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Background: As genome-wide association efforts, such as CARDIoGRAM and METASTROKE, are 

ongoing to reveal susceptibility loci for their underlying disease: atherosclerotic disease, identification 

of candidate genes explaining the associations of these loci has proven the main challenge. Many 

disease susceptibility loci co-localize with DNA regulatory elements, which influence gene expression 

through chromatin interactions. Therefore, the target genes of these regulatory elements can be 

considered candidate genes. Applying these biological principles, we used an alternative approach to 

annotate susceptibility loci and identify candidate genes for human atherosclerotic disease based on 

circular chromosome conformation capture followed by sequencing (4C-seq).  

Methods and Results: In human monocytes and coronary endothelial cells we generated 63 chromatin 

interaction datasets for 37 active DNA regulatory elements that co-localize with known susceptibility 

loci for coronary artery disease (CARDIoGRAMplusC4D) and large artery stroke (METASTROKE). By 4C-

seq we identified a physical 3D interaction with 326 candidate genes expressed in at least one of these 

cell types, of which 294 have not been reported before. We highlight 16 genes based on expression 

quantitative trait loci.  

Conclusions: Our findings provide additional candidate-gene annotation for 37 disease susceptibility 

loci for human atherosclerotic disease that are of potential interest to better understand the complex 

pathophysiology of cardiovascular diseases. 

Key words: Epigenetics; Gene Expression and Regulation; Atherosclerosis; Coronary Artery Disease; 

Ischemic Stroke   



INTRODUCTION 

Atherosclerosis is a chronic inflammatory disease of the lipid-rich vascular wall that underlies many 

cardiovascular diseases (CVD)(1). A large part of the disease burden of atherosclerosis can be traced 

back to coronary artery disease (CAD) and large artery stroke (LAS). Genome-wide association studies 

(GWAS) have helped to unravel the complex genomic background of these diseases, currently explaining 

about 10% of heritability(2,3). The current approach is to annotate a novel susceptibility locus with the 

gene at the nearest genomic position. Some alternative strategies also take into account gene 

expression or protein-protein interactions(4,5). A recent effort employing these bioinformatics-based 

approaches resulted in 98 new candidate genes for CAD(6). In the last few years, the evidence that 

variants identified by GWAS also contribute to the disease pathogenesis by affecting the regulatory DNA 

sequences they reside in is growing(7–9). These genetic variants may affect the activity of the DNA 

regulatory elements (DRE) and, under specific circumstances, lead to dysregulation of gene expression. 

This is mediated by long range 3D chromatin-chromatin interactions where the regulated candidate 

genes can be located up to ~1 MB away(10–12) – a distance much larger than is normally used to 

annotate candidate genes in GWAS. These candidate genes can be identified by capturing the physical 

chromatin-chromatin interaction between a known disease susceptibility locus and the promoter of the 

gene(s) it presumably regulates(13). Here we systematically apply this principle (study design is 

summarized in Fig. 1) to variants identified by large meta-analyses of GWAS for CAD and LAS; altogether 

assaying 47 previously identifiedsusceptibility loci(2,3). Atherosclerotic disease starts in the endothelial 

lining of the affected arteries and involves attraction and proliferation of monocytes(14). Therefore, we 

studied  37 loci that co-localize with active DRE in human monocytes and/or in cardiac endothelial cells. 

We used circular chromosome conformation capture sequencing (4C-seq) to identify candidate genes 

based on their physical interaction with one of the active DRE.  

  



METHODS 

Cell culture 

Primary commercially available human cardiac endothelial cells (CEC) that were isolated by enzymatic 

detachment  (Lonza Clonetics™) were cultured in RPMI-1640 with 10% FCS and standard supplements. 

Cells were harvested for 4C template preparation by trypsinisation at 60-80% confluence.  

 

Monocyte isolation 

Human peripheral blood was collected from a healthy donor in sodium-heparin tubes. Peripheral Blood 

Mononuclear Cells (PBMCs) were isolated by Ficoll-Paque gradient centrifugation. PMBCs were 

incubated with magnetic CD14+-microbeads (Milteny, order nr. 130-050-201) according to 

manufacturer’s manual. Thereafter cells were magnetically separated by the AutoMACS™ Separator, the 

positive fraction (monocytes) was used for 4C template preparation. 

  

Circular Chromosome Conformation Capture-Template preparation 

The 4C template was prepared as previously described(13). Summarized, 10x106 cells were used per cell 

type (monocytes and CEC). Cells were crosslinked in 2% formaldehyde. After chromatin isolation, the 

chromatin was digested with DpnII (NEB, # R0543L). Digestion was stopped through heat inactivation of 

the restriction enzyme. Samples were diluted and ligated by T4 DNA ligase. The second digestion was 

carried out with CviQI (NEB, #R069S) and inactivated by phenol:chloroform extraction. The chromatin 

was diluted, for the final T4 ligation and the chromatin was purified. The quality of digestion and ligation 

was assessed on agarose gels. 

