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Abstract.—Recent simulation studies examining the performance of Bayesian species delimitation as implemented in the
BPP program have suggested that BPP may detect population splits but not species divergences and that it tends to over-
split when data of many loci are analyzed. Here, we confirm these results and provide the mathematical justifications.
We point out that the distinction between population and species splits made in the protracted speciation model (PSM)
has no influence on the generation of gene trees and sequence data, which explains why no method can use such data to
distinguish between population splits and speciation. We suggest that the PSM is unrealistic as its mechanism for assigning
species status assumes instantaneous speciation, contradicting prevailing taxonomic practice. We confirm the suggestion,
based on simulation, that in the case of speciation with gene flow, Bayesian model selection as implemented in BPP tends to
detect population splits when the amount of data (the number of loci) increases. We discuss the use of a recently proposed
empirical genealogical divergence index (gdi) for species delimitation and illustrate that parameter estimates produced by
a full likelihood analysis as implemented in BPP provide much more reliable inference under the gdi than the approximate
method PHRAPL. We distinguish between Bayesian model selection and parameter estimation and suggest that the model
selection approach is useful for identifying sympatric cryptic species, while the parameter estimation approach may be used
to implement empirical criteria for determining species status among allopatric populations. [BPP; multispecies coalescent;
Species delimitation; taxonomy.]

In the past decade, the multispecies coalescent
(MSC) model (Rannala and Yang 2003) has emerged
as an important framework for statistical analysis of
genomic sequence data from closely related species.
Under the model, different genomic regions (called
loci) may have different genealogical histories due to
coalescent processes occurring in the extinct ancestral
species. The MSC thus naturally accommodates gene
tree heterogeneity across the genome. Likelihood-
based inference under the MSC averages over the
gene trees for multiple loci, achieved through either
numerical integration (Yang 2002; Zhu and Yang 2012)
or Bayesian Markov chain Monte Carlo (MCMC)
(Edwards 2009; Heled and Drummond 2010; Yang and
Rannala 2010, 2014). Averaging over gene trees incurs
a heavy computational burden but has the benefit of
accommodating phylogenetic uncertainty at individual
loci, which is important when the species are closely
related and the sequence alignment at each locus has
low phylogenetic information content (Xu and Yang
2016). Given the species phylogeny, the MSC can be used
to estimate important parameters concerning species
divergences such as the population sizes of modern
and ancestral species, species divergence times, and
past migration patterns and rates (Takahata et al.
1995; Burgess and Yang 2008; Hey 2010; Mailund
et al. 2012). The MSC also provides the appropriate
inference framework for estimating species phylogenies,

while accommodating gene tree heterogeneity caused
by deep coalescence and incomplete lineage sorting
(Maddison 1997; Nichols 2001; Edwards 2009; Heled and
Drummond 2010; Yang and Rannala 2014). It has been
applied to species identification (assignment) and found
to achieve better statistical performance than DNA bar-
coding based on a simple distance threshold (Yang and
Rannala 2017). The MSC has also been used to address
the problem of species discovery (or delimitation) (Yang
and Rannala 2010, 2014). Different species delimitation
models are formulated as competing statistical models
and inferred from the genetic data through Bayesian
model selection (i.e., through calculation of posterior
model probabilities). Species delimitation is a complex
issue, however, partly because there is no universally
accepted definition of species (Mallet 2013).

Two recent studies (Jackson et al. 2017; Sukumaran
and Knowles 2017) used computer simulation to evaluate
the performance of Bayesian species delimitation as
implemented in the software package BPP (Bayesian
Phylogenetics and Phylogeography) (Yang and Rannala
2010; Rannala and Yang 2013). Both studies concluded
that BPP may over-split, capturing population splits
rather than species divergences. Sukumaran and
Knowles (2017) simulated species phylogenies, gene
trees, and sequence data under the protracted speciation
model (PSM) (Rosenblum et al. 2012; Etienne et al. 2014),
which distinguishes between populations (incipient
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species) and species. They concluded that in some cases
BPP delimited population structure rather than species.
Jackson et al. (2017) simulated sequence data under
the MSC model on a given species tree, and then
used a heuristic genealogical divergence index (gdi) to
define species status. They found that their simulation-
based heuristic method PHRAPL was more successful in
inferring species status than BPP, which tended to split
subdivided populations into species even in the face of
high gene flow.

Here, we examine the conditions of the simulations
of Sukumaran and Knowles (2017) and Jackson et al.
(2017) to evaluate the performance of BPP. Two features
of the simulation of Sukumaran and Knowles (2017)
are noteworthy. First, the species conversion process
is superimposed on the population branching process
and is Markovian (memoryless) so the rate of species
conversion (from incipient species to species) is fixed and
independent of the duration of genetic isolation between
incipient species. Moreover, the PSM distinguishes
between populations and species but the species status
of lineages is ignored when the gene trees and sequence
data are generated under the MSC model for subsequent
analysis using BPP. Second, the assignment of species
status in the PSM does not appear to be consistent with
current taxonomic practices or with most models of
speciation.

In Jackson et al. (2017), a heuristic criterion was used to
define species and that definition was used in PHRAPL but
not in BPP when both programs were used to infer species
status. We perform a fair comparison in which the same
heuristic species definition is used in both PHRAPL and BPP
analyses. We demonstrate that even though BPP ignores
gene flow and is based on the simplistic JC mutation
model (Jukes and Cantor 1969), it provides more accurate
parameter estimates and inference of species status than
PHRAPL when both programs use the same heuristic
definition of species. We discuss the asymptotic behavior
of Bayesian species delimitation through model selection
as the number of loci increases.

PROTRACTED SPECIATION?
A defining feature of the simulation by Sukumaran

and Knowles (2017) under the PSM is that the conversion
event that transforms a population (an incipient species)
into a species (a true species) is independent of the
process of genetic divergence among populations and
of the generation of gene trees and sequence data. The
PSM distinguishes between populations and species
but when the population tree is used to simulate gene
trees and sequences no such distinction is made. The
simulation may be considered an attempt to mimic
the use of the neutral genome or non-coding DNA
to delineate species boundaries, but the procedure
makes it clear that the simulated sequence data do not
contain information concerning species status. This is
a consequence of the likelihood principle in statistics,
which states that all information about the competing

models and model parameters is contained in the
likelihood function, the probability of the data given
the model and parameters (O’Hagan and Forster, 2004,
pp. 61–64). If two models make the same probabilistic
predictions about the observable data and thus have
identical likelihoods for all possible data outcomes, the
models are not identifiable and the data cannot be used
to distinguish them.

