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Abstract
Movement disorders comprise a group of heterogeneous diseases with often complex clinical phenotypes. Overlapping symp-
toms and a lack of diagnostic biomarkers may hamper making a definitive diagnosis. Next-generation sequencing techniques
have substantially contributed to unraveling genetic etiologies underlying movement disorders and thereby improved diagnoses.
Defects in dopaminergic signaling in postsynaptic striatal medium spiny neurons are emerging as a pathogenic mechanism in a
number of newly identified hyperkinetic movement disorders. Several of the causative genes encode components of the cAMP
pathway, a critical postsynaptic signaling pathway in medium spiny neurons. Here, we review the clinical presentation, genetic
findings, and disease mechanisms that characterize these genetic postsynaptic movement disorders.

Introduction

Movement disorders comprise a heterogeneous group of dis-
eases characterized by either an excess of abnormal move-
ments (hyperkinesia) or a lack of normal movements
(hypokinesia) (Stoessl and Mckeown 2016). The phenotypes
can be complex and overlapping, particularly in children, and
can even change or evolve over time (Stoessl and Mckeown
2016; Kurian and Dale 2016). For many movement disorders,
there are no biomarkers available to aid diagnosis. However,
recent genetic advances have greatly contributed to improved
diagnosis for patients with movement disorders (Olgiati et al.
2016; Reale et al. 2018). Over the past few years, a number of
new genetic movement disorders have been identified, some
of which are caused by alterations in genes involved in post-
synaptic pathways. Indeed, defects in postsynaptic dopami-
nergic signaling in striatal medium spiny neurons are emerg-
ing as key drivers in the development of a number of genetic
hyperkinetic movement disorders. In this review, we discuss
the clinical presentation, management, genetic findings, and

current understanding of contributory pathogenic mechanisms
of such genetic movement disorders associated with striatal
postsynaptic dysfunction.

Synaptic physiology

Synapses are complex neuronal structures that are organized
in several cellular compartments including the axon terminal
membrane of the presynaptic neuron, the synaptic cleft, and
the postsynaptic density (PSD) of the adjacent neuron.
Synapses contain functionally and structurally distinct molec-
ular machineries for synaptic connectivity and neurotransmis-
sion, the very essential processes that underlie brain function.
Depending on the brain area, neurons interconnect with thou-
sands of others and form dense, overlapping, and interdigitat-
ed networks that define the brain’s connectivity. Synaptic sig-
naling is characterized not only by the anatomical organiza-
tion of neurons but also by distinct neurotransmitter systems,
which include amino acids (e.g., inhibitory GABA, excitatory
glutamate), monoamines (e.g., dopamine, serotonin), pep-
tides, purines, trace amines, and acetylcholine (Hyman
2005). In chemical synapses, arrival of electrical signal results
in membrane depolarization and influx of calcium into the
presynaptic terminal, which ultimately results in release of
neurotransmitters into the synaptic cleft (Südhof 2013).
Neurotransmission is a spatially and temporally precisely reg-
ulated process that involves the concerted interaction of spe-
cif ic proteins at the pre- and postsynaptic si tes.
Neurotransmitters are stored and transported in defined
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structures, known as synaptic vesicles (SVs). SVs are orga-
nized in distinct pools at the presynaptic terminal including a
reserve pool, a recycling pool, and a primed or readily releas-
able pool (Rizzoli and Betz 2005). Release of the SV content
involves a dedicated molecular machinery and includes sev-
eral steps: SV priming, docking, and calcium-mediated fusion
to the cell membrane (Rizo and Xu 2015). To ensure repetitive
and sustained transmission, SVs have to be rapidly recycled.
SV recycling is a complex process and involves several
endocytic pathways for the retrieval of SV components from
the plasma membrane and regeneration of functional SV
(Kononenko and Haucke 2015; Soykan et al. 2016). Upon
release, neurotransmitters diffuse across the synaptic cleft
and bind to their respective receptors on the postsynaptic
membrane which activate downstream signaling cascades.
The receptors are attached to the postsynaptic density (PSD),
which is a multi-protein complex organized into distinct layers
of anchoring membrane molecules, scaffolding molecules,
signaling molecules, and cytoskeleton molecules. The PSD
is a specific feature of glutamatergic synapses. However,
PSD-95, a key component of the PSD, has been also identified
in glutamatergic synapses of midbrain dopaminergic neurons
(Jang et al. 2015) and in medium spiny neurons of the human
neostriatum (Morigaki and Goto 2015). The PSD is defined to
receive and convert the chemical neurotransmitter signal into
electrical and biochemical responses in the postsynaptic neu-
ron (Sheng and Kim 2011). In general, the pre- and postsyn-
aptic compartments are highly dynamic and modify their
function or structure in response to specific synaptic activity.

Synaptic pathology

Given the complex molecular organization of synapses, alter-
ations of its composition, structure, or function can have a
severe impact on neuronal function leading to neurological
disorders (Waites and Garner 2011). Overall, synaptic dys-
function may occur at a number of different sites including
the following: (1) the neuronal soma and axonal compartment
affecting synaptic gene expression, SV synthesis, and traffick-
ing; (2) the presynaptic compartment affecting SVexocytosis,
endocytosis and recycling, maintenance of SV pools and
proteostasis, and synaptic metabolic homeostasis involving
mitochondrial function; (3) the intersynaptic compartment af-
fecting neurotransmission and neurotransmitter recycling; and
(4) the postsynaptic compartment affecting function of chan-
nels, receptors, and associated downstream signaling cas-
cades. The association of human brain disorders with aberrant
synaptic function and structure has led to the new concept of
Bhuman synaptopathy^ (Lepeta et al. 2016). In recent years,
synaptic dysfunction has been linked to a variety of neuro-
pathological conditions including epilepsy (Hamdan et al.
2009; Caleo 2009; Casillas-Espinosa et al. 2012), movement
disorders (Quartarone and Pisani 2011; Calo et al. 2016;

