
On Machine Learning and Programming Languages
Mike Innes

Stefan Karpinski
Viral Shah

Julia Computing, Inc.

David Barber
Pontus Stenetorp

University College London
London, UK

Tim Besard
Ghent University
Ghent, Belgium

James Bradbury
Salesforce Research

Valentin Churavy
Simon Danisch
Alan Edelman
Jon Malmaud
Jarrett Revels

Massachusetts Institute of Technology
Cambridge, MA

Deniz Yuret
Koç University
Istanbul, Turkey

ABSTRACT
The complexity of Machine Learning (ML) models and the frame-
works people are using to build them has exploded along with ML
itself. State-of-the-art models are increasingly programs, with sup-
port for programming constructs like loops and recursion, and this
brings out many interesting issues in the tools we use to create
them — that is, programming languages (PL). This paper1, discusses
the necessity for a first class language for machine learning, and
what such a language might look like.

ACM Reference Format:
Mike Innes, Stefan Karpinski, Viral Shah, David Barber, Pontus Stenetorp,
Tim Besard, James Bradbury, Valentin Churavy, Simon Danisch, Alan Edel-
man, Jon Malmaud, Jarrett Revels, and Deniz Yuret. 2018. On Machine
Learning and Programming Languages. In Proceedings of SysML conference
(SysML 2018). ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 PIG LATIN, AND OTHER HIDDEN
LANGUAGES

TensorFlow (TF) and its ilk2 are already programming languages [1],
albeit limited ones. Though nominally written using another lan-
guage, typically Python, this is only to build an expression tree in
TF’s internal language, which it then evaluates.

TF’s lazy style is in effect meta-programming: writing code that
writes code. In TF, Python serves as a meta-language for writing

1Based on a longer blog post at https://julialang.org/blog/2017/12/ml&pl
2We use TensorFlow for example, but could substitute other “define-before-run” frame-
works like CNTK or MXNet.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SysML 2018, February 2018, Stanford CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

programs in TF’s graph-based language.3 TF’s graph supports con-
structs like variable scoping and control flow, but instead of using
Python syntax, you manipulate these constructs through an API.

TF and similar tools present themselves as “just libraries”, but
they are extremely unusual ones. Most libraries provide a simple set
of functions and data structures, not an entirely new programming
system and runtime. Why is such a complex approach necessary?

2 WHY CREATE A NEW LANGUAGE?
ML research has extremely high computational demands, and sim-
plifying the modelling language makes it easier to add domain-
specific optimisations and features. Modern ML requires excellent
hardware support, good numerics, low interpreter overhead and
multiple kinds of parallelism. Where general-purpose languages
struggle to provide these features, TF can handle them seamlessly.

These impressive optimisations rely on simplifying assumptions
(e.g. no recursion or custom gradients), which make it easier to
apply optimisations or deploy to small devices. Unfortunately, ML
researchers thoroughly enjoy violating these assumptions. Mod-
els now demand conditional branching (easy to add), loops for
recurrence (less easy), and even recursion over trees [12] (virtually
impossible). In many areas of ML, models are becoming increas-
ingly like programs, including ones that reason about other pro-
grams (e.g. program generators [8] and interpreters [5]), and with
non-differentiable components like Monte Carlo Tree Search. It’s
enormously challenging to build runtimes that provide complete
flexibility while achieving top performance, but the most powerful
models and groundbreaking results need both.

Another practical downside of this approach, at least in its cur-
rent incarnations, is the need for meta-programming of the kind
discussed above. Building and evaluating expression trees imposes
significant additional burdens on both the programmer and the
compiler. It becomes tricky to reason about because the code now
has two execution times, each with different language semantics,
and things like step-through debugging are much harder. This could
be resolved by creating a syntactic language for the new runtime,
but this requires creating a full new programming language. Is this
worthwhile when we have popular numerical languages already?
3TF’s graph is effectively a dataflow-based AST (Abstract Syntax Tree).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195303304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://julialang.org/blog/2017/12/ml&pl
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML 2018, February 2018, Stanford CA, USA M. Innes et al.

3 CANWE JUST USE PYTHON?
As ML models began to need the full power of a programming
language, Chainer and others pioneered a “define-by-run” [9] ap-
proach wherein a Python program is itself the model, using runtime
automatic differentiation (AD) for derivatives. This is fantastic from
a usability standpoint: if you want a recursive model that operates
over trees, simply write that down, and let the AD do its magic!

