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Abstract. Stellar convection is usually described by the mixing-length theory, which makes
use of the mixing-length scale factor to express the convective flux, velocity, and temperature
gradients of the convective elements and stellar medium. The mixing-length scale is proportional
to the local pressure scale height of the star, and the proportionality factor (i.e. the mixing-
length parameter) is determined by comparing the stellar models to some calibrator, i.e. the
Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in
all stars and all evolutionary phases and because of this, all stellar models in the literature are
hampered by this basic uncertainty.

In a recent paper [1] we presented a new theory that does not require the mixing length
parameter. Our self-consistent analytical formulation of stellar convection determines all the
properties of stellar convection as a function of the physical behavior of the convective elements
themselves and the surrounding medium. The new theory of stellar convection is formulated
starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-
inertial reference frame co-moving with the convective elements. The motion of stellar convective
cells inside convective-unstable layers is fully determined by a new system of equations for
convection in a non-local and time-dependent formalism.

The predictions of the new theory are compared with those from the standard mixing-
length paradigm with positive results for atmosphere models of the Sun and all the stars in the
Hertzsprung-Russell diagram.

1. Introduction
The transfer of energy by convection is of paramount importance in all the stars. High-mass
stars, roughly for masses M > 1.3M� contain fully convective cores, all stars M ∈ [0.1, 100]M�
have outer convective envelopes, and finally stars smaller in mass than M < 0.3M� are fully
convective. Despite its great importance, a satisfactory treatment of stellar convection in stars
is still open to debate and a self-consistent treatment of the physics of convective energy transfer
is still missing. The ideal goal would be to obtain a set of self-consistent equations, i.e. a set of
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equations resulting from physical assumptions without ad-hoc parameters to be determined by
means of suitable calibrators (usually the Sun).

The most successful theory dealing with the external convection is the mixing-length theory
(MLT) developed long ago by [2] and [3]. The MLT is the paradigm reference to which every
new theory has to be compared with, because of its success over decades in which it has been
used. In the MLT, the convective elements are supposed to travel a mean-free-path lm [4]. lm
which is assumed to be proportional to the natural distance scale hP , given by the pressure
stratification of the star, the proportionality constant being the mixing-length (ML) parameter
Λm, defined implicitly as lm ≡ ΛmhP . The parameter Λm is derived from comparing the
theoretical luminosity, radius and effective temperature of a stellar model for the Sun to its
observational values.

In a recent paper [1], we developed the first theory of stellar convection in which the solar
properties are reproduced without making use of free parameters. In the following we will refer
to this theory as the scale-free convection (SFC) theory. In this approach the authors obtained a
solution for the equations governing stellar atmospheres that self-consistently predict the energy
transport, luminosities, radii and effective temperatures all along the evolutionary sequence of
a star.

2. A mixing-length free set of equation for stellar atmospheres
The ideas at the base of the SFC theory are in principle simple. Let us think for example of
the upward motion of a convective element. The evolution of a single convective cell can be
considered as the sum of the upward motion and the expansion. In the MLT only the upward
motion is considered. The free-parameter of the MLT stems indeed from the assumptions made
to describe the upward motion of the convective elements. Therefore, the only logical alternative
in developing a new theory is to consider the expansion of the convective as the main driver of
the whole process. To make the upward motion ineffective it is enough to write the equations
describing the motion of a convective element in a reference frame co-moving with it. In such
a case, all equations are referred to convective element and the latter is at rest. [1] name S1

this comoving reference, to distinguish it from the inertial reference frame centered on the star
and named S0. In [1] the hydrodynamic equations have been integrated accounting for the non-
inertial apparent forces that arise in the treatment of any physical system evolving in S1. Under
the assumption that viscous terms are much smaller than the inertial ones and the magnetic
field is negligible, the potential flow approximation can be adopted and suitably formulated in
S1 (mathematical formulation in S1 is slightly more complicated). In order to keep the equations
analytically treatable, [1] limit the analysis to the linear regime. If we limit ourselves to the
subsonic regime of the stellar convection, the velocity of a convective element, v, will be much

smaller that its expansion rate,
∥∥∥dξdt ∥∥∥ ≡ ∥∥∥ξ̇∥∥∥, where ξ is the size of the convective elements.

Therefore, a linear theory on the small parameter ε ≡ ‖v‖‖ξ̇‖ � 1 can be developed. In particular,

within the framework of this linear approximation, in the equations governing the evolution of
the expansion rate of a convective element, the role of the inertia of the fluid displaced by the
motion of the convective element turns out to be important. In contrast, this term has always
been neglected in the literature and the evolution of the convective elements was always studied
only in relation to its vertical motion (this led indeed to the problem of the mixing-length scale).

As a result of this approach, we obtain a new system of equations for the energy transfer as
a function of the radiative plus conductive flux ϕrad|cnd, the convective flux ϕcnv, the average

temperature over pressure gradient ∇e ≡
∣∣∣ d lnT
d lnP

∣∣∣
e

of the element, and the stellar gradient ∇.

