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Abstract 

A top-tensioned riser is a slender pipe that conveys fluids between a floater and a 

subsea system. High top-tension keeps its straight configuration and helps to prevent 

compressive loads. Because of the floater’s heave motion, the tension on the riser 

fluctuates giving rise to dynamic buckling. This paper examines the dynamic buckling 

characteristics of a top-tensioned riser analyzing the governing equation with nonlinear 

damping. The equation is discretized in space by the finite difference method and then 

is numerically integrated by the Runge-Kutta method. As main objective, an ultimate 

limit state function for risers is used to investigate its reliability during parametric 

excitation. While the short-term stationary Gaussian random motion of a floater can be 

described by a response spectrum, the uncertainties of a long-term response are 

considered by Monte Carlo simulation. In view of an applied example, it is found that the 

dynamic buckling would occur often, and although the probability of failure is acceptable, 

it can cause serious failure when axial excitation is of significance in harsher sea states. 

This study aims to contribute in clarifying the role of parametric vibrations (dynamic 

buckling) in the reliability of risers for ultimate limit state. 

 

Keywords: marine riser; random heave-induced parametric excitation; nonlinear 

quadratic damping; probability of dynamic buckling; ultimate limit state reliability 

analysis. 
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1. Introduction 

A top-tensioned riser (hereafter referred to solely as a riser throughout this paper) 

consists of a vertical pipe, which is used in the offshore industry to convey drilling fluids, 

oil, gas, water or chemicals from its respective floater to a subsea system or vice versa. 

This type of structure is mostly used in deep water, where the relative motion between 

the floater and the subsea system is minor. 

One of the technical challenges in the application of risers is the occurrence of 

heave-induced parametric excitation which may lead to dynamic buckling. A riser is held 

at its top end by a tensioning system, which keeps the riser’s body under tension in 

order to avoid compressive loads; nevertheless, due to the floater’s heave (vertical 

motion), the tension fluctuates with time, and lateral vibrations (dynamic buckling) can 

be excited. The unwanted consequence us such phenomenon is the riser’s damage due 

to excessive stress which could lead to oil or gas spills with consequent pollution and 

economic loses (Yang et al., 2013). Moreover, it is known that the heave motions of 

floaters are responsible for bending and buckling conditions that can lead to fatigue 

damage of risers (Katifeoglou and Chatjigeorgiou, 2016). 

From the cost perspective, it would be desirable to reduce the tensioning 

capacity and to permit the riser to operate in low tension (Patel and Vaz, 1996), 

nonetheless large heave motions can cause serious damage to the riser and thus it is 

necessary to balance the capital with the risk expenditures in order to optimize the 

riser’s design and operations. To give idea of the consequences, the World Offshore 

Accident Database (DNV GL, 2016) has reported at least 2 accidents related to the 

partition of marine drilling risers during stormy conditions with large heave motions 
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where the largest consequence is spill of drilling mud to sea, 1 accident where the 

drilling string broke after the maximum deflection of the heave compensator was 

reached, and 4 accidents where one riser tensioner wired failed. Unfortunate events as 

the above mentioned, can be avoided if inadequacies are solved at design stage, being 

the most common ones (Patel and Witz, 1991, Chapter 11): failure to predict multiple 

curvature, failure to predict high curvature, inadequate top-tension availability, 

inadequate tensioner rate, excessive bending in free-hanging condition and failure of 

buoyancy modules. 

Regarding the description of dynamic buckling, the amplitude of the response is 

often larger near the bottom owing to the spatial variation of tension with depth. It can 

be excited via three main mechanisms (Kuiper et al., 2008). First, classic parametric 

resonance may develop when the frequency and amplitude of the floater’s heave excite 

a specific riser mode or combination of modes. In this situation, the response frequency 

is about twice the excited eigen-frequency (Park and Jung, 2002), also as confirmed by 

experiments (Franzini et al., 2015). Second, sub-critical buckling can arise when the 

floater heaves with low frequency and large amplitude, and thus a single wave grows 

near the riser’s bottom and then propagates along its length. Third, when frequency and 

amplitude are high enough, buckling waves are generated periodically near the bottom, 

travel and decompose in a combination of riser modes. 

Many studies have been devoted to the issue of parametric excitation of offshore 

structures in which a coefficient appears as function of time in the governing differential 

equation. Said studies have included the research about risers and cables 

(Chatjigeorgiou, 2004; Chatjigeorgiou and Mavrakos, 2005, 2002; Franzini et al., 2015; 
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Franzini and Mazzilli, 2016; Hsu, 1975; Kuiper et al., 2008; Lei et al., 2014; Mazzilli et 

al., 2016; Park and Jung, 2002; Prado et al., 2014; Wang et al., 2015; Wu et al., 2016; 

Xiao and Yang, 2014; Yang et al., 2013; Yang and Xiao, 2014; Zhang and Tang, 2015), 

tethers for tension-leg platforms (Patel and Park, 1995, 1991), submerged floating 

pipelines (Yang et al., 2017) and parametric rolling of ships (Pipchenko, 2009; Thomas 

et al., 2010). 

