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Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve
resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide re-
solutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy
such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell
compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus

far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical
approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy
accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using
commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term
timelapse imaging with minimal photobleaching.

1. Introduction

The development of fluorescence microscopy in the 20™ century
was a major advancement in cell biology, allowing researchers to dy-
namically observe the intracellular behaviour of specifically labelled
molecules and organelles in living cells. However, the spatial resolution
of fluorescence microscopy is generally limited by diffraction to
~200-300 nm; approximately half the wavelength of the illuminating
light. As a result, the study of cellular components on a smaller scale
was reliant upon electron microscopy. Electron microscopy achieves
resolutions down to single nanometres, but is limited by stringent
sample preparation requirements to imaging fixed, dead samples.

In the early 21 century, a new family of microscopy techniques
emerged: super-resolution microscopy. These techniques ‘break’ the
diffraction limit and as such allow for fluorescence imaging at resolu-
tions up to ten times higher than in conventional techniques. The major
super-resolution microscopy techniques are: Stimulated Emission
Depletion (STED) microscopy (Klar & Hell, 1999), Structured Illumi-
nation Microscopy (SIM) (Gustafsson, 2000), and Single Molecule Lo-
calisation Microscopy (SMLM) (Patterson et al., 2010). STED micro-
scopy is a confocal laser scanning technique whereby a second, donut-
shaped beam is introduced into the illumination path to suppress
fluorescence from the periphery of the excitation beam point spread
function (PSF). SIM is a widefield technique, which generates inter-
ference patterns between the labelled structure in the sample and the

periodically patterned (rather than homogeneous) illumination field.
From these patterns, an image of the structure can be calculated at a
resolution beyond the diffraction limit. SMLM methods include PALM
(photo-activated localisation microscopy) (Betzig et al., 2006) and
STORM (stochastic optical reconstruction microscopy) (Rust et al.,
2006), and involve the large field-of-view acquisition of many thou-
sands of frames of photoswitchable fluorophores under conditions such
that only a small, random fraction of the fluorophores are emitting in
each frame. Assuming that the emitting fluorophores in each frame are
separated by distances greater than the diffraction limit, computational
analysis can be used to pinpoint the centres of the emitting molecules
with high accuracy and as such a super-resolution ‘map’ of the imaged
structure can be generated.

While the above-mentioned super-resolution techniques have es-
tablished themselves as an important part of cell biology research, the
major advantage of super-resolution microscopy, i.e. live-cell compa-
tible imaging, is still not widely exploited. This is due to some funda-
mental limitations of the techniques. For example, the resolution in-
crease in STED is directly proportional to the intensity of the donut
beam (Harke et al., 2008); for resolutions < 100 nm this requires the
beam to have phototoxic intensity on the order of 0.1-1 GW/
cm?Similarly, in SMLM techniques, achieving appropriate photo-
switching dynamics of the fluorophores relies on laser intensities on the
order of kW/cm?, toxic buffers, and UV illumination (Wildchen et al.,
2015). Furthermore, SMLM requires the fluorophores to be stationary
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over the duration of the acquisition (on the order of minutes and up-
wards), precluding the imaging of fast dynamic processes and generally
complicating any live-cell imaging. Reversible saturable optical linear
fluorescence transitions (RESOLFT) microscopy is technique combining
the optics of STED microscopy with the fluorophore photophysics of
SMLM; here the donut beam facilitates transitions to a long-lived dark
state rather than inducing stimulated emission (Hofmann et al., 2005).
Although RESOLFT needs several orders of magnitude lower laser in-
tensity compared to STED, there are only a few fluorescent proteins
with favourable photoswitching properties for the technique (Wang
et al,, 2016).Currently, SIM is the only super-resolution technique
routinely used for live-cell imaging. However, the resolution of SIM is
physically limited to a two-fold resolution increase at best (~150 nm,
in comparison to ~50nm and ~20nm achievable with STED and
SMLM respectively). Methods for achieving higher resolutions in SIM
exist, but depend on non-linear excitation of fluorophores only
achievable with high, phototoxic illumination intensities (Gustafsson,
2005), or highly specialised hardware inaccessible to the majority of
researchers (Li et al., 2015). Of the three main classes of super-re-
solution microscopy, SMLM offers the highest resolutions with the
simplest optical set-up. Therefore, methods for adapting SMLM tech-
niques for live-cell imaging are a particularly active area of research.

