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Abstract: In this paper, we first analyze the possible limitations of a model-based fault detec-
tion method grounded on a partition-based distributed Luenberger observer. The corresponding
fault detection test consists of comparing, for each time instant, the output prediction error
with a suitable bound, computed analytically in a distributed and scalable way. As a result, we
highlight the presence of an often restrictive tradeoff between false-alarm and missed-detection
rates. To overcome this significant drawback, we resort to a method based on the analysis of
moving averages of residuals. Tests on an academic case study show the effectiveness of this
approach.
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1. INTRODUCTION

One of the most important tasks for computers supervising
complex process plants is the detection and diagnosis of
faults. As stated in (Isermann, 2005), advanced methods
for supervision, fault detection, and fault diagnosis become
increasingly important for the improvement of reliability,
safety, and efficiency of many technical processes. This
holds especially for safety-related processes like aircrafts,
trains, cars, power and chemical plants.
Among the system monitoring problems we focus on fault
detection (FD), (Gertler, 1998; Basseville and Nikiforov,
1998) and, specifically, we consider a model-based ap-
proach (Isermann, 2005). In particular we use observers
to estimate the state of the (nominal) system, and analyze
the properties of the output variable estimation error to
test if it fits the expected requirements in a non-faulty
scenario. This leads to statistical tests that guarantee that
a fault is present or absent with a prescribed probability.
The use of model-based approaches can become practically
prohibitive (concerning both the related computational
burden and the required amount of information to be
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transmitted) in complex scenarios, when large-scale sys-
tems are involved, possibly composed by a number of
cooperating and coupled subsystems (Samad and Parisini,
2011). Indeed, in this paper we deal with large-scale linear
discrete-time systems, characterized by the interconnec-
tion of M subsystems. Each subsystem is described by

xi(k + 1) =Aiixi(k) +
∑
j 6=i

Aijxj(k) + wi(k) (1a)

yi(k) =Cixi(k) + vi(k) (1b)

where xi(k) ∈ Rni is the state and yi(k) ∈ Rpi is
the output of the subsystem. Signals wi(k) ∈ Rni and
vi(k) ∈ Rpi are zero-mean white noises, for i = 1, ...,M ,
and E[wi(k)wTj (k)] = Qiδij , E[vi(k)vTj (k)] = Riδij ,

E[wi(k)vTj (h)] = 0 for all i, j = 1, ...,M and h, k ≥ 0.
In the above notation δij is the Kronecker delta function,
i.e. δij = 1 if i = j and δij = 0 if i 6= j.

As discussed in the surveys (Sijs et al., 2008; Farina et al.,
2010b), two main classes of estimation techniques for dis-
tributed schemes are currently under investigation, both
generally referred to as distributed state-estimation algo-
rithms. The first class of problems (studied, e.g., in (Olfati-
Saber, 2007)) concerns the case where the full state of the
overall system (i.e., the overall state x = col(x1, . . . , xM ))
is estimated by each subsystem: following this approach
each local observer needs to access the information re-
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garding the overall system. The other class of algorithms
focuses on the estimation of a part of the state vector
(i.e., on xi solely, for each i = 1, . . . ,M) gathering infor-
mation only from the neighboring subsystems: the latter
approach is called partition-based estimation (studied, e.g.,
in (Stanković et al., 2009; Farina et al., 2010a; Farina
and Carli, In press; Schneider et al., 2015)) and enjoys
many advantages regarding both the communication and
computational loads.

Some works have been devoted to partition-based fault
detection and control system fault recovery in the past,
e.g., (Shames et al., 2011; Zhang and Zhang, 2012; Reppa
et al., 2015; Lan and Patton, 2016; Blanke et al., 2016;
Gupta and Puig, 2016; Riverso et al., 2016; Boem et al.,
2017; Lauricella et al., 2017). In this paper, we consider
a partition-based Luenberger estimator (denoted PLF)
previously proposed in (Boem et al., 2016). Besides pro-
viding reliable state estimation with granted properties,
this algorithm also provides a consistent estimate of the
prediction error covariance matrix (in the sense specified
in (Uhlmann, 2003)), which can be used in order to design
suitable threshold values for FD purposes. In particular,
in (Boem et al., 2016) the FD test consists of compar-
ing, for each time instant, the output prediction error
with a suitable bound. In this paper, we analyze, using
a simple academic example, some merits and limitations
of this approach, the performances of which have been also
extensively tested on a more complex simulation example
using a Power Networks application in (Boem et al., 2016).
Indeed, we highlight the presence of an often restrictive
tradeoff between the false-alarm (FA) and the missed-
detection rates: indeed, as the FA decreases the threshold
value increases, and too large thresholds may lead to
unacceptably large missed-detection rates. Therefore, we
explore a possible solution to this issue, exploiting to a
method described in (Gertler, 1998), based on the analysis
of moving averages of residual values, rather than single
time points. The aim is to show how moving averages can
be exploited to indeed improve the performance of the
FD scheme; notably, theoretical results will be provided to
provide analytical estimates of the probabilistic properties
of the moving averages of residuals. To keep the analysis
simple, we consider Gaussian-type noises.