Schirinzi et al. 2016; Calabresi et al. 2016; Matikainen-
Ankney et al. 2016; Lepeta et al. 2016), intellectual disability
(Mircsof et al. 2015; Crocker-Buque et al. 2016; Zapata et al.
2017; Ung et al. 2017), autism spectrum disorders (Giovedí et
al. 2014; De Rubeis et al. 2014), psychiatric disorders (Kang
et al. 2012; Fromer et al. 2014), and neurodegenerative disor-
ders (Musardo and Marcello 2017). Recent advances in next-
generation sequencing technologies and subsequent function-
al validation of identified genetic variants in patients with
distinct neurological disorders have further contributed to un-
derstanding the genetic mechanisms underlying these human
synaptopathies (Baker et al. 2015; Lipstein et al. 2017; Myers
et al. 2017; Guarnieri et al. 2017; Sadybekov et al. 2017).

Postsynaptic dysfunction in brain diseases

Recent isolation and proteomic profiling of the PSD of the
human neocortex have revealed 1461 proteins (Bayés et al.
2011). Mutations in over 100 of these proteins cause brain
diseases enriched in cognitive, affective, and motor pheno-
types (Bayés et al. 2011). Over time, mutations have been
identified in genes encoding postsynaptic receptors, ion chan-
nels, and components of associated signaling cascades, and
the phenotypic spectrum is ever-expanding. Distinct popula-
tions of neurons often show a specific vulnerability to genetic
alterations, depending on the genes, proteins, and neurotrans-
mitters they express, and the neural circuits they are connected
to. For example, GABAergic neurons are thought to play a
key role in a number of genetic epilepsies. Mutations in
GABAA receptor subunits GABRA1, GABRB3, and GABRG2

have been identified in a broad spectrum of different epilepsy
syndromes including Dravet syndrome, generalized seizures,
epileptic encephalopathies, and febrile seizures (Johannesen et
al. 2016; Shen et al. 2017; Niturad et al. 2017). Moreover,
mutations in the GRIN2A gene encoding the NMDA gluta-
mate receptor α2 subunit are emerging as a key genetic factor
in the epilepsy-aphasia spectrum disorders (Kingwell 2013;
Yang et al. 2017). Dysfunction of excitatory hippocampal
neurons has been related to intellectual disability caused by
mutations in genes encoding proteins of the PSD complex or
interacting components (Zapata et al. 2017; Ung et al. 2017).
Dysfunction of striatal medium spiny neurons (MSNs) due to
alterations in genes encoding key postsynaptic proteins is as-
sociated with the pathogenesis of dystonia, dyskinesia, cho-
rea, and parkinsonism.

Key features of the dopaminergic postsynaptic
medium spiny neuron

MSNs account for approximately 95% of all neurons in the
striatum which represents the main input station of the basal
ganglia, a group of distinct subcortical nuclei involved in mo-
tor control and behavior (Fisone et al. 2007). MSNs receive

1078 J Inherit Metab Dis (2018) 41:1077–1091



excitatory glutamatergic input from the cortex and the thala-
mus and modulatory dopaminergic input from the midbrain,
in particular from the substantia nigra pars compacta, which
innervates the dorsal-lateral striatum, and from the ventral
tegmental area, which innervates the medial portion of the
dorsal striatum and the ventral striatum (Fisone et al. 2007).
Striatal MSNs give rise to inhibitory GABAergic projections
to the globus pallidus (striatopallidal pathway) and the
substantia nigra pars reticulata (striatonigral pathway).

Dopaminergic signaling in striatal medium spiny neurons

According to their output projections, neurotransmitters, and
receptors, MSNs can be classified into two groups. D1-type
dopamine receptor (DRD1)-expressing MSNs use enkephalin
as a co-transmitter and project direct inhibitory monosynaptic
fibers to the globus pallidus internal segment (GPi) and sub-
thalamic nucleus (STN) (Chuhma et al. 2011). D2-type dopa-
mine receptor (DRD2)-expressing MSNs use substance P as a
co-transmitter and project indirect excitatory polysynaptic fi-
bers to the same nuclei via the globus pallidus external seg-
ment (GPe) and STN (Chuhma et al. 2011) (Fig. 1(a)). It is
generally believed that direct and indirect MSNs in the dorsal
striatum exert opposite effects on the control of movement.
Activation of DRD1 stimulates direct striatopallidal pathway
MSNs and results in disinhibition of thalamocortical neurons,
thus facilitating movement. Activation of DRD2, however,
inhibits indirect striatonigral pathway MSNs and leads to in-
hibition of thalamocortical neurons and suppression of move-
ment (DeLong et al. 2007). In clinical practice, hyper- and
hypokinetic features often coexist, for example, in patients
with parkinsonism-dystonia; the reasons for this are not en-
tirely clear, but may be related to developmental age, indicat-
ing a complex disruption of basal ganglia motor circuitry.

cAMP signaling pathway in striatal medium spiny neurons

Signaling through DRD1 and DRD2 in postsynaptic MSNs
is mainly mediated by the G-protein-coupled receptor
(GPCR) cyclic adenosine monophosphate (cAMP) cas-
cade. GPCRs are involved in neurotransmitter action and
highly expressed throughout the brain (Gerber et al. 2016).
They share a seven-transmembrane-spanning α-helical
segment coupled to a heterotrimeric guanine nucleotide-
binding protein (G-protein). G-proteins are composed of
three subunits, α, β, and γ, and classified into four distinct
families depending on their Gα subunit: stimulatory G-
proteins (Gαs, Gαolf), inhibitory G-proteins (Gαi, Gαo,