 

Viewpoint selection and primer design 

All SNPs from table 1 and 2 and the young-CAD SNP (rs16986953) from the CARDIoGRAMplusC4D 

paper(2) (n=47) and the two replicated SNPs (rs2383207 and rs2107595) from METASTROKE(3) were 

considered for viewpoint design (Supplemental table 8). When the SNPs within the susceptibility locus 

were less than 15,000 bp apart (e.g. rs12740374, rs602633 and rs599839 in the SORT1 region), only one 

SNP was selected as a viewpoint. Susceptibility loci that overlapped with active DRE were identified 

through FAIRE, the presence of H3K4Me1, H3K4Me3, H3K27Ac, H3K4Me2 or H3K9Ac, EP300 or CTCF 

binding sites or DNase hypersensitivity sites (Supplemental table 9). DRE falling within the susceptibility 

locus coordinates were considered overlapping with the susceptibility locus. The primers were designed 

as was described previously(13). Primer sequences are listed in Supplemental table 8. In summary, 



primers were designed in a window of 5 kb up- and downstream from the associated SNP. Forward and 

reverse primers were designed at least 300 bp apart. Forward (reading) primers were designed on top of 

the first restriction enzyme site. The reverse (non-reading) primer was designed close to (max 100bp 

away from) the second restriction enzyme site. In case no primer pair could be designed within the 

initial window, the window was extended 5 kb up- and downstream (n=8). In the case of rs1561198  this 

did not result in a suitable primer, so a primer pair that was 299bp apart was selected for this viewpoint.  

 

Circular Chromosome Conformation Capture- Sequencing (4C-seq) library preparation 

4C-sequencing library preparation was performed as described previously(13), with minor adaptations in 

order to make the protocol compatible with the large number of viewpoints: the PCR of 4C template 

was performed with 600 ng (monocytes) or 1,6 µg (coronary endothelial cells) of 4C template per 

reaction. 8 to 10 primer pairs were multiplexed in the initial PCR reaction (primer sequences are listed in 

Supplemental table 8). Primers pairs were pooled according to primer efficiency (based on intensity on 

gel electrophoresis signal after PCR on test template). PCR products were purified after an initial PCR 

reaction of 6 cycles (reaction volume = 200 µL) and divided among 8-10 PCR reactions containing single 

primer pairs for another 26 cycles (reaction volume = 25 µL). Thereafter, PCR products derived from the 

same cells were pooled in equimolar amounts and a final 6 cycle PCR reaction containing 20 ng of 

pooled PCR product (reaction volume = 100 µL) was performed with primers that contained sequencing 

adaptor sequences. All fragments >700bp were removed using size selection on a 1% agarose gel follow 

by gel extraction of the selected products (Qiagen, #28704). Quality measures for the 4C library 

preparation and sequencing can be found in Supplemental figure 1. 

 

Sequencing 

Libraries were sequenced using the HiSeq2500 platform (Illumina), according to the manufacturer’s 

protocol, producing 50 bp single end reads.   

 

Data analysis 

The raw sequencing reads were de-multiplexed based on viewpoint specific primer sequences. Reads 

were then trimmed to 16 bases and mapped to an in silico generated library of fragends (fragment ends) 

neighboring all DpnII sites in human genome (NCBI37/hg19), using the custom Perl scripts. No 

mismatches were allowed during the mapping and the reads mapping to only one possible fragend were 

used for further analysis. 



 

Identification of the interacting genes 

First, we calculated the number of covered fragends within a running window of k fragends throughout 

the whole chromosome where the viewpoint is located. The k was set separately for every viewpoint so 

it contains on average 20 covered fragends in the area around the viewpoint (+/- 100kb). Next, we 

compared the number of covered fragends in each running window to the random distribution. The 

windows with significantly higher number of covered fragends compared to random distribution (p<10-8 

based on binominal cumulative distribution function; R pbinom) were considered as significant 4C-seq 

signal. The following criteria were defined for the identification of the candidate genes; i) the 

Transcriptional Start Site (TSS) co-localizes with a significant 4C-seq signal (P<10-8) within 5 kbp; ii) the 

susceptibility variant or other variant in linkage disequilibrium (LD) co-localizes with a DNA regulatory 

element identified though FAIRE, the presence of H3K4Me1, H3K4Me3, H3K27Ac, H3K4Me2 or H3K9Ac, 

EP300 or CTCF binding sites or DNase hypersensitivity sites (Supplemental table 9) in the cell type from 

which the 4C-seq signal originated and iii) the gene is expressed (RPKM > 0.5) in the assayed cell type. 

