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ABSRACT 

Gene expression is altered following a spinal transection (STx) in both motor and sensory 

systems. Exercise has been shown to influence gene expression in both systems post-STx.  

Gene expression alterations have also been shown in the dorsal root ganglia and 

nociceptive laminae of the spinal cord following either an incomplete spinal cord injury 

(SCI) or a contusive SCI.  However, the effect of STx and exercise on gene expression in 

spinal cord laminae I-III has not fully been examined. Therefore, the purpose of this 

study was to determine if gene expression in laminae I-III is altered following STx and 

determine if superimposed passive exercise of the hindlimbs would influence gene 

expression post-STx in laminae I-III.  Laser capture microdissection was used to 

selectively harvest laminae I-III of lumbar spinal cord sections and quantitative RT-PCR 

was used to examine relative expression of 23 selected genes in samples collected from 

control, STx and STx plus exercise rats.  We demonstrate that post-STx, gene expression 

for metabotropic glutamate receptors 1, 5 and 8 were up-regulated, whereas ionotropic 

glutamatergic receptor (Glur2) and glycinergic subunit GLRA1 expression was down-

regulated.  Daily exercise attenuated the down-regulation of Glur2 gene expression in 

laminae I-III.  Our results demonstrate that in a STx model, gene expression is altered in 

laminae I-III and that although passive exercise influences gene expression in both the 

motor and sensory systems, it had a minimal effect on gene expression in laminae I-III 

post-STx.  
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INTRODUCTION 

Following spinal cord injury (SCI), gene alteration in the nociceptive, 

proprioceptive, motor and sensory systems has been shown (Nesic et al., 2005; Ryge et 

al., 2010; Wienecke et al., 2010; Keeler et al., 2012; Navarrett et al., 2012; Chopek et al., 

2015).  The consequences of altered gene expression include spasticity due to alteration 

in motoneuron excitability (Murray et al., 2011) and persistent chronic neuropathic pain, 

which is present in up 40% of individuals with a SCI (Nesic et al., 2005; Mehta et al., 

2013).  As well, altered gene expression and the subsequent development of neuropathic 

pain is present following axotomy or nerve injury (Waxman et al., 1994; Woolf & 

Mannion, 1999; Costigan et al., 2002; Yang et al., 2004)   

In these models, in which varying degrees of ascending and descending fibres 

remain intact (Novakovic et al., 1999; Woolf & Mannion, 1999; Tsuzuki et al., 2001; 

Michael et al., 2015), gene expression has been quantified by homogenizing the entire 

spinal cord or the dorsal horn, whereas the perception of pain is mediated in the 

superficial lamina (I to III) of the dorsal horn (Huang et al., 2016).  As such, an 

examination of mRNA expression specific to the laminae associated with nociceptive 

signaling is an appropriate next step.  In addition, using a complete spinal transection 

(STx) model eliminates all descending input controlling for the influence of intact fibers 

that remain after incomplete spinal cord injury and to assess gene expression alteration 

that is solely from spinal or peripheral influence.  

A second part of this investigation was to examine the potential influence 

“passive exercise” has on gene expression in laminae I-III following a STx. Exercise in 

the form of daily passive cycling has been demonstrated to influence gene expression in 
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the motoneuron, dorsal root ganglia and lamina VII following STx (Keeler et al., 2012; 

Chopek et al., 2015).  Also, post-STx, daily passive cycling exercise has been shown to 

attenuate the change in motoneuron biophysical properties (Beaumont et al., 2004), 

normalize spinal reflexes (Cote et al., 2014; Chopek et al., 2015), and in the contusive 

SCI model, reduce allodynia and aberrant afferent sprouting (Detloff et al., 2014).  In 

addition, exercise is one of the only non-pharmacological approaches to attenuate 

neuropathic pain in incomplete spinal cord injury and peripheral nerve injuries (Dobson 

et al., 2014). Therefore, the influence of exercise was examined post STx on gene 

expression in lamina I-III. 

Previously we have used laser capture microdissection (LCM) in combination 

with qRT-PCR to isolate specific motoneuron types and examine gene expression 

following a complete spinal transection (STx; Chopek et al. 2015).  In this current 

investigation we used LCM and qRT-PCR to isolate the superficial laminae I-III of the 

lumbar spinal cord and examine gene expression between three groups:  1) control, 2) 

three months following a complete STx with no exercise, and 3) complete STx that 

received daily exercise for three months.   We compared the expression of 21 genes that 

express products both pre-synaptically and post-synaptically, in addition to genes that 

express products destined exclusive to pre-synaptic terminals or post-synaptic neurons. 

