relative strength (measured as their probability to happen, respectively, at
each time step and interaction). Logically, this is a similar inquiry to the analysis of network
and strategy update in models with positive ties only (Santos et al. 2006).

Figure 2 shows the results for the proportion of minus signs (Left Panels), unconditional
defectors (Central Panels), and unconditional cooperators (Right Panels) for Padopt ∈ [0, 1]
and Prew ∈ [0, 1] progressively changing values of both variables in steps of 0.05. For each
combination of parameters we provide the average results of 50 simulations.

Results show that, for the cooperative strategies to survive, there needs to be a rela-
tively low invasion and a relatively high rewiring probability. This is valid for both update
mechanisms and it is coherent with what observed in the literature on non-signed networks:
in absence of negative ties, the rewiring mechanism limits the capacity of UDs to spread
in the population. Focusing on sequential update (Figure 2, Top Panels), we can observe
two characteristic facts. The first is that universal cooperators may survive, but they never
become dominant in the population. Indeed, their proportion never exceeds the original
proportion of one third. The second observation is that cooperation survives in this setup
only if Prew >> Padopt. This is in line with the positive ties literature’s that shows how
the scale of network update relative to the scale of strategy update is a key explanatory
factor behind the chances for the evolution of cooperation (Santos et al. 2006). Network
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Figure 2: Effect of the competing dynamics of adoption of strategies with higher payoffs
(vertical axis) and of rewiring of stressed links (horizontal axis) on the final proportion
of negative ties in the network (Left Panels), of UDs (Central Panels) and of UCs (Right
Panels). Top Panels show the results for sequential updating and Lower Panels for parallel
updating. In all simulations N=200. Network signs are randomly initialized with equal
probability and the population is equally divided between UCs, UDs and CONDs. The
probability of existence for each tie is Plink = 0.05.

update helps the relative clustering (it progressively eliminates negative ties with defectors)
and the survival of cooperators, while frequent strategy updates provide higher importance
to immediate payoffs and drive the system towards a Hobbesian destiny of no cooperation
and negative links. As we have seen in the previous section, with sequential updating, the
dynamics of the model tends to favor unconditional defectors that thus tend to spread in the
population. This process of spread is obviously faster, the higher is Padopt and the rewiring
mechanism is here the only mechanism that allows the survival of cooperation.

In the case of parallel updating, the situation is different. Cooperation can now survive
also for Prew ≈ Padopt. As we have seen before, the parallel update rule provides a more
favorable conditions for the evolution of cooperation than sequential updating, mainly due
to averaging of payoffs across multiple interactions. Averaging of payoffs and hence the
increased importance of being clustered among cooperators increase the importance of the
flexible character of the COND strategy. While UD still provides the best way to exploit
neighbors in the short term in any environment, COND is prepared to defect and achieves
at least equally good payoffs with UDs, while cooperates with cooperator neighbors and
consequently earns more on average than UDs in a UD-dominated environment as well as in a
COND-dominated environment. Obviously, UDs still outperform COND in a UC-dominated
environment, but due to strategy updates and rewiring, such a victory is a Pyrrhic one. For
these reasons, high rates of strategy update are here not that bad for conditional strategies as
in the sequential update case. Emotional strategies can then act as catalysts of cooperation
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at least as long as Prew ≥ Padopt. When Padopt is to high, however, strategy update favors
the spread of universal defection even in the case of parallel updating.

Finally, when cooperation is supported, the proportion of UCs can extend to more than
its initial value (and in some cases even above the initial sum of conditional players and
unconditional cooperators) if the adoption probability is sufficiently small (with respect to
rewiring). On the contrary, when both dynamic forces are strong, the proportion of UCs in
the final population decreases in favor of an higher share of conditional cooperators. Indeed,
a dynamic environment with high probability of rewiring associated with high probability of
adoption allows the emotional strategy to extricate its power while highlighting the weakness
of unconditional cooperation. On the one side, CONDs tend to diffuse since they obtain
systematically higher payoffs than UDs when at the border between UCs and UDs. The
intensity of the adoption rate makes it possible for CONDs to spread in the direction of
universal defectors. On the other side, universal cooperators are unable to outperform UDs
locally and, as a result, their survival rate decreases, being bounded below only by the fact
that network rewires relatively fast. This creates clusters of both conditionals and (few)
unconditional cooperators that are sustained at equilibrium.

