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Abstract

A popular method for reducing the mean and median bias of the maximum likelihood

estimator in regular parametric models is through the additive adjustment of the score

equation (Firth, 1993; Kenne Pagui et al., 2017). The current work focuses on mean

and median bias-reducing adjusted score equations in models with latent variables.

First, we give estimating equations based on a mean bias-reducing adjustment of the

score function for mean bias reduction in linear mixed models. Second, we propose an

extension of the adjusted score equation approach (Firth, 1993) to obtain bias-reduced

estimates for models with either computationally infeasible adjusted score equations

and/or intractable likelihood. The proposed bias-reduced estimator is obtained by solv-

ing an approximate adjusted score equation, which uses an approximation of the log-

likelihood to obtain tractable derivatives, and Monte Carlo approximation of the bias

function to get feasible expressions. Under certain general conditions, we prove that

the feasible and tractable bias-reduced estimator is consistent and asymptotically nor-

mally distributed. The “iterated bootstrap with likelihood adjustment” algorithm is

presented that can compute the solution of the new bias-reducing adjusted score equa-

tion. The effectiveness of the proposed method is demonstrated via simulation studies

and real data examples in the case of generalised linear models and generalised linear

mixed models. Finally, we derive the median bias-reducing adjusted scores for linear

mixed models and random-effects meta-analysis and meta-regression models.



Impact Statement

The current thesis explores solutions to the important problem of reducing the bias in

the estimation of mixed models. This problem is a common concern of practitioners

and statisticians, because the magnitude of bias can affect the performance of stan-

dard procedures for hypothesis testing and construction of confidence intervals. For

instance, the underestimation of standard errors may lead to shorter than expected con-

fidence intervals, which in turn result in spuriously strong conclusions.

More specifically, we extend existing work for mean and median bias-reduction us-

ing adjusted score equations in linear mixed models and random-effects meta-analysis

and meta-regression. We also develop a new bias-reducing methodology for models

that have intractable likelihoods and infeasible bias functions. This is a major devel-

opment because this class of models includes many complex and widely used models,

such as generalised linear mixed models.

Generalised linear mixed models are broadly used in various fields for modeling

dependence within clustered data. For instance, in medical science mixed models be-

come fruitful in analysing data from longitudinal studies that compare a new drug with

a standard one for treating patients suffering from an illness. In social sciences mixed

models can be used for the estimation of county-specific characteristics, such as the

unemployment rate. Geneticists and evolutionary biologists use mixed modeling when

they are interested in quantifying the magnitude of variation among genotypes.

Generalised linear mixed models are generally challenging to fit and standard es-

timation methods tend to underestimate the variance components. Use of the adjusted

score equations in mixed modeling yields variance component estimates with smaller

bias, which in turn improves inference on the fixed effects. Much work remains to

reveal the full power of the bias-reducing adjusted score equations approach to these
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modern statistical models, but we strongly believe that it will offer practitioners a for-

mal and flexible statistical framework for bias reduction, that will make an impact in

many application areas where bias reduction is beneficial.
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Chapter 1

Introduction

1.1 Bias in estimation

The bias of an estimator θ̂ of a model parameter θ is the difference between the

expected value of θ̂ with respect to the model and θ . An estimator whose bias is equal

to zero is called unbiased and satisfies Eθ (θ̂) = θ , for all θ .

The current work focuses on the bias of maximum likelihood (ML) estimators.

The essence of ML estimation is to view the likelihood as a function of the parameter

θ , and to derive the ML estimate as the value of θ that maximises the likelihood of

the observed data within the parameter space. The ML estimate is formally defined

as θ̂n = argmaxθ l(θ ;y) , where y = (y1, . . . ,yn)
T are the observations of n indepen-

dent random variables with density functions or probability distributions fi(y;θ) and

l(θ ;y) = log∏
n
i=1 fi(yi;θ) is the log-likelihood function.

Maximum likelihood is a widely used method of estimation in regular parametric

models, and its popularity is partly because, under standard regularity conditions, the

ML estimator has asymptotically desirable behaviour (Cox & Hinkley, 1979, Section

9.1). It can be shown, for example, that the ML estimator is consistent, asymptotically

normally distributed, and asymptotically unbiased.

However, the finite-sample bias of the ML estimator is a common concern for

statisticians, because the magnitude of bias can affect the performance of standard pro-

cedures for hypothesis testing and construction of confidence intervals. For instance,

the underestimation of standard errors may lead to shorter than expected confidence

intervals, which in turn result in spuriously strong conclusions.
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The poor coverage properties that confidence intervals can have due to bias in the

ML estimator are illustrated via the following motivating example.