Gαt, Gαz), Gαq proteins, and Gα12/13 proteins (Simon et
al. 1991; Oldham and Hamm 2008). Binding of the respec-
tive neurotransmitters to GPCRs results in catalytic con-
version of Gα-bound GDP to GTP and reduces the affinity
of the Gα subunit to the Gβγ subunit complex, which

subsequently dissociates. The Gα subunit then activates
downstream signaling effectors. In striatal MSNs, Gα pro-
teins target the enzyme adenylyl cyclase 5 (AC5), which is
involved in generation of the second messenger cAMP.
Activation of DRD1 stimulates Gαolf-mediated AC5 en-
zyme activity and increases cAMP levels, whereas activa-
tion of DRD2 leads to Gαi-mediated inhibition of AC5
activity and decreases cAMP levels (Stoof and Kebabian
1981; Zhuang et al. 2000; Hervé et al. 2001; Lee et al.
2002) (Fig. 2). Intracellular levels of cAMP are linked to
the activity of protein kinase A (PKA), which phosphory-
lates downstream effector proteins including ion channels,
neurotransmitter receptors, and transcription factors
(Fisone et al. 2007). In striatal MSNs, an increase in
cAMP and PKA leads to phosphorylation of the dopamine
and cAMP-regulated phosphoprotein of 32 kDa (DARP-
32) and the transcription factor cAMP-responsive ele-
ment-binding protein (CREB). DARP-32 is phosphorylat-
ed at the Thr-32 residue and as such acts as an inhibitor of
protein phosphatase-1 (PP-1) (Fisone et al. 2007). This in
turn reduces dephosphorylation of downstream target ef-
fectors including voltage-dependent calcium channels,
NMDA, AMPA, and GABAA receptors, and thus has a
broad impact on neuronal function (Nairn et al. 2004).
The enzyme phosphodiesterase 10A (PDE10A), a dual
cAMP-cGMP phosphodiesterase, constitutes another mod-
ulator of cellular cAMP and cGMP levels and is highly
abundant in striatal MSNs.

Dysfunction of medium spiny neurons in movement
disorders

It has become increasingly evident that disruption of the
cAMP signaling pathway contributes to postsynaptic dys-
function that is associated with movement disorders such
as dystonia, chorea, and parkinsonism (Table 1). It is hy-
pothesized that altered dopaminergic signaling in striatal
MSNs plays a key role in the pathogenesis of movement
disorders. Dystonia is postulated to result from overactiv-
ity of direct pathway MSNs leading to reduced GPi activ-
ity (Fig. 1(b)). Chorea and ballism may be associated with
hypofunction of indirect-pathway MSNs resulting in re-
duced pallidal output (Fig. 1(c)). Both mechanisms ulti-
mately lead to inadequate GABAergic inhibition of
thalamocortical projections and a hyperkinetic movement
disorder. Parkinson’s disease, in contrast, is characterized
by dopamine depletion in the substantia nigra leading to
increased activity of striatal indirect-pathway neurons.
This in turn results in enhanced inhibitory output from
GPi and SNr and leads to decreased activity in
thalamocortical neurons and a hypokinetic movement dis-
order (DeLong et al. 2007).
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Postsynaptic movement disorders

Adenylate cyclase 5-related movement disorders

Clinical presentation

Adenylate cyclase 5 (ADCY5)-related disorders comprise a large
phenotypic spectrum and include clinical presentations that
mimic dyskinetic cerebral palsy, benign hereditary chorea, mito-
chondrial disorders, paroxysmal dyskinesia, myoclonus-dysto-
nia, and recently alternating hemiplegia of childhood (Chen et

al. 2014, 2015; Carapito et al. 2015; Mencacci et al. 2015;
Chang et al. 2016; Westenberger et al. 2017; Douglas et al.
2017). Disease onset occurs typically in infancy or early child-
hood, and rarely in early adolescence (Fernandez et al. 2001).
The movement disorder is hyperkinetic, mainly characterized by
generalized chorea involving the limbs, face, and/or neck. The
characteristic perioral and periorbital twitches, formerly de-
scribed as facial myokymia, were not confirmed by EMG stud-
ies, but rather represent a mixture of myoclonic, choreic move-
ments (Tunc et al. 2017) manifesting as orolingual dyskinesia.
Limb dystonia can be a major disease feature. Additional

Fig. 1 Basal ganglia motor circuits in normal physiology and
hyperkinetic movement disorders. (a) Basal ganglia circuits in normal
condition showing direct and indirect-pathway projections from
dopaminergic neurons of the substantia nigra pars compacta to the
subthalamic nucleus, the globus pallidus internal segment, and the
substantia nigra pars reticulata. (b) Overactivation of the direct pathway

in dystonia, and (c) hypofunction of the indirect pathway in chorea
ultimately lead to disinhibition of thalamocortical neurons and
hyperkinesia. SNc, substantia nigra pars compacta; Gpe, globus pallidus
external segment; STN, subthalamic nucleus; Gpi, globus pallidus
internal segment; SNr, substantia nigra pars reticulata; PPN,
pedunculopontine nucleus (brainstem)
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movement abnormalities including myoclonus and lower limbs
spasticity with pyramidal signs are frequently reported. Eye
movement abnormalities such as saccade initiation failure and
upward gaze palsy have been described in a number of patients
(Chang et al. 2016). Abnormal movements may show marked
fluctuation in severity and frequency and can be continuous or
paroxysmal (Fernandez et al. 2001; Chen et al. 2014; Mencacci
et al. 2015). The disease course is usually either static or mildly
progressive over time. Many patients suffer severe and painful
episodic exacerbations of the movement disorder that can last
minutes to hours and may be triggered by emotional stressors,
intercurrent infections, or sudden action. Sleep-related worsen-
ing of the movement disorder, in particular during drowsiness
and awakening, constitutes a specific characteristic feature of
ADCY5-related disorders. Axial hypotonia, often preceding the
movement disorder, is a common finding and rarely associated
withweakness (Chen et al. 2015). Cognition is usually preserved
in patients or only mildly impaired. However, severely affected
patientsmaymanifest delayedmotor and/or languagemilestones
(Chen et al. 2014). Brain MR imaging is typically normal in
ADCY5-related disorders (Chen et al. 2015).