4 Conclusions

The evolution of cooperation is one of the most puzzling problems in social sciences. In
this study, we make two contributions to the resolution of the puzzle. First, building on
Righi and Takács (2014), we make existing models more realistic by allowing negative as
well as positive ties among connected agents and, in relation, we introduce and analyze the
role of emotional strategies in the single-shot Prisoner’s Dilemma. We show that the simple
adaptive rules we defined for evolution results in the emergence of cooperation in a non-trivial
way: emotional strategies act as catalysts for the success of unconditional cooperation.

Second, we analyze how this conclusion is dependent on whether we implement sequen-
tial or parallel updates in the model. With this inquiry, we follow earlier studies in complex
systems that examined the importance of assuming synchronous versus real-time interac-
tions in social dilemmas which showed that such systems might behave very differently
(Huberman and Glance 1993; Lumer and Nicolis 1994). Besides, this question is important
also substantially as sequential and real-time interactions and updates are much more re-
alistic than parallel ones. In our case, sequential updating means that single couples of
individuals are selected for interactions and evolutionary and network updates immediately
after. This model implementation is contrasted with parallel update, in which agents play
at the same time with all their network neighbors and where average payoffs from all of their
interactions determines evolutionary success.

We provide evidence that the survival and diffusion chances of cooperation are indeed
strictly limited in the sequential update rule case. Under a rather general set of parameters
combinations, the parallel updating rule provides better conditions for the diffusion of coop-
eration. We explore the nature and range of these differences by manipulating two crucial
parameters of our model: the extent of strategy updates and rewiring possibilities. While
the rewiring probability should be in general higher than the strategy update one in order
to find universal cooperators in the final population, the difference between the two can be
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small in case of parallel update, but needs to be substantial in case of sequential update.
Our results might imply that the majority of models that study the evolution of coop-

eration in networks or spatial settings and offer a solution for the emergence of cooperation
miss an important aspect: they implicitly or explicitly assume that actions or updates are
synchronous. This is in line with our parallel update rule that provides favorable conditions
for the emergence of cooperation via the assistance of emotional strategies that act as cata-
lysts in the evolutionary process. Most historical events, however, are sequential or happen
in real time. As our results highlighted, the chances of cooperation are much more limited
under such circumstances. This leaves the puzzle of the evolution of cooperation in case of
sequential interactions still to be solved by subsequent research.
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The authors wish to thank the ”Lendület” program of the Hungarian Academy of Sciences
for financial and organizational support.

References

Anderson, P. W. et al. (1972). More is different. Science, 177(4047):393–396.

Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

Axelrod, R. (1997). The Complexity of Cooperation: Agent-based Models of Competition and

Collaboration. Princeton studies in complexity. Princeton University Press.

Axelrod, R. and Hamilton, W. D. (1981). The evolution of cooperation. Science,
211(4489):1390–1396.

Becker, G. S. (1976). Altruism, egoism, and genetic fitness: Economics and sociobiology.
Journal of economic Literature, 14(3):817–826.

Bowles, S. and Gintis, H. (2004). The evolution of strong reciprocity: cooperation in het-
erogeneous populations. Theoretical population biology, 65(1):17–28.

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton
University Press.

Darwin, C. (1965). The expression of the emotions in man and animals, volume 526. Uni-
versity of Chicago Press.

Dreber, A., Rand, D. G., Fudenberg, D., and Nowak, M. A. (2008). Winners don’t punish.
Nature, 452(7185):348–351.
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