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Abstract. In this work, we have concentrated our efforts on the in-
terpretability of classification results coming from a fully convolutional
neural network. Motivated by the classification of oesophageal tissue for
real-time detection of early squamous neoplasia, the most frequent kind
of oesophageal cancer in Asia, we present a new dataset and a novel deep
learning method that by means of deep supervision and a newly intro-
duced concept, the embedded Class Activation Map (eCAM), focuses on
the interpretability of results as a design constraint of a convolutional
network. We present a new approach to visualise attention that aims to
give some insights on those areas of the oesophageal tissue that lead a
network to conclude that the images belong to a particular class and
compare them with those visual features employed by clinicians to pro-
duce a clinical diagnosis. In comparison to a baseline method which does
not feature deep supervision but provides attention by grafting Class Ac-
tivation Maps, we improve the F1-score from 87.3% to 92.7% and provide
more detailed attention maps.

1 Introduction

Motivated by the clinical problem of intrapapillary capillary loops (IPCL) clas-
sification, we introduce a novel dataset containing 7046 frames from 17 patients
(see table 1 for more details), and a novel unified framework for automatic fea-
ture extraction, classification and visual interpretability of results. We present
a novel convolutional network architecture that focuses on the interpretability
of the results as a design constraint for the network and serves as a baseline for
quantitative comparison of results with future methods. We compare the visual
features highlighted in the heatmaps produced by the network with those that
are clinically relevant to produce a diagnosis.
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A – Healthy

B – Unhealthy

Fig. 1. Narrow-Band Imaging magnifying endoscopy of the oesophagus. (A) Frames
extracted from surveillance endoscopies on several healthy subjects. In these patients
mucosal vessels can be easily observed (dotted). In addition, interpapillary capillary
loops (circles) are perceived as minuscule dots connected to an extremely thin filament.
(B) Images from patients with abnormal interpapillary capillary loops suggesting carci-
noma depth invasion. Microvessels are dilated and present unusual shape irregularities
(rectangles).

In the Computer-Assisted Interventions (CAI) community labelled data is
often scarce. Deep learning has become extremely popular due to its success
in tasks such as classification and segmentation, but a large amount of data
is typically required to capture the variability of the data across patients. As
researchers in this area, we are also faced with additional challenges. Clinical
collaborators are interested in interpreting the results coming from computer-
assisted systems. That is, understanding the process followed by deep learning
approaches to make a diagnosis. This includes analysing which features present in
the images lead to a certain output and if those coincide with the ones that they
analyse during clinical examination of the data. Conversely, it is also interesting
to discover whether automatically extracted features are different from the ones
currently used in clinical practice but can nonetheless lead to a correct diagnosis.

Using reduced datasets can potentially lead to models that do not generalise
well. While it is true that there are efforts to build large scale CAI databases
[1], in this paper, we have concentrated our efforts on the interpretability of
classification results coming from a fully convolutional neural network trained
on a small dataset.

Squamous cell carcinoma (SCC) is the most frequent kind of oesophageal
cancer in Asia [2], presenting rapidly increasing numbers in the western world
in recent decades too. Early diagnosis -and resection- play a key role to increase
the chances of survival [3], as superficial lesions present low rates of lymphatic
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dissemination. Detection is currently achieved by screening programs on high
risk populations [2]. Narrow-Band Imaging magnifying endoscopy (NBI-ME) is
the state-of-the-art technique employed for screening [4]. In addition to early
diagnosis, a precise estimation of depth of invasion is crucial. Lesions that are
closer to the oesophageal surface (mucosal layer) can be treated by minimally
invasive endoscopic therapy rather than surgery [5].

NBI-ME facilitates the visualisation of micro-vascular patterns, called intra-
papillary capillary loops (IPCL), which are linked to early squamous cell carci-
noma and present focal, subtle, and easily missed visual features, particularly in
centres with a low amount of cases. It has been also shown that the thickness
and tortuosity of IPCL patterns is highly correlated with histological state and
depth of invasion [4]. Hence, having an automated red-flag system that analyses
each video frame in real-time could potentially help detect subtle IPCL patterns
that might be difficult to distinguish by unspecialised endoscopists (see figure
1).