Genetics

Mutations in the ADCY5 gene were originally identified in a
single five-generation German kindred with an autosomal

dominant pattern of inheritance, formerly described as familial
dyskinesia and facial myokymia (Fernandez et al. 2001). To date,
over 80 patients from 50 affected families have been genetically
confirmed (Fernandez et al. 2001; Chen et al. 2012, 2015;
Carapito et al. 2015; Mencacci et al. 2015; Chang et al. 2016;
Dy et al. 2016;Westenberger et al. 2017;Meijer et al. 2017; Zech
et al. 2017; Douglas et al. 2017; Tunc et al. 2017; Carecchio et al.
2017). Both autosomal dominantly inherited and de novo muta-
tions have been reported. The p.Arg418Trp variant along with
the p.Arg418Gln and the p.Arg418Gly variants constitute recur-
rent mutations in the majority of patients and indicate a mutation-
al hotspot at the arginine 418 residue. In vitro functional assays
have demonstrated a gain of function for the p.Arg418Trp and
p.Ala726Thr variants (Chen et al. 2014). Genotype-phenotype
correlations suggest that the missense mutation p.Arg418Trp is
associated with a more severe phenotype, while p.Arg418Gly,
the p.Arg418Gln, and p.Ala726Thr show a milder phenotype
(Chen et al. 2015; Chang et al. 2016). Somatic mosaicism, re-
sponsible for up to 43% of apparently de novo mutations, results
in a less severe phenotype with almost complete resolution of
symptoms in adulthood reported in one case (Chen et al. 2015).

Treatment

In ADCY5-related movement disorders, therapeutic trials with
anticholinergics (trihexyphenidyl), dopamine antagonists

Fig. 2 Schematic overview on a
striatal medium spiny neuron
synapse. Dopaminergic signaling
in striatal medium spiny neurons
is mediated by the cAMP
signaling pathway. Activation of
D1-type dopamine receptors leads
to activation of adenylyl cyclase 5
and subsequent increase in cAMP
levels, while activation of D2-
type dopamine receptors results in
inhibition of adenylyl cyclase 5
and reduced levels of cAMP.
cAMP in turn modulates activity
of the protein kinase A, which
phosphorylates further
downstream effectors including
DARP-32 and CREB. Arrows
indicate mutations in genes
involved in postsynaptic
dopaminergic signaling in striatal
medium spiny neurons
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(tetrabenazine), and anticonvulsants have shown limited clin-
ical benefit. The benzodiazepines clonazepam (0.1–0.2 mg/
kg) and clobazam (0.2 mg/kg) have been reported to improve
sleep-related dyskinesia and myoclonic episodes (Chen et al.
2015; Chang et al. 2016). Benzodiazepines exert an indirect
inhibitory effect on AC5 activity, which might counterbalance
the gain of function associated with the p.Arg418Trpmutation
(Dan’ura et al. 1988; Chang et al. 2016). Acetazolamide has
shown a positive effect on chorea in three patients (Carecchio
et al. 2017). Treatment with bilateral GPi deep brain stimula-
tion (GPi-DBS) elicited a positive clinical response (Dy et al.
2016; Meijer et al. 2017). Two case reports showed a signif-
icant improvement of dyskinesia and dystonia after DBS
(Chang et al. 2016; Meijer et al. 2017). However, the long-
term efficacy of DBS in this condition is largely unknown.

Molecular mechanisms

The enzyme adenylyl cyclase 5, encoded by the gene ADCY5,
constitutes the major adenylyl cyclase isoform in the brain and
is enriched in the striatum, in particular the nucleus accum-
bens, where it accounts for 80% of AC activity (Matsuoka et
al. 1997). AC5 is a membrane-bound protein that receives
signals from striatal GPCRs including DRD1, DRD2, and
A2A adenosine receptor (Lee et al. 2002). AC5 converts aden-
osine triphosphate (ATP) into cAMP upon GPCR-activation
(Hanoune et al. 1997). Functional studies into ADCY5 gain of
function mutations in an in vitro HEK293 overexpression cell
model demonstrated an increase in intracellular cAMP levels
(Chen et al. 2014). The AC5 knockout mouse model in con-
trast, mimicking loss of function, exhibits a hypokinetic phe-
notype with parkinsonian features (Iwamoto et al. 2003). In
Adcy5−/−mice, attenuation of DRD2 signaling was associated
with abnormal coordination, while attenuated locomotion ac-
tivity was due to defective DRD1 signaling (Iwamoto et al.
2003). In striatal MSNs, AC5 constitutes a key enzyme in-
volved in the modulation of dopaminergic signals and is thus
tightly associated with motor control.

Phosphodiesterase 10A-related movement disorders

Clinical presentation

The phenotypic spectrum of PDE10A-related disorders is
strongly correlated to the mutation dosage. In patients carrying
a single heterozygous PDE10A variant, disease onset occurs
between 5 and 15 years of age. The movement disorder is
characterized by chorea that tends to generalize over time.
Esposito and colleagues recently described a patient with gen-
eralized, non-progressive chorea and diurnal fluctuation that
gradually improved during the day and was absent at night
(Esposito et al. 2017). The disease course is usually mildly
progressive. Patients with dominant PDE10A mutations

usually manifest normal cognition and development. Brain
MR images show characteristic symmetrical bilateral T2-
hyperintense lesions of the striatum (Mencacci et al. 2016;
Esposito et al. 2017). In contrast, patients harboring recessive
PDE10A mutations are more severely affected. They usually
present with chorea in the first year of life. Facial involvement
with orolingual dyskinesia was found in six patients of one
kindred and resulted in severe dysarthria and drooling (Diggle
et al. 2016). Reported patients with homozygous mutations
had additional neurological features including delayed motor
and speech development, cognitive decline, and axial hypoto-
nia (Diggle et al. 2016). Focal epilepsy has been described in
one patient (Diggle et al. 2016). Brain MRI of patients with
recessive disease does not show any structural abnormalities
of the basal ganglia, though investigation with a specific
PDE10A PET ligand revealed significant loss of striatal
PDE10A in one patient (Diggle et al. 2016).