Consider the one-way random effects model (Jiang, 2007, Example 1.1) with ob-

servations yi j , (i = 1, . . . ,m and j = 1, . . . ,ki) with yi j = µ +αi + εi j . The parameter

µ is the only fixed effect and is an unknown mean, α1, . . . ,αm are random effects that

are independent and normally distributed with mean zero and unknown variance σ2
α ,

ε11, . . . ,ε1k1, . . . ,εm1, . . . ,εmkm are independent and normally distributed errors with

mean zero and unknown variance σ2
ε , and the random effects are independent of the

errors. The log-likelihood function of the one-way random effects model is

l(µ,σ2
α ,σ

2
ε ) = c− 1

2
(n−m) log(σ2

ε )−
1
2

m

∑
i=1

log(σ2
ε + kiσ

2
α)

− 1
2σ2

ε

m

∑
i=1

ki

∑
j=1

(yi j−µ)2 +
σ2

α

2σ2
ε

m

∑
i=1

k2
i

σ2
ε + kiσ2

α

(ȳi·−µ)2 ,

where c is a constant, n = ∑
m
i=1 ki , and ȳi· = k−1

i ∑
ki
j=1 yi j . The ML estimator of µ is

the solution to

∂ l
∂ µ

=
m

∑
i=1

ki

σ2
ε + kiσ2

α

(ȳi·−µ) = 0 ,

and it is equal to

µ̂ =
m

∑
i=1

ki
σ2

ε +kiσ
2
α

∑
m
i=1

ki
σ2

ε +kiσ
2
α

ȳi· .

It is easy to show that µ̂ is an unbiased estimator of µ , because

E(µ̂) =
m

∑
i=1

ki
σ2

ε +kiσ
2
α

∑
m
i=1

ki
σ2

ε +kiσ
2
α

E(ȳi·) =
m

∑
i=1

ki
σ2

ε +kiσ
2
α

∑
m
i=1

ki
σ2

ε +kiσ
2
α

µ = µ .

In the current example we simulated 10000 independent datasets from the one-

way random effects model with parameter values θ = (µ,σ2
α ,σ

2
ε )

T = (0,0.5,0.5)T. We

chose three values of m, specifically 5, 10, 15, and we set ki = 5 for all i ∈ {1, . . . ,m} .

Table 1.1 gives the empirical bias of the ML estimates of θ and the empirical p-value

distribution for the Wald statistic under the null hypothesis µ = 0. For a given param-

eter θ and corresponding estimates θ̂ = (θ̂1, . . . , θ̂S)
T from S independent simulated
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Table 1.1: Empirical mean bias of the ML estimates for the parameters (µ,σ2
α ,σ

2
ε )

T of the
one-way random effects model, and empirical p-value distribution (%) for the two-sided Wald
test that µ = 0.

Bias Empirical p-value distribution (%) for the Wald test

m µ̂ σ̂2
α σ̂2

ε α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

5 -0.001 -0.125 -0.007 7.3 10.6 14.3 20.5 35.1 57.7 79.1 91.8 96.0 98.1 99.4
10 0.006 -0.069 -0.003 3.6 6.1 9.0 15.4 30.6 54.3 77.8 91.0 95.4 98.0 99.2
15 0.004 -0.042 0.001 2.1 4.2 7.5 13.0 28.4 52.5 76.3 90.3 95.2 97.6 99.1

Notes: µ̂ , ML estimator of µ; σ̂2
α , ML estimator of σ2

α ; σ̂2
ε , ML estimator of σ2

ε . The empirical p-value distribution (%)
represents the coverage probability of (1−α)% confidence intervals based on the Wald statistic.

samples, the empirical bias is defined as Bias(θ) = (1/S)∑
S
s=1(θ̂s− θ). The empir-

ical p-value distribution represents the coverage probability of (1−α)% confidence

intervals based on the Wald statistic, where the term coverage probability refers to the

estimated probability that the Wald-type confidence intervals at a specific nominal level

(1−α)% include the true parameter value. The results in Table 1.1 illustrate that the

unbiasedness of µ̂ does not guarantee good coverage properties for confidence inter-

vals for µ , because ML underestimates the variance of the random effects σ2
α . As the

sample size increases the bias of σ̂2
α decreases, and the empirical p-value distribution

for the Wald statistic gets closer to uniformity.

1.2 Methods for bias reduction

Numerous methods have been proposed to correct the finite-sample bias of the

ML estimator. Kosmidis (2014a) classifies the bias reduction methods into two large

groups, the explicit and implicit methods.

Let Bn(θ) = Eθ (θ̂n− θ) be the bias function of the ML estimator θ̂n . Explicit

methods estimate Bn(θ) by an estimator B̂n, and compute a bias-reduced estimator as

θ̂n− B̂n . The most popular explicit bias-reduction methods are jackknife (Quenouille,

1956), asymptotic bias corrections (Efron, 1975), and bootstrap (Efron, 1979). The

main advantage of the explicit methods is that they are simple to implement; once

we estimate the bias, we obtain the bias-reduced estimator by simply doing a subtrac-

tion. However, explicit methods inherit any instabilities the ML estimator may have.

These instabilities involve infinite ML estimates which occur with positive probability

when fitting models with categorical responses (Albert & Anderson, 1984), or more

generally ML estimates at the boundary of the parameter space.
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Implicit methods replace Bn(θ) with an estimate of the whole bias function B̂n(θ),

and the bias-reduced estimator is derived by solving the implicit equation θ̂n− θ =

B̂n(θ) with respect to θ . The most popular implicit bias-reduction methods are in-

direct inference (Gourieroux et al., 1993) and adjusted score equation (Firth, 1993).