We show that despite previously demonstrated pronounced gene expression 

changes in the motoneurons and the sensory system post SCI, changes in gene expression 

in laminae I-III are modest.  In addition, daily passive exercise of the hindlimbs had a 

minimal effect on the altered gene expression.   
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Methods 

Animal care 

All animal treatment, surgical and experimental procedures were in accordance 

with the guidelines of the Canadian Council of Animal Care and approved by the 

University of Manitoba Animal Ethics Committee. 

 Adult female Sprague-Dawley rats weighing between 250 and 300 grams 

obtained from the University of Manitoba were used for all experiments described.  The 

rats were housed in groups of two in plastic cages situated in an environmentally 

controlled room maintained at 23°C with a 12:12 hour light-dark cycle.  The rats had 

unlimited access to water and chow throughout the experimental period.  Following the 

STx, rats were individually caged for ease of monitoring. 

 

Spinal transection procedure and post-operative care 

The surgical procedure and post-operative care were previously described in detail 

(Chopek et al., 2014).  Briefly, rats were initially anesthetized at 5% isoflurane and then 

maintained at 2-3% isoflurane mixed with 100% oxygen throughout the procedure. A 

laminectomy was performed at T8 followed by a small incision in the dura mater.  The 

spinal cord segment at T9 was then completely transected with microdissection scissors 

and gentle aspiration to ensure a complete transection of approximately 2mm.  Gelfoam 

was inserted into the gap and the musculature was sutured (Ethicon 4-0) and the skin was 

closed with vet bond.  Post-surgery, the rats were given the antibiotic Baytril (s.c. 

injection 0.5 mg/kg) twice daily for a week period and the analgesic Buprenex (s.c. 

injection 0.05 mg/kg) twice daily for the first two days.   
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Experimental groups 

Harvested dorsal laminae I-III were collected from the following three groups: 1) a 

control spine intact group (CON, N=6); 2) a spinalized group that did not receive any 

intervention for three months (STx, N=5); and 3) a spinalized group treated with daily 

passive exercise for three months (STx-Ex, N=5). 

 

Exercise protocol 

Daily exercise (passive cycling) as previously described (Skinner et al., 1996; Chopek et 

al., 2014) commenced 1 week following spinal transection.  The exercise regimen 

consisted of the rat hindlimbs manipulated through a full range of motion with left and 

right alternation and rhythmic extensor and flexor muscle stretch via motorized pedals.  

The exercise protocol consisted of 1-hour sessions daily at a rate of 30-50 revolutions per 

minute for a three-month duration. 

 

Tissue extraction, laser capture microdissection and qRT-PCR 

In an initial group of animals (n=5), gene expression profiles in laminae I-III, 

lamina VII, lamina VIII and lamina IX were compared using LCM. This allowed us to 1) 

validate the use of LCM to dissect various lamina by comparing our gene expression 

results to previous studies that have examined differential expression in spinal laminae, 

and 2) determine which genes have a higher level of expression in laminae I-III in the 

healthy control rats compared to other spinal cord laminae.     
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For the rats in the STx plus exercise study, at the time of sacrifice (24 hours after 

last passive cycling session), the rat was deeply anesthetized with 5% isoflurane followed 

by decapitation.  The lumbar enlargement of the spinal cord was immediately removed, 

placed in a cryomold, immersed in Tissue-Tec O.C.T. embedding compound (Gene 

Research Lab), fresh-frozen in isopentane and stored at -80 °C for future use.  Twelve-

µm cross-sections of the lumbar enlargement were cut on a cryostat and mounted on 

polytetrafluorethylene-coated glass slides.  Slides were then immersed in prechilled 

acetone (-20°C) for 1 minute, stained with cresyl violet, followed by a series of alcohol 

washes (75, 50, 50, 75, 90 and 100%) and air dried for 2 minutes.  Transverse lumbar 

enlargement sections for each rat were then scanned and photographed on a Zeiss 

microscope. In order to identify laminae I-III a superimposed template of Rexed laminae 

was used in combination with visually identifying the border between laminae III and IV 

based on neuronal size and density from the cresyl violet staining.  Lamina I-III was then 

dissected using the PALM laser microdissection and capture system and collected in a 

PALM microfuge tube with an adhesive cap.  To limit RNA degradation, samples were 

collected for no longer than 60 minutes per slide.   