Treatment

Management of PDE10A-related disorders is based on the
symptomatic treatment of chorea. In other neurological disor-
ders including Huntington’s disease (HD) and schizophrenia,
PDE10A has long been considered a promising target for
pharmacological treatment (Menniti et al. 2007; Raheem et
al. 2016). In these disorders, perturbation of striatal output
has been associated with disease pathophysiology (Raheem
et al. 2016; Beaumont et al. 2016). In HD, dysfunction of
indirect MSNs is thought to be responsible for the hyperkinet-
ic movement disorder in the early stage of the disease, which
is mainly characterized by chorea (Beaumont et al. 2016).
Reduced levels of PDE10A have been found in HD patients
and HD mouse models (Beaumont et a l . 2016) .
Pharmacologic inhibition of PDE10A in particular enhanced
activity and cortical responsiveness of indirect-pathway
MSNs and restored defective basal ganglia corticostriatal cir-
cuitry, thus mimicking DRD2 agonists (Beaumont et al.
2016). Hence, PDE10A inhibitors might in the future provide
a potential therapy for the hyperkinetic features of both HD
disease and PDE10A-related disorders.

Genetics

To date, two recessive homozygous PDE10A mutations
(p.Tyr107Cys and p.Ala116Pro) have been identified in eight
individuals from two consanguineous families. Two recurrent
de novo dominant heterozygous PDE10Amissense mutations
(p.Phe300Leu and p.Phe334Leu) have been reported in four
unrelated individuals and in members of a family with an
autosomal dominant mode of inheritance (Diggle et al.
2016; Mencacci et al. 2016; Esposito et al. 2017). Both reces-
sive and dominant mutations result in loss of function and
reduced levels of PDE10A in the striatum (Diggle et al.
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2016; Mencacci et al. 2016). In silico modeling of the
p.Phe300Leu and p.Phe334Leu variants demonstrated that
the affected amino acids reside within the regulatory GAF-
B-binding domain, which stimulates PDE10A activity upon
binding of cAMP (Mencacci et al. 2016). In vitro studies
verified severly affected cAMP-binding properties
(Mencacci et al. 2016). As previously described, genotype-
phenotype correlations suggest a milder phenotype associated
with dominant heterozygous mutations and a more severe
phenotype related to homozygous recessive mutations.

Molecular mechanisms

PDE10A encodes the enzyme phosphodiesterase 10A, a dual
cAMP-cGMP phosphodiesterase, which is highly abundant in
MSNs of the striatum (Coskran et al. 2006). PDE10A cata-
lyzes the hydrolysis of cAMP and cGMP to their correspond-
ing degradation products nucleoside 5′-monophosphate and
thus regulates both cAMP and cGMP downstream signaling
cascades. PDE10A is involved in the modulation of DRD1-
and DRD2-activated GPCR-signaling and in the control of
striatal gene expression (Strick et al. 2010; Diggle et al.
2016). Pharmacological studies revealed that inhibition of
PDE10A preferentially targets indirect-pathway MSNs
resulting in suppression of movement and hypokinesia
(Threlfell et al. 2009). Indeed, Pde10a-knockout-mice and
Pde10a-knock-in mice (p.Tyr97Cys variant) show reduced
striatal PDE10A levels and manifest hypokinetic movement
abnormalities (Schmidt et al. 2008; Diggle et al. 2016). In
humans, biallelic mutations in the PDE10A gene are also as-
sociated with reduced striatal levels of PDE10A, but in con-
trast, a hyperkinetic movement disorder. This observationmay
reflect species-specific effects and is reminiscent of the situa-
tion in HD disease. In both human patients and the corre-
sponding HD mouse models, striatal levels of PDE10A are
reduced (Beaumont et al. 2016). However, HD patients typi-
cally manifest an early, hyperkinetic movement phase follow-
ed by a hypokinetic phase in the later stage of disease.
However, very few HD mouse models accurately recapitulate
the early hyperkinetic phase which characterizes the early
stage of disease (Diggle et al. 2016). As is the case for many
human movement disorders, the mouse model only partially
reflects the disease evident in human patients.

G proteinαo-related disorders

Clinical presentation

The G proteinαo (GNAO1)-related phenotypic spectrum in-
cludes a spectrum of overlapping neurological phenotypes,
including early-onset epileptic encephalopathy (EE), drug-
resistant epilepsy with movement disorder (chorea, athetosis,
dystonia, stereotypies) andmovement disorder (mainly chorea

and athetosis) without seizures. Patients with the epileptic en-
cephalopathy phenotype usually manifest neonatal or
infantile-onset tonic seizures or infantile spasms and exhibit
distinct EEG features including burst suppression or
hypsarrhythmia. Affected patients exhibit severe developmen-
tal delay and later may develop a dyskinetic movement disor-
der (Nakamura et al. 2013; Talvik et al. 2015; Saitsu et al.
2016; Marcé-Grau et al. 2016; Danti et al. 2017). This condi-
tion is currently classified as EEI17 (MIM no. 615473). The
movement disorder phenotype is mainly characterized by pro-
gressive chorea and dystonia that usually develops in the first
few years of life. Dyskinesia, in particular facial and
orolingual, dystonia, and complex motor stereotypies have
been commonly reported (Saitsu et al. 2016; Ananth et al.
2016; Danti et al. 2017). The onset of movement disorder is
often preceded by marked hypotonia and neurodevelopmental
delay. With increasing age, many patients develop severe ex-
acerbations and suffer from episodes of refractory chorea and
ballismus often accompanied by autonomic dysfunction with
tachycardia, hyperthermia, hypertension, and diaphoresis
(Ananth et al. 2016) (Bstatus hyperkineticus^). Triggers often
lead to these exacerbations, and may include fever, intercur-
rent infections, heightened emotion, and stress. Attacks often
arise in clusters and can last minutes to days or even weeks
(Danti et al. 2017), often requiring admission to the intensive
care unit. Patients with a predominant movement disorder
phenotype often show mild cognitive impairment. In patients
withGNAO1-related disease, brain magnetic resonance imag-
ing is usually non-specific. However, a thin abnormal corpus
callosum has been commonly reported (Danti et al. 2017).
Atrophy of the basal ganglia and cerebral atrophy have also
been described (Ananth et al. 2016; Sakamoto et al. 2017).