Moreover, two extra variables, the mean velocity v̄ and the mean size ξ̄e of the convective
elements are obtained as a result of the solution of the system. All these physical quantities
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are a function of the pressure P , temperature T , density ρ, specific heat at constant pressure

cp, adiabatic gradient of temperature over pressure ∇ad ≡
∣∣∣ d lnT
d lnP

∣∣∣
ad

, radiative gradient ∇rad,

molecular weight gradient ∇µ ≡ d lnµ
d lnP , the gravity g, the opacity κ. Finally, all these quantities

are a function of the position inside the star and time.
The general form of the system of equations obtained in [1] is:

ϕrad/cnd = 4ac
3

T 4

κhP ρ
∇

ϕrad/cnd + ϕcnv = 4ac
3

T 4

κhP ρ
∇rad

v̄2 =
∇−∇e−ϕδ∇µ

3hP
2δv̄τ

+(∇e+2∇− ϕ
2δ
∇µ)

ξ̄eg

ϕcnv = ρcPT (∇−∇e) v̄
2τ
hP

∇e−∇ad
∇−∇e = 4acT 3

κρ2cP
τ
ξ̄2
e

ξ̄e = g
4

∇−∇e−ϕδ∇µ
3hP
2δv̄τ

+(∇e+2∇− ϕ
2δ
∇µ)

χ̄,

(1)

where a is the radiation-density constant, and c the speed of light and for the purposes of this
paper χ̄ is a function of time linking size to velocity, i.e. a monotonic linear map (a bijection)
between time, velocity and size of the convective elements (see Appendix A of [1] for more
details). In addition to this we need a numerical procedure to solve all the above equations
together with their boundary conditions. We adopt the code for stellar models written by [5]
and largely modified and updated by the Padua group: [6] with semi-convection, [7] with ballistic
convective overshoot from the core, [8] with envelope overshoot, [9], [10] and [11] with turbulent
diffusion, finally the many revision and improvements described in [12], [13], [14]. In the future
we will implement the new theory of convection also in the twin-code developed independently
by [15]. The SFC theory of [1] and the classical MLT are run in parallel so that comparison is
possible.

3. Results: the model matching the Sun
We present here a comparison between the standard MLT and the SFC theory. The results
are obtained from solving the system of Eq.1 for each layer of a stellar atmosphere governed
by the equations considered in the previous section. We consider the stellar track of [14] best
fitting the present position of the Sun on the HRD e.g., log10 {L/L�, Teff} ∼= {0.000, 3.762} with
standard chemical composition {X,Y } = {0.71, 0.27}. The results are shown in Fig.1. In the
same plot we show also the predictions of the MLT with Λm = 1.65 (the MLT is according
to the version presented in [4], so that comparison between SFC theory and MLT is possible.
Both the temperature gradients ∇ and ∇e and fluxes ϕrad|cnd and ϕcnv predicted by SFC theory
and MLT are in mutual agreement over an impressive range in pressure of almost ten orders of
magnitude.

4. Conclusions
We have presented here the first results of the integration of stellar atmospheres with SFC theory
developed in [1]. We have set up a numerical code to systematically integrate as function of
time and position the equations presented in [1] and have run it in parallel with the standard
MLT. All the results achieved by MLT are successfully recovered by the SFC theory without
making use of any adjustable free-parameter. We argue that the new theory despite its linear
formulation is able to capture the essence of the convection in the stellar atmospheric layers
in a simple manner. Furthermore, the SFC theory has a predictive potential that descriptive
analysis of numerical simulations still miss. To be able to generate numerical simulations with
millions of degrees of freedoms does not automatically mean that we fully understand them. An
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Figure 1. Solar fluxes and temperature gradient profiles for the internal pressure stratification
of the star. The upper panels show the expectation for ϕrad|cnd on the left and ϕcnv on the right.
Yellow refers to our theory, blue to the MLT.

emblematic example of these problems has recently been discussed by [17] where the authors
fail to close the equations suggested by their hydrodynamic simulations. Their ultimate goal is
to search 1D theory based on 3D simulations passing through a 2D intermediate stage. We dare
to claim here that a 1D, parameter-free theory already exists [1] and that this is the right trail
to follow.

References

[1] Pasetto S., Chiosi C., Cropper M., Grebel E. K., 2014, MNRAS, 445, 3592
[2] Biermann L., 1951, Zeitschrift fur Astrophysik, 28, 304
[3] Bohm-Vitense E., 1958, Zeitschrift fur Astrophysik, 46, 108
[4] Kippenhahn R., Weigert A., Weiss A., 2012, Stellar Structure and Evolution, Cambridge Press.
[5] Hofmeister E., Kippenhahn R., Weigert A., 1964, Zeitschrift fur Astrophysik, 59, 215
[6] Chiosi C., Summa C., 1970, Ap&SS, 8, 478
[7] Bressan A. G., Chiosi C., Bertelli G., 1981, A&A, 102, 25
[8] Alongi M., Bertelli G., Bressan A., Chiosi C., 1991, A&A, 244, 95
[9] Deng L., Bressan A., Chiosi C., 1996a, A&A, 313, 145
[10] Deng L., Bressan A., Chiosi C., 1996b, A&A, 313, 159
[11] Salasnich B., Bressan A., Chiosi C., 1999, A&A, 342, 131
[12] Bertelli G., Bressan A., Chiosi C., Ng Y. K., Ortolani S., 1994, Memorie della Societ Astronomia Italiana,

65, 689
[13] Bertelli G., Bressan A., Chiosi C., Ng Y. K., Ortolani S., 1995, A&A, 301, 381
[14] Bertelli G., Nasi E., 2001, AJ, 121, 1013
[15] Bertelli G., Nasi E., Girardi L., Chiosi C., Zoccali M., Gallart C., 2003, AJ, 125, 770
[16] Weiss, A., Schlattl, H., 2008, ApSS, 316, 99
[17] Tuteja G. S., Khattar D., Chakraborty B. B., Bansal S., 2010, Int. J. Contemp. Math. Sciences, 5, 1065
[18] Arnett W. D., Meakin C., Viallet M., Campbell S. W., Lattanzio J., Mocak M., 2015, ApJ, 809, 30