The collected material in the adhesive cap was treated with 20 µl of lysis buffer 

(RNAqueous MicroKit; Ambion), and stored upside down for 20 min at 42°C to aid 

tissue digestion.  The tubes were then vortexed and centrifuged at 10062 g for 1 minute 

and stored at -80°C.  Total RNA was isolated from the LCM samples with the 

RNAqueous MicroKit (Ambion).  Total RNA concentration and integrity were 

determined with the RNA Pico 6000 Kit and the Agilent 2100 Bioanalayzer (Agilent 
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Technologies). Samples with a RNA integrity number of 6.5 or greater were accepted for 

analysis.   

 Reverse transcription was performed on equal amounts of sample RNA, with the 

Superscript Vilo cDNA Synthesis Kit (Invitrogen).  Synthesized cDNA was preamplified 

with the TaqMan PreAmp Master Mix Kit (Applied Biosystems) for 14 preamplification 

cycles.  Preamplified cDNA was diluted to 1ml final volume with TE buffer.  qPCRs 

were set up with 12.5 µl TaqMan Gene Expression Master Mix (Applied Biosystems),  

6.25 µl nucleases free H20, 1.25 µL TaqMan Gene Expression Assays and 5µL 

preamplified cDNA per reaction.  Table 1 contains a complete list of GEAs used.  

Reactions were run with the ABI 7500 Fast Real-Time PCR system (Applied 

Biosystems) for 40 cycles.  Levels of mRNA were normalized to succinate 

dehydrogenase complex subunit A (SDHA) mRNA levels and were expressed as a 

percent relative quantification (%RQ) of control spine cord intact rats.  All reactions were 

performed in triplicate and the coefficient of variation was <5% for each triplicate. 

   

Statistical analysis.  The mRNA results were expressed in RQ values calculated with the 

7500 Software version 2.0 (Applied Biosystems) using the 2 -∆∆Cq method (Livak & 

Schmittgen, 2001).  Preamplified pooled whole lumbar spinal cord cDNA served as the 

calibrator for all plates, allowing for comparison of data from multiple qPCR plates.  

Data were subjected to a one-way ANOVA to test for a main effect of group and 

Newman-Keuls analysis was used to test for difference between means.  The P value was 

set at < 0.05.  The following equation controlled the False Discovery Rate (Hassard & 

Becker, 1986), where t is the number of tests conducted: 
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!"#$%&'"	)*+,$' = 	)*+,$'	 ×	(& + 1)2&  

The adjusted P values used in this study were P < 0.028 for comparison of laminar gene 

expression and P < 0.025 for comparison of laminae I-III gene expression in the STx 

groups. 

Results for the STx and STx-EX groups were expressed as a percent relative to the 

control spinal cord intact group. 

 

RESULTS 

mRNA levels for various receptors and ion channels isolated from laminae I-III, 

lamina VII, lamina VIII and lamina IX were compared to mRNA levels of whole lumbar 

spinal cord in a subset of control rats.   In addition, gene expression of 23 genes 

associated with both pre- and post- synaptic receptors and ion channels in laminae I-III 

were compared in an uninjured control group, a chronic spinal transection group and a 

chronic spinal transection group that exercised for three months.  Data is presented below 

as mean ± SD percent compared to the CON group (100%).  

 

Gene expression distribution between different laminae in the adult spinal cord 

Expression of twelve genes associated with neuronal excitability and synaptic 

plasticity from isolated laminae I-III, lamina VII, lamina VIII and lamina IX were 

compared to mRNA levels acquired from whole lumbar spinal cord.  All twelves genes 

demonstrated differential laminar expression summarized in Table 1.  Eight of the 12 

genes had a higher level of expression in laminae I-III compared to lamina VII, lamina 

VIII, and lamina IX.  Gene expression for 5-HT1A (8-fold), KCC2 (2-fold), mGluR1 (2 
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to 3- fold), mGluR5 (4.5 to 7-fold), mGluR8 (2 to 3-fold), GDNF (85-fold), TAC1 (20 to 