Treatment

For GNAO1-related disorders, tetrabenazine, in particular in
combination with neuroleptics (risperidone, haloperidol), ap-
pears to be effective for the baseline treatment of chorea
(Ananth et al. 2016; Danti et al. 2017). However, clinicians
should be cautious about side effects including acute dystonic
reactions or malignant neuroleptic syndrome. Sakamoto re-
ported a dramatic response to the anticonvulsant topiramate
(7.5 mg/kg), an effect which might be attributed to the inhib-
itory action on voltage-gated Ca2+ channels (Sakamoto et al.
2017). Episodic exacerbations of movement disorder are often
pharmacoresistant. It is of utmost importance to urgently refer
these patients to the intensive care unit for dystonia manage-
ment (increment of dystonia medication dosages, sedation,
paralysis), adequate hydration, and continuous monitoring of
cardiorespiratory functions, temperature, and laboratory pa-
rameters including creatine kinase and renal function to re-
duce the risk of hyperthermia, renal failure, and rhabdomyol-
ysis. In the case of pharmaco-refractory chorea or dyskinesia,
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especially when it becomes life-threatening, (emergency)
placement of a deep brain stimulator (DBS) into the globus
pallidus internus has often resulted in an excellent clinical
response (Kulkarni et al. 2016; Yilmaz et al. 2016; Danti et
al. 2017).

Genetics

To date,GNAO1mutations have been identified in 43 individuals
(Nakamura et al. 2013; Talvik et al. 2015; Law et al. 2015; Saitsu
et al. 2016; Kulkarni et al. 2016;Marcé-Grau et al. 2016; Ananth
et al. 2016; Yilmaz et al. 2016; Menke et al. 2016; Arya et al.
2017; Danti et al. 2017; Sakamoto et al. 2017; Schorling et al.
2017; Waak et al. 2017; Bruun et al. 2017). Pathogenic variants
include mostly missense mutations, but also splice site mutations
and one single case with a deletion (Nakamura et al. 2013; Danti
et al. 2017). Mutations usually occur de novo, with somatic and
gonadal mosaicism being described in several families
(Nakamura et al. 2013; Yilmaz et al. 2016; Menke et al. 2016).
The recurrence risk after one affected child has been estimated at
5–15% (Menke et al. 2016). In almost half of all patients, muta-
tions arise at the highly conserved Arg209 and Glu246 residue
indicating mutational hotspots. In vitro functional investigations
into themolecular mechanism of 15GNAO1 pathogenic variants
suggested genotype-phenotype correlations (Feng et al. 2017a).
GNAO1 loss of function variants was associated with epileptic
encephalopathy, while gain of function variants was related to
those causing predominantly movement disorders (Feng et al.
2017b). Menke and colleagues further reported that de novo
missense mutations in the GNAO1 codon 209 and 246 are pre-
dominantly associated with a movement disorder phenotype and
developmental delay but without seizures (Menke et al. 2016).
Based on a review of literature, Schorling et al. described a fe-
male preponderance for the EE phenotype, suggesting that pre-
dilection for epilepsy might be a gender-specific effect in
GNAO1-related disorders (Schorling et al. 2017). Themovement
disorder phenotype appears to affect both sexes equally.

Molecular mechanisms

GNAO1 encodes the alpha-o subunit (Gαo) of G-proteins. Go

are the most abundant G-proteins in brain tissue, particularly
in neuronal synapses (Jiang and Bajpayee 2009). They regu-
late multiple intracellular effectors and associated signaling
cascades including ion channels, enzymes, and small
GTPases (Jiang and Bajpayee 2009). At the presynaptic level,
Go proteins further mediate autoinhibitory effects of several
neurotransmitters on their receptors (Brown and Sihra 2008).
Gαo subunits are specifically involved in the inhibition of
voltage-gate Ca2+ channels and activation of inwardly rectify-
ing K+ channels (Simon et al. 1991; Schorling et al. 2017).
Knockdown of Gαo proteins in mice (αo−/−) results in hyper-
active behavior and motor abnormalities including

generalized tremor and impaired motor control, as well as
occasional seizures, hyperalgesia, and shortened lifespan
(Jiang et al. 1998). A knock-in mutant mouse model
(Gnao1+/G184S) exhibits a severe seizure phenotype and pre-
mature death (Kehrl et al. 2014). The mutant mice exhibit
elevated frequency of interictal epileptiform discharges on
EEG but no overt brain morphology changes were seen.

G proteinαolf-related dystonia

Clinical presentation

G proteinαolf (GNAL1)-related disorders were first reported in
2012, in adult-onset primary torsion dystonia (DYT 25, pri-
mary torsion dystonia) (Bressman et al. 1994; Fuchs et al.
2012). Disease onset occurs in the third or fourth decade of
life. Dystonia is usually initially focal and affects predomi-
nantly the craniocervical region in most patients. With ongo-
ing disease, dystonia progresses and typically leads to more
extensive cervical or laryngeal involvement and less common-
ly truncal or limb involvement. Recently, Masuho et al. iden-
tified two affected individuals in a large consanguineous kin-
dredwho presented with childhood-onset dystonia (Masuho et
al. 2016). Both siblings presented with hypertonia at the age of
1 year and developed generalized dystonia over time. Initial
motor and language development was normal.