The general approach to investigate the parametric excitation of risers and 

tethers is as follows: (1) First, the nonlinear governing equation of motion with a time-

dependent coefficient is derived. (2.a) Then the stability of the linear Mathieu’s equation 

(for single-frequency excitation) (Chatjigeorgiou and Mavrakos, 2002; Hsu, 1975; Park 

and Jung, 2002; Patel and Park, 1995, 1991; Prado et al., 2014; Wang et al., 2015) or 

Hill’s equation (for multi-frequency excitation) (Xiao and Yang, 2014; Yang et al., 2013) 

is analyzed via the Strutt’s diagram, where the stability is estimated analytically. (2.b) 

Another alternative is to analyze the linearized system by means of the Floquet theory 

(Kuiper et al., 2008; Lei et al., 2014; Zhang and Tang, 2015). (3) Finally, the nonlinear 

equation is solved in the time-domain to examine the effect of nonlinear terms 

(Chatjigeorgiou and Mavrakos, 2002) and the map of the steady-state amplitude can be 

plotted (Franzini and Mazzilli, 2016; Kuiper et al., 2008; Mazzilli et al., 2016; Prado et al., 

2014). 

Some variations of the analysis consist of adding forced vibrations, such as 

surge (horizontal) motions at the top end of the riser. Scholars have found that the 

response period of combined parametric and forcing excitation is dependent on the 

relative strengths of each type of excitation (Patel and Park, 1995). The finite element 
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method in order to address axial and torsional effects, and results have shown that the 

responses of combined excitations can be in general equal or larger than for surge 

forcing excitation alone (Park and Jung, 2002). Another study that used small 

deformation theory, found that the bending stresses on top-tensioned risers increase as 

the amplitude of floater’s drift motion increase, especially at the bottom end of the riser 

(Li et al., 2010). On the other hand, the frequency of said motion has dominant effect on 

the stresses at the upper part. Other researchers have investigated parametric 

excitation of risers have included other phenomena such as sea wave forces (Lei et al., 

2014; Wu et al., 2016), vortex-induced vibrations (Wang et al., 2015; Yang and Xiao, 

2014) and earthquake excitation (Wu et al., 2016). 

A couple of experiments have been reported in the literature. The first one 

(Franzini et al., 2015) used spectral analysis of the experiments and Strutt diagrams to 

investigate the response at different frequency ratios of top excitation to eigen 

frequency. The second (Mazzilli et al., 2016) used the Galerkin method with Bessel 

functions to solve the riser’s motion numerically and compared the results against 

experimental data. 

The present paper focuses on the investigation whether the random heave-

induced dynamic buckling can lead to structural failure of a riser in the long-term. While 

useful methods and findings are available in the literature, there are some differences 

that might be highlighted for this study. (1) The riser’s response due to the random 

floater’s motion is investigated, while previous studies have focused either on the 

floater’s harmonic motion or have assumed that the riser’s top end follows the random 

sea surface. (2) Realistic probability density functions (PDFs) are employed to describe 
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the long-term statistics of sea waves which are input for the reliability analysis. (3) 

Moreover, Monte Carlo simulation (MCS) is performed to assess the probability of 

dynamic buckling and the probability of failure after dynamic buckling, which up to the 

authors’ knowledge have not been evaluated in the past. 

The description of the paper is presented comprising six sections. After Section 1 

for introduction, Section 2 presents the governing equation of a riser and its 

discretization by means of the finite difference into a system of nonlinear ordinary 

differential equations. Section 3 identifies combinations of significant wave height and 

wave spectral peak circular frequency that lead to dynamic buckling, where the dynamic 

stability of the riser is first analyzed and then a map of maximum amplitude response is 

used. In Section 4, the MCS method is introduced and then applied for the structural 

reliability analysis of a riser in Section 5. Finally, insights and findings from the present 

study are addressed in Section 6. 

 

2. Mathematical model 

2.1 Governing equation 

The straight vertical riser submerged in a fluid medium is considered as shown in 

Fig. 1. The tensioning system is approximated as a soft spring 
1k , and the flexible joints 

as rotational springs 2k  and 3k . 
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Fig. 1 Sketch of a top-tensioned riser with a floater’s heave-induced excitation. 

 

Under the small-deformation theory of columns (Paik and Thayamballi, 2003, 

Chapter 9), and including the fluid’s drag damping, the in-plane governing equation for a 

riser surrounded by quiescent water can be expressed as 
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where  ,w z t  is the lateral displacement of a riser as a function of depth z  and time t , 

E  is the Young’s Modulus, I  is the area moment of inertia of a riser, eT  is the effective 

tension, M  is the mass per unit length which includes the riser’s solid body, internal 

fluid and added mass, dC  is the drag coefficient, f  is the surrounding fluid’s density 

(seawater), D  is the outer diameter of the riser for drag force calculations, and L  is the 

riser’s length. 