40-fold) and STX1A (10-27-fold) in lamiae I-III was significantly higher compared to 

laminae VII, VIII and IX.  In addition, GABRA2 (3- to 5-fold), 5-HT2A (4 to 6-fold) and 

TrkA (150-fold) had a higher level of expression in Lamina IX compared to laminae I-III, 

lamina VII, and lamina VIII. 5-HT2C demonstrated a lower level of expression in lamina 

IX compared to laminae III, VII and VIII. These results are similar to previous studies in 

which serotonin receptors (Marlier et al., 1991), mGlu receptors (Berthele et al., 1999), 

STX1A (Aguado et al., 1999) and TAC1 (Mccarson & Krause, 1994) have demonstrated 

region-specific distribution in the spinal cord.   

 

Effect of spinal transection and exercise on gene expression in laminae I-III. 

Metabotropic glutamate receptors 

Our initial results showed that mGluR1, mGluR5 and mGluR8 demonstrated a 2-7 

fold higher level of expression in laminae I-III.  In the STx experiment, a significant 

group effect was found for mGlur1 (F2,13=5.9, P = 0.014), mGluR5 (F2,13 = 12.4, P = 

0.0001) and mGluR8 (F2,13 = 15.2, P = 0.0005). mGluR1, mGluR5, mGluR8 were 

significantly higher by 22, 17 and 21% in the STx group (P = 0.04, 0.01 & 0.001 

respectively, Figure 1) and 33, 23 and 18% in STx-Ex group (P = 0.01, 0.001 & 0.002) 

respectively compared to the CON group.  No difference was seen between the STx and 

STx-Ex groups.   

 

Ionotropic glutamate receptors 
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Gene expression for subunits of AMPA receptor (GluR2, GluR3) and the NMDA 

receptor (GRIN1) were examined. A significant group effect was found for GluR2 (F2,13 

= 5.1, P = 0.024). GluR2, which can undergo splicing to render the AMPA channel 

impermeable to calcium, was down-regulated 13% in the STx group compared to the 

control group (P = 0.045).  Furthermore, exercise influenced GluR2 expression, 

preventing the down-regulation seen in the STx group (P = 0.019), with gene expression 

between the STx-EX and control group being similar.  No effect of STx was seen for 

GluR3 or GRIN1 compared to the control group (Figure 1). 

 

Glycinergic and GABAergic receptors 

A significant group effect was found for the Glycine receptor alpha subunit (F2,13 

=11.2, P = 0.001, GLRA1).  GLRA1 expression was down-regulated 19% in the STx group 

compared to the control group (P = 0.001).  In the STx-EX group, the down regulation 

was 11% (P = 0.018), with no difference in the down-regulation when compared to the 

STx group.  Expression of the subunits for the ionotropic GABA A receptor (GABRA2, 

GABRB3, GABRG2) and the metabotropic GABA B receptor (GABBR1, GABBR2) 

was not altered in the STx group compared to the control group (Figure 2).   

 

Serotonin receptors 

5-HT1AR activation is linked to pain (Avila-Rojas et al., 2015) and in our initial 

study demonstrated region-specific distribution with an 8-fold higher expression in 

laminae I-III compared to laminae VII, VIII and IX.  Despite this, no alteration in gene 

expression was seen for the 5-HTRs. 5-HT1AR, 5-HT2AR and 5-HT2CR expression in the 
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STx group was 106 ± 15%, 104 ± 12% and 102 ± 4% compared to the CON group, 

respectively.  In the STx-EX group, 5-HT1AR, 5-HT2AR and 5-HT2CR expression was 108 

± 11%, 111 ± 16% and 105 ± 15% respectively compared to the CON group. 

 

Opioid Receptors 

Gene expression for the opioid receptors delta (DOR), kappa (KOR) and mu 

(MOR) were examined given their role in modulating nociception in the spinal cord 

(Przewlocki & Przewlocka, 2005) and that the MOR is up-regulated in the brain and 

down-regulated in the spinal cord following a contusive SCI (Michael et al., 2015).  In 

our present study no difference in gene expression was seen between the control and STx 

groups for any of the opioid receptors in laminae I-III.  DOR expression was 98 ± 21 % 

and 84 ± 20 % in the STx and STx-EX groups compared to the CON group.  KOR and 

MOR expression was 113 ± 8% and 111 ± 8 % in the STx group and 120 ± 15% and 116 

± 18 % in the STx-EX group compared to the CON group. 