In Section 2, we briefly describe the method proposed
in (Boem et al., 2016). In Section 2.4 we show some
limitations of this method and we propose a solution in
Section 3. The comparison between the two methods is
shown in Section 4 on the academic example described
below. Some conclusions are drawn in Section 5.

Academic example. An academic simple example will
be used throughout the paper to analyze in a simple way
the results obtained using different FD approaches. Con-
sider the nominal system (1). To force a non-zero steady
state, we add a constant known input, by modifying equa-
tion (1a) as follows: xi(k+1) = Aiixi(k)+

∑
j 6=iAijxj(k)+

Biiū+ wi(k). We set

Aii =

[
0.9 0.1
0.1 −0.9

]
, Aij =

[
0.05 0.025
0.025 0.05

]
for all i, j = 1, . . . ,M with i 6= j. Also, Bii = [1 0]

T
and

Ci = [1 1] for all i = 1, . . . ,M . We set ū = 5; the noise

signals wi(k) and vi(k) have covariances Qi = diag(1, 1)
and Ri = 1 for all i = 1, . . . ,M . We simulate two types of
faults acting on subsystem 1: additive and multiplicative
faults on the state equation. For simulating them, the first
state equation is replaced by the following faulty one

x1(k + 1) = (1 + fmult

sim (k))A11x1(k) +
∑
j 6=1

A1jxj(k)

+B1ū+Bf,1f
add

sim (k) + w1(k)

where Bf,1 = [1 0]
T

. The faults are assumed to be
persistent, i.e., f add

sim (k) = f̄step(k− T add

fault) and fmult
sim (k) =

f̄step(k − Tmult

fault), where f̄ may vary in order to test
different fault sizes and where T add

fault and Tmult

fault denote the
instants when the additive and multiplicative, respectively,
faults occur.
Since the proposed method is distributed and scalable, as
explained in (Boem et al., 2016), the complexity linearly
depends on the number of neighboring subsystems. Hence,
increasing the number of subsystems in the simulation
example does not improve the significance of the results.
For the sake of simplicity, we show the case with M = 2
subsystems.

Notation. Regarding model (1), we define the set of
predecessors of subsystem i as Ni = {j|Aij 6= 0} and the
set of successors of i as Si = {j|i ∈ Nj}. It is also useful
to define the sets of strict predecessors and successors as
Ñi = Ni \ {i} and S̃i = Si \ {i}.
Given a stochastic variable x, we denote with E[x] its
expected value. The symbols ≥ and > are also used
to denote positive semi-definite matrices and positive
definite matrices, respectively. The cardinality of a set N
is denoted with |N | and a square matrix A is Schur stable
if its spectral radius is strictly smaller than one.

2. OBSERVER AND PARTITION-BASED FAULT
DETECTION

2.1 The partition-based Luenberger state estimator

The partition-based Luenberger Filter used in this paper is
a distributed estimation scheme, proposed in (Boem et al.,
2016), of the type

x̂i(k + 1) =
∑
j∈Ni

{Aij x̂j(k) + Lij(yj(k)− Cj x̂j(k))}

ŷ(k) = Cix̂i(k)

(2)

where the static gains Lij are computed (see Section
2.3) to guarantee stability of the state estimate ei(k) =
xi(k) − x̂i(k). Note that the scheme is distributed, since
the information required at any time instant k by the i-th
state estimator consists of the state estimation x̂j(k) and
the measurement yj(k) collected by the neighbors of i, i.e.,
j ∈ Ni.