The PSM used in the simulation of Sukumaran and
Knowles (2017) is a simplified version in which the
“species initiation rate” (rate at which incipient species
arise) is identical for incipient and true species, as is
the species extinction rate. Thus the model has three
parameters, species initiation rate �, species extinction
rate �, and species conversion rate �. Because the rates
� and � do not depend on the status of the population
(incipient species or true species) it is straightforward
to study the statistical properties of this model by first
determining the probability density of the population
tree under a conventional birth–death process and then
superimposing the process of species conversion on the
population tree.

Let S be the population tree topology and τ be the
set of divergence times (Fig. 1). Let θ be the set of
population size parameters, with �=4N� where N is
the effective population size and � is the mutation rate
per generation per site. Both parameters � and � are
measured in the expected number of mutations per site.
Let � be the species delimitation (or a representation of
coloring scheme in Fig. 1). Let the sequence data at the
L loci be X={Xi}, i=1,··· ,L, and let the gene trees be
G={Gi}. Bayesian species delimitation under the PSM
should then involve a slight change to the formulation
of Yang and Rannala (2010). The posterior probability
distribution of species delimitation, species/population
tree as well as the parameters in the MSC on the
population tree (�s and �s) is then

f (�,S,τ,θ|X) ∝ f (�,S,τ|�,�,�)×f (θ|S)

×
L∏

i=1

∫
Gi

f (Gi|S,τ,θ)f (Xi|Gi)dGi. (1)

Here, the MSC density for the gene tree topology and
coalescent times, f (Gi|S,τ,θ), is given by Rannala and
Yang (2003), the probability of the sequence alignment at
locus i (known as the phylogenetic likelihood), f (Xi|Gi),
is given by Felsenstein (1981).

The joint prior for the population tree and species
delimitation factors into two terms:

f (�,S,τ|�,�,�)= f (S,τ|�,�)f (�|S,τ,�), (2)

where f (S,τ|�,�) is the density for the population
tree and divergence times given by the birth–death
process (e.g., Rannala and Yang, 1996), while f (�|S,τ,�)
is the probability of the species delimitation (species
conversions) given the population tree, which is
specified by the Poisson process, with constant rate �, of
species conversions running along the branches of the
population tree.
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For example, given the population tree for eight
populations of Figure 1, the probability of the
delimitation in Figure 1 (i.e., the probability of the
coloring scheme with the two conversion events and
with the three true species) is

f (�|S,τ,�)

=�2e−�[2�ABCDEFGH+�ABCDE+�AB+�CDE+�DE+�FGH+�GH ], (3)

where �AB is the age of the AB ancestor, and so on. Note
that the term in the square bracket is the total time length
of the population tree.

From this formulation, it is clear that the impact of
the PSM is to change the prior, since the sequence
likelihood and the MSC density for the gene trees
are unchanged. The fact that the species conversion
process is conditionally independent of the population
tree means that the genetic data do not allow species
to be delimited without assuming the rate �. It then
follows that the posterior probabilities for the species
delimitation models will be extremely sensitive to the
conversion rate � or its prior.

The Protracted Speciation Model Assumes Instantaneous
Speciation

The PSM assumed in the simulation of Sukumaran
and Knowles (2017) has several extreme properties,
making it an unrealistic model for most speciation
processes in nature. The model posits an exaggerated
form of punctuated equilibrium—exponentially
distributed periods of stasis followed by an
instantaneous conversion to a new species. At the
conversion event, the new population and the parental
population (which are only one generation apart) are
deemed distinct species. Even though Sukumaran and
Knowles (2017) used the PSM to simulate speciation
as an extended process rather than an event, PSM
assumes instantaneous speciation or conversion
of an incipient species into true species in one
generation. Few species appear to have originated
in this way. An alternative “gradualist” model would
treat morphological characters involved in species
classification as quantitative traits that evolve according
to a diffusion model determined by the effects of
underlying mutational changes and genetic drift of
allele frequencies. Two populations are recognized as
different species if the difference in mean trait values
exceeds some threshold, which reflects the biologist’s
perception of what species are and how morphologically
different distinct species should be. Under such a model
there will be a strong covariance between genetic
isolation, population divergence time, and species
status. This gradualist model is another extreme and
a more realistic model may include a mixture of
morphological “jumps” as well as “diffusions” (see
Discussion section).

The way in which the PSM assigns species status
is also problematic, contradicting prevailing taxonomic

A B C
Species 1

D E
Species 2

F G H
Species 3

FIGURE 1. Figure 1 of Sukumaran and Knowles (2017) redrawn
to illustrate the simulation of species (indicated by tip labels) under
the protracted speciation model. The species tree is shown with one
embedded gene tree (purple); a species conversion event happens
when a branch on the species tree changes color.

practices. In Figure 1 of Sukumaran and Knowles
(2017), the different colors on branches signify distinct
species produced by conversion events under the PSM
(Fig. 1). It is possible for the model to generate species
near the tips of the species tree, say, <10 generations
ago. However, taxonomists would not recognize recent
divergences of only a few generations as valid speciation
events. Instead, speciation is a consequence of an
extended process of genetic isolation, and species status
is assigned retrospectively based on empirical measures
of morphological and/or genetic divergence. It may not
be possible to simulate species forward in time because
the criterion of the systematist depends on the level of
divergence between populations and this is only known
after the simulation of population splits is completed.

ASYMPTOTIC BEHAVIOR OF BAYESIAN COMPARISON OF

SPECIES DELIMITATION MODELS

Jackson et al. (2017) simulated data under the
MSC model with migration (Hey, 2010, the so-
called isolation-with-migration or IM model) for two
species/populations and analyzed them using BPP
to calculate the posterior probabilities for the one-
species and two-species models. They observed that
the posterior probability for the two-species model
increases when the number of loci increases. Here,
we investigate the asymptotic behavior of Bayesian
posterior model probabilities and confirm that this is the
expected behavior of Bayesian model selection and of the
program.