2.2 Description of time-varying tension 

The effective tension of a riser is derived from the rod equation, subjected to the 

spring force at 0z  , and zero displacement at z L  . By assuming quasi-static 

response, the effective tension reads 

   1, ,e e eT z t W fL W z k t   Z         (3) 

where eW  is the submerged weight of a riser per unit length, f  is the pretension factor, 

and  tZ  is the floater’s heave motion. The first term is the applied static tension to the 

riser’s top end, while the second accounts for the riser’s self-weight, internal fluid’s 

weight and buoyancy. 
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Concerning the third term in Eq. (3), the sea waves excite the floater, and in turn 

the floater excites the riser, yielding in a time-varying tension. The sea waves are 

described by their variance density spectrum  S  , where   is the circular frequency of 

the waves. The floater’s heave motion is characterized by its heave transfer function or 

response amplitude operator  RAO   (time-invariant linear relationship between the 

sea wave amplitude and response amplitude). Then, the heave response spectrum can 

be computed as follows (Det Norske Veritas AS, 2014): 

     
2

RS RAO S .  Z          (4) 

Adopting a random-phase/amplitude model, the random heave response in time-

domain can be computed as the summation of harmonic heave waves, i.e. 

     cos , ,i iit E a t i    Z        

 (5) 

where E  indicates expectation, the underscore denotes a random variable, ia  is the 

random heave amplitude for the i -th frequency i ,    2RSi iE a   Z  is the 

amplitude spectrum evaluated at i ,   is the circular frequency increment and i  is 

the random phase uniformly distributed between   and  . 

To obtain the remaining terms, the spring constant is given as follows (Kuiper et 

al., 2008): 

1 ,e ck LW ak           (6) 
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where ca  is the floater’s critical heave amplitude, and the factor k  has been introduced 

in order to take into account the uncertainty. This formulation is consistent with the 

simplified tensioner model 1 in ISO 13624-2 (ISO, 2009). 

At last, the pretension factor is calculated as follows: 

,m ef F T LW           (7) 

where mT  is the minimum allowable top-tension as defined in API RP 16Q (American 

Petroleum Institute, 2017) and F  is a factor which must be positive to comply with the 

said guidelines. 

 

2.3 Numerical solution 

To solve Eq. (1), the space is discretized by means of the finite difference 

method with central difference approximation. The derivation is presented in the 

Appendix A. 

Writing the finite difference equations into state-space form, gives a system 

ordinary nonlinear differential equations, which in this study are solved by the Runge-

Kutta-Fehlberg method. This is a 4th-5th order Runge-Kutta procedure with optimum-

adaptive step size available in Matlab as ode45 differential equation solver. Throughout 

the paper, this method is referred to as time-domain analysis. By this approach, the 

analysis of dynamic buckling response takes roughly 7 minutes to simulate 4.5 hours of 

a sea state, with 53 nodes, in a computer with processor Intel(R) Core(TM) i5-4590 

CPU @ 3.30GHz 8.00 GB installed memory (RAM). 



12 
 

3 Map of dynamic buckling 

3.1 Properties of a riser 

Stability analysis is carried out and then the maximum absolute response map is 

computed for a marine drilling riser made of X-80-grade steel 21 in (533.4 mm) main 

conductor with properties taken from the literature (Permana, 2012) (see Table 1). 

Linear regression is applied to approximate M , eW  and mT  as functions of the internal 

fluid’s density i . In this section, k = F =1 and i =1 600 kg·m-3 are taken, unless 

otherwise indicated. 

 

Table 1 Properties of a riser 

Property Value 

E  2.1×1011 N·m-2 

I  1.17×10-3 m4 

aC  1 

dC  0.8 

M  (1+ aC )(0.2164 i +1155.2) kg·m-1 

f  1025 kg·m-3 

D  1.4224 m 

L  3000 m 

eW  2.1225 i -2305.5 N·m-1 

ca  10 m 

2k  5 × 105 N·m·rad-1 

3k  5 × 106 N·m·rad-1 

mT  8480 i -7.43×106 N 
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As a target floater, a semi-submersible with properties used in a previous study 

(Cabrera-Miranda and Paik, 2017) is considered and the heave RAO for head waves 

(traveling in longitudinal direction) is calculated analytically (Clauss et al., 1992) [see Fig. 

2(a)]. Only sea waves for the said direction are considered in this study for simplicity of 

problems. Moreover, the JONSWAP formulation (Det Norske Veritas AS, 2014) is used 

to compute the sea waves’ variance density spectrum as a function of the significant 

wave height SH  (mean of the highest one-third of waves in a wave record) and the 

spectral peak circular frequency p . Alternatively, one may use the zero-crossing wave 

period ZT  (mean of the interval between one zero-down crossing of a wave and the 

next), as addressed in Section 5. The JONSWAP spectrum was selected over the 

Pierson-Moskowitz Spectrum because, as illustrated in Fig. 2(c), larger floater motions 

are produced with the former. Fig. 2(b) and (c) are generated by using the mean for 
SH  

and ZT  introduced in Section 5. 
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Fig. 2 (a) Response amplitude operator of floater’s heave, (b) wave variance density 

spectra and (c) heave response spectra for SH =2.5567 m and p =0.6768 rad·s-1. 