2.2 FD method (a): single residual testing

The FD algorithm proposed in (Boem et al., 2016) is based
on the analysis of the residual

ri(k) = yi(k)− ŷi(k) (3)

which is computed locally by the i-th local diagnoser using
data coming from the local state estimator and from the



subsystem output.
The general idea is to compare ri(k), at each time step,
with a suitable threshold computed based on the covari-
ance of ri(k), i.e.,

Σi(k) = E[ri(k)ri(k)T ]

Note that the variance σ2
i,l(k) of ri,l(k), i.e., the l-th

entry of ri(k), is the l-th diagonal element of Σi(k). The
proposed FD scheme relies on the fact that, in view of the
Gaussianity of ri,l(k) (which follow from the Gaussianity of
wj(k), vj(k), j = 1, . . . ,M and from the linearity of both
the state and observer equations (1) and (2), respectively),
for any p ∈ (0, 1], we can define a scalar α ≥ 0 such that

P (|ri,j(k)|/σi,l(k)| ≥ α) = p i.e.

∫ α

−α
f(x)dx = 1− p

(4)
where f is the probability density function of a zero mean
Gaussian variable with unitary variance. From this, it
follows that (see also (Gertler, 1998)) |ri,l(k)| > ρi,l(k) =
ασi,l(k) with probability p if in nominal (i.e., non-faulty)
conditions. This criterion is used for detecting faults, and
the following rule is applied at any time instant.{

if |ri,l(k)| < ρi,l(k), then no fault is detected

otherwise fault is detected

It is therefore clear that the probability p corresponds to
the FA rate and will be denoted pFA for better clarity.
In the following, the previously explained method will be
denoted detection testing method (a).

2.3 Approximation of the residual variance

The key ingredient for the definition of the FD approach
discussed in Section 2.2 is the variance Σi(k) of the i-
th residual ri(k). The simplest method for obtaining an
approximation of it consists of computing the sampled
covariance from available data. However, this approach has
some possible drawbacks: (i) it is consistent only under the
stationarity assumption, i.e., only if data are collected in
steady state conditions; (ii) it is reliable only if a very large
number of samples are available; (iii) it is correct only if
data are collected in healthy state. In view of this, this
method can be ineffective in transient conditions (e.g., in
non-autonomous systems, during set-point changes) and
can entail significant detection delays. Also, it can lead
to serious detection problems if the data are collected,
unintentionally, in a faulty or non-nominal setting.
In this section we summarize the novel approach proposed
in (Boem et al., 2016), which allows to compute (in a
distributed and computationally scalable way) a (possibly
conservative) upper bound to Σi(k). To this regard note
that, if an upper bound to the variance is used in place
of the actual one, the threshold computed for a given
pFA is an upper bound to the tight threshold value. As
a result, in non-faulty conditions |ri,l(k)| ≥ ρi,l(k) with
probability smaller than pFA. This entails conservativity
of the proposed FD method. Indeed, obtaining a larger
threshold means that there will be less FAs but, on the
other hand, with a smaller probability to detect faults.
Next, this trade-off will be better analyzed using the
discussed academic example.
Note that, from (1) and (2), ri(k) = Ciei(k) + vi(k), and

Σi(k) = CiΠii(k)CTi +Ri (5)

where Πii(k) = E[ei(k)ei(k)T ]. The i-th local state predic-
tion error, in view of (1) and (2), evolves according to

ei(k + 1) =
∑
j∈Ni

{(Aij − LijCj)ej(k)− Lijvj(k)}+ wi(k)

(6)
Since the subsystems are interconnected with each other,
the evolution of ei(k), as well as that of its variance
Πii(k), cannot be determined in a purely local way. To
consider the overall system, we define the collective state
prediction error as e(k) = (e1(k), ..., eM (k)), while the full
noise vectors are w(k) = (w1(k), ..., wM (k)) and v(k) =
(v1(k), ..., vM (k)), with covariances Q =diag(Q1, ..., QM )
and R =diag(R1, ..., RM ), respectively. In view of (6), the
overall error dynamics is described by

e(k + 1) = (A− LC)e(k)− Lv(k) + w(k) (7)

where C =diag(C1, ..., CM ) and

A =

A11 . . . A1M

...
. . .