Choosing Among Wrong Models
The asymptotic dynamics of Bayesian model

selection depends on how wrong the two competing
models are relative to the true data-generating model
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FIGURE 2. a) A species tree for two species (A and B) and three gene trees for two sequences (a and b), used to illustrate the asymptotics
of Bayesian model selection. The coalescence between the two sequences occurs before species divergence in the brown and purple gene trees
(with t<�) and after in the green gene tree (with t>�). b) A species tree for two species (A and B) and two gene trees for three sequences (a1 and
a2 from species A and b from species B), used to illustrate the computation of the gdi. Both gene trees have the same topology G1 = ((a1,a2),b),
but the coalescence between a1 and a2 occurs before species divergence (in species B) in the green tree (with ta <�AB) and after in the brown tree
(with ta >�AB).

(Yang and Zhu 2018). Here, we consider independent
and identically distributed (i.i.d.) models only, under
which the data points xi (i=1,··· ,L) are i.i.d., with
xi ∼q(xi). Let X ={xi}. The distance from any model
p(x|�) with parameters � to the true model q is measured
by the Kullback–Leibler (KL) divergence

D=
∫

q(x)log
q(x)

p(x|�∗)
dx, (4)

where �∗ is the limiting maximum likelihood estimate
(MLE) of � under the model when the data size L→∞,
and is known as the best-fitting parameter value under
the model (White 1982). The KL divergence D=0 if the
model encompasses the true model (or, in other words,
is true), and D>0 if the model is wrong.

Here the true model q is the MSC model with
migration (the IM model). Under the model, the gene
trees and sequence alignments are i.i.d. among loci, so
that the datasize is the number of loci (L). Currently,
BPP does not accommodate migration or introgression
and implements the complete isolation model only. The
two models under comparison are then the one-species
model (H1) with a single population-size parameter �1 =
{�} and the two-species model (H2) with parameters �2 =
{�,�A,�B,�AB}, where � (for �AB) is the divergence time
between the two species, and the �s are the population
size parameters for the two modern species A and B
and for the ancestral species AB, with �=4N� (Fig. 2a).
Both � and � are measured in the expected number of
mutations per site. As the true model involves migration,
both models H1 and H2 are wrong, with D1 >0,D2 >
0. Note that H1 is a special case of H2 since the two

models are equivalent when �=0 in H2, in which case
parameters �A and �B in H2 are unidentifiable. The
dynamics of the posterior probabilities for H1 and H2
depends on whether H1 and H2 are equally wrong (in
which case D1 =D2 >0) or H2 is less wrong than H1
(with D1 >D2 >0), or equivalently on whether the best
fitting parameter value for � in H2 is �∗ =0 or >0. If
�∗ =0, the two models will be equally wrong, and they
are also unidentifiable in the limit of infinite data. Then
H1, with fewer parameters, dominates, with its posterior
probability approaching 100% when the number of loci
L increases. In contrast, if �∗ >0, H2 is less wrong than
H1, and H2 will dominate. While an analytical proof
is not available, we analyze increasingly larger data
sets to examine the asymptotic behavior of the MLEs
numerically. Our calculations suggest that the second
case applies: when the true model is the MSC model
for two populations with migration, the two-species
isolation model H2 is less wrong than the one-species
model H1 and dominates in the posterior when the
number of loci increases.

As an example, we simulate large data sets with many
loci, each of 500 sites, under the symmetrical IM model
for two species with �=0.01 for the species divergence
and �A =�B =�AB =�=0.01 for all populations, and with
migration rates between the two populations to be
MAB =MBA =M=Nm=10 immigrants per generation
(Fig. 2a). In this article, the (scaled) migration rate
is defined as Mij =Njmij, the expected number of
immigrants in population j from population i per
generation, with mij to be the proportion of immigrants
in population j. The MCCOAL program, in the BPP
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package, was used to generate gene trees and sequence
alignments under the JC model (Jukes and Cantor 1969).
Each locus has two sequences, a and b, from species A
and B, respectively. At those parameter values, sequences
a and b coalesce before species divergence (with t<�,
as in the brown and purple gene trees of Fig. 2a) at
62.75% of loci, which is very similar to the probability
for t<� (63.21%) if the two sequences are from the same
population.

The data are then analyzed using the 3S program to
obtain the MLEs for the two parameters (�AB and �)
under the two-species MSC model with no migration
(H2) (Yang 2002; Dalquen et al. 2017). The estimate of
�AB is 0.0158. The MLE �̂ ranged from 0.00033−0.00036
over ten replicates for L=105 to over 0.000329−0.000348
for L=2×105. Based on the stability of the estimates
among the replicate data sets and between the large
values of L, we suggest that at the limit of infinitely many
loci, the best-fitting parameter value is �∗ =0.00034. We
note that the best-fitting parameter value depends on
the configuration of the data such as the number of
sequences per locus and the number of sites, as well as
the parameters of the MSC model with migration (�s,
�s, and M’s). If the sequence length is 250 sites instead
of 500, we obtain �∗ ∼0.00062 instead of 0.00034. Those
results provide numerical evidence that at the limit of
infinite data, �∗ >0, so that the two-species model will
dominate the posterior, even though the migration rates
are so high between the two populations that they should
be considered one species by any species definition.

The Impact of Migration or Gene Flow
Note that if Bayesian model selection is conducted

under the IM model, incorporating migration, the two-
species model with migration will be correct (with
D2 =0), while the one-species model will be wrong
(with D1 >0). Then the two-species model will dominate
with the posterior probability approaching 100% as the
number of loci increases. This is the case even if the
migration rate M=Nm is very large (but finite). Thus
if we use Bayesian model selection to infer species status
(treating a population split as a speciation event) then
incorporating migration into the MSC model will not
correct the problem of over-splitting.