2. Super-resolution radial fluctuations

One seemingly straightforward solution to increasing the live-cell
compatibility of SMLM would be to decrease the intensity of the illu-
minating laser. However, the photoswitching kinetics of the fluor-
ophores are intimately linked to this laser intensity (Pennacchietti et al.,
2017; Dempsey et al., 2011). At high laser intensities the majority of
fluorophores are in a dark, non-emissive state, leading to a very small
population of molecules emitting in a single camera frame. The ma-
jority of SMLM reconstruction algorithms are formulated to work with
this high-intensity data, as they rely on mathematical detection of
isolated emitted single molecules. The central coordinates of the suc-
cessfully detected molecules can then be accurately localised (Sage
etal., 2015). Lower laser intensities lead to a regime where the majority
of the fluorophores are in an emissive state, and so each camera frame
contains a larger population of emitting molecules. This larger popu-
lation increases the likelihood that emitting molecules overlap with
each other; such overlapping molecules fail the ‘detection’ phase of
analysis and as such are lost from the final image.

Recently, we established a novel analytical approach called Super-
Resolution Radial Fluctuations (SRRF) (Gustafsson et al., 2016) that has
no detection step and is therefore robust to images containing over-
lapping fluorophores. The main steps in SRRF image formation are
shown in Fig. 1a. As in SMLM imaging, the input data is a sequential
series of frames of an imaged structure; however, for SRRF analysis
there is no requirement for the emitting fluorophores to be sparsely
distributed. In most SMLM algorithms, pixels are inspected and a binary
decision is made: is this a fluorophore or not? In contrast, SRRF mag-
nifies each pixel into ‘subpixels’, and each subpixel is assigned a non-
binary value related to the probability that it contains a fluorophore. To
calculate this value, SRRF measures local radial symmetries in the
image (dubbed the ‘radiality’ by the authors), which arise from the
intrinsic radial symmetry of the microscope PSF. The radiality is a
measurement of intensity gradient convergence: for every subpixel,
intensity gradient vectors are measured for a ring of nearby sur-
rounding subpixels. The degree of convergence of these vectors at the
original central subpixel is then calculated. For a subpixel located close
to the true centre of an individual fluorescent molecule, there will be a
high degree of convergence and hence a high radiality value (Fig. 1a,
blue box). For a subpixel displaced from a fluorescent molecule, the
surrounding intensity gradients will display low convergence, as they
will either be oriented towards the direction of the true molecule lo-
cation or, in the case of noise, randomly (Fig. 1a, orange box). Thus,
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radiality acts as a proxy for the positions of molecules. By performing
this radiality measurement for every subpixel across the input stack of
images, a radiality stack is generated.

The radiality transform only considers the spatial information
within the images, and so the temporal information within the original
data is preserved following transformation. As a result, fluctuations in
radiality over time can be analysed to extract further information on the
underlying positions of the fluorophores. For example, plotting the ra-
diality value over time shows markedly different temporal fluctuations
depending on whether the subpixel is centred on a fluorophore (Fig. 1a,
blue plot) or not (Fig. 1a, orange plot). The degree of temporal cor-
relations across the radiality stack can then be rendered as the final
SRRF image. This temporal correlation analysis is similar to that un-
derpinning Super-Resolution Optical Fluctuation Imaging (SOFI)
(Dertinger et al., 2009). However, SOFI relies solely on fluorophores
possessing distinct fluorescent and non-fluorescent states and does not
incorporate additional spatial information. This renders it incapable of
increasing the resolution for samples labelled with stable fluorophores
such as GFP.

The resolution of the final image will scale with the degree of
fluctuations exhibited in the raw data. The raw data displayed in Fig. 1a
only displays weak temporal fluctuations in comparison to, for ex-
ample, an SMLM acquisition with distinct blinking fluorophores. Even
so, the final SRRF image achieves ~70nm resolution (a 5-fold im-
provement over the widefield resolution of ~340nm) as measured by
Fourier Ring Correlation (Nieuwenhuizen et al., 2013).