...
AM1 . . . AMM


and, similarly, L is the block matrix having the (i, j)-th
element equal to Lij for i = 1, ...,M and j = 1, ...,M .
Let us now define F = A − LC. The covariance matrix
of the collective estimation error is defined by Π(k) :=
E[e(k)eT (k)] and obeys the recursive equation

Π(k + 1) = FΠ(k)FT + LRLT + Q (8)

The evolution of Π(k) can be characterized only in a
centralized and nonscalable way. However, in (Boem et al.,
2016) a method has been proposed to compute, in a
distributed and scalable fashion, a block-diagonal upper
bound to Π(k), at each time instant. Indeed, we define
matrices Bi(k), i = 1, . . . ,M in a recursive way as

Bi(k + 1) = Qi+ (9)∑
j∈Ni

[(Ãij − LijC̃j)Bj(k)(Ãij − LijC̃j)T + LijR̃jL
T
ij ]

where Ãij =
√
ζiAij , C̃i =

√
ζiCi, R̃i = ζiRi and ζi = |Si|,

for all i, j = 1, ...,M .
In (Boem et al., 2016) it is proved that Bi(k) can be used
as an upper bound to Πi(k), for all i = 1, ...,M and for
all k ≥ 1, as stated in the following theorem.

Theorem 1. If one sets diag(B1(1), ..., BM (1)) ≥ Π(1)
then, for all i = 1, ...,M and for all k ≥ 1, it holds that
Bi(k) ≥ Πi(k). �

Finally, using (5), we define the analytical upper bound to
Σi(k) as

ΣBi (k) = CiBi(k)CTi +Ri (10)

To complete the picture of the presented method for
covariance evaluation, in (Boem et al., 2016) a condition
is provided, that guarantees that Bi(k) remain bounded
for all k and, at the same time, stability of the estimation
error dynamics. More specifically, this condition consists
of the Schur stability of the following matrix.

F = F̃ � F̃ =

 F̃11 ⊗ F̃11 . . . F̃1M ⊗ F̃1M

...
. . .

...

F̃M1 ⊗ F̃M1 . . . F̃MM ⊗ F̃MM

 (11)



where, for all i, j, F̃ij = (Ãij − LijC̃j) and the matrix

F̃ is the matrix whose blocks are F̃ij . Also, � denotes
the Khatri-Rao product, while ⊗ denotes the Kronecker
product (see (Horn and Johnson, 2012)).

2.4 Tests on the FD method (a)

In this section we show the results of Montecarlo tests per-
formed on the academic example introduced in Section 1.
For each experiment, Nm = 1000 Montecarlo runs are
performed. For the implementation of the algorithm, the
static gains used in the PLF have been computed in order
to achieve the Schur stability of matrix F, granting the
stability of the estimation and the convergence of matrices
Bi as stated in Section 2.3.
The covariance term has been approximated using the
analytical method described in Section 2.3 and, for com-
parison, using the sampled covariance. In line with this,
the following cases are tested.

I) PLF-empirical: we set Σi(k) = Σ̄EMP
i , where

Σ̄EMP

i =
1

N

N∑
k=1

ri(k)ri(k)T (12)

II) PLF-analytical: we set Σi(k) = ΣBi (k) for all k.

The covariance Σ̄EMP
i is obtained by preliminarily simulat-

ing the system in nominal conditions and using N = 10000
available samples.
Different scenarios are simulated varying the fault type
(i.e., additive and multiplicative), fault amplitude (i.e.,
small and large, as better specified in the following), and
different guaranteed FA rates (i.e., pFA = 0.0002 and
pFA = 0.01). In all simulations, fault detection starts at
time T = 41, while the faults occur at time T = 100s.
The fault sizes are: (i) for additive faults, small ones have
amplitude f̄ = 2, while large faults have amplitude f̄ = 5;
(ii) for multiplicative faults, small ones have amplitude
f̄ = 0.015, while large faults have amplitude f̄ = 0.04.