 

Identification of gene expression 

For monocyte expression, data from the ENCODE database were used (Supplemental table 10)(15). For 

coronary endothelial cell expression, HMVECs (Lonza) were cultured on gelatine coated plates in EGM2-

MV (Lonza) supplemented with penicillin and streptomycin. Subsequently, HMVECs were cultured for 20 

hours in low serum medium (EBM + 0.5% FCS), followed by cell lysis and RNA isolation using the RNeasy 

isolation kit (Qiagen). Polyadenylated mRNA was isolated using Poly(A) Beads (NEXTflex). Sequencing 

libraries were made using the Rapid Directional RNA-Seq Kit (NEXTflex) and sequenced on Illumina 

NextSeq500 to produce single-end 75 base long reads (Utrecht Sequencing Facility).  Reads were aligned 

to the human reference genome GRCh37 using STAR version2.4.2a(16). Read groups were added to the 

BAM files with Picard's AddOrReplaceReadGroups (v1.98). The BAM files are sorted with Sambamba 

v0.4.5 and transcript abundances are quantified with HTSeq-count version 0.6.1p1(17) using the union 

mode. Subsequently, reads per kilobase of transcript per million reads sequenced (RPKM's) are 

calculated with edgeR's rpkm() function(18). 

 

Pathway analysis 



The interacting genes (with and without expressed CARDIoGRAMplusC4D/METASTROKE genes) were 

analyzed using QIAGEN’s Ingenuity Pathway Analysis (IPA, 2015 winter version, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). We used IPA to identify canonical biological pathways within the Ingenuity 

Knowledge Base to which the interacting genes were mapped. Limits were set to only direct 

relationships that were experimentally observed in humans. We performed six rounds of pathway 

analysis, three in each of the cell types: one with only CARDIoGRAMplusC4D/METASTROKE genes that 

were expressed in the cell type, one with the CARDIoGRAMplusC4D/METASTROKE genes supplemented 

by the newly identified genes and one with the novel genes only. 

 

Tracks and plots 

All tracks were accessed from the UCSC browser (hg19) (http://genome.ucsc.edu/). Regional plots were 

generated using LocusZoom version 1.3(19). 

 

Gene-based tests 

Data for CAD were downloaded from the CARDIoGRAMplusC4D website 

(http://www.cardiogramplusc4d.org). We obtained summary statistics from GWAS on body mass index 

(BMI), blood lipids including LDL, HDL, total cholesterol and triglycerides, systolic and diastolic blood 

pressure, coronary calcification, fasting glucose, smoking behavior, and type 2 diabetes from public 

online resources and data on intima-media thickness and plaque-presence via data request 

(Supplemental Table 11). We used a VErsatile Gene-based Association Study (VEGAS) to calculate gene-

based association statistics from the summary statistics of each interacting gene for each trait. The 

details of the methods applied by VEGAS have been described elsewhere(20). In short, SNPs are mapped 

to the gene (in and around ±50kb from 5’ and 3’ gene borders), and using the GWAS p-value a gene-

based test statistic is calculated corrected for the underlying population linkage disequilibrium structure. 

Finally using simulations an empirical gene-based p-value of association with the phenotype is calculated 

per gene. VEGAS results were considered multiple testing significant if they were P < 6.97x10-6 (0.05/22 

phenotypes x 326 available genes in VEGAS).   

 

eQTL analysis in STAGE 

http://genome.ucsc.edu/
http://www.cardiogramplusc4d.org/


Within the STAGE study, patients undergoing coronary artery bypass grafting (CABG) surgery were 

sampled for seven different tissues, namely atherosclerotic arterial wall (AAW), internal mammary 

artery (IMA), liver, skeletal muscle (SM), subcutaneous fat (SF), visceral fat (VF), and fasting whole blood 

(WB) for RNA and DNA isolation(21). Patients that were eligible for CABG and had no other severe 

systemic diseases (e.g. widespread cancer or active systemic inflammatory disease) were included. For 

quality control in genotyping, SNPs filtered for minor allele frequency MAF < 5%, Hardy-Weinberg 

equilibrium (HWE) p-value < 1x10-6, and call rate of 100%. Imputation was carried out using IMPUTE2 

with 1000 Genomes EUR as the reference(22). Quality control for imputed genotypes used additionally 

an IMPUTE2 INFO score filter < 0.3. After QC a total of 5,473,585 SNPs remained. The Ethical committee 

of the Karolinska Hospital approved the study, and all patients gave written informed consent after the 

nature and possible consequences of the study were explained. An expression trait was tested for 

association with each genotyped and imputed SNP using Kruskal-Wallis test and false discovery rate to 

correct for multiple testing as described before. First, all cis-pairs of SNPs within 50kb of the 

transcription start or end site for each gene were identified. Next, cis SNP-gene pairs were tested for 

association in all seven STAGE tissues using kruX(23). The p-value for eQTL inclusion in kruX was set at 

0.05. Finally, an empirical FDR estimate for each eQTL-gene pair was calculated using ten permutations 

by shuffling patient IDs on genotype data. As a result, the most significant eQTL-gene association in each 

tissue was reported. 