3. Optimising SRRF acquisitions

In super-resolution microscopy it is important to be able to evaluate
the quality of the generated images. Using our recently-published al-
gorithm SQUIRREL (super-resolution image rating and reporting of
error locations) (Culley et al., 2018) we assessed the quality of SRRF
images acquired under a range of different imaging conditions. Fig. 1b
shows the workflow of SQUIRREL and its application to the data dis-
played in Fig. 1a. By inputting a diffraction-limited image and a super-
resolution image of the same focal volume, a diffraction-limited
equivalent of the super-resolution rendering can be generated. This can
then be compared with the true diffraction-limited image and used to
highlight ‘error’ regions where the images disagree. For example, the
error map in Fig. 1b shows that there are mismatches associated with
the central bright structure. SQUIRREL also generates quality metrics to
allow for comparison of differences between e.g. experimental condi-
tions, acquisition parameters and reconstruction strategies.

Imaging parameters that can affect the quality of a SRRF image
include illumination intensity, camera exposure time and the number of
frames acquired. Therefore, we used SQUIRREL to optimise SRRF ac-
quisition of a fixed sample labelled with conventional fluorophores and
imaged with an LED illumination source. The widefield images of the
sample (Alexa 488-labelled actin and MitoTracker Red-labelled mi-
tochondria) are shown in Fig. 1c. A series of 1s raw image sequences
with varying exposure times and numbers of frames were acquired for
subsequent SRRF reconstruction. Image sequences were acquired with
either 100x10ms frames, 40x25ms frames, 30x33ms frames,
20 x 50 ms frames, 15 x 66 ms frames or 10 x 100 ms frames, and these
acquisitions were repeated at 5 different LED intensities. All these
modalities therefore allow a SRRF frame rate of 1 Hz. SRRF images
were reconstructed for each dataset and their quality (Fig. 1d) and re-
solution (Fig. 1e) measured using SQUIRREL, with the widefield images
in Fig. 1c used as the references. Both image quality and resolution
varied depending on the combination of number of frames, exposure
time and illumination intensity, and also varied between the two dif-
ferent fluorophores. Interestingly, for the actin images in particular, the
settings yielding the highest resolutions were markedly different from
the ones yielding higher qualities.



S. Culley et al. International Journal of Biochemistry and Cell Biology 101 (2018) 74-79

a Diffraction-limited SRRF

High gradient
convergence

Low gradient L
convergence

Radiality*stack

100nm [ ;
Temporally ) | Temporally
correlated | uncorrelated
signal noise

Radiality value
Raw intensity
Radiality value

Diffraction-limited equivalent

\ ‘ Comparison
A -

Quality metrics: RSP=0.76, RSE=241.6

b Ditfractigip-limited Error Map

SUper-Resolution

Optimisation

Cc Phalloidin-488 Phalloidin-488
o
8 M 400
R Esso {" } *
i=l; ' 300
Q = I
= 5
© 2 250 ]
i 8 !
o & 200
3 A !
o 08250 40 60 80 100 10003620 60 80 100
P Exposure time (ms) Exposure time (ms)
9 LED 55 5% 15% 207 LED[1% 5% 15% 20%]
O output L7 ) o o output L= 7 o . S
§ MitoTracker Red MitoTracker Red
[P

2 095F e /58
= 09

0.85 =

%o.s 2350

5075 2 il |

Qo7 3300

&

Merge
n
2

n
o
S

0.65

0.6

0.55

O'50 20 40 60 80 100
Exposure time (ms)

0O 20 40 60 80 100
Exposure time (ms)

Fig. 1. OVERVIEW OF THE SRRF ALGORITHM AND OPTIMISING SRRF IMAGING.

a) Raw data and processing steps in SRRF. The pale cyan box contains the raw, diffraction-limited data series that can be summed to create a single diffraction-limited
image. The pale green box contains the SRRF image processing steps. The raw data is split into subpixels (here each pixel from the raw data is split into a 5 X 5 array
of subpixels). Examples of the intensity gradients used for the radiality transform are shown for the two highlighted blue and orange subpixels. The blue and orange
arrowheads in the radiality stack indicate the location of these subpixels, with their temporal correlations plotted below; coloured plots indicate the radiality
variation over time and grey plots indicate the fluorescence intensity variation over time at these locations in the raw data. Scale bar = 1 pm. b) Overview of the
SQUIRREL algorithm used for optimising SRRF acquisitions. ¢) Widefield LED images of Alexa Fluor 488-phalloidin and MitoTracker Red CMXRos (FluoCells
Prepared Slide #1, Invitrogen). d) SQUIRREL-calculated RSP (resolution-scaled Pearson’s correlation) values plotted for actin and mitochondria images for different
combinations of frame number and exposure time at 5 different LED intensities (indicated as % of maximum output). The highest-quality images (actin: 100 x 10 ms
frames at 10% 490 nm LED; mitochondria: 30 x 33 ms frames at 20% 550 nm LED) are displayed alongside. €) SQUIRREL-calculated FRC (Fourier Ring Correlation)
mean resolution values (error bars = standard deviation of resolution across the entire image) for the same imaging conditions as in d. Grey shaded regions indicate
the mean = std. resolutions in the widefield images in c. The highest-resolution images (actin: 10 x 100 ms frames at 20% 490 nm LED; mitochondria: 10 x 100 ms at
20% 550 nm LED) are displayed alongside. Scale bars in c-e = 10 um.