Recent work has explored different approaches to analyse the implicit atten-
tion mechanisms of convolutional neural networks. In [6], authors produce atten-
tion heatmaps as a linear combination of feature maps from the last convolutional
layer. The weighting coefficients are extracted from the fully connected output
neurons. Zhou et al. [7] allow for a fully convolutional classification by means of
Global Average Pooling (GAP). When GAP is omitted (at inference), instead of
a vector of class probabilities, a Class Activation Map (CAM) is automatically
generated. In addition, these maps enable for accurate object localization, a task
for which the network has not been trained for.

2 Materials and Methods

2.1 Deeply Supervised Embedded Class Activation Maps (eCAM)

There are various reasons why a fully convolutional classification is convenient
for the proposed pretext task. Different endoscope processors provide images of
varying resolutions. We aim for a flexible method that can generalise to different
input sizes to simplify the preprocessing of data. It is also of interest to give the
method versatility to process both full images or cropped patches. Furthermore,
there are images of the oesophagus that can present unhealthy IPCL patterns
only in certain areas. Hence, we seek for a method that could potentially have
the ability to classify seamlessly both images and patches. GAP [7] has been
shown as a feasible way to reduce the feature maps to a single value and still
maintain a state-of-the-art classification accuracy.

As interpretability of the results is of utmost relevance, in addition to the clas-
sification score, we aim to obtain an attention heatmap that exposes to workings
of the inference process and highlights those visual features that led the network
conclude an image belongs to a certain class. This is relevant because it helps
to check whether the network is paying attention to those parts of the image
that clinical experts consider to be determinant to produce a valid diagnosis.
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Furthermore, it serves as a validation mechanism that could point out possible
problems in the learning process, for example, in case the network pays atten-
tion to areas of the image that are clinically irrelevant but happen to contain
discriminative spurious visual features.

Class Activation Maps [7] are a recent attempt to produce meaningful at-
tention heatmaps. They have shown to produce comparable to state-of-the-art
localizations without re-training for the task. However, with this approach and
the baseline network presented in figure 2, we achieve low resolution attention
heatmaps that might allow to find a large object in scenes of daily life but lack
the definition to illustrate attention in oesophageal NBI-ME images. In [8], the
authors show that deep supervision is able to achieve superior results on segmen-
tation of medical images. The reasons to opt for a similar approach are three-fold:
fast convergence as gradients flow quicker to early layers of the network, abil-
ity to produce predictions at different resolutions, and improved quantitative
classification results. Furthermore, we can take advantage of deep supervision
to produce high resolution attention heatmaps (based on learnt deconvolutions
that upsample the heatmaps to the original image size). As opposed to [7], we
do not only aim to generate heatmaps that show the implicit attention of the
network, but want to explicitly force the architecture to produce one attention
map per class and use them to generate a classification prediction. We therefore
introduce a new architecture that is fully convolutional, produces embedded at-
tention heatmaps that allow for clinical interpretation of the results and works
in real-time. The proposed method is shown in figure 2. The deep supervision
mechanism is composed by several losses. As can be observed in figure 2, a loss
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Fig. 2. Proposed convolutional network with multi-scale embedded Class Activation
Maps. Baseline architecture (i.e. without deep supervision and classical CAM) shown
shaded.
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Ls(θ̂) is calculated using cross-entropy at each resolution scale:

Ls(θ̂) = −
K∑

k=1

gnk log p̂nks (1)

where θ̂ are the network weights, s ∈ {1, ..., 5}, gnk is one when observation n
belongs to class k and zero otherwise, and p̂nks is the predicted probability for

observation n belonging to class k at scale s. LF (θ̂) (see figure 2) has the same

structure as Ls(θ̂) but the probability for each class comes from applying GAP
to a weighted sum of the eCAM at all scales. That is, all the scale-dependent
attention heatmaps are fused by means of a learnt 1x1 convolution so that the
attention information at all scales is employed to produce a classification pre-
diction. The final training loss to be minimised during the training process is

L(θ̂) =
1

S + 1

(
LF (θ̂) +

S∑
s=1

Ls(θ̂)

)
(2)

where S = 5 scales.