 

eQTL analysis in Haploreg 

Data on eQTL in healthy individuals were extracted from Haploreg version 4.1 

(http://www.broadinstitute.org/mammals/haploreg/haploreg.php). The viewpoint SNPs and all SNPs in 

LD (r2 > 0.8) were used as input. From the output, for each interacting gene, the most significant eQTL 

within each tissue was extracted. 

 

eQTL analysis in CTMM circulating cells 

CTMM circulating cells is a Dutch cohort from four different hospitals comprising of 714 patients 

undergoing coronary angiography of whom blood was stored. Monocytes were isolated by density 

centrifugation followed by positive magnetic bead isolation (CD14) and expression was measured using 

the Illumina humanHT-12 v3 Gene Expression BeadChip Array. After removal of samples with a median 

http://www.broadinstitute.org/mammals/haploreg/haploreg.php


intensity of <50, 370 patients were included in the analysis. The data were quantile normalized and and 

log2 transformed using the lumi R package(24). 

 

Genotyping was performed using a customized Affymetrix Axiom Tx array containing 767,203 genetic 

markers. Community standard quality control was performed, filtering out samples with missingness 

>5%, outlying heterozygosity (± 4SD from the cohort mean) or inconsistent sex. Samples of non-

European descent or those that were out of Hardy-Weinberg equilibrium (p<5x10-5) were removed. In 

total, 622 were used in the current analysis. Untyped variants were imputed using a combined reference 

panel of the 1000 Genomes Project(25) and Genome of the Netherlands(26) totaling more than 90 

million genetic variants across the genome. We used the software packages SHAPEIT(27) for phasing and 

IMPUTE2(22) for imputation. Prior to cis-eQTL analysis we filtered the imputed genotype data from 

CTMM based on MAF > 0.5%, HWE P > 1x10-6, Info-metric > 0.9, and only focused on those variants in LD 

(r2 >= 0.8) with the CAD associated variants. We then used fastQTL (v2.184)(28) to perform I-eQTL 

analyses using a fixed range (based on the 4C interactions) around each probeID available on the 

expression array.  

 

Mouse knockout models 

Murine gene names were mapped to the genes as follows. First, a custom data file was downloaded 

from the HUGO Gene Nomenclature Committee (http://www.genenames.org/cgi-bin/download) 

including the Approved gene name and the Mouse Genome Database ID from the Mouse Genome 

Informatics database and a file containing all available phenotypic information for all knockout mice was 

downloaded from MGI (ftp://ftp.informatics.jax.org/pub/reports/index.html#pheno). Next, for all 

approved gene names of genes identified through 4C-seq, the mouse phenotypes were looked up by 

linking the MGI IDs. If no linkage could be made for the MGI ID, this was coded as no available mouse 

model. If a mouse model was available, but no phenotype was found, this was coded as no available 

phenotype. If a mouse model was specifically coded as not showing any phenotype upon knockout, this 

was coded as a gene not resulting in any phenotype. Murine cardiovascular phenotypes were defined as 

a phenotype resulting in any of the following: impaired blood coagulation or abnormal platelets, 

abnormal glucose levels or homeostasis, abnormal vascular morphology, vascular remodelling or arterial 

differentiation, abnormal blood pressure, abnormal vasoconstriction, vasodilatation or vascular 

permeability, abnormal stress response of the heart, myocardial infarction, abnormal (circulating) lipid 

levels, abnormal fat morphology or amount, abnormal body weight, abnormal lipid droplet or fat cell 

http://www.genenames.org/cgi-bin/download
ftp://ftp.informatics.jax.org/pub/reports/index.html#pheno


size, abnormal macrophage response or inflammation, abnormal wound healing, arteritis, vasculitis, 

vascular occlusion or atherosclerosis.  

 

Human knockout models 

The interacting genes were extracted from the supplementary tables of the studies of Sulem et al. and 

MacArthur et al.(29,30). For each of the interacting genes, all SNPs and indels resulting in human 

functional knockouts were reported. 

 

Drug targets 

For the lookup of existing drugs that target any of the candidate genes, we used a custom built drug 

pipeline that searches for drug-gene interactions using DGIdb(31) , which merged the most known drug-

gene interaction databases, such as DrugBank(32) and PharmGKB(33) . We removed redundant results 

using  STITCH(34)  and WHO’s INN(35) . We tested overrepresentation of drug groups according to ATC 

codes(36) using Fisher exact tests. 

 

  



RESULTS 

4C-seq identifies additional candidate genes 

We identified 37 active DNA regulatory elements that co-localize with susceptibility loci for CAD or LAS. 