 

STX1A, TAC1, KCC2 expression 

STX1A, which is involved in presynaptic docking of neurotransmitter vesicles 

demonstrated a 10-fold higher level of expression in Lamina I-III. However, spinal 

transection did not influence STX1A expression.  STX1A expression in the STx and 

STx-EX compared to the control group was 104 ± 10% and 103 ± 10% respectively.  

Similar, TAC1, which has a role in nociceptive processing, was expressed 20-fold higher 

in lamina I-III demonstrated no change in gene expression seen in the STx groups.  TAC1 

expression was 90 ± 7% and 98 ± 10% in the STx and STx-EX groups compared to the 

Page 16 of 32European Journal of Neuroscience



For Peer Review

Dorsal horn gene expression following STx 

13 
 

CON group.  Lastly, KCC2 which is expressed significantly higher in laminae I-III and is 

down-regulated in the motoneuron and linked to spasticity following STx (Boulenguez et 

al., 2010a) demonstrated no alteration in expression in the STx groups.  Compared to the 

CON group, KCC2 expression was 96 ± 7% and 104 ± 8% in the STx and STx-EX 

groups. 

 

GDNF AND TRK A expression 

GDNF expression demonstrated an 85-fold higher expression in lamina I-III 

compared to laminae VII, VII and IX.  However no difference in GDNF gene expression 

between the control and STx groups was seen in laminae I-III.  Compared to the CON 

group, GDNF expression was 113 ± 17% and 94 ± 37% in the STx and STx-Ex groups.  

TrkA demonstrated a trend between groups (F2,13 = 4.2, P = 0.037) and post-hoc analysis 

suggests that trkA tended to be up-regulated 29 ± 17% in the STx-EX group (P = 0.038) 

and 19 ± 21% in the STx group (P = 0.008) compared to the CON group.  

 

DISCUSSION 

The purpose of this study was two-fold. First, we sought to examine gene 

expression related to the modulation of sensory signaling in laminae I-III following a 

complete STx. Second, we wished to determine if exercise alters genes expression in 

laminae I-III following a complete STx.  Similar to peripheral nerve injury or an 

incomplete SCI where extensive alterations are noted in laminae I-III, our results 

demonstrate that alteration in gene expression is present following a complete STx. Of 

the 23 genes examined associated with pre- and post-synaptic excitability and sensory 
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signaling in laminae I-III, five genes related to glutamatergic and glycinergic receptors 

demonstrated alteration in their expression compared to the control group.  In addition, 

daily exercise had a minimal effect on gene expression, attenuating the down-regulation 

of GluR2. 

 

Gene expression in laminae I-III post-spinal transection 

To date, studies have focused on laminae I-III gene expression in models of spinal 

cord contusion, incomplete spinal cord injury or peripheral nerve injury with little focus 

on a complete STx model (Michael et al., 2015; Novakovic et al., 1999; Tsuzuki et al., 

2001), as these models induce a high level of neuropathic pain.  However, the use of a 

complete STx model allows one to determine if the maladaptive gene expression changes 

described in the previous injury models are present in the absence of spared descending 

supraspinal input and conscious awareness.  In addition, the use of a complete STx model 

allowed us to make comparisons of passive cycling exercise on gene expression in 

laminae I-III with those changes noted in the sensory and motor systems following a 

complete STx. 

Interestingly, our results demonstrate that in the absence of descending input, 

alterations in laminae I-III gene expression were still present. Of significant interest is the 

alteration of the metabotropic glutamate receptors, in which maladaptive mGluR 

expression has been linked to neuropathic pain, allodynia and hyperalgesia (Mills et al., 

2001; Kolber, 2015; Chiechio, 2016). Our results demonstrate that mGluR expression 

increased between 15-25% following a STx in laminae I-III.  These results are similar to 

that seen in spinal contusive injury and hemisected models in which immunofluorescence 
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intensity increases in the superficial laminae for mGluR1 receptors (Mills et al., 2001; 

Gwak & Hulsebosch, 2005) .  However, they demonstrated no increase in mGluR5 

expression, which may be due to the different injury models and methodology used 

between our studies.  In addition, we also demonstrated an increase in mGluR8 

expression.  Previous studies have shown mGluR8 is expressed in the somas of 

nociceptive afferents in the dorsal root ganglia (Carlton & Hargett, 2007) , but expression 

within spinal cord laminae I-III has not been demonstrated (Valerio et al., 1997).  This 

warrants further investigation as mGluR8 mRNA was detected in the control group and 

also significantly increased in the STx groups.   