However Python scales poorly to ML’s heavy computational
demands. A huge amount of work goes into replicating optimisa-
tions that fast languages get for free, and the PL boneyard is full
of failed efforts to make Python faster. Python’s semantics also
make it fundamentally difficult to provide model-level parallelism
or compile models for small devices.

Efforts like Gluon for MXNet are attempting to get the best of
both approaches, combining basic dynamic AD with code-tracing
to produce “static sub-graphs” which can then be optimised. Such
hybrids are a mashing together of disparate implementations and
APIs, and it is unclear how to support both kernel-level optimisa-
tions and high-level graph scheduling.

4 WHAT MIGHT A TAILOR-MADE ML
LANGUAGE LOOK LIKE?

There are few domains as demanding about language-level design
issues as machine learning. But it’s not unprecedented: in areas
like formal reasoning and verification or cluster computing, new,
tailor-made languages have proved an effective solution.

An obvious current challenge for ML languages is achieving
generality alongside performance, and the early hybrid approaches
will need much more development. Future ML runtimes will need
to support arbitrary mixing of approaches (e.g. static within dy-
namic within static) and compiling of dynamic code for deployment.
Ideally, there will only be single, flexible “graph format” (or AST).
The AST should have a syntax and statically describe dynamic be-
haviour (e.g. with a written for loop); i.e. it should look a lot more
like a standard programming language.

Programmable semantics would open up new levels of flexibility,
and could be provided by a feature similar to macros. This would
allow functionality like multi-GPU training to be built on top of
the core system, by specifying where the code should have pure
dataflow semantics (vs imperative semantics, which are more flexi-
ble but may include side-effects that are unsafe to optimise). It could
also allow the kinds of program manipulation needed by probabilis-
tic programming languages, or the vectorisation (batching) passes
usually implemented by hand in NLP models [4].

As well as the PL community, ML engineers should pay close
attention to the Automatic Differentiation (AD) community. ML
languages can take inspiration from languages designed for truly
first-class derivative support [11]. Such languages can mix sym-
bolic with runtime techniques (helping with the above tradeoffs),
combine forward and reverse mode AD (for improved performance
and memory usage), and differentiate GPU kernels.

ML languages increasingly need more means for extension. Gone
are the days when it was enough to hard-code support for strided
arrays on NVIDIA GPUs; cutting-edge techniques like sparse ma-
chine learning [7], new hardware like TPUs, Nervana, FPGAs, and
CoreML chips all call for greater levels of flexibility. Large-scale

refactoring for each new development will not scale. Here we ex-
pect ML systems to take inspiration from numerical computing,
where adding new hardware support or data representations can
be accomplished by a user in high-level code [2].

Type systems can provide safety benefits, but there is room for
more array-aware type systems where dimensions are meaningful
(e.g. spatial vs channel vs batch dimensions in images), to help
protect hairy dimension-permuting code. We expect the trend to-
wards dynamic typing to continue,4 mainly due to practitioners’
preference for interactivity and scripting, but hope to see further
innovations like CNTK’s optionally dynamic dimensions.

ML engineers are increasingly interested in traditional software
engineering problems [10] like maintenance and integration with
production systems. The ML programming model makes it harder
to create abstraction barriers and interfaces between components,
and re-training of a model can easily break backwards compatibility.
ML languages will likely be able to incorporate solutions to these
problems, but this remains an open design problem.

A downside to any new language is that it requires a new library
ecosystem. TensorFlow requires it’s own libraries for tasks like
image processing and file IO, instead of reusing vast effort behind
the Python ecosystem. ML practitioners should not split from the
wider numerical and HPC community. An ideal ML ecosystem is an
ideal numerical one, and collaboration between these communities
will multiply everyone’s efforts.

We expect to see these developments coming from several angles.
Graph IRs and formats like XLA, ONNX and NNVM are becoming
ever more sophisticated and will likely take more inspiration from
traditional language design, perhaps even becoming fully-fledged
programming languages. TensorFlow’s XLA has started a push
towards special-purpose compiler stacks that now includes TVM,
DLVM, andmyelin. Meanwhile, projects like the PyTorch JIT, Gluon
and Tangent are efforts to make Python itself a better modelling
language. Having just argued that ML is a numerical programming
languages problem, the authors feel that the Julia language [3] is an
excellent substrate for experimenting with these kinds of language-
level issues, and will continue to push the boundaries with projects
such as Knet, Flux, Cassette, CUDAnative, DataFlow.jl.