In conclusion, the concern that Bayesian model
selection as implemented in BPP may over-split and
recognize too many species in subdivided populations
with ongoing gene flow is legitimate. Over-splitting may
be of particular concern when hundreds or thousands of
loci are analyzed. If two populations are truly panmictic,
the model with fewer parameters will be favored, and
the populations will be correctly lumped into one
species. However, if there is partial subdivision (even
with relatively high levels of gene flow) the method
will prefer the two-species model asymptotically as the
number of loci increases. One possible solution is to
include a model with gene flow and use model selection
to choose among 3 models: (i) a single population;

(ii) two completely isolated populations; and (iii) two
populations with gene flow. A choice of model 1 strongly
suggests a single species; a choice of model 2 suggests
two species but a final decision should be based on a
consideration of the population divergence time and
other relevant information (morphology, etc); a choice
of model 3 allows either one species or two, depending
on considerations such as the degree of gene flow,
distinctness of morphology, and so on.

HEURISTIC SPECIES DELIMITATION

Jackson et al. (2017) suggested a heuristic criterion for
species delimitation based on a genealogical divergence
index (gdi) between populations that can be calculated
using estimates of parameters under the MSC model
with migration (�, �, and M). Suppose one samples
two sequences (a1 and a2) from population A and one
sequence (b) from population B (see Fig. 2b). Let the
probability that the two sequences from population A
coalesce first, so that the gene tree is G1 = ((a1,a2),b), be

P1 =P(G1|�,�A,�B,�AB,MAB,MBA). (5)

Obviously P1 ranges from 1
3 (when the three sequences

are interchangeable, as in the case of MAB =MBA =∞)
to 1. Jackson et al. (2017) rescaled P1 so that the
genealogical divergence index,

gdi= (3×P1 −1)/2, (6)

ranges from 0 to 1 when P1 goes from 1
3 to 1. In the special

case of no migration (with MAB =MBA =0), we have P1 =
1− 2

3 e−2�/�A and

gdi=1−e−2�/�A , (7)

where 2�/�A is the population divergence time in
coalescent units (with one coalescent time unit to be 2NA
generations) and e−2�/�A is the probability that the two
sequences from population A (a1 and a2) do not coalesce
before reaching species divergence (�) when we trace the
genealogy backwards in time.

The gdi Heuristic for Species Identification
Jackson et al. (2017) calculated the gdi as defined

in equations 5 and 6 by simulating 10,000 gene trees
under the MSC model with migration. Here, we provide
its analytical computation, using the Markov chain
characterization of the coalescent process with migration
(Hobolth et al. 2011; Zhu and Yang 2012; Dalquen et al.
2017). For two populations (A and B) with gene flow and
three sequences (a1, a2, and b), the genealogical process
of coalescent and migration when one traces the history
of the sample backwards in time can be described by
a Markov chain with 21 states. The state of the chain
is specified by the number of sequences remaining in
the sample and the populations in which they reside,
or by the population IDs (A and B) and the sequence
IDs (a1,a2,b, etc.). For example, the state Aa1Aa2Bb means
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that the three sequences a1,a2, and b are in populations
A, A, and B, respectively. We also write this as “AAB”.
This is the initial state. State Aa1a2Bb, abbreviated “ABb”,
means that two sequences remain in the sample, with
the ancestor of sequences a1 and a2 in population A and
sequence b in population B.

The transition rate matrix of the Markov chain Q=
{qij} is given in Table 1. The transition probability matrix
over time t is then P(t)={pij(t)}=eQt, where pij(t) is the
probability that the Markov chain is in state j at time t
in the past given that it is in state i at time 0 (the present
time). Suppose Q has the spectral decomposition

qij =
21∑

k=1

uikvkj�k, (8)

where �k are the eigenvalues of Q, columns in U ={uij}
are the corresponding right eigenvectors, and rows in
V ={vij}=U−1 are the left eigenvectors. Then

pij(t)=
21∑

k=1

uikvkje
�kt. (9)

Gene tree G1 = ((a1,a2),b) can be generated in two
ways. The first is for sequences a1 and a2 to coalesce
before reaching the ancestral population, with t<� (as
in the green gene tree of Fig. 2b). Sequence b then joins
the ancestor of sequences a1 and a2 either before species
divergence at �, in which case the root of the gene tree is
younger than species divergence, or after, in which case
the root of the gene tree is older than � (the latter case is
illustrated in the green gene tree of Fig. 2b).

The probability density that sequences a1 and a2
coalesce at time t<� is given by

f (t) = [pAAB,AAA(t)+pAAB,AAB(t)]× 2
�A

+ [pAAB,BBA(t)+pAAB,BBB(t)]× 2
�B

, t<�. (10)

This is a sum of two terms, corresponding to the first
coalescent (between sequences a1 and a2) occurring in
populations A and B, respectively. The first term is the
probability, pAAB,AAA(t)+pAAB,AAB(t), that sequences a1
and a2 are in population A right before time t, times
the rate for them to coalesce ( 2

�A
). Similarly, the second

term is the probability density that sequences a1 and a2
coalesce at time t in population B (Fig. 2b, green gene
tree).

The second way of generating gene tree G1 is
for sequences a1 and a2 to coalesce after population
divergence, with t>� (as in the brown gene tree of
Fig. 2b). This occurs with probability PAAB,S3 (�)× 1

3 ,
where S3 ={AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB}
is the set of states with three sequences, and PAAB,S3 (�)
is the probability that no coalescent event occurs during
the time interval (0,�). In this scenario, the gene tree root
must be older than �.

Thus combining the two possibilities for generating
gene tree G1, we have

P1 =
∫ �

0
f (t)dt+PAAB,S3 (�)× 1

3
, (11)

where f (t) is given in equation 10. To calculate the integral
in equation 11, note that from equation 9,

∫ �

0
pij(t)dt=

21∑
k=1

uikvkj
1
�k

(
e�k�−1

)
. (12)

We calculated P1 under the symmetrical migration
model with �A =�B =� and MAB =MBA =M=Nm.
Figure 3b shows P1 plotted against 2�/� (population
divergence time in coalescent units) and M under the
symmetrical migration model. This is a more accurate
calculation than Figure 6 of Jackson et al. (2017), which
was based on simulating gene trees, even though the two
approaches are equivalent if a huge number of replicates
is used in the simulation.