 

3.2 Lyapunov stability analysis and nonlinear damping stabilization 

Following the strategy for the analysis from previous researchers, it is attempted 

to compute the stability map of the riser response. It is noted that the system of finite 

difference equations [Eq. (A7)] represents a nonlinear dynamical system which stability 

can be defined by means of the Lyapunov exponents (Nayfeh and Balachandran, 2004, 

Chapter 7). Lyapunov exponents are measures of mean exponential rate of divergence 

of small perturbations to the solutions of a dynamical system (Benettin et al., 1980a; Lu 
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et al., 2005). Stable dynamical systems have negative Lyapunov exponents, whereas 

chaotic systems have one or more positive Lyapunov exponents. 

By using the method developed by Shimada and Nagashima (1979) and Benettin 

et al. (1980a, 1980b), the Lyapunov exponents of the nonlinear system are computed 

for a few cases. As an example, Fig. 3 illustrates the results for a sea state (random 

process) where dynamic buckling occurs, where   is the dimensionless transverse 

deflection,   is the dimensionless time and   is the dimensionless coordinate, all 

defined in the Appendix A. 

As initial conditions, a half-wave deformation     sin~0,   is prescribed with 

amplitude ~ =0.00001. Figs. 3(a) and 3(c) show that the initial conditions impose a 

quasi-periodic transient motion which remains for part of the simulation. Then, the 

response grows bounded by the quadratic damping. Fig. 3(b) represents the evolution 

of the first 5 Lyapunov exponents, which are all negative and hence it is concluded that 

the system is stable or non-chaotic. 
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Fig. 3 Evolution of dynamic buckling for SH =10.13 m, p =0.3972 rad·s-1: (a) phase 

portrait of riser motion at  =0.8846, (b) time history of highest 5 Lyapunov exponents 

and (c) time history of transverse deflection. 
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Some unstable combinations of parameters are possible for the finite difference 

riser equations. For instance, using same parameters as for Fig. 3, but with k =100 

which amplifies the heave excitation, the first Lyapunov exponent is 3242 and at least 

the next four are positive. Therefore, the system becomes unstable; nevertheless, one 

may not be interested in high k  values for riser applications. 

In summary, the presence of drag damping stabilizes the riser’s motion whenever 

dynamic buckling occurs, which is not a surprising finding since this is the case for most 

parametrically excited systems, where nonlinearities limit the growth of the response 

(Nayfeh and Mook, 1985, Chapter 5). This finding is also in agreement with other works 

that have studied the parametric vibrations of the riser with quadratic damping 

(Chatjigeorgiou and Mavrakos, 2002; Franzini and Mazzilli, 2016; Kuiper et al., 2008; 

Mazzilli et al., 2016; Patel and Park, 1995). The hydrodynamic damping is the decrease 

of amplitude of small oscillations of a body by forces in anti-phase with velocity, which in 

turn are caused by oscillations of the boundary layer that give rise to skin friction, 

normal pressure and complex coherent and quasi-coherent fluid structures (Sarpkaya, 

2010, Chapter 7). 

 

3.3 Map of maximum response 

As seen in the previous section, the concepts of dynamic stability and stability 

map are ineffective for the nonlinear riser equation in the domain of interest. Instead, a 

map of maximum absolute dynamic buckling response provides a pragmatic approach 

to identify sea parameters that may lead to dynamic buckling. 
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Fig. 4 displays the maximum riser deflection as a function of p  and SH  for a 

mesh of 100×100 points. The amplitude of the half-wave initial deformation is set to ~

=0.00001. While each simulation time comprises 4.5 hours of response, only the last 3 

hours were taken into account in order to let the effect of the initial conditions get 

dissipated. It is observed that dynamic buckling occurs for low p  which is explained by 

the fact that the studied floater is not excited by high frequencies (see Fig. 2). 

 

 

Fig. 4 Map of maximum absolute dynamic buckling response. 

 

Fig. 5 presents an example for the response at four points in Fig. 4, which are 

indicated as a triangle, diamond, square and circle markers in the latter. It is noticed that 

the riser vibrates in a combination of standing wave pattern with some traveling waves. 

Furthermore, higher modes are excited as p  increases. For the case of lower 
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frequency as shown in Fig. 5(a), the maximum response does not develop at a specific 

depth, while for the other cases it clearly happens near to the bottom end of the riser. 