5 CONCLUSION
MLmodels have become extremely general information-processing
systems that build ever higher-level and more complex abstractions;
recurrence, recursion, higher-order models, even stackmachines [6]
and language interpreters [5]. ML is a new programming paradigm,
albeit one that’s heavily numerical, differentiable and parallel. And
as in any engineering field, the tooling available will have a pro-
found impact on the scope and quality of future work.

All this suggests that designers of ML systems have a momentous
challenge ahead of them. The ML and PL communities need to
combine forces, and a core challenge is integrating the disparate
expertise, in order to build systems that treat numerics, derivatives
and parallelism as first-class features, without sacrificing traditional
programming ideas and wisdom.

4Internally, current systems span the gamut from fully dynamic (PyTorch and its ATen
backend) to unusually static (TensorFlow’s XLA and MXNet, where all dimensions are
known before the graph is run).

On Machine Learning and Programming Languages SysML 2018, February 2018, Stanford CA, USA

REFERENCES
[1] Martín Abadi, Michael Isard, and Derek G. Murray. 2017. A Computational

Model for TensorFlow: An Introduction. In Proceedings of the 1st ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages (MAPL
2017). https://doi.org/10.1145/3088525.3088527

[2] Tim Besard, Pieter Verstraete, and Bjorn De Sutter. 2016. High-level GPU pro-
gramming in Julia. (2016). arXiv:1604.03410

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia:
A Fresh Approach to Numerical Computing. SIAM Rev. 59 (2017), 65–98. https:
//doi.org/10.1137/141000671

[4] Guy E. Blelloch. 1990. Vector Models for Data-parallel Computing. MIT Press.
[5] Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. 2017.

Programming with a Differentiable Forth Interpreter. In Proceedings of the 34th
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International
Convention Centre, Sydney, Australia, 547–556. http://proceedings.mlr.press/
v70/bosnjak17a.html

[6] Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christo-
pher D. Manning, and Christopher Potts. 2016. A Fast Unified Model for Parsing
and Sentence Understanding. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Berlin, Germany, 1466–1477. arXiv:1603.06021
http://www.aclweb.org/anthology/P16-1139

[7] Laurent El Ghaoui, Guan-Cheng Li, Viet-An Duonga, Vu Pham, Ashok Srivastava,
and Kanishka Bhaduri. 2011. Sparse Machine Learning Methods for Understand-
ing Large Text Corpora. In Proc. Conference on Intelligent Data Understanding.
https://people.eecs.berkeley.edu/~elghaoui/pubs_cidu2011.html

[8] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li
Fei-Fei, C. Lawrence Zitnick, and Ross Girshick. 2017. Inferring and Executing
Programs for Visual Reasoning. In The IEEE International Conference on Computer
Vision (ICCV). arXiv:1705.03633

[9] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,
Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng
Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul
Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. DyNet: The Dynamic Neural Network Toolkit. (January
2017). arXiv:1701.03980

[10] D. Sculley et al. 2015. Hidden Technical Debt in Machine Learning Systems. In
Advances in Neural Information Processing Systems 28 (NIPS 2015). https://papers.
nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems

[11] Jeffrey Mark Siskind and Barak A. Pearlmutter. 2016. Efficient Implementation
of a Higher-Order Language with Built-In AD. (2016). arXiv:1611.03416

[12] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing. Association for Computational Linguistics, Beijing, China, 1556–1566.
http://www.aclweb.org/anthology/P15-1150

https://doi.org/10.1145/3088525.3088527
http://arxiv.org/abs/1604.03410
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
http://proceedings.mlr.press/v70/bosnjak17a.html
http://proceedings.mlr.press/v70/bosnjak17a.html
http://arxiv.org/abs/1603.06021
http://www.aclweb.org/anthology/P16-1139
https://people.eecs.berkeley.edu/~elghaoui/pubs_cidu2011.html
http://arxiv.org/abs/1705.03633
http://arxiv.org/abs/1701.03980
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems
http://arxiv.org/abs/1611.03416
http://www.aclweb.org/anthology/P15-1150

	Abstract
	1 Pig Latin, and Other Hidden Languages
	2 Why create a new language?
	3 Can we just use Python?
	4 What might a tailor-made ML language look like?
	5 Conclusion
	References