Based on the meta-analysis of Pinho and Hey (2010),
Jackson et al. (2017) suggested the rule of thumb that
gdi values <0.2 suggest a single species and gdi values
>0.7 suggest distinct species, while gdi values within the
range indicate ambiguous delimitation. The limits of 0.2
and 0.7 for gdi correspond to 0.47 and 0.8 for P1, and in the
case of no migration, to 0.22 and 1.20 for the population
divergence in coalescent units (2�/�) (Fig. 3a).

SUBJECTIVELY DEFINED SPECIES

Jackson et al. (2017) simulated data under the MSC
model with migration for two populations and analyzed
the data using PHRAPL and BPP. While the true model
used in the simulation always had two populations, the
gdi was used to define species status. This criterion was
used in the PHRAPL analysis of the simulated data to infer
species status, but not in BPP. It was then found that
PHRAPL out-performed BPP (Jackson et al. 2017, Fig. 4),
and that BPP tended to over-split, identifying too many
species.

Comparison Between PHRAPL and BPP

Both BPP and PHRAPL can estimate the parameters of
the MSC model, although PHRAPL accommodates gene
flow, while BPP in its current implementation assumes no
gene flow. Here, we apply the gdi definition of species
status in BPP, so that the same criterion is used by BPP
and PHRAPL. A simple approach is to use the posterior
means of the parameters under the MSC generated by
BPP to calculate the gdi (equation 7). We use this method
here. A more sophisticated approach, which we use
later in the analysis of the empirical data sets, is to
generate a posterior distribution of gdi using the sample
of parameters taken during the MCMC.

We thus repeated the simulation of Jackson et al.
(2017, Fig. 4), applying gdi to BPP parameter estimates.
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FIGURE 3. Probability P(G1) of gene tree G1 = ((a1,a2),b), plotted
(a) as a function of population divergence in coalescent units (2�/�) in
a pure isolation model for two populations without gene flow and (b)
as a function of population divergence in coalescent units (2�/�) and
scaled migration rate M=Nm. According to Jackson et al. (2017), the
lower and upper limits of P1 for species delimitation are 0.47 and 0.8.

The true species tree is ((A,B),C), with six sets of
species divergence time parameters, with �AB =0.05�,
0.125�,0.25�,1�,2�, 4�, and �ABC =2.5�,2.5�,2.5�,2.5�,
5�,10�, with �=0.005. Note that �ABC is much larger
than �AB, so that species C is a distant outgroup, and
the focus is on whether populations A and B are one
or two species. Migration is assumed to occur between
A and B, with 4Nm=0,0.5,2, and 5, where Nm is the
number of immigrants per generation. The sequence
data were simulated under the HKY model (Hasegawa
et al. 1985), with base frequencies 0.3, 0.2, 0.3, and 0.2
(for T, C, A, and G) and transition/transversion rate ratio
	=3. For each of the 4×6 parameter combinations for M
and �, 50 replicate data sets were simulated. There are
50 loci in each data set, with 20 sequences from each
of the three species, and 500 sites in the sequence. The
data were simulated using the MCCOAL program, part

of the BPP release, as detailed in Zhang et al. (2011).
We used BPP version 4.0 to estimate the parameters in
the MSC model on the fixed species tree ((A,B),C) (this
is the A00 analysis of Yang, 2015). Version 4.0 of the
program assigns inverse-gamma priors on parameters.
We used the shape parameter 3 in the inverse-gamma
priors, while the prior means are set to match the true
values: �∼ IG(3, 0.01) with mean 0.01/(3−1)=0.005,
and �ABC ∼ IG(3, 0.025), IG(3, 0.05), and IG(3, 0.1), for
the three true �ABC values. Note that the value 3 for
the shape parameter means that the inverse-gamma
priors are diffuse, with the coefficient of variation to
be 1/

√

−2=1. Estimation of parameters under the

MSC is known to be fairly robust to the priors, for
example, to a one order-of-magnitude change to the prior
means (Burgess and Yang 2008). After BPP generated the
posterior distribution of the parameters, we used the
posterior means to calculate gdi using equation 7, with
�=�AB and �= (�A +�B)/2.

The results are shown in Figure 4. Even though
it ignores migration and uses an overly simplistic JC
mutation model (while the true model is HKY), BPP
performed better than PHRAPL in delimiting species
status defined by the gdi, especially at high migration
rates (with 4Nm = 2 or 5). This result may seem
counterintuitive, since the data were simulated with
migration and PHRAPL allows for migration so that there
is no model violation, while BPP ignores migration so that
its model is violated.

Shortcomings of Approximate Methods
We suggest that two factors may account for the poorer

performance of PHRAPL in this simulation. First, PHRAPL
is a summary method for estimating parameters, and
it relies on gene tree topologies and ignores branch
lengths. As a result, parameter estimates may be biased
or even inconsistent due to phylogenetic errors of
gene tree reconstruction (Yang 2002). Second, use of
the gene tree topologies, while ignoring the branch
lengths leads to information loss and may even cause
identifiability problems. In the simple case of three
species and three sequences, with one sequence from
each species, there is only one degree of freedom
in the data of gene tree topologies, which is the
proportion of the most common gene tree topology.
In this case the complete-isolation model (with M=
0) involves four parameters (two �s and two �s for
the two ancestral species), but use of the gene tree
topologies alone allows the estimation of only the
internal branch length on the species tree in coalescent
units, 2(�ABC −�AB)/�AB, while other parameters are
unidentifiable (Xu and Yang 2016). Even the internal
branch length is estimated inconsistently because
phylogenetic reconstruction errors tend to inflate gene
tree-species tree mismatches (Yang 2002).