 

 

Fig. 5 Contours of the time history for transverse deflection [m] for (a) SH =14.25 m, p

=0.11 rad·s-1, (b) SH =14.13 m, p =0.2906 rad·s-1, (c) SH =6.13 m, p =0.2843 rad·s-1, 

(d) SH =14.45 m, p =0.5957 rad·s-1. 
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4. Stochastic analysis 

4.1 Probability of dynamic buckling 

Based on the results of Section 4, it is realized that dynamic buckling is likely to 

happen in sea states of low wave frequency and high amplitude; nevertheless, one may 

be still interested in how often that event would happen and in whether such event can 

make the riser fail. 

Concerning the probability of dynamic buckling, (i) the deformation imposed by 

the initial conditions will disappear in time if the riser finds the straight shape stability or 

(ii) it will grow until the quadratic damping stabilizes the system. Thus, the maximum 

buckling response relative to the initial deformation can be calculated as follows: 

           1 2max , , sin , , 0,1 , ,rel               X X %     (8) 

where X  is the vector of long-term random variables, 1  is the initial time of the sea 

state, and 2  is the end time. 

One should note that: 0rel   for situation (i) and 0rel   for (ii). Since we are 

interested in (ii), here the probability of dynamic buckling is defined as follows: 

  P 0 ,B relP  X           (9) 

where P   denotes the probability. 
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4.2 Probability of structural failure 

The calculation of the probability of failure for a system is a key task of the 

reliability analysis. To assess the structural reliability of the riser, local usage factors 

 u  for ultimate limit state can be calculated in the following form of (Det Norske 

Veritas, 2010): 
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   (10) 

where M  is the bending moment induced by the dynamic buckling, kM  is the plastic 

bending moment resistance, 
i

p  is the internal pressure, ep  is the external pressure, 
b

p  

is the burst resistance, kT  is the plastic axial force resistance and 
c

p  is the hoop 

buckling capacity [for detailed definition of the variables, Det Norske Veritas (2010) is 

referred to]. 

Then, the global usage is given by 

         1 2max , , , , 0,1 , ,U u           X X       (11) 

and the probability of failure can be computed as follows: 

  P 1 .fP U X           (12) 
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4.3 Monte Carlo simulation assisted by metamodels 

The probabilities, Eq. (9) and Eq. (12) are computed in this study by means of 

Monte Carlo Simulation (MCS) (Zio, 2013). By this method, a random realization of the 

parameters X  correspond to each simulation (Forghani and Ritto, 2016). 

In order to reduce the computational effort, a metamodel approach is 

implemented (Cabrera-Miranda and Paik, 2017; Garrè and Rizzuto, 2012; Xiao and 

Yang, 2014; Yang and Zheng, 2011). First, a sampling technique for design of 

experiments such as Latin hypercube sampling (LHS) is used to select a set of credible 

scenarios with limited number. Then, a time-domain dynamic analysis is carried out for 

the selected scenarios. Next, metamodels (approximate functions of X ) are fed with the 

generated data and then used within the MCSs to estimate the output random variables 

rel
  and U . At last, the limit state functions are evaluated to compute the probability of 

violating those limits, i.e. the number of simulations with buckling is counted and divided 

by the total number of simulations to find the probability of dynamic buckling; likewise, 

the probability of failure is calculated by dividing the number of simulations with failure 

by the total number of simulations. 

The approximate time to perform the metamodel-assisted MCS is 54 minutes 

which requires memory for the storage of variables and metamodels. More time is spent 

in analyzing the LHS scenarios. 
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5. Applied example and discussion 

Stochastic analysis is performed for a base case and then the influence of the 

minimum top-tension factor in the probability of dynamic buckling and failure is 

investigated. The riser and floater properties are the same as in Section 3.1. The 

procedure described in Fig. 6 is followed. 

 

Fig. 6 Flowchart for calculating for calculating probability of dynamic buckling and 

probability of failure of a riser. 
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5.1 Base case 

First, uncertainties in the environmental, functional conditions and strength 

variables are taken into account by means of their long-term PDFs as indicated in Table 

2. 

 

Table 2 Probabilistic distribution of long-term random variables for base case. 

Variable Description Unit Distribution Reference 

SH  significant 
wave height 

m Weibull ( =2.84, =1.53) Det Norske 
Veritas AS 
(2014), 
Area 4 

ZT  Zero-
crossing 
wave period 

s Log-normal ( =0.07+1.125
SH

0.15,  =0.07+0.0978exp (-0.0074

SH ) 

Det Norske 
Veritas AS 
(2014), 
Area 4 

i
  internal 

fluid’s density 
kg·m-3 Normal ( =1527.5,  =167.5) Institut 

Français du 
Pétrole 
(1999) a,b,c 

k  Tensioning 
system 
stiffness 
factor 

- Normal ( =1,  =0.0333) Assumed 
a,b,d 

F  Minimum 
tension factor 

- Normal ( =1.15,  =0.05) Assumed 
a,b,e 

y  Yield 
strength 

Pa Normal ( =6.21×108, 

=1.242×107) 

American 
Petroleum 
Institute 
(2004) a,f 

u  Ultimate 
tensile 
strength 

Pa Normal ( =7.24×108, 

=1.448×107) 