2.2 Dataset

As we are introducing a new clinical problem, no dataset exists for the IPCL
classification task. This novel dataset originates from 17 monocular videos (one
video per patient) captured with two NBI-ME systems, Olympus Lucera CV-
260 & CV-290 (Olympus Corporation, Tokyo, Japan). These videos have been
recorded during routine screenings, and depict oesophageal recordings, start-
ing on the stomach pit and finishing on the upper oesophageal sphincter. The
oesophagus is cleaned prior to examination to expose clearly the mucosa.

The video sequences are cut to extract the useful parts of the procedure and
sampled at 30fps as the endoscopists tend to perform rapid movements with the
camera. The extracted frames are then quality controlled by an expert to discard
those images that do not allow to perform a diagnosis with confidence. The final
images are cropped so that no black corners or borders are left. All the pixels
belong to oesophageal tissue. The labels have been matched with histological
results from biopsies performed during the screening. The dataset contains 7046
frames, whose resolution ranges from 458x308 to 696x308 pixels. The dataset
has been divided in three subsets, training, validation and testing. Each subset
contains frames from different patients. To perform a thorough evaluation, five
cross-validation folds have been created. Each fold contains a different draw of
patients (see table 1 for more details).

All procedures performed in studies involving human participants were in
accordance with the ethical standards of the local institutions and with the 1964
Helsinki declaration and its later amendments or comparable ethical standards.
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Table 1. Number of frames for each cross-validation split. For each fold, the frames
in the training, validation and testing sets belong to different patients. The letters (A)
and (B) indicate whether the frames belong to class A -healthy- or B -unhealthy-.

Fold No. Train. (A) Val. (A) Test. (A) Train. (B) Val. (B) Val. (B)

1 2620 201 577 2803 258 587
2 1792 891 715 2205 739 704
3 1822 685 891 1549 1360 739
4 1792 715 891 1912 961 775
5 1559 685 1154 1754 743 1151

Average 1917 635 646 2045 812 791

2.3 Implementation details

Stochastic Gradient Descent (SGD) was the optimizer of choice. The training
was performed with a fixed learning rate across training of 1e − 6, momentum
of 0.9, and a batch size of 1. A different CNN is trained for each dataset fold.
All the networks are trained with a maximum number of iterations of 4× the
number of images in the fold’s training set. Training weights are saved every
200 iterations and the best performing snapshot in validation set is selected for
testing. caffe 1.0.0-rc5 [9] with CUDNN 5.1.10, CUDA 8.0.61, and NVIDIA
driver 384.111 was the deep learning setup for development. The experiments
were run on an Intel Core i7-4790K CPU @ 4.00GHz and an NVIDIA GeForce
TITAN X (Pascal).

3 Results and Discussion

The proposed method achieves an average sensitivity and F1-score across dataset
folds of 89.7% and 92.7% respectively in comparison with the baseline sensitivity
and F1-score of 82.7% and 87.3% (see detailed quantitative evaluation on table
2). As shown in [10] deep supervision boosts accuracy by forcing the network to
learn discriminant features at different resolutions. This is particularly relevant
for endoscopy as features are visible or not depending on the distance from the
camera to the oesophageal wall and the network has to be able to learn not
only which features are useful at each scale but also how to fuse the predictions
from different resolutions to achieve a correct classification. The prediction time
interval ranges from 26.17ms for the smallest images in the dataset to 37.48ms
for the largest ones.

In figure 3 we show different video frames and their corresponding eCAM.
Only those from resolution levels L3, L4 and L5 and the multi-scale fused version
are shown. The eCAM of resolution scale L1 and L2 are highly uncertain, as can
be observed in figure 2. The reason possibly being two-fold. First, it is too early
in the network and there are not enough filters (design constraint to achieve
real-time) to capture the complexity of the disease. Second, receptive field being
too small to capture discriminative visual features at those resolutions.
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Table 2. Testing set classification results for the unhealthy class. Sensitivity, specificity,
accuracy, precision and F1-score are reported.