Twenty-six were active in both monocytes and coronary endothelial cells, 5 were only active in 

monocytes and 6 were only active in coronary endothelial cells (Supplemental table 1). To identify the 

target genes of these active DRE, we generated 63 4C-seq interaction datasets. We applied the following 

criteria for the identification of candidate genes: I) the transcriptional start site (TSS) co-localizes with a 

significant 4C-seq signal (P<10-8) within 5kb; II) the susceptibility variant or any other variant in LD (r2 

≥0.8) co-localizes with an active DRE signal in the cell type from with the 4C-seq signal was obtained and 

III) the gene is expressed (RPKM > 0.5) in the studied cell type. With this approach, we identified 326 

candidate genes (Supplemental table 1), 77 in human male coronary endothelial cells, 84 in human male 

monocytes and 165 in both cell types (Fig. 1). In total, we identified 294 candidate genes that were not 

previously reported by the CAD and LAS GWAS (Supplemental table 1). We replicated 235/242 (97.1%) 

of the chromatin interactions with expressed genes that were identified in male coronary endothelial 

cells in female coronary endothelial cells (Supplemental table 1). 

 

4C-seq identifies candidate genes in novel pathways 

We performed cell-type specific pathway analysis of the candidate genes identified by 4C-seq combined 

with the candidate genes that were previously identified by the GWAS on CAD and LAS (Supplemental 

table 2). Notably, these analyses revealed the Hypoxia signaling in the cardiovascular system pathway in 

monocytes (P = 0.01) and the NRF-mediated oxidative stress response pathway (P = 4.68*10-4 and P = 

0.026 in coronary endothelial cells and monocytes respectively, Supplemental table 2). These pathways 

are both involved in the cellular response to oxidative stress. Additionally, the 4C-seq approach revealed 

PTEN (a player in the Hypoxia signaling in the cardiovascular system pathway) as a novel candidate gene 

(Supplemental table 1). Although this gene was never reported via previous GWAS annotation, PTEN 

(phosphatase and tensin analog) was found to be a likely candidate gene based on dose-dependently 

upregulation by statins through higher peroxisome proliferator-activated receptor-gamma (PPAR 

gamma) activity(37). A mutation of PTEN led to inflammatory plaque characteristics in human 

atherosclerotic plaque(38) and increased stability of PTEN was found to ameliorate atherosclerosis(39). 

Furthermore, PTEN shares its upstream transcription regulator ZEB2 with CDKN2A and CDKN2B 



(enrichment P of overlap for ZEB2-regulated genes: 3.02x10-3 in monocytes and 3.06x10-3 in coronary 

endothelial cells). We reveal multiple novel pathways related to cardiovascular disease and we now 

show that PTEN physically interacts with a DRE at rs2246833 in monocytes  ( P interaction = 2.36x10-10).  

 

Expression of identified genes is genotype dependent 

DRE exert their function through regulation of gene expression. We explored this mechanism by 

studying expression quantitative trait loci: the GWAS SNPs (or a SNP in LD;  r2>0.8) that significantly 

affected the expression of the candidate genes identified by 4C-seq in the studied tissues (Table 1). For 

the candidate genes identified by 4C-seq in coronary endothelial cells, we performed lookups within 

eQTL data of atherosclerotic artery wall and internal mammary artery in the STAGE cohort of patients 

undergoing cardiac bypass surgery. We identified two eQTL (FDR<0.1) in atherosclerotic artery wall 

(rs9818870: MRAS and rs2281727: SRR, Supplemental table 3a). The SRR gene, that has not been 

reported previously, encodes for the serine racemase enzyme that is an endogenous ligand of the 

glycine site of NDMA receptors in the brain. Blockage of this site was found to prevent stroke 

damage(40). Interestingly, a set of twice the number of genes from the same genetic locus that were not 

identified by 4C-seq as a target gene resulted in no significant eQTL in STAGE. Using the HaploReg tool, 

we additionally examined expression in aorta, coronary artery and tibial artery tissue and identified 

another seven eQTL for genes that we identified in coronary endothelial cells (Supplemental table 3b), 

of which ARL3 and FAM117B were not reported before. Both genes are poorly studied in the context of 

cardiovascular disease. Within the VAMP5-VAMP8-GGCX locus we replicate rs1561198, that was 

previously reported to be an eQTL for GGCX in mammary artery by the CARDIoGRAMplusC4D 

investigators in the ASAP study(41), as an eQTL for GGCX in aorta and tibial artery.  