American 
Petroleum 
Institute 
(2004) a,f 

a Mean was estimated as   2minmax xx  , where maxx  and minx  are the maximum 

and minimum values from the available data. 
b Standard deviation was estimated as   6minmax xx   from available data 

c Minimum value minx  is taken as seawater density 
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d minx =0.9, maxx =1.1 

e minx =1, maxx =1.3 
f 0.02 coefficient of variation (Kucheryavyi and Milkov, 2014) 
 

Then, LHS is performed to choose 300 scenarios. This number is adequate for 

the computation Kriging metamodels for which 10 times the number of input variables 

are recommended to define the LHS size (Kleijnen, 2017); i.e. the minimum number of 

scenarios for 7 variables of this example is 70. The scenarios are analyzed in the time-

domain for a total of 6 hours in order to let the transient response be dissipated and only 

data after 3 hours is further studied. Initial conditions are prescribed with ~ =0.000001 

and zero velocity. Next, the Blind-Kriging technique was used to construct Kriging 

metamodels by means of the ooDACE Matlab toolbox (Couckuyt et al., 2012, 2010; 

Ulaganathan et al., 2015), where the regression function is a polynomial efficiently 

chosen based on the sample data whereas a Gaussian process interpolates the 

residuals (Couckuyt et al., 2013). The cross-validation plots in Fig. 7 show that the 

Blind-Kriging metamodels provide an accurate approximation of the outputs. Further 

explanation of Kriging models and the ooDACE toolbox is given in the Appendix B. 
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Fig. 7 Cross-validation plots of Kriging metamodels after 300 scenarios for (a) 

maximum relative dynamic buckling, (b) global usage factor, (c) maximum absolute 

dynamic buckling and (d) coordinate of maximum absolute dynamic buckling. 

 

Fig. 8 presents the results after 1.5×106 MCSs. Random responses 
rel

  and U  in 

Fig. 8(a) observe positive correlation which is also seen in Table 3. 
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Fig. 8 Scatter plots after 1.5×106 MCSs: (a) maximum relative dynamic buckling vs. global usage factor, 

(b) maximum absolute dynamic buckling vs. its coordinate, and (c) maximum absolute dynamic buckling 

as function of significant wave height and zero-crossing wave period (dots represent non-failure events 

and magenta-yellow hexagrams represent failure events). 
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Table 3 Matrix of correlation coefficients 

 
rel

  U  
max

  
max

  SH  
ZT  

i
  k  F  

y  
u  

rel
  

1.0000 0.1131 0.9742 0.4876 0.4169 0.2404 0.1050 -0.0237 -0.0428 0.0006 -0.0004 

U  0.1131 1.0000 0.0481 0.6149 0.0192 0.0176 0.9868 -0.0011 0.0277 -0.1190 -0.0596 

max
  

0.9742 0.0481 1.0000 0.4240 0.3752 0.2274 0.0399 -0.0145 -0.0427 0.0004 -0.0005 

max
  

0.4876 0.6149 0.4240 1.0000 0.2620 0.1281 0.6153 0.0240 -0.0884 -0.0001 -0.0005 

SH  0.4169 0.0192 0.3752 0.2620 1.0000 0.6131 -0.0012 0.0001 -0.0005 0.0007 0.0010 

ZT  0.2404 0.0176 0.2274 0.1281 0.6131 1.0000 0.0000 -0.0006 -0.0011 0.0005 0.0002 

i
  

0.1050 0.9868 0.0399 0.6153 -0.0012 0.0000 1.0000 0.0013 0.0001 0.0007 -0.0011 

k  
-0.0237 -0.0011 -0.0145 0.0240 0.0001 -0.0006 0.0013 1.0000 -0.0007 -0.0008 -0.0006 

F  -0.0428 0.0277 -0.0427 -0.0884 -0.0005 -0.0011 0.0001 -0.0007 1.0000 -0.0004 -0.0006 

y  
0.0006 -0.1190 0.0004 -0.0001 0.0007 0.0005 0.0007 -0.0008 -0.0004 1.0000 -0.0007 

u  
-0.0004 -0.0596 -0.0005 -0.0005 0.0010 0.0002 -0.0011 -0.0006 -0.0006 -0.0007 1.0000 

 

The variables representing the dynamic buckling, 
rel

  and 
max

 , observe positive 

correlation with the sea wave parameters 
SH  and ZT . It is detected that the usage 

factor U  is strongly influenced by 
i

 . An interesting result is that U  is positively 

correlated with the location of the maximum buckling response 
max

 . 