The plots shown in Figures 1, 2 denote the evolution of
the cumulative fault detection rate RFD(k) = NFD(k)/Nm,
where NFD(k) is the number of Montecarlo runs in which
the corresponding fault detection threshold has been
passed up to the time instant k. The slope of such a line,
for both subsystems, in the interval k = [41, 100) (i.e.,
before the occurrence of the fault) is proportional to the
FA rate. From time T = 100 on, for subsystem 1 we note
that the rate of detection increases significantly due to the
fault occurrence while, for subsystem 2, the effect of the
fault occurrence on the rate of detection is not apparent.
As expected, the rate of detection is smaller when the
analytical upper bound proposed in (Boem et al., 2016)
is used with respect to the empirical one.
Clearly, large faults can be promptly detected by the
proposed method for both values of pFA. However, while
a small value pFA = 0.0002 is required for reducing the
number of systems for which false alarms are detected, it
corresponds to a threshold value ρ1(k) that is too large to
properly and promptly detect small-amplitude faults. On
the other hand, to well detect small-amplitude faults, it is
necessary to increase the false-alarm rate pFA, that results
unacceptable in a dynamic scenario.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Subsystem 1, small fault

D
et

ec
tio

n 
ra

te

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Subsystem 2, small fault

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
Subsystem 1, large fault

D
et

ec
tio

n 
ra

te

Time step k
0 50 100 150 200

0

0.2

0.4

0.6

0.8

1
Subsystem 2, large fault

Time step k

Fig. 1. Cumulative detection rates RFD(k) with additive
faults on subsystem 1 at T = 100. Solid lines are
obtained with PLF-analytical, while dotted lines are
obtained with PLF-empirical. Black lines are obtained
with pFA = 0.0002, while grey lines are obtained with
pFA = 0.01.
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Fig. 2. Cumulative detection rates RFD(k) with multiplica-
tive faults on subsystems 1 at T = 100. Solid lines are
obtained with PLF-analytical, while dotted lines are
obtained with PLF-empirical. Black lines are obtained
with pFA = 0.0002, while grey lines are obtained with
pFA = 0.01.

3. FD METHOD (B): SLIDING WINDOW
AVERAGES.

As shown in Section 2.4, the analysis of a single residual
ri,l(k) at each time instant can lead to unsatisfactory
FD results in case of small-amplitude faults. The goal of
this section is to show how data related to the residual
time series can be exploited in order to improve the
performance of the FD scheme in terms of false alarm rate
and conservativity of the bounds and that the probabilistic
properties of such data series can be estimated in an
analytical and distributed way.



3.1 Moving averages of residuals

The strategy described in this section consists of test-
ing the average of the residual values computed over

the sliding window. Specifically, we define r̄
(m)
i,l (k) =

1
m

∑m−1
j=0 ri,l(k− j). Note that, in view of the assumptions

introduced in the previous sections, r̄
(m)
i,l (k) is a Gaus-

sian variable with zero mean and variance (σ
(m)
i,l (k))2 =

E[(r̄
(m)
i,l (k))2]. As such, it can be considered as a single

observation, and the corresponding threshold can be com-
puted similarly to the one computed in Section 2.2, i.e.,{

if |r̄(m)
i,l (k)| < ρ̄

(m)
i,l (k), then no fault is detected

otherwise fault is detected

where ρ̄
(m)
i,l (k) = ασ̄

(m)
i,l (k).

The use of the average over m values rather than single

values is justified by the fact that σ̄
(m)
i,l (k) ≤ σi,l(k),

leading to the following advantages, with respect to the
FD method (a): (i) we can in principle obtain the same FA
rate (i.e., the same value of α) with a smaller threshold,
which allows to detect faults having smaller amplitude; (ii)
we can reduce the FA rate without reducing the missed
detection rate, i.e., without raising the threshold value.

3.2 Analytical approximation of the average covariance

In this section we show how to compute analytically an

upper bound to σ̄
(m)
i,l (k) in a distributed and scalable way.

Denote with (σBi,l(k))2 the l-th diagonal entry of matrix

ΣBi (k). Considering that

(σ̄
(m)
i,l (k))2 =

1

m2

m−1∑
j,h=0

γi,l(k − j, k − h) (13)

where γi,l(k − l, k − h) = E[ri,l(k − j)ri,l(k − h)], we need
to find a reliable, although possibly conservative, upper
bound to γi,l(k − j, k − h), for all j, h = 0, . . . ,m. This is
provided by the following proposition.