Based on sequence, pharmacology and intracellular signaling pathways, mGluRs 

are classified into three groups. Specifically mGluR1 and mGluR5 belong to group 1 

which are predominately post-synaptic and regulate neuronal excitability through an 

increase in phospholipase C and a decrease in K+ channel conductance.  mGluR8 belongs 

to group 3 receptors which are predominately presynaptic and regulate neurotransmitter 

release (Chiechio, 2016).  Taken together, our results demonstrate that complete STx 

alters both pre- and post-synaptic excitability in the superficial laminae.  This could 

suggest that neuropathic pain, allodynia and hyperalgesia, may be influenced by a change 

in the regulation of these genes, although our study did not include measurements of pain 

or changes in sensitivity to touch and temperature. 

To our knowledge, this is the first study to examine ionotropic AMPA and 

NMDA glutamate receptor mRNA post STx in the dorsal horn.  Ionotropic glutamate 

receptors are proposed to be involved in acute pain transmission and neuronal plasticity 

that underlies chronic pain and inflammation in neuropathic states (Dray et al., 1994),  in 
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addition to mediating the intensity and duration of nociceptive neuron activity 

(Dickenson et al., 1997). Whereas AMPA receptors set the baseline activity of 

nociceptive neurons, NMDA receptors are linked to prolonged pain states through 

prolonged depolarization and increased neuronal activity termed “wind-up” (Dickerson et 

al., 1997). Of the three iontropic glutamate receptor genes we examined, a decrease in 

AMPA receptor subunit 2 (GluR2) expression post STx was noted.  This is of interest as 

the GluR2 receptor is known to undergo splice variants which make the receptor 

impermeable to calcium and thus reducing its activity.  Further investigation is needed to 

determine if the reduction in GluR2 involves splice variants and whether this is pre-

synaptic or post-synaptic alteration in laminae I-III.    

In addition to metabotropic and ionotropic glutamate receptors, GABAergic 

receptor expression has also been linked to pain (Roberts et al., 1986; Sivilotti & Woolf, 

1994; Latremoliere & Woolf, 2009) and central sensitization (Gjerstad et al., 2001; 

Washburn et al., 2007).  In healthy controls, in which descending fibres are intact, central 

sensitization does not occur (Gjerstad et al., 2001; Washburn et al., 2007).  Interestingly, 

our results demonstrated that gene expression for both ionotropic and metabotropic 

GABA receptors were not altered following a complete STx in which the descending 

fibres are completely removed.  

Although no alteration in GABA receptor gene expression was found, we 

demonstrated that glycinergic receptor subunit alpha 1 (glra1) expression was down-

regulated in the STx group.  Glycinergic receptors are exclusively post-synaptic ligand-

gated chloride channels that mediate fast-synaptic inhibition.  Neuronal excitability is 

predominately controlled by the balance of excitatory ionotropic receptors and inhibitory 
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glycinergic receptors (Lynch, 2004).  In addition, calcium influx via kainite receptor 

activation can reduce membrane bound glycine receptor expression to regulate the 

excitatory-inhibitory balance.  Taken together, this could suggest that neuronal 

homeostasis is altered in laminae I-III following a STx, and that receptor regulation is a 

potential mechanism to maintain homeostasis post-injury.    

Lastly, we did not see any alteration in KCC2 expression post STx, whereas 

others have seen a down-regulation of the membrane-bound to cytoplasmic ratio of 

KCC2 in whole cord homogenates below an acute STx.  KCC2 has also been implicated 

in spasticity post-SCI, as a down-regulation of KCC2 alters the equilibrium of chloride, 

increasing the excitability of the cell (Boulenguez et al., 2010b). In addition, we 

previously demonstrated a 23% decreases in KCC2 expression in flexor but not extensor 

motoneurons (Chopek et al., 2015) and Cote et al., showed a 20% decrease in protein 

expression in motoneurons (Cote et al., 2014; Chopek et al., 2015).  Taken together, 

these results would suggest that KCC2 likely mediates neuronal excitability in the ventral 

horn and that although it is linked to nociceptive sensitization in the acute STx model 

(Huang et al.,) this may not be achieved through alteration in KCC2 gene expression. 