Baseline Proposed

Fold No. Sens. Spec. Acc. Prec. F1 Sens. Spec. Acc. Prec. F1

1 77.5 99.8 88.6 99.8 87.2 80.4 92.0 86.2 91.1 85.4
2 39.2 99.9 69.8 99.6 56.3 78.1 99.7 89.0 99.6 87.6
3 100.0 97.1 98.4 96.6 98.3 100.0 95.9 97.7 95.2 97.6
4 96.6 97.9 97.3 97.5 97.1 99.4 97.3 98.3 97.0 98.2
5 100.0 95.6 97.8 95.8 97.8 90.6 99.6 95.1 99.5 94.9

Average 82.7 98.0 90.4 97.9 87.3 89.7 96.9 93.3 96.5 92.7

Healthy

Unhealthy – B1

Unhealthy – B1

Unhealthy – B2

L3 Attention Map L4 Attention MapClass Activation Map LF Attention Map

1

2

3

4

0 1

Fig. 3. Deeply supervised embedded Class Activation Maps. (1) Mucosal vessel erro-
neously highlighted in L3. (2) Densely populated IPCL area highlighted. (3) Specular
reflection discarded. (4) Star-shaped irregular IPCL pattern highlighted.

Figure 3 shows several interesting visual features captured by eCAM. Spec-
ular reflections which are uninformative for tissue classification are discarded.
The heatmaps are able to highlight both global and disperse unhealthy IPCL
patterns and focalized areas of diseased tissue. Furthermore, despite recognising
vessels as a matter of attention, the network does not seem to be able to discern
that thick mucosal vessels are benign in healthy frames. Irregular star-shaped
severe IPCL patterns (shown in the last row of figure 3) are also successfully
highlighted as diseased. Large areas of healthy tissue are successfully recognised
as benign as can be observed in the first row of figure 3.
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4 Conclusion

Motivated by the problem of oesophageal IPCL pattern binary classification
(healthy vs. unhealthy), we presented the first publicly available dataset for the
task. We proposed a novel deeply supervised convolutional architecture that
performs real-time fully convolutional classification achieving an average F1-
score of 92.7%. We introduced the concept of embedded Class Activation Maps
(eCAM) as a technique to force the network to capture and store visual attention
maps and use them as source of information for classification. We showed that
by means of deep supervision it is possible to obtain high quality heatmaps at
the original resolution of the image. Future work will focus on the extension to
multi-class detection of different unhealthy IPCL patterns.

References

1. Maier-Hein, L., Vedula, S.S., Speidel, S., Navab, N., Kikinis, R., Park, A., Eisen-
mann, M., Feussner, H., Forestier, G., Giannarou, S., Hashizume, M., Katic, D.,
Kenngott, H., Kranzfelder, M., Malpani, A., März, K., Neumuth, T., Padoy, N.,
Pugh, C., Schoch, N., Stoyanov, D., Taylor, R., Wagner, M., Hager, G.D., Jannin,
P.: Surgical data science for next-generation interventions. Nature Biomedical
Engineering 1(9) (2017) 691–696

2. Wang, G.Q., Jiao, G.G., Chang, F.B., Fang, W.H., Song, J.X., Lu, N., Lin, D.M.,
Xie, Y.Q., Yang, L.: Long-term results of operation for 420 patients with early
squamous cell esophageal carcinoma discovered by screening. The Annals of Tho-
racic Surgery 77(5) (2004) 1740–1744

3. Endo, M., Kawano, T.: Detection and classification of early squamous cell
esophageal cancer. Diseases of the Esophagus 10(3) (1997) 155–158

4. Oyama, T., Inoue, H., Arima, M., Momma, K., Omori, T., Ishihara, R., Hirasawa,
D., Takeuchi, M., Tomori, A., Goda, K.: Prediction of the invasion depth of su-
perficial squamous cell carcinoma based on microvessel morphology: magnifying
endoscopic classification of the Japan Esophageal Society. Esophagus 14(2) (2017)
105–112

5. Ono, H.: Early gastric cancer: diagnosis, pathology, treatment techniques and
treatment outcomes. European Journal of Gastroenterology & Hepatology (2006)

6. Cruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., González Osorio, F.A.: A
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