Treatment

In GNAL1-associated dystonia, a therapeutic trial with levo-
dopa was not beneficial (Bressman et al. 1994). Data on treat-
ment with other anti-dystonic agents is scarce to date.

Genetics

GNAL1 mutations are inherited in an autosomal dominant
manner with reduced penetrance (Carecchio et al. 2016). De
novo heterozygous GNAL1 mutations have also been de-
scribed in three patients with seemingly sporadic dystonia
and negative family history (Dobričić et al. 2014; Ziegan et
al. 2014). Recently, autosomal recessive homozygous mis-
sense mutations in the GNAL1 gene have been identified in
a consanguineous kindred with childhood-onset dystonia
(Masuho et al. 2016). In vitro functional assays have demon-
strated attenuated DRD1 response for the nonsense mutant
p.Ser293* and impaired association of the Gαolf subunit with
the corresponding Gβγ subunit for the missense mutant
p.Val137Met, thereby indicating loss of function.

Molecular mechanisms

GNAL1 encodes the stimulatory G-protein alpha subunit Gαolf.
Gαolf belong to the stimulating G-proteins and couple Bdirect
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pathway^ DRD1 and Bindirect-pathway^ A2 adenosine recep-
tors to the activation of AC5 (Corvol et al. 2001; Vemula et al.
2013). Gαolf are enriched in striosomes, which are clusters of
striatal MSNs that project to the SNpc (Crittenden and Graybiel
2011). An imbalance of the striatal striosome activity in relation
to the surroundingmatrix has been postulated to contribute to the
development of hyperkinetic movement disorders (Fuchs et al.
2012). AGnal+/− knockout mousemodel has been used to study
L-DOPA-induced dyskinesia in parkinsonism (Alcacer et al.
2012). In the dopamine-denervated striatum, L-DOPA induces
DRD1 signaling through the cAMPpathway including PKA and
DARP-32. Striatonigral lesions of Gnal+/− mice lead to upregu-
lation of Gαolf and induce dyskinesia upon chronic treatment
with L-DOPA.

GPR88-related chorea

Clinical presentation and genetics

The phenotypic spectrum of GPR88-related movement disorder
so far includes only four individuals from one consanguineous
kindred (Alkufri et al. 2016). The female siblings presented with
speech delay and learning disability and developed chorea at the
age of 8–9 years. The movement disorder affected mainly the
face and hands, but choreiform movements were also noted in
the shoulders, pelvis, and thighs. Alkufri et al. identified a homo-
zygous nonsense mutation in GPR88 gene encoding an orphan
G-protein-coupled receptor (Alkufri et al. 2016).

Molecular mechanisms

GPR88 is highly expressed in both DRD1- and DRD2-
expressing MSNs of the striatum (Massart et al. 2009;
Quintana et al. 2012). GPR88 deficiency in a knockout mouse
model (Gpr88Cre/Cre) leads to enhanced excitability of DRD1-
and DRD2-expressing striatal MSNs owing to increased glu-
tamate receptor phosphorylation and altered GABAA receptor
composition (Quintana et al. 2012). The Gpr88Cre/Cre mice
show increased locomotion, hyperactivity in novel environ-
ment, and stereotypic behavior abnormalities reminiscent of
striatal dysfunction (Meirsman et al. 2016).

Other geneticmovement disorders associated
with secondary postsynaptic dysfunction

DYT1 early-onset dystonia

Clinical presentation and genetics

DYT1 dystonia is a hereditary early-onset movement disorder
caused by mutations in TOR1A encoding the protein torsin A.
Patients manifest with isolated dystonia in childhood or

adolescence, usually without any other associated neurologi-
cal abnormalities (Ozelius and Lubarr 1993). Though not part
of the initial presentation, executive dysfunction and psychi-
atric comorbidities such as mood and anxiety disorders have
been described in DYT1 dystonia (Jahanshahi 2017). In the
early course of disease, dystonia usually affects one (usually
lower) limb and is often related to specific actions (action-
induced or task-specific dystonia). Over time, dystonia usual-
ly progresses and becomes segmental, multifocal, or general-
ized in 60–70% of all patients (Ozelius and Lubarr 1993).
DYT1 dystonia shows an autosomal dominant mode of inher-
itance and manifests with reduced penetrance, estimated at
30%. The majority of patients harbor a three base pair deletion
c.907_909delGAG deletion, though three additional in-frame
deletions have been reported singly in other individuals
(Ozelius and Lubarr 1993).

Molecular mechanisms

Although the exact function of torsin A is yet to be fully
elucidated, it is thought to shuttle between the endoplasmic
reticulum (ER) and the nuclear envelope (NE) for several
physiological functions including ER-associated degradation,
dopamine release and metabolism, synaptic shuttling of
mRNAs, and cytoskeleton dynamics (Ozelius and Lubarr
1993). Several studies have investigated the role of torsin A
in dopamine neurotransmission in striatal neurons. Data from
three different DYT transgenic mouse models suggest a role
for presynaptic dysfunction in dopaminergic neurons owing to
impaired dopamine release (Bao et al. 2010; Page et al. 2010).
However, electrophysiological studies in striatal slice cultures
from a transgenic DYT1 mouse model also revealed postsyn-
aptic alterations. Activation of postsynaptic DRD2 resulted in
a paradoxical excitatory effect in striatal cholinergic interneu-
rons leading to inappropriate firing activity (Pisani et al.
2006). MSNs of transgenic mice showed decreased surface
expression of postsynaptic DRD2 with deficient G-protein
coupling (Napolitano et al. 2010). Further studies investigated
a potential DRD2 trafficking defect due to reduced torsin A
chaperone activity. This hypothesis was corroborated by data
demonstrating a direct interaction between torsin A and
DRD2 and PET imaging studies demonstrating decreased
DRD2 availability in brains of DYT1 patients (Torres et al.
2004; Carbon et al. 2009).