4. Application of SRRF analysis in different microscopes reconstruction of this data is shown in Fig. 2a. We then performed live-
cell imaging of Utrophin-GFP-expressing Cos7 cells using confocal mi-
croscopy (Fig. 2b) and widefield microscopy using laser (Fig. 2c) and
LED (Fig. 2d-f) illumination. In each case, ideal SRRF reconstruction
parameters were determined using SQUIRREL to maximise the quality
of the final images.

SRRF analysis of confocal microscopy images produces a smaller

To showcase the versatility of SRRF analysis, we imaged live and
fixed samples on a range of microscopes. For a traditional SMLM da-
taset, we performed dSTORM imaging (Heilemann et al., 2008) of Alexa
Fluor 647-labelled phalloidin-bound actin in a fixed cell and acquired
30,000 frames with high-intensity TIRF illumination. The SRRF
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a \

g Fixed cell Confocal Laser WF LED WF (e) LED WF (f)
Diffraction-limited 330 + 30 256 + 10 260 + 20 262 + 16 273+ 20
SRRF (mean FRC) 108 + 30 156 + 30 129 + 20 184 £ 30 195+ 55
SRRF (min. FRC) 60 150 + 33 121+ 20 156 + 30 180 + 59

Fig. 2. SRRF IMAGING USING DIFFERENT MICROSCOPES.

a) Left: SRRF image of Alexa Fluor-647-labelled phalloidin in fixed Cos7 cells imaged using TIRF with intense laser illumination. Scale bar = 10 pm. Right: enlarged
view of the boxed region with the non-super-resolved TIRF image shown. Scale bar = 2 pm. b) Greyscale images: individual SRRF time-points (each frame represents
1 s of imaging) of Cos7 cells expressing Utrophin-GFP imaged using confocal microscopy (scale bars = 5 pum). Enlarged views of the boxed region are displayed below
as a split between the diffraction-limited confocal image and the SRRF image (scale bars = 1 um). Coloured image: temporally colour-coded projection of 200 SRRF
reconstructions at 1 Hz from 200 s of continuous imaging (scale bar = 5 um). ¢) Greyscale images: individual SRRF time-points (1 s imaging per reconstructed SRRF
frame) of Utrophin-GFP images using widefield laser-based microscopy (scale bars = 5um) and enlarged insets showing split between corresponding diffraction-
limited images below (scale bars = 2 um). Coloured image: temporally colour-coded projection on 200 SRRF reconstructions at 1 Hz from 200s of continuous
imaging (scale bar = 5um). d) Temporally colour-coded projections of SRRF reconstructions of 30 min. of continuous LED-illuminated widefield Utrophin-GFP
imaging. Left: projection of all 590 SRRF reconstructions at 0.33 Hz. Right: same dataset, selected SRRF frames at 5 min intervals. Scale bars = 10 um. e) Individual
SRRF frames (3 s imaging per time-point) from the projected dataset in the right-hand panel of d) (scale bars = 10 um), with insets below showing enlarged boxed
region split with diffraction-limited LED widefield (scale bars = 5 um). f) Long-term widefield LED timelapse imaging of Utrophin-GFP with SRRF images acquired
every 10 min. Greyscale images: individual SRRF frames (3 s imaging per time-point, scale bars = 10 um) with enlarged insets below showing the diffraction-limited
equivalent (scale bars = 2pum). Coloured image: temporally colour-coded projection of 10 SRRF reconstructions from imaging once every 10 min (scale
bar = 10 um). g) Resolutions as measured using the ‘FRC Map’ tool in NanoJ-SQUIRREL. For the fixed cell data, SRRF (mean FRC) is the average resolution across the
whole image, with SRRF (min. FRC) representing the best local resolution in the image. For the live cell data, mean FRC is the resolution averaged across all images in
a time series, and min. FRC is the average value for the best individual frame within the series. All values are in nm, errors * SD.