The cases with more than three sequences per locus
and with migration may be more complex, but it should
not be surprising that approximate methods that rely
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FIGURE 4. Accuracy of species delimitation using the gdi with parameters estimated from data of 50 loci using (a) PHRAPL and (b) BPP.
Species status is defined using the gdi at different cutoffs (L and U). This is calculated by simulating 10,000 gene trees under the MSC model
with migration for PHRAPL, and analytically for BPP. Along the x-axis, each group of bars gives results for different gdi cut-offs. Below the lower
bound (L), populations A and B are defined as a single species; above the upper bound (U), A and B are defined as separate species, while
between the bounds, the species status is ambiguous. The six bars within each group represent the six sets of species divergence times (�s). The
bar shadings are white = the inferred delimitation outcome matched the true outcome; light green/gray = ambiguity was inferred when the
true delimitation is known (insufficient power); dark green/gray = delimitation was inferred (whether one or two species) when the truth was
ambiguous (excessive confidence); and black = one species was inferred when there were two, or vice versa. The results for PHRAPL are recreated
using the R code from Jackson et al. (2017, Fig. 4).

on summary statistics such as gene tree topologies will
suffer from an information loss. In contrast, BPP is a
full-likelihood method and makes use of information
in the gene tree branch lengths (coalescent times) as
well as topologies, while accommodating phylogenetic
uncertainties due to the limited number of informative
sites at each locus (Yang 2014; Xu and Yang 2016). Even
though BPP operates under a wrong model that ignores
migration, the sequence data at multiple loci may be
informative about the expected gene tree configurations.
Nevertheless, extension of BPP to allow for gene flow will
provide more accurate estimation of parameters in the
MSC model, which should lead to more accurate species
delimitation using heuristic criteria such as gdi.

HEURISTIC SPECIES DELIMITATION USING BPP

Here, we describe how Bayesian parameter estimation
under the MSC model can be combined with gdi to
delimit species using a hierarchical procedure based
on a species/population tree. This is similar to the use
of a “guide tree” for species delimitation by Yang and
Rannala (2010), in that an ancestral node on the guide
tree is merged into one species only if its descendant
nodes are merged. However, here, we rely on Bayesian
parameter estimation on a fixed species/population
tree while Yang and Rannala (2010) used reversible-
jump algorithms to calculate posterior probabilities for
different species delimitation models (represented by
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merging nodes on the guide tree). We first demonstrate
the procedure using a simulated data set and then apply
it to the analysis of three empirical data sets analyzed
previously by Jackson et al. (2017). The gdi is only one of
many possible heuristics with rough correspondences to
different species definitions.

We use a species/population tree for five populations,
((((X,A),B),C),D), to simulate data (Fig. 5a). ABCD
represents a large paraphyletic species with a broad
geographic distribution arranged in a stepping-stone
design, with migration between any two adjacent
populations including the ancestors (e.g., between D and
the ancestral population XABC after the first population
split, and then between C and D and between C and XAB
after the second split, etc.). The scaled migration rate is
M=Nm=2 for any pair of adjacent populations. X is a
new species, having separated from population A (with
�XA =0.01), and there is no gene flow involving X. The
divergence times (�s) are at 0.04, 0.03, 0.02, and 0.01. The
population size parameter is �=0.01 for all populations.
We simulated 100 loci, each of 500 sites, for four samples
per species (20 sequences per locus).

To generate a working species/population tree (the
guide tree), we run a joint analysis of species delimitation
and species tree estimation (the A11 analysis in BPP,
Yang, 2015). The parameters in the MSC model are
assigned diffuse inverse-gamma priors �∼ IG(3,0.02)
and �∼ IG(3,0.08), with shape parameter 3 and with the
prior means matching the true values. We used a burnin
of 40,000, sample frequency of 10, and collected 50,000
samples. We conducted four separate runs for each
analysis, with convergence ensured mainly by checking
consistency between runs. The posterior probabilities for
the species delimitation models calculated in the A11
analysis provided strong support for five species, and the
inferred species tree incorrectly placed species X sister to
ABCD (Fig. 5b). This incorrect topology may be expected,
as populations exchanging genes tend to form clades
in species tree analyses that ignore migration (Leaché
et al., 2013). Next, we run an A00 analysis, estimating
parameters on the inferred guide tree (Fig. 5b) to generate
the posterior distribution for the gdi for the most recent
species divergences, between A and B and between C and
D (Fig. 5c). Note that 2�AB/�A is used to decide whether
population A is a species distinct from B, while 2�AB/�B is
used to decide whether population B is a species distinct
from A. Low gdi values of <0.2 indicate that A and B
are one species, as are C and D. Next, we collapse A and
B, and C and D, and conduct another A00 analysis to
estimate � and � for putative species AB and CD (Fig. 5d).
The posterior distribution of gdi obtained suggest that
AB and CD belong to the same species (Fig. 5e). The final
iteration fits a two-species model containing species X
and species ABCD (Fig. 5f). The gdi value for species
ABCD is ambiguous (with 0.2< gdi <0.7), while the
evidence for species X is strong (gdi >0.7, Fig. 5g). Here,
the gdi shows an ambiguity of the species status of X
and ABCD, depending on which population size (�X or
�ABCD) is used to calculate the index.

AX B C D

Sp.ABCD
Sp.X

X

Sp.ABCD Sp.X

D

1.0

Sp.A Sp.B Sp.C Sp.D Sp.X

BA C D X

1.01.0

1.0

a)

b) c)

d) e)

f) g)

X

Sp.AB Sp.CD Sp.X

1.0

1.0

A B C D

CBA

0.0 0.2 0.4 0.6 0.8 1.0
gdi

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
gdi

D
en

si
ty

sp.A
sp.B

sp.C
sp.D

0
10

20
30

40
0

10
20

30
40

sp.CD

sp.AB

sp.ABCD

sp.X

0.0 0.2 0.4 0.6 0.8 1.0
gdi

D
en

si
ty

0
10

20
30

40
50

60
FIGURE 5. Species delimitation applying heuristic index gdi to

parameter estimates from BPP. a) Species tree used for simulation allows
migration between populations A,B,C, and D and their ancestors
(indicated by arrows), but no gene flow involving species X. b) Species
(guide) tree inferred from A11 analysis of BPP. In (b–g), gdi is used to
collapse populations on guide tree into same species in a hierarchical
procedure, with BPP used to estimate MSC parameters (� and �) and
generate posterior distribution of gdi. For example, gdi calculated using
population A of panel b, based on 2�AB/�A (equation 7), is shown
in panel c (labeled ‘sp. A’). Sister populations inferred to belong to
same species by gdi are collapsed, and resulting species tree is used to
conduct a new BPP analysis. Procedure is repeated until distinct species
are inferred or until root of tree is reached. According to Jackson et al.
(2017), gdi <0.2 indicates a single species, gdi >0.7 indicates distinct
species, and gdi values between 0.2 and 0.7 represent ambiguous
species status.