For genes identified by 4C-seq in monocytes, we performed cis-eQTL analysis in monocytes from 370 

patients undergoing coronary angiography for coronary artery atherosclerosis in the CTMM (Center for 

Translational Molecular Medicine) Circulating Cells cohort(42). We identified four eQTL (FDR<0.1) of 

which the genes overlap with genes identified by 4C-seq in monocytes of these patients (rs12740374: 

PSRC1, rs1561198: VAMP8, rs2246833: LIPA, rs12413409: USMG5, Supplemental table 3c). Previously, 

the CARDIoGRAMplusC4D investigators also identified rs1561198 as an eQTL for VAMP8 in 

lymphoblastoid cells and skin in the MuTHER study(43). Inclusion of the previously published 

cardiovascular cohort of Zeller et al.(44) revealed five additional genes (Supplemental table 3d). The SNP 

that revealed the strongest association with gene expression of PSRC1 in monocytes of CTMM 



(rs7528419) is in perfect LD (1) with rs12740374 in the SORT1 region. Interestingly, whereas the minor 

allele of the latter SNP is known to increase SORT1 expression in liver, we found no such association 

between rs7528419 and SORT1 expression in monocytes (nominal P = 0.87). In addition, we found an 

association between higher PSRC1 expression in monocytes with a more severe atherosclerotic 

phenotype identified by a higher atherosclerotic burden, quantified using the SYNTAX score (P = 0.003). 

This association with high atherosclerosis burden could not solely be explained by LDL levels, the 

putative mechanism through which SORT1 expression affects cardiovascular disease phenotypes (P 

when corrected for circulating LDL levels = 0.01). Expression of PSRC1 in whole blood has previously 

been associated with cardiovascular disease in an Asian population(45). Largely because the functional 

significance of the minor allele of rs12740374 as a transcription factor binding site that increases SORT1 

expression directly, no further attention has been given to alternative candidate genes in the SORT1 

region. With our 4C-seq approach in monocytes, we here show first evidence that the expression of 

PSRC1, a candidate gene in the SORT1 locus, is genotype-dependent expressed in monocytes and related 

to the severity of atherosclerosis. This example further supports the implication of our additionally 

identified candidate genes in cardiovascular disease. 

 

Additional genetic annotation 

We further explored current genetic knowledge for the candidate genes identified through 4C-seq 

(Table 1, Supplemental table 4-7).  

First, if the candidate genes are effector genes of the DREs within CVD susceptibility loci, one would 

expect the genes to be enriched for (common) variants associated with CVD. Using the VEGAS algorithm, 

we concatenated GWAS p-values of all single-nucleotide polymorphisms (SNPs) in or within 50kb of a 

gene into a p-value for that particular gene. This way, we studied the genes identified by 4C-seq in 

published and unpublished GWAS data studying a total of 22 traits, either surrogate markers of 

atherosclerosis or known risk factors for cardiovascular disease (Supplemental table 4). Of all 326 

candidate genes, 33 showed a significant association (P < 0.05/(22x326) = 6.97x10-6) with coronary 

artery disease in the CARDIoGRAMplusC4D GWAS and 149 were nominally associated with coronary 

artery disease in the CARDIoGRAMplusC4D GWAS (significant enrichment, 149/326: binomial P = 2.9 x 

10-102). Additionally, we found 7 genes that were significantly associated with BMI in GIANT and 29 genes 

that were significantly associated with at least one lipid trait in GLGC.  



Second, we annotated the prioritized interacting genes from our 4C-seq experiment with phenotypic 

information of mouse models within the Mouse Genome Informatics database (MGI, 

www.informatics.jax.org). We found murine phenotypic information on 144 mouse homologues 

(Supplemental table 5). Knockout of 67 of them resulted in a phenotype related to cardiovascular 

disease (significant enrichment, 67/144: binomial P = 1.36x10-47), such as abnormal blood vessel 

morphology (Col4a1, Cxcl12, Epor, Shc1, Tcf7l1), altered circulating fatty acid levels (Csf2, Kdm3a, Ldlr, 

Lipa, Pten) and impaired vascular contractility (Acta2). Human variants in ACTA2 are associated with 

early onset stroke and MI(46). Knockout of two candidate gene murine homologues affected 

development of atherosclerotic lesions, namely Ldlr (accelerated development of atherosclerosis) and 

Shc1 (resistance to diet-induced atherosclerosis). The p66 isoform of human SHC1 is implicated in 

reactive oxygen species generation and its knockdown in endothelial cells of obese mice attenuated 

production of these radicals and of fatty acids oxidation(47). Third, we investigated the biological effect 

of human knockout variation of the candidate genes to study druggability. We queried two datasets of 

available information on SNPs and insertion/deletion variants that cause human functional 

knockouts(29,30). We found human knockouts, caused by nonsense, splice or frameshift variants, for 89 

candidate genes (Supplemental table 6).  

Fourth, using a custom-built drug discovery pipeline, we found available compounds to target 50 of the 

candidate genes (Supplemental table 7a). These drugs showed a relative overrepresentation for usage 

as immunomodulating agents (P = 0.012 in coronary endothelial cells, P < 0.001 in monocytes) 

(Supplemental table 7b).  