improvement in resolution compared to widefield imaging modalities However, there are few avenues for super-resolution microscopy in
(150 = 30nm for SRRF compared to ~200nm diffraction-limited, confocal microscopes other than STED, which faces challenges when
measured from the first time-point). For the data shown here, SRRF studying live samples as discussed above. SRRF is thus one of the few
resolution was most likely limited due to disruptions in the intensity approaches for breaking the diffraction limit in live-cell confocal mi-
gradients caused by small phase mismatches in the bidirectional laser croscopy. For example, confocal-SRRF has been used to investigate PIN
scanning and non-contiguous time information within each pixel. protein distribution within the plasma membrane of root epidermis
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cells of Arabodopsis, which was unsuccessful with STED due to the rapid
bleaching of the fluorescent protein signal (Retzer et al., 2017).

It has been previously demonstrated that SRRF is an ideal approach
for increasing the resolution in live-cell laser-based widefield micro-
scopy with conventional fluorophores (Gustafsson et al., 2016; Sirianni
et al., 2016). One particularly interesting example of this is in live-cell
total internal reflection fluorescence (TIRF) imaging of tubulin tagged
with mEos 3.2 via a CRISPR-Cas9 labelling strategy (Khan et al., 2017).
The combination of TIRF and SRRF is shown here for live-cell imaging
of Utrophin-GFP in Fig. 2¢, where the temporally colour-coded pro-
jection conveys the dynamics of utrophin filaments captured by SRRF
imaging at 1 SRRF frame per second (i.e. 1 Hz). Laser-based SRRF mi-
croscopy of conventional fluorophores has also been demonstrated in
fixed bacteria for multi-colour imaging in B. subtilis (Vega-Cabrera
et al., 2017) and z-stack imaging of membrane proteins in S. aureus
(Weihs et al., 2018).

For the first time here we showcase the application of SRRF analysis
to data acquired using live-cell LED-illuminated widefield microscopy.
Fig. 2d shows temporal colour-coded projections of 30 min of con-
tinuous LED imaging, with individual time-points separated in Fig. 2e.
To date, LED-based live-cell super-resolution microscopy has only been
demonstrated once elsewhere, but in a context requiring specialised
fluorophores for Forster Resonance Energy Transfer (FRET) (Cho et al.,
2013). The compatibility of SRRF analysis with low cost, low intensity
LED illumination with GFP-labelled samples allows for simple conver-
sion of routine live-cell imaging experiments into super-resolution data.
For example, Fig. 2f shows a typical long-term timelapse experiment
where a 0.33 Hz SRRF image is acquired once every 10 min. This re-
quires no modification of the microscope or sample; only the acquisi-
tion of enough raw frames at each time-point to run SRRF analysis on
(here 100 frames at 30 ms exposure). Resolutions for the fixed cell and
live-cell data sets are shown in the table in Fig. 2g.

5. Summary and outlook

We have demonstrated here, in addition to examples present in the
literature, that SRREF is a versatile and straightforward method for live-
cell super-resolution imaging. It enables routine cell biology imaging
experiments to take advantage of super-resolution imaging, without the
need for specialised super-resolution microscopes or fluorophores. In
the future SRRF will evolve to become more compatible with modern
detectors such as sSCMOS cameras (Almada et al., 2015) and to benefit
from machine learning (Weigert et al., 2018) to enhance its imaging
capacity. Furthermore, as SRRF is agnostic to the microscope used for
data acquisition, it should be straightforward to combine SRRF analysis
with light-sheet microscopy to enable volumetric SRRF imaging. Super-
resolution live-cell imaging is set to revolutionise cell biology research,
and SRRF will be a considerable part of this effort.

6. Materials and methods
6.1. Cell lines

Cos7 cells were cultured in phenol red-free Dulbecco’s modified
Eagle’s medium (DMEM; Thermo Fisher Scientific) supplemented with
10% (v/v) fetal bovine serum (FBS; Gibco), 1% (v/v) penicillin/strep-
tomycin (Thermo Fisher Scientific) and 2mM L-alanyl-L-glutamine
(GlutaMAX™, Thermo Fisher Scientific) at 37 °C in a 5% CO,, incubator.