Next, we re-analyzed the three empirical data sets of
Jackson et al. (2017) using the hierarchical procedure
described above. The three empirical data sets include
eight nuclear loci from three populations of North
American ground skinks (Scincella lateralis), 20 loci from
three populations of southeastern United States pitcher
plants (Sarracenia alata), and 50 loci from four population
of Homo sapiens. In the analysis of Jackson et al. (2017),
PHRAPL supported a single species of Scincella lateralis
and two species of Sarracenia alata, and grouped the
human populations into one species, while Bayesian
model selection by BPP inferred the maximum number
of species in each data set.
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Here, we used the MCMC samples generated in
the BPP analysis (Yang, 2015, analysis A00) to estimate
the posterior distribution of the gdi. We used inverse-
gamma priors on parameters (�s and �s), with the shape
parameter 3 and with the same prior means as used by
Jackson et al. (2017). For each data set, we conducted four
separate runs with a burnin of 10,000, sample frequency
of 5, and collected 100,000 samples. The guide species
trees are fixed at the previously published topologies
from Jackson et al. (2017) (Fig. 6). We applied the
hierarchical procedure to calculate gdi for population
pairs by collapsing populations into a single species and
conducting new MCMC analyses. Using BPP to calculate
posterior distributions for gdi, we find no support for
multiple species (gdi >0.7) in any of the empirical data
sets (Fig. 6).

DISCUSSION

Simulation of Species Divergences
The PSM specifies a process of population splits

(incipient species formation) as well as conversions
of incipient species (populations) into true species.
However, with time running forward, simulation under
the PSM produces a new species (a conversion event)
instantaneously. At a conversion event, the new true
species and its parental incipient species (population)
are deemed distinct species. As stated above, this
process does not realistically model the biological
process of speciation, nor does it mimic the way
taxonomists identify new species. We consider two
alternative approaches for simulating the process of
population splits and species assignments, and discuss
their implications for the development of methods for
species delimitation using genomic sequence data. A
clear specification of the simulation procedure implies
a probabilistic model of data generation and statistical
inference methodology, because given the model, full-
likelihood methods (maximum likelihood and Bayesian
inference) are known to have certain desirable statistical
properties (Rannala 2015).

In the first approach, one can simulate population
splits under a branching model, such as the birth–
death process. The random birth and death events
specify a probabilistic distribution of the population
tree topology and divergence times (�s), and a certain
model may be used to sample the population sizes (�s)
and migration rates (Ms). Gene trees (topologies and
coalescent times) can be generated using the population
tree with parameters (�s, �s, Ms), and then used
to simulate sequence alignments. At the end of this
simulation, the populations at the tips of the population
phylogeny are assigned species status using heuristic
criteria of divergence times and migration rates. This is
very similar to the simulation approach of Jackson et al.
(2017).

In the second approach, one may simulate population
splits as in the first approach, but in addition simulate
the evolution of a continuous character along the
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FIGURE 6. Posterior distribution of genealogical divergence
index (gdi), generated in BPP analysis of three real data sets of
Jackson et al. (2017). Silhouettes of species are from phylopic.org
http://phylopic.org. Colored ancestral branches were analyzed by
collapsing descendent species and conducting new MCMC analyses.

branches of the generated population phylogeny. The
difference in the continuous character between two
populations is a measure of genetic incompatibility and
a threshold can be used to identify species status: if
the continuous character has measurements xi and xj
in two populations, they are considered distinct species
if and only if |xi −xj|>d. Evolution of the continuous
character may be simulated based under a model for
the accumulation of genetic incompatibilities (such as
the Dobzhansky–Muller incompatibilities, Orr and
Turelli, 2001), for example, with a small probability
for “catastrophes” (mimicking large events that may
establish reproductive isolation at an instance, such
as chromosomal rearrangements or polyploidizations)
and a large probability for Brownian motion-like drift
over time (mimicking the accumulation of genetic
incompatibilities over time). At the end of the simulation,
species status is assigned for populations at the tips of the
tree based on the differences in the continuous character.

In both approaches, we assume that the process of
sequence evolution is independent of population split
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events, and of the evolution of the continuous character,
as expected if the neutral genome is used for species
delimitation. Both scenarios seem to suggest that the
only inference possible using the neutral genome is
the population history and the population divergence
parameters (�s, �s, and Ms). Assignment of species status
will then depend on our empirical knowledge about the
level of genetic divergence between good species, or the
expected amount of genetic incompatibility that may be
accumulated over a given time period. Both approaches
of simulation posit a protracted process of speciation
(to allow accumulation of genetic incompatibilities or
of differences in the continuous character), in contrast
to the PSM, which assumes instantaneous speciation
completed over one generation.

Hypothesis Testing Versus Parameter Estimation and the
Functionalities of BPP

The MSC model was developed for comparative
analysis of the ‘neutral’ genome to estimate parameters
that characterize the history of population divergences,
under the assumption that natural selection has
not significantly altered the genealogical histories of
genomic regions (gene tree topologies and coalescent
times). The MSC model does not aim to identify
speciation genes or genes responsible for establishing
reproductive barriers (which may be under species-
specific directional selection), even though identifying
such genes, however, rare they are, may greatly enrich
our understanding of the origin and maintenance
of species. For example, proteins involved in female
and male reproduction are well-known to evolve at
accelerated rates, apparently driven by natural selection
due to ecological adaptations and sexual selection
maintaining species boundaries (Swanson and Vacquier
2002). In a few cases where the MSC model was
applied to exons or the coding genome, it was noted to
produce results highly consistent with the non-coding
regions of the genome (Ebersberger et al. 2007; Dalquen
et al. 2017; Shi and Yang 2018). This is apparently
due to the fact that most protein-coding genes are
performing the same conserved functions in closely
related species so that the effect of purifying selection
removing nonsynonymous mutations is predominantly
a reduction of the neutral mutation rate. At any rate, the
MSC model treats genomic regions as neutral markers
to extract information concerning genealogical histories
of the populations, reflected in population divergence
parameters, such as population sizes, divergence times,
and migration rates.