Monogenic forms of parkinsonism/Parkinson’s
disease

Clinical presentation and genetics

Parkinson’s disease (PD) represents the second most common
neurodegenerative disorder in adults and most commonly occurs
sporadically (Kalia and Lang 2015). However, approximately 5–
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10% of patients have a monogenic form of the disease with an
either autosomal recessive or dominant mode of inheritance (Lin
and Farrer 2014). In these monogenic forms, disease onset typ-
ically occurs in childhood (juvenile onset parkinsonism, usually
< 20 years) or adulthood before the age of 40–45 (early-onset
parkinsonism) (Puschmann 2013; Bonifati 2014). PD is
neuropathologically characterized by progressive loss of
nigrostriatal dopaminergic neurons leading to the typical clinical
triad of bradykinesia/akinesia, rigidity, and tremor. In the mono-
genic early-onset forms of PD, additional neurological features
including neurodevelopmental delay, intellectual disability, psy-
chiatric comorbidities, and epilepsy are commonly reported. To
date, several genes have been associated with juvenile, atypical
parkinsonism (ATP13A2, PLA2G6, FBX07, DNAJC6, SYNJ1)
and early-onset parkinsonism (SNCA, PARK2, PINK1, DJ1)
(Bonifati 2014).

Molecular mechanisms

Genes associated with early-onset parkinsonism are mainly
involved in disruption of presynaptic function (Bonifati
2014). Pathogenic variants have been shown to impair protein
trafficking, autophagy, and mitochondrial function culminat-
ing in loss of dopaminergic neurons (Lynch-Day et al. 2012;
Pickrell and Youle 2015; Hunn et al. 2015). Many of the
affected proteins in PDmay also have other effects in different
synaptic compartments, which remain yet to be fully elucidat-
ed. Indeed, in early-onset PD, there is emerging evidence for
postsynaptic alterations that may contribute to the disease pa-
thology. For example, Parkin, encoded by the gene PARK2,
has been shown to localize to not only presynaptic but also
postsynaptic terminals (Sassone et al. 2017). At the postsyn-
aptic terminal, Parkin colocalizes with the postsynaptic densi-
ty marker PSD-95. Through interaction with PSD-95, Parkin
is suggested to regulate trafficking, anchoring, and clustering
of membrane surface receptors (Sassone et al. 2017). Parkin is
further involved in the mono-ubiquitination of PICK1, a syn-
aptic scaffold protein that regulates the trafficking of several
neurotransmitter receptors, ion channels, and enzymes (Joch
et al. 2007). Further studies demonstrated that Parkin modu-
lates postsynaptic glutamate receptors. Loss of Parkin leads to
an increase in excitatory activity, which ultimately results in
exitotoxic dopaminergic cell death (Sassone et al. 2017).
Further studies are warranted to elucidate postsynaptic disease
mechanisms in genetic early-onset PD. Overall, investigation
of postsynaptic alterations in monogenic PD may provide in-
sights into more common forms of PD.

Conclusion

Over the past few years, a number of genetic movement dis-
orders have been identified where defects in postsynaptic

MSN function are thought to play a crucial role in disease
pathogenesis. Mutations in genes such as ADCY5, PDE10A,
GNAO1, GNAL1, and GPR88 affect key proteins of the post-
synaptic cAMP signaling pathway, which mediate the effects
of dopaminergic neurotransmission in striatal MSNs. On a
molecular level, loss or gain of function pathogenic variants
differentially impact on the signaling cascade but result in
hypo- or hyperfunctional dopaminergic signaling in striatal
MSNs.

From a clinical viewpoint, these genetic diseases which
align to a common disease pathway also manifest a number
of overlapping clinical features. All are characterized by
prominent, early-onset movement disorders with hyperkinetic
manifestations such as chorea and dyskinesia. Facial involve-
ment is commonly reported in ADCY5-, PDE10A-, GNAO1-,
and GPR88-related disorders. Despite these similarities, the
course of disease and specific distinct phenotypic features
may help to discriminate them clinically. Indeed, ADCY5-
and PDE10A-related disorders seem to show a static or mildly
progressive course, while GNAO1-related movement disor-
ders are characterized by progressive chorea which can be-
come life-threatening in some patients. Distinguishing clinical
features may further include sleep-related phenomena and
marked fluctuation in ADCY5 disease, abnormalMRI features
in dominant PDE10A disease, and severe exacerbations asso-
ciated with autonomic dysfunction in patients with GNAO1
mutations.

Given these substantially overlapping phenotypes, establish-
ing a definitive diagnosis is often not straightforward.
Furthermore, with increasing patient diagnoses, the molecular
and clinical spectrum is likely to further expand, with the identi-
fication of atypical disease phenotypes. Implementation of next-
generation sequencing techniques in clinics has already translated
into better diagnostics of these rare postsynaptic disorders. For
many of these disorders, a diagnostic whole-exome approach or
multiple-gene panel testing may be the most efficient method of
reaching a confirmatory diagnosis. Despite these genetic ad-
vances, clinicians still face the enormous unmet need for
disease-specific personalized therapies, as many of these disor-
ders are pharmacoresistant and challenging to treat with conven-
tional, currently available drugs. Precision medicine approaches,
targeting the specific gene defect may provide a better long-term
strategy to overcome this gap. Gene therapy and RNA manipu-
lation techniques represent attractive new technologies to ap-
proach a patient’s specific genetic condition. Future identification
of specific therapies targeting the cAMP pathway, a critical cel-
lular signaling pathway in striatal MSNs, may revolutionize the
treatment of these severe genetic movement disorders.
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