6.2. Sample preparation

For live-cell imaging, Cos7 cells were seeded on ultraclean (Pereira
et al.,, 2015) 25 mm diameter thickness #1.5 coverslips (Marienfeld) at
a density of 0.3 — 0.9 x 10° cells/cm? One day after splitting, cells
were transfected with a plasmid encoding the calponin homology do-
main of utrophin fused to GFP (GFP-UtrCH, here Utrophin-GFP) (Burkel
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et al., 2007) using Lipofectamin 2000 (Thermo Fisher Scientific) ac-
cording to the manufacturer’s recommendations. Cells were imaged 1-4
days post transfection in culture medium. For phalloidin dSTORM
imaging, Cos7 cells were fixed at 37 °C for 15min with 4% paraf-
ormaldehyde in cytoskeleton-preserving buffer (PEM) (80 mM PIPES
pH 6.8, 5mM EGTA, 2mM MgCl,). After fixation cells were permea-
bilised (1X PEM with 0.25% Triton-X) for 20 min and stained with
Phalloidin-AF647 (Molecular Probes, 4 units/mL) for 30 min.

6.3. Imaging

dSTORM Total Internal Reflection Fluorescence (TIRF) imaging of
Alexa Fluor 647-phalloidin in fixed cells (Fig. 2a) was performed on a
N-STORM microscope (Nikon) using a 100x TIRF objective (Apo TIRF
100x/1.49 Oil, Nikon) and additional 1.5x magnification. Fluorescence
emission was collected onto an EMCCD camera (iXon Ultra 897,
Andor), yielding a pixel size of 107 nm. 30,000 frames were acquired
with 33 ms exposure and 642 nm laser illumination at maximum output
power. Drift was estimated using the inbuilt function in NanoJ-SRRF
and correction applied during SRRF analysis. dSTORM imaging was
performed in GLOX buffer (150 mM Tris, pH 8, 1% glycerol, 1% glu-
cose, 10 mM NaCl, 1% p-mercaptoethanol, 0.5 mg/ml glucose oxidase,
40 pug/ml catalase) with phalloidin-Alexa Fluor 647 (1 unit/mL).

Epifluorescence laser imaging of Utrophin-GFP in live Cos7 cells
(Fig. 2c) was performed at 37 °C and 5% CO on an Elyra PS.1 inverted
microscope (Zeiss) in epifluorescence mode. Images were obtained
using a 63x objective (Plan-APOCHROMAT 63x/1.4 Oil, Zeiss) with
additional 1.6x magnification which was used to collect fluorescence to
an EMCCD camera (iXon 897, Andor), resulting in an image pixel size of
158.7 nm. 20,000 frames were acquired continuously with 10 ms ex-
posure and 488 nm laser illumination at 0.5% of maximum intensity.
100 raw images were used to generate each SRRF image, yielding an
effective temporal resolution of 1s.

Laser-based confocal imaging of Utrophin-GFP in live Cos7 cells
(Fig. 2b) was performed on a TCS SP8 scanning confocal microscope
(Leica) with a 63x objective (HC PL APO CS2 63x/1.4 Oil, Leica).
Fluorescence detection was performed using a Leica HyD hybrid de-
tector in BrightR mode with 10% gain for fluorescence detection using
cropping and zoom adjusted to ensure 100 nm image pixels. 488 nm
illumination was used at 0.5% of maximum intensity. The pinhole was
set to 1 Airy unit and the acquisition time per frame was 20 ms, with
10,000 frames continuously acquired. 50 raw images were used to
generate each SRRF image, yielding an effective temporal resolution of
1s in the SRRF images.

LED-illumination widefield imaging of Utrophin-GFP in live Cos7
cells (Fig. 2d-f) was performed at 37 °C and 5% CO, on a N-STORM
microscope (Nikon). A 100x TIRF objective (Plan-APOCHROMAT
100x/1.49 Oil, Nikon) with additional 1.5x magnification was used to
collect fluorescence onto an EMCCD camera (iXon Ultra 897, Andor),
yielding a pixel size of 107 nm. For continuous imaging, frames were
acquired for 30 min with 30 ms exposure time and 490 nm LED illu-
mination at 5% of maximum output. 100 raw images were used to
generate each SRRF image, yielding an effective temporal resolution of
3s. For timelapse imaging, settings were as for continuous imaging,
except 100 raw frames (30 ms exposure) were acquired once every
10 min with the illumination shutter closed between acquisitions.
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