We take it for granted that the neutral genome contains
useful information about the population divergence
history and about species status. In clear-cut cases,
population divergence parameters should be sufficient
to determine species status. For example, distantly
related species can be reliably identified using a simple
genetic distance threshold as in DNA-barcoding analysis
(Hebert et al. 2004). The difficulty is in identifying the

species boundary (the so-called boundary conditions,
Moritz and Cicero, 2004) for allopatric populations with
low levels of genetic divergence and possibly frequent
gene flow. The definitions of races, subspecies and
species are often subjective, and the neutral genome may
not provide unambiguous resolution of species status
(Rannala, 2015). If species divergence is due to very few
genes (in the so-called speciation islands), while the
rest of the genome is homogenized due to widespread
interbreeding, the divergence between species may be
similar to the polymorphism within species (Nadeau
et al., 2012). In such cases the neutral genome may not
be highly informative about the species status and use
of other kinds of data, such as evidence of reproductive
isolation and ecological adaptation or identification of
speciation genes, may be necessary to determine species
status.

The inherent subjectivity of allopatric species
delimitation is clearly illustrated by the distinction
between statistical significance and biological significance
made by Jackson et al. (2017). Consider by analogy a
coin-tossing experiment to determine whether a coin is
biased. One can use a significance test to test the null
hypothesis of a fair coin (with the probability of heads
p= 1

2 ) against the alternative hypothesis of a biased coin
(with p �= 1

2 ) or calculate the posterior probabilities for
the two models. With a large number of coin tosses,
this approach of model selection may have the power
to detect a very small bias, with p=0.51, say. However,
the bias of 0.01 is said to be statistically significant
but not biologically significant, and it is considered
incorrect to suggest that the coin with p=0.51 is biased.
An alternative approach is to estimate the probability
parameter p using the counts of heads and tails, and
then apply whatever definition of bias one assumes
heuristically. Given the arbitrariness in the definition
of a biased coin, this approach may be the only one
feasible.

Similarly, we have in this article made a distinction
between two kinds of analysis under the MSC model
implemented in BPP: (i) Bayesian model selection to
calculate posterior probabilities for different species
delimitation models (the A10 and A11 analyses in
Yang, 2015) and (ii) Bayesian parameter estimation
when species/population assignment and phylogeny
are fixed (the A00 analysis in Yang, 2015). In theory,
selection of species delimitation models can also be
conducted in a Frequentist framework using a likelihood
ratio test, for example, with the one-species model
formulated as the null hypothesis (with �=0) and the
two-species model the alternative (with �>0). With
genomic data, model selection in both the Frequentist
and Bayesian frameworks may be very powerful in
identifying population splits even if the age of the
divergence event (�) is very young.

We suggest that Bayesian model selection is
appropriate for identifying morphologically cryptic
species. Even if the genomic data or the BPP program
cannot distinguish populations and species, the genetic
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distinctness of the populations signifies the presence of
reproductive barriers or isolation mechanisms. There
seems to be no controversy in assigning species status to
populations that exist in sympatry and are genetically
distinct.

For heuristic delimitation of allopatric species, we
suggest the use of Bayesian parameter estimation. The
genomic data allows reliable estimation of population-
divergence parameters (�s, �s, and Ms), which can then
be used to apply a heuristic definition of species status.

Heuristic Criteria for Species Status
The gdi attempts to use the overall genetic divergence

between two populations affected by the combined
effects of genetic isolation and gene flow. The index
appears to have weaknesses. First, the criterion depends
on the population divergence time relative to the
population size (2�/�A in the case of no gene flow). If the
population is established by a few founder individuals,
NA and �A may be very small, and the use of gdi may
lead to claims of species status even if the populations
diverged very recently. It may be necessary to consider
the (absolute) population divergence (�) (Yang and
Rannala, 2010) as well as the divergence relative to the
population size. Second, there may be ambiguity when
the two populations concerned have very different sizes.
If NA 	NB, the use of gdi may lead to the awkward
solution that A is a distinct species from B (if one uses
sequences a1,a2 and b to calculate the index) but B is not
a distinct species from A (if one uses sequences a, b1,b2).
This is the case in the analysis of the simulated data in
Fig. 5g. Third, gdi has a large range of indecision (0.2–0.7),
although this may reflect the arbitrary nature of species
definition rather than a weakness of the index itself.

There is clearly a need to refine criteria for heuristic
species delimitation using genomic sequence data. It
may be necessary to incorporate multiple criteria. For
example, we may require a minimum species divergence
time relative to the population size (2�/�>1), a minimum
absolute divergence time (>104 generations, say, as
indicated by �), and a maximum migration rate between
species (M=Nm<1). If a contact zone exists for the
two populations, important indicators of pre- and post-
mating reproductive isolation may be obtainable. For
example, we may require the frequency of F1 hybrids (f )
to be <10% of the frequency expected from population
abundance, and we may further require the long-
term migration rate to be much lower than the hybrid
frequency (with m<0.1f , say), indicating selective
rejection of introgressed alleles after hybridization.

Concluding Remarks
The MSC model and its implementation in BPP

provides a powerful framework for inferring population
divergence histories and estimating evolutionary
parameters using the fast-accumulating genomic

sequence data. There appears to be no controversy
regarding the use of Bayesian model selection under
MSC or BPP to identify morphologically cryptic species.
For allopatric populations or species, the accurate
estimation of important population parameters should
allow one to apply any empirical criterion for defining
species that the evolutionary biologist entertains. For
these reasons, the MSC model and BPP will continue
to be useful tools in the analysis of genomic data to
better understand biodiversity despite the fact that the
interpretation of these results in assessing species status
may be debated.
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