Proposition 1. It holds that both γi,l(k − j, k − h) ≤
γ̄B,1i,l (k−j, k−h) and, for j 6= h, γi,l(k−j, k−h) ≤ γ̄B,2i,l (k−
j, k − h), where

γ̄B,1i,l (k − j, k − h) =
1

2
((σBi,l(k − j))2 + (σBi,l(k − h))2)

(14a)

γ̄B,2i,l (k − j, k − h) =
1

2
‖Ci,l‖‖diag(B(k −max(h, j)))

+ Ci,lBi(k −max(h, j))CTi,l1n‖µλ|h−j|

+ ‖Ci,l‖‖Lc

iR
c

i,l‖µλ|h−j|−1 (14b)

and where Lc
i is the i-th block column of L and Rc

i,l is the

l-th column of matrix Ri. Scalars µ > 0, λ ∈ [0, 1) are
defined in such a way that ‖Fj‖ ≤ µλj for all j > 0. �

In view of Proposition 1 we define the upper bound to

(σ̄
(m)
i,l (k))2 as

(σ̄
(m),B
i,l (k))2 =

1

m2

m−1∑
j,h=0

γ̄Bi,l(k − j, k − h)

If j = h γ̄Bi,l(k− j, k−h) = γ̄B,1i,l (k− j, k−h) but, if j 6= h,

γ̄Bi,l(k − j, k − h) =

min{γ̄B,1i,l (k − j, k − h), γ̄B,2i,l (k − j, k − h)} (15)

Note that the simplest, yet theoretically sound, approxi-

mation that one can use is γ̄B,1i,l for all j, h. This would
lead to the conservative approximation

(σ̄
(m),B
i,l (k))2 =

1

m

m−1∑
j=0

(σBi,l(k − j))2

which, however, does not allow to play with the tradeoff
between FA guaranteed rate and missed detection rate.
On the other hand, (15) allows to reduce the conserva-
tivity of the approximation, since it accounts for the fact
that, since the process ri,l(k) is stationary (in view of the
stability properties of the distributed state estimator), the
correlation between ri,l(k − j) and ri,l(k) asymptotically
tends to zero as j increases.

Proof of Proposition 1.
The first inequality can be proven considering that

γi,l (k − j, k − h) = E[ri,l(k − j)ri,l(k − h)]

≤ E[
1

2
(ri,l(k − j)2 + ri,l(k − h)2)]

=
1

2
(σ2
i,l(k − j) + σ2

i,l(k − h))

(16)

and that σ2
i,l(k) ≤ (σBi,l(k))2 for all k ≥ 1.

The second inequality is proven considering that (if h > j
without loss of generality) γi,l(k − j, k − h) = Ci,lE[e(k −
j)(Ci,le(k − h) + vi,l(k − h))], where vi,l(k − h) is the l-
th element of vi(k − h) and Ci,l is the line of C which
corresponds with the l-th entry of output yi(k). Iterating

(7), e(k− j) = Fh−je(k−h) +
∑h−j−1
s=0 Fh−j−(s+1)(w(k−

h+s)−Lv(k−h+s)), and γi,l(k−j, k−h) = Ci,lF
h−jΠ(k−

h)CT
i,l − Ci,lF

h−j−1LE[v(k − h)vi,l(k − h)]. It follows

that γi,l(k − j, k − h) ≤ ‖Ci,l‖‖Fh−j‖‖Π(k − h)CT
i,l‖ +

‖Ci,l‖‖Fh−j−1‖‖Lc
iR

c

i,l‖.
In view of the block-diagonality of C, Π(k − h)CT

i,l =

(Π1i(k− h)CTi,l, . . . ,ΠMi(k− h)CTi,l), where Ci,l is the l-th
row of Ci. The proof can be completed considering that,
for all s = 1, . . . ,M , Πsi(k−h)CTi,l = E[es(k−h)(Ci,lei(k−
h))] = (E[es,1(k − h)(Ci,lei(k − h))], . . . ,E[es,ns

(k −
h)(Ci,lei(k − h))]) ≤ 1

2 (var(es,1(k − h))+var((Ci,lei(k −
h))), . . . ,var(es,ns(k − h))+var((Ci,lei(k − h)))).