The calculated probabilities of dynamic buckling BP  and of failure fP  are listed in 

Table 4. While the dynamic buckling is expected to occur quite often, the value of fP  is 

acceptable for structures with normal relative effort to achieve reliability and large 

expected failure consequences (Rackwitz, 2000). Of course, this approach can be 

useful to evaluate the dynamic buckling-based reliability of a riser under design. 
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Table 4 Calculated probabilities 

BP  
fP  B fP P  |f BP  

7.816×10-1 1.5333×10-5 8.6667×10-6 1.1089×10-5 

 

Fig. 9 shows the approximate PDFs of input variables and relative dynamic 

buckling between its full population and failure scenarios by using the ksdensity function 

available in Matlab. From the results, it can be said that failure is likely to occur in 

scenarios with high internal fluid’s density and internal overpressure [Fig. 9(c)], high 

stiffness of tensioning system [Fig. 9(d)], and low material strength [Fig. 9(f) and (g)]. 

 

Fig. 9 PDFs of random variables: black dotted line represents the long-term distribution 

(based on 1.5×106 MCSs) and red solid line represents distribution at failure (based on 

23 MCSs with failure). 
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5.2 Effect of top-tension 

The influence of the minimum top-tension factor F  in association with the 

probabilities of dynamic buckling and failure is further investigated. From the negative 

correlation coefficient between F  and 
rel

  in Table 3, it is anticipated that high top-

tension would reduce the dynamic buckling response. 

The effect of F  in the probability of failure is more complex. Table 3 and Fig. 9(e) 

indicate that failure events are associated with high F  due to the increase of tensile 

loads and hence it might be desirable to reduce the static top-tension. On the other 

hand, Fig. 10 shows that the pretension factor f  defined in Eq. (7) becomes less than 

one for low F , which means that the top-tension is less than the effective weight and 

thus part the riser’s body is under negative effective tension. 

 

Fig. 10 Pretension factor f  as function of internal fluid’s density and minimum top-

tension factor. 
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To illustrate the effect of negative effective tension, Fig. 11 presents the results 

for the time-domain analysis of a riser when F =0.4, (other parameters the same as for 

Fig. 3). Fig. 11(a) and (b) show that the transverse deflection grows with time. Fig. 11(b) 

displays that the nodal velocity oscillates due to the random excitation. The maximum 

deformation at the end of the simulation in Fig. 11(a) and (c) is in the order of  =1400 

(4.2×106 m), which clearly violates the classical condition of small transverse deflection 

in which the governing Eq. (1) is founded. The associated global usage is U =416.46 

which is dominated by the large buckling-induced bending moment. 

 

 

Fig. 11 Evolution of dynamic buckling with low top-tension for F =0.4, f =0.7505, SH

=10.13 m, p =0.3972 rad·s-1, i =1 600 kg·m-3: (a) time history of transverse deflection 

at at  =0.9615, (b) phase portrait of riser motion at  =0.9615, and (c) deformed shape 

at the end time of analysis. 
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The procedure in Fig. 6 is applied anew with evaluation rules to account for 

scenarios with f <1. The random variables in Table 2 are employed, except that the 

minimum top-tension factor F  is taken as a deterministic variable and 
i

  is assumed to 

be uniformly distributed between 1200 and 2037 kg·m-3. 

For the LHS, another 300 scenarios are sampled, where F  is uniformly 

distributed between 0.2 and 1.5. Then Blind-Kriging metamodels for rel  and U  are 

computed from 226 scenarios while 74 scenarios are neglected in order to avoid strong 

discontinuities in the approximate functions. 

During the MCS, two rules are included. If f <1, rel  is automatically set to a 

value larger than 0 to indicate that buckling occurs, and U  is set to a value larger than 1 

in order to account for failure under large transversal deflection. 

The results are presented in Fig. 12. It can be seen that the probability of 

dynamic buckling approaches to 1 as the top-tension is reduced. It is seen that the 

probability of failure is high for too low values of F , because the top-tension is 

insufficient to keep the riser’s straight shape, and it is also high for large F  because of 

failure under high tension. It is also observed that the discontinuity in the results at F

=0.6 is consistent with the occurrence of f <1 in Fig. 10. 

In view of the results, the operation of riser as recommended by API RP 16Q 

(American Petroleum Institute, 2017), namely using F =1, is adequate to account for the 

phenomenon of dynamic buckling. The probability of failure can even be even reduced 
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during the operation of disconnectable systems, while it cannot be modified for 

permanent risers. It should be mentioned that this study is for a riser in calm water. For 

a comprehensive analysis, more complex fluid-structure interactions with waves and 

currents should be accounted for; also soil-structure interaction and floater motions in 

more degrees of freedom should be accounted for the global riser response. 

 

 

Fig. 12 Probabilities of dynamic buckling, failure and conditional as function of minimum 

top-tension factor (each set of three points corresponds to 1.5×106 MCSs). 

 

6. Concluding remarks 

The aim of the present work has been to investigate the stochastic heave-

induced dynamic buckling in a top-tensioned riser and its effect on the probability of 

failure. The governing differential equation of motion for the riser with nonlinear damping 
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was derived and solved by means of the finite difference method together with a Runge-

Kutta method for time integration. The evolution of the riser’s motion showed that the 

dynamic buckling response is bounded by the presence of quadratic damping. Then, a 

map of maximum absolute response was used to identify the sea wave parameters that 

may cause dynamic buckling. It shows that dynamic buckling develops in sea states 

with high significant wave height and low peak circular frequency. 