Together, these findings provide further evidence that by using the 4C-seq method we identified 

additional candidate target genes for human atherosclerotic disease. 

  

http://www.informatics.jax.org/


DISCUSSION 

Based on 3D chromatin-chromatin interactions with DNA regulatory elements that co-localize with 

previously identified susceptibility loci, we present 294 additional candidate genes for CAD and LAS that 

are of potential interest in the pathophysiology of human atherosclerotic disease. This study is the first 

to systematically study the human chromatin interactions of the CARDIoGRAMplusC4D and 

METASTROKE loci. Many of the additional genes have not been implicated in atherosclerosis before. Our 

approach, from a DNA regulatory point of view, complements conventional methods for candidate gene 

identification of GWAS susceptibility, can help further unravel diseases with a complex genetic 

background, and pave the way for cell-type specific drug development. 

We have highlighted the 4C candidate genes that we could annotate via additional analyses and that 

therefore have known or foreseeable effects on cardiovascular disease. Based on tissue-specific 

pathway analyses, we highlighted PTEN that is known to be upregulated by statins and to possess 

effects on atherosclerosis(37–39). Furthermore, based on eQTL studies, we identified SRR, the effect of 

which was previously implicated in stroke(40), and USMG5, that was previously associated with white 

matter hyperintensities in the brain(48). Of special interest is the finding of an alternative mechanism by 

which the susceptibility locus that contains rs7528419 (SORT1 region) may exert its effect. Using 4C-

sequencing we identified a physical interaction between an active regulatory element that overlaps 

rs7528419 and PSRC1 in monocytes. Moreover, we found an association between rs7528419 and the 

expression of PSRC1 in monocytes and an association between PSRC1 expression and atherosclerosis 

severity. This association was independent of LDL levels, which is the putative mechanism of 

rs12740374, a SNP in perfect LD (1.0) with rs7528419 that was previously found to increase SORT1 

expression in liver.    

Mapping the SNPs that identify susceptibility loci in GWAS to genes that affect a complex disease, such 

as cardiovascular disease, is a challenging task. By annotating the locus with the linearly closest gene, 

the 3D conformation of chromatin is inadvertently not taken into account. Many of the additional 

candidate genes we report are located outside the GWAS susceptibility loci. Using 5C (chromosome 

conformation capture carbon copy) the importance of studying 3D interactions has been highlighted 

previously; in a sample of 628 TSS from the ENCODE project only 7% of the over 1000 long-range looping 

interactions were with the nearest gene(10). In a previous effort to identify candidate genes based on 

DNA regulatory mechanisms, 33 enhancers in the 9p21 locus were scrutinized(49). Interestingly, the 

chromatin interaction between the enhancers identified by 3C (chromatin conformation capture) was 



found to be remodeled upon treatment with interferon-γ in HUVECs. In our 4C-seq experiment, we 

confirmed the physical chromatin-chromatin interaction between the 9p21 susceptibility locus and 

several candidate genes, among which interferons, in human coronary endothelial cells and monocytes. 

However, we found that these genes were not actively expressed in these cell types and therefore did 

not consider them any further.  

There are some limitations to this study. First, there is no consensus about the gold standard approach 

to analysis of 4C-seq data. For example, we used a conservative cut-off for calling a chromatin-

chromatin interaction (P < 10-8). Altering this cut-off may result in more candidate genes. However, this 

likely leads to more false-positive results. We therefore report a quantitative measure for the p-value of 

the interaction of the DRE with the proposed candidate gene to enable the reader to take these 

considerations into account when interpreting the data. Second, while 4C-sequencing enables us to look 

at physical interactions, these interactions do not necessarily mean that the expression in the studied 

tissue is in fact regulated by the association locus or even expressed. We therefore decided to only 

report only genes that are actively expressed in the studied tissues. Furthermore, we found no eQTL 

association between the SNP of interest and any of the genes in the vicinity of the genes that were 

identified by 4C-sequencing, indicating that the resolution of the technique is sufficient to distinguish 

between candidate genes and less relevant genes within a genomic region.A more accurate cell type-

specific mapping of susceptibility loci to candidate genes in humans is of paramount importance for the 

development of specific compounds in the pharmaceutical industry. The genes we identified display only 

partial overlap between coronary endothelial cells and monocytes. This finding stresses the importance 

of cell-specific approaches in order to grasp the complex biology of atherosclerotic disease. It also 

highlights the possibility to develop cell-specific compounds to target atherosclerotic disease. Our 

results therefore underline the need to investigate cell type-specific 3D chromatin conformation in 

future functional follow-up of GWAS data. 
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TABLES 

Table 1 Candidate genes identified by 4C-seq in human coronary endothelial cells and/or human 

monocytes 

Chr 
Susceptibility 

locus 

4C-seq 

viewpoint(s) 