Influence of exercise on gene expression in laminae I-III 

 Exercise is effective in alleviating neuropathic pain in incomplete or contusive 

SCI models or after peripheral nerve injury, although the exact mechanisms are unknown 

(Dobson et al., 2014).  Following a contusive cervical spinal injury, exercise was shown 

to reduce neuropathic pain by reducing aberrant c-fibre sprouting by attenuating the 

increase in GDNF and atremin expression post injury (Detloff et al., 2014).  In addition, 

the benefits of passive cycling exercise have been well documented in multiple systems 
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post-STx.  These changes include attenuating muscle atrophy (Houle et al., 1999; 

Murphy et al., 1999; Peterson et al., 2000), normalizing spinal reflexes (Skinner et al., 

1996; Chopek et al., 2014; Cote et al., 2014), maintaining motoneuron biophysical 

properties (Beaumont et al., 2004) and gene expression (Keeler et al., 2012; Chopek et 

al., 2015) and preserving proprioceptive transmission (Ollivier-Lanvin et al., 2010).   

Passive cycling exercise in the current study influenced expression of only one of five 

genes that were altered following STx, which maintained the expression of GluR2.  

GluR2 is found at both pre and post-synaptic sites and maintains neuronal excitability, 

thus passive cycling may maintain neuronal homeostasis in laminae I-III neurons. 

The minimal impact of passive cycling exercise on gene expression in laminae I-

III is likely due to a combination of the following two reasons.  First, training-specific 

alterations are seen below the lesion post STx (see Edgerton et al., 2001a) and passive 

cycling which includes rhythmic sensory afferent and motoneuron activation likely 

excludes activations of nociceptive afferents.  Second, we examined the impact of passive 

cycling exercise in the complete STx model whereas others have used a spinal contusion 

model.  It is very likely that the remaining descending fibres impose alterations in the 

spinal cord which are not seen in the complete STx model and therefore exercise does not 

substantially influence gene expression. 

Conclusion 

We demonstrated that in the complete STx model, gene expression involving 

glutamatergic and glycinergic transmission at both pre- and post- synaptic sites in 

laminae I-III are altered.  In addition, we demonstrate that passive cycling exercise can 
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influence gene expression in laminae I-III following a STx by maintaining expression of 

the AMPA receptor GluR2.   
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ABBREVIATONS 

5-HT: serotonin, DOR: delta opioid receptor, GABBR1: GABA B receptor subunit 1, 

GABBR2: GABA B receptor subunit 2, GABRA2: GABA A receptor alpha subunit 1, 

GABRB3: GABA A receptor beta subunit 3, GABRG2: GABA A receptor gamma 

subunit 2, GDNF: glial cell-derived neurotrophic factor,  GLRA1: glycine receptor 

alpha subunit 1, gluR: AMPA glutamate receptor, GRIN1: NMDA glutamate receptor 

subunit 1, KOR, kappa opioid receptor, LCM: laser capture microdissection, mGluR: 

metabotropic glutamate receptor, MOR: mu opioid receptor, SCI: spinal cord injury, 

STx: spinal transection, STX1A: syntaxin 1A, TAC1: tachykinin precursor 1, trkA: 

tyrosine kinase receptor A  
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TABLES 