The dynamic buckling was studied as a random process which is excited by a 

floater with random heave motion. Long-term random variables were characterized by 

means of their probability density functions. Implementation of the MCS method allowed 

to compute the probability of dynamic buckling (7.816×10-1) and the probability of failure 

given dynamic buckling (1.1089×10-5) for an applied example, and then to investigate 

the influence of reducing the top-tension. 

In view of the results, dynamic buckling is certainly expected to occur in a top-

tensioned riser, but the probability of failure can of course be kept under an acceptable 

safety level associated with an ultimate limit state. 

It can be said that the present study achieves its objectives. Further 

improvements of the proposed methodology comprise the use sequential design of 

experiments instead of one shot LHS designs [see for example Kleijnen (2017)], and the 

use of nonlinear formulations to account to the riser’s top-tension [see for example 

Guimarães Pestana et al. (2016)]. 

Regarding future research, it is desirable to understand the phenomenon of 

heave-induced dynamic buckling by accounting to more nonlinearities such as riser’s 
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extensibility, large transversal deformations and nonlinear boundary conditions. In this 

regard, it is recommended to investigate the fluid-structure interaction between the riser 

and the surrounding fluid by means of 3D nonlinear finite element method. Moreover, 

since it is expected that heave-induced dynamic buckling would occur often throughout 

the riser’s life, it is suggested to study its effect in the fatigue limit state reliability. The 

reliability of the riser during accidental conditions, such as tensioners lock-off or sudden 

loss of top-tension are also recommended for further study. 
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Appendix A. Finite difference formulation 

In relation with the riser’s governing equation and following the same strategy as 

others (Kuiper et al., 2008), it is convenient to introduce the following dimensionless 

variables: 
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Substituting the effective tension of Eq. (3) and employing previous 

dimensionless variables, the governing Eq. (1) may be rewritten as 

   
4 2 2 2

4 2 2 2
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and the boundary conditions (2) become 
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To solve Eq. (A2), the space   is discretized into 1N  interior mesh points, each 

designated by Ni ...,,2,1,0  and equally spaced with step Nh 1 . Using a central 

difference approximation, the derivatives are estimated as follows: 
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where i  denotes the nodal value at the i -th node with coordinate ihi  . 

Substitution of Eq. (A4) into Eq. (A2) yields the finite difference equation 
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Likewise, substitution of Eq. (A4) into the boundary conditions Eq. (A3) gives the 

following nodal values: 
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To integrate the system (A5), it is first necessary to rewrite it into a state-space 

form. This is achieved by letting j  for 1,,1...,,2,1,0,1  NNNj  become ij x  for 

odd i ; and its derivatives become ij xdd   for even i . 

As a result, the following system of first order ordinary nonlinear equations is 

obtained: 
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where the overdot denotes the derivative respect to the dimensionless time  , and 
ix  

represents nodal displacements and velocities for odd i  and even i , respectively. This 

system is then solved by means of a Runge-Kutta method. 

 

Appendix B. Kriging models with the ooDACE toolbox 

A Kriging model is a Gaussian process interpolation-based metamodel or 

surrogate model which assumes the form of (Couckuyt et al., 2013) 

     y g Z x x x            (B1) 

where x  is the vector of input variables,  g x  is a regression function interpreted as the 

mean of the broader Gaussian process  y x ,  Z x  is a Gaussian process with zero 
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mean and covariance function      2Cov , ' R , ',Z Z   x x x x φ  (Fang et al., 2006, 

Chapter 1), 2  is the unknown variance of  Z x , R  is a correlation function between x  

and 'x , and φ  is a set of correlation parameters used to fit the model. Additionally, 

unknown parameters β  are required to fit the regression function. 

Parameters β , 2  and φ  are to be determined from computer experiments 

(simulations) with design (input)  1,..., m x xX  and responses  1,..., my yY  

(Martínez-Frutos and Martí, 2014), where the design of experiments is usually carried 

out by means of Latin hypercube sampling (LHS). Said sampling technique is 

recommended since it provides data from large experimental areas by dividing the 

range of each input into several mutually exclusive and exhaustive intervals of equal 

probability (Kleijnen, 2017). 

One of the tools to compute Kriging models is the ooDACE toolbox (Couckuyt et 

al., 2012, 2010) developed at Gent University which allows not only to compute 

Ordinary Kriging metamodels, but also numerous variants depending on the type of 

regression function. For instance, it supports Simple, Ordinary and Universal Kriging 

models with known constant, unknown constant or unknown polynomial function, 

respectively (Ulaganathan et al., 2015). Furthermore, as the selection of the regression 

function is often difficult, it can also perform Blind Kriging, in which the regression 

function is chosen to capture the most variance in the sample data by means of 

Bayesian approximations (Couckuyt et al., 2012). Other features of the tool are the use 

of Stochastic Kriging and Gradient Kriging models. 
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