4. TESTS ON THE PROPOSED FD METHODS

In this section, results of Montecarlo simulation tests on
the academic example are illustrated. For each experiment,
Nm = 1000 Montecarlo runs have been performed, with a
similar set-up with respect to the one in Section 2.4. Here
we test and compare methods (a) and (b), the latter with
both m = 20 and m = 40. Only the value pFA = 0.0002
is considered here. For the FD method (b), the covariance
term has been approximated using the analytical method
described in Section 3.2 and, for comparison, using the
sampled covariance. We denote:

• PLF(m)-empirical: we set (σ
(m)
i,l (k))2 = (σ

(m),EMP

i,l (k))2,
where



(σ
(m),EMP

i,l (k))2 =
1

N −m+ 1

N∑
k=m

r̄
(m)
i,l (k)r̄

(m)
i,l (k)T

(17)

• PLF(m)-analytical: we set (σ
(m)
i,l (k))2 = (σ

(m),B
i,l (k))2

for all m and k.
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Fig. 3. Cumulative detection rates RFD(k) with additive
faults on subsystem 1 at T = 100 and pFA = 0.0002.
Solid lines: PLF-analytical; dotted lines: PLF(20)-
analytical; dashed lines: PLF(40)-analytical.
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Fig. 4. Cumulative detection rates RFD(k) with multi-
plicative faults on subsystem 1 at T = 100 and
pFA = 0.0002. Solid lines: PLF-analytical; dot-
ted lines: PLF(20)-analytical; dashed lines: PLF(40)-
analytical.

The plots shown in Figures 3-6 show the cumulative fault
detection rates RFD(k) obtained in the described scenarios.
We can draw the following considerations.

• The use of the FD method (b) allows to reduce the
threshold values, for constant guaranteed FA rates.
This makes it possible to detect, in a efficient and
prompt way, faults of small amplitude, while guaran-
teeing acceptably small FA rates. The drawback of
this approach consists of the fact that faults (espe-
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Fig. 5. Cumulative detection rates RFD(k) with additive
faults on subsystem 1 at T = 100 and pFA = 0.0002.
Solid lines: PLF-empirical; dotted lines: PLF(20)-
empirical; dashed lines: PLF(40)-empirical.
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Fig. 6. Cumulative detection rates RFD(k) with multi-
plicative faults on subsystem 1 at T = 100 and
pFA = 0.0002. Solid lines: PLF-empirical; dotted lines:
PLF(20)-empirical; dashed lines: PLF(40)-empirical.

cially with small amplitude) may be detected with
some delay, consisting of the window length m.

• The covariance matrix approximations proposed in
this paper allow to obtain conservative, but yet very
satisfactory, fault detection performances. The use of
the proposed approach is therefore quite promising.

A final remark is due. Additional simulation tests (not
shown here for lack of space) have been performed in case
of step-wise sensor faults (consisting of both additive and
multiplicative perturbations in the output equation (1b)).
In this case the FD method (b) discussed in this paper
reveals not effective, with both empirical and analytically-
obtained covariances. The reason of this fact, in our opin-
ion, is that step-wise sensor faults have an instantaneous
effect on ri(t) (well detectable with single-point resid-
ual testing methods), which is asymptotically attenuated
thanks to the observer filtering action, making methods
based on averaged data less effective.



This consideration will pave the way to combined schemes
using the two approaches at the same time, that can be
used, in a fault isolation scenario, to distinguish between
process and sensor faults.

5. CONCLUSIONS

In this paper we have highlighted (with reference to (Boem
et al., 2016)) that FD approaches based on tests on single
residuals may be prone to a restrictive tradeoff between
false alarm and missed detection rates. To overcome this,
we can resort to an approach, described in (Gertler, 1998),
based on the analysis of moving averages of residuals. In
this paper we provide a way to compute, in a distributed,
analytical, and scalable way, the corresponding thresholds
using the tools developed in (Boem et al., 2016).

Future research efforts will be devoted to the extension
of the proposed approach to non-Gaussian distributions
resorting to the two-sided Chebishev inequality and to
the analysis of the feasibility and effectiveness of other
approaches that focus on sliding windows of residual
values. Finally, the developed method will be evaluated
on more complex and realistic case studies.
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Consensus based overlapping decentralized estimation
with missing observations and communication faults.
Automatica, 45, 1397 – 1406.

Uhlmann, J.K. (2003). Covariance consistency methods
for fault-tolerant distributed data fusion. Information
Fusion, 4, 201–215.

Zhang, X. and Zhang, Q. (2012). Distributed fault di-
agnosis in a class of interconnected nonlinear uncertain
systems. International Journal of Control, 85(11), 1644–
1662.