Table 1. Gene expression assays for qPCR     

Gene 
Symbol Protein  QPCR Assay ID RefSeqID 

Amplicon 
Length, bp 

SDHA SDHA Rn00590475_m1 NM_130428.1 59 

GRM1 mGluR1 Rn00566625_m1 NM_001114330 83 

GRM5 mGluR5 Rn00566628_m1 NM_017012.1 112 

GRM8 mGluR8 Rn00573505_m1 NM_022202.1 74 

GRIA2 GluR2 Rn00568514_m1 NM_001083811.1 122 

GRIA3 GluR3 Rn00583547_m1 NM_001112742.1 74 

Grin1 NMDA1 Rn01436034_m1 NM_001270602.1 73 

GLRA1 GLRA1 Rn00565582_m1 NM_013133.1 61 

GABRA2 GABAAα2 Rn01413643_m1 NM_001135779.1 123 

GABRB3 GABAAβ3 Rn00567029_m1 NM_017065.1 139 

GABRG2 GABAAγ2 Rn00788325_m1 NM_183327.1 76 

GABBR1 GABAB1 Rn00578911_m1 NM_031028.3 113 

GABBR2 GABAB2 Rn00582550_m1 NM_031802.1 87 

HTR1A 5-HT1A Rn00561409_s1 NM_012585.1 75 

HTR2A 5-HT2A Rn00568473_m1 NM_017254.1 71 

HTR2C 5-HT2C Rn00562748_m1 NM_012765.3 100 

OPRD1 DOR Rn00561699_m1 NM_012617.1 70 

OPRM1 MOR Rn01430371_m1 NM_001038597.2 64 

OPRK1 KOR Rn01448892_m1 NM_017167.2 66 

STX1A Syntaxin-1A Rn00587278_m1 NM_053788.2 70 

TAC1 TKN1  Rn01500392_m1 NM_001124768.1 112 

Slc12a5 Kcc2 Rn0059264_m1 NM_134363.1 79 

GDNF GDNF Rn00569510_m1 NM_019139.1 122 

NTRK1 TrkA Rn00572130_m1 NM_021589.1 65 
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Table 2. Relative gene expression in spinal cord laminae 

Gene Laminae I-III Lamina VII Lamina VIII Lamina IX F value 

5-HT1A 9.0 ± 1.2* 1.2 ± 0.4 1.2 ± 0.2 0.7 ± 0.2 189.6 

5-HT2A 0.8 ± 0.1 0.5 ± 0.1 1.4 ± 0.5 5.9 ± 2.4Ψ 22.4 

5-HT2C 48.0 ± 0.2 45.9 ± 1.8 44.85 ± 5.1 29.3 ± 3.2^ 15.5 

KCC2 3041 ± 673* 1896 ± 417 1651 ± 268 1686 ± 184 11.8 

mGluR1 142 ± 60.5* 56.2 ± 24.1 40.7 ± 14.1 31.7 ± 6.7 11.6 

mGluR5 277 ± 54.5 * 61.9 ± 3.8 38.1 ± 7.0 32.3 ± 7.1 89.3 

mGluR8 0.4 ± 0.01* 0.2 ± 0.01 0.1 ± 0.0 1 0.1 ± 0.02 65.8 

GDNF 85.8 ± 8.8* 4.1 ± 4.7 1.4 ± 0.5 1.6 ± 1.4 339.1 

TAC1 0.4 ± 0.1* 0.02 ± 0.01 0.01 ± 0.01 0.007 ± 0.005 81.5 

STX1A 1.38 ± 0.1* 0.1 ± 0.08 0.09 ± 0.02 0.05 ± 0.02 318.8 

TrkA 0.002 ± 0.00 0.007 ± 0.00 0.006 ± 0.00 0.3 ± 0.01 Ψ 14.5 

GABRA2 0.2 ± 0.02 0.1 ± 0.02 0.2 ± 0.08 0.7 ± 0.3 Ψ 13.6 
* significantly higher expression in Laminae I-III compared to Laminae VII, VIII and IX respectively 
(P<0.001) 

Ψ significantly higher expression in Lamina IX compared to Laminae I-III, VII and VIII respectively 
(P<0.001) 
^ significantly lower expression in Lamina IX compared to Laminae I-III,  VII and  VIII respectively 
(P<0.001) 

 

 

FIGURE CAPTIONS 

Figure 1 Glutamatergic receptor gene expression in laminae I-III of spinal rats. 

Relative expression of metabotropic and ionotropic glutamatergic receptors in the 

STx and STx-EX groups compared to the CON group.  The metabotropic  

glutamatergic receptors 1, 5 and 8 were up-regulated, while the ionotropic GluR2 

was down regulated in the STx-group.  Exercise prevented the down-regulation of 

GluR2.  * Significant difference from the CON group (P<0.02).  Ψ Significant 

difference between the STx and STx-EX group (P<0.02).  Data are presented as 

mean ± SD. 
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Figure 2. GABAergic receptor gene expression in laminae I-III of spinal rats.   

Relative expression of metabotropic and ionotropic GABAergic receptors in the STx 

and STx-EX groups compared to the CON group.  The ionotropic GLRA1 receptor  

was down-regulated in the STx-groups.  * Significant difference compared to the  

CON group (P<0.01).  Data are presented as mean ± SD. 
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