Gene 

identified 

by 4C-seq 

Cell type of 

identification 
eQTL 

    

C
o

ro
n

a
ry

 

e
n

d
o

th
e
li
a
l 

ce
ll
s 

M
o

n
o

cy
te

s  

1 MIA3 rs17464857 AIDA √ √  

   BROX √ √  

   MARC1 

 

√   

   MIA3 √ √  

   TAF1A √ √  

1 SORT1 rs12740374 AMPD2 √ √  

   ATXN7L2 √ √  

   CYB561D1 √ √  

   GNAI3 √ √  

   GNAT2 √   

   GSTM2 √ √  

   GSTM4 √ √  

   PSMA5 √ √  

   PSRC1  √ √ Monocytes 

   SARS √ √  

   SORT1 √ √  

2 APOB rs515135 LDAH √ √  

2 VAMP5-VAMP8-

GGCX 

rs1561198 GGCX  √ √ CEC 

   C2orf68 √ √  

   ELMOD3 √ √  

   MAT2A √ √  

   RETSAT √ √  

   RNF181 √ √  

   TGOLN2 √ √  

   TMEM150A √ √  

   USP39 √ √  

   VAMP5 √ √  

   VAMP8 √ √ Monocytes 

2 WDR12 rs6725887 CARF  √  

   FAM117B  √ √ CEC/ 

Monocytes 

   NBEAL1  √ √ CEC 

   WDR12 √ √  

3 MRAS rs9818870 MRAS  √ √ CEC 

6 ANKS1A rs12205331 C6orf106 √ √  

   RPS10 √ √  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Only genes that have their interacting viewpoint as eQTL or genes with a significant gene-based P 

value (P < 6.97x10-6 by gene-based test using VEGAS (corrected for multiple-testing 0.05/22 phenotypes 

x 326 available genes) are depicted. The full list of genes identified by 4C-seq can be found in 

Supplemental table 1. Susceptibility locus: name of the locus as given by CARDIoGRAMplusC4D or 

METASTROKE; viewpoint: SNP used as the focus point for the primer design of the 4C experiment; Gene: 

gene physically interacting with viewpoint, determined by 4C-seq;  Underlined genes: genes that have 

previously been reported by CARDIoGRAMplusC4D or METASTROKE; Chr: chromosome; eQTL: 

expression quantitative trait locus; GWAS: genome-wide association study CAD: coronary artery disease; 

BMI: body mass index; TC: total cholesterol; LDL: low-density lipoprotein; HDL: high-density lipoprotein; 

TG: triglycerides

 

   SNRPC √ √  

   UHRF1BP1 √ √  

6 PHACTR1 rs9369640, 

rs12526453 

MYLIP 

 

 √  

   PHACTR1  √ √ CEC 

8 LPL rs264 INTS10 √ √  

8 TRIB1 rs2954029 TRIB1 √ √  

9 CDKN2BAS rs1333049, 

rs3217992, 

rs2383207 

CDKN2A √   

   CDKN2B √ √  

10 CYP17A1-

CNNM2-NT5C2 

rs12413409 ARL3  √ √ CEC 

   USMG5 √ √ Monocytes 

10 CNNM2 rs12413409 BORCS7 √ √  

   WBP1L √ √  

10 KIAA1462 rs2505083 KIAA1462  √  CEC 

10 LIPA rs11203042, 

rs2246833 

LIPA  √ √ CEC/ 

Monocytes 

13 COL4A1-

COL4A2 

rs4773144 COL4A1 √   

   COL4A2 √   

17 RAI1-PEMT-

RASD1 

rs12936587 PEMT  √ √ Monocytes 

   RASD1 √ √ Monocytes 

17 SMG6 rs2281727 SRR  √ √ CEC 

   SMG6 √ √  

17 UBE2Z rs15563 CALCOCO2 √ √ Monocytes 

   KPNB1  √  

   UBE2Z √ √ Monocytes 

19 LDLR rs1122608 C19orf52  √  

   CARM1  √  

   LDLR  √  

   SMARCA4  √  

   TSPAN16  √  

   YIPF2  √  



FIGURES 

Figure 1 Flowchart of identification of candidate genes 

 

Susceptibility loci: SNPs associated with risk of disease in METASTROKE and/or CARDIoGRAM. Viewpoint 

SNPs: SNPs used as the focus point for the primer design of the 4C experiment. 



Figure legend for Supplemental figure 1 

Supplemental figure 1. Quality of 4C datasets of coronary endothelial cells and monocytes.  

The graphs show the quality measures of the 4C datasets. Y-axes shows the percentage of fragends 

covered around the viewpoint (measure for the complexity of the dataset), x-axes show the percentage 

of reads in cis i.e. the percentage of reads that map to the chromosome of the viewpoint (measure for 

the specificity of the dataset). Each dot represents one viewpoint. 

 