The main disadvantage of implicit methods is that the solution of the implicit equation

often requires numerical optimisation. Also, similar to explicit methods, indirect in-

ference depends on the ML estimator and therefore inherits any potential instabilities

that it might have. The adjusted score equation approach does not depend on the ML

estimator, but it is applicable only when the score function, the expected information

matrix, and the first-order bias term of the ML estimator are available in closed form.

The methods proposed in the current work are extensions of the adjusted score

equation approach, and they allow the adjustment of the score function in cases where

the direct use of the vanilla method is computationally infeasible or intractable.

1.3 Adjusted score equation for bias reduction

Rather than correcting the ML estimator itself, Firth (1993) systematically corrects

the mechanism that produces the estimator. Specifically, Firth (1993) showed that a

bias-reduced estimate θ̂ ∗ is obtained by solving an adjusted score equation of the form

s∗(θ) = s(θ)+A(θ) = 0p , (1.1)

where s(θ) = ∇θ l(θ) is the score function and A(θ) is the bias-reducing adjustment

of order Op(1) as n→ ∞ . Firth (1993) gives two suitable candidates for A(θ), both of

which can be used for removal of the O(n−1) bias of the ML estimator. These are

A(O)(θ) = j(θ){i(θ)}−1A(E)(θ) , (1.2)

and A(E)(θ) with components

A(E)
t (θ) =

1
2

tr[{i(θ)}−1{Pt(θ)+Qt(θ)}] , (1.3)
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where Pt(θ) = Eθ{s(θ)sT(θ)st(θ)} , Qt(θ) = −Eθ{ j(θ)st(θ)} , i(θ) = Eθ ( j(θ)) is

the expected information matrix, j(θ) =−∇θ ∇T
θ

l(θ) is the observed information ma-

trix, and st(θ) is the tth component of the score vector s(θ).

Kosmidis & Firth (2009) give a general family of candidates for a bias-reducing

choice of A(θ). The general adjustment is

A(θ) =−{G(θ)+R(θ)}b(θ) , (1.4)

where G(θ) is either j(θ) or i(θ) or some other matrix with expectation i(θ) ,

R(θ) is any matrix with expectation of order O(n1/2), and b(θ) = n−1b1(θ) =

−{i(θ)}−1A(E)(θ) is the first-order bias term in the expansion of the asymptotic

bias of the ML estimator B(θ) = n−1b1(θ) + n−2b2(θ) + . . . , where the functions

b1(θ),b2(θ), . . ., are of order O(1) (see, for example, McCullagh, 1987). For example,

if we let G(θ) = i(θ) with R(θ) = 0 then

s∗(θ) = s(θ)+A(E)(θ) = s(θ)− i(θ)b(θ) , (1.5)

and if we let G(θ) = j(θ) with R(θ) = 0 then

s∗(θ) = s(θ)+A(O)(θ) = s(θ)− j(θ)b(θ) . (1.6)

Any suitable bias-reducing adjustment A(θ) gives the same asymptotic results and

removes the O(n−1) bias of the ML estimator (Kosmidis & Firth, 2009). For this

reason, the choice of A(θ) in the following chapters is based solely on how easy the

derivation of the quantities involved in the adjustment is.

The current work is intended to extend the adjusted score equation method in two

ways. First, we show how an adjustment of the score function can be used for ob-

taining bias-reduced estimators in models with tractable likelihood and infeasible bias

function. We define a function as infeasible when it is not possible to calculate it easily.

Second, we propose an adjusted score equation which can be used as a bias reduction

method in models with intractable likelihood. We define a likelihood as intractable

when it cannot be evaluated analytically, and the integrals involved in the function
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require approximations. The intractability of the likelihood in such models prevents

the direct use of the approach in Firth (1993), because all quantities involved cannot

generally be written in closed form.

1.4 Thesis outline

A considerable part of the present work is devoted to mixed-effects models and

how bias in their estimation can be reduced. Mixed modelling has become a major area

of statistical research during the last decades because it provides a flexible approach

to clustered data. The parameters in a mixed-effects model are classified into fixed

effects and variance components. Fixed effects are associated with the average effect of

predictors on the response, and variance components are associated with the variance-

covariance structure of the random effects. In this thesis we will restrict ourselves to

models in which the random effects are normally distributed.

In Chapter 2 we study mean bias reduction for linear mixed models (Longford,

1993). Linear mixed models are models in which both the fixed and the random ef-

fects contribute linearly to the response. The two most popular estimation methods in

linear mixed models are ML and restricted or residual maximum likelihood (REML).

REML improves ML estimation by effectively adjusting for degrees of freedom lost

in estimation, delivering estimators with less bias. In this chapter we derive the mean

bias-reducing adjusted score equation and link the estimating equation with REML

score equation. Simulation studies and real data applications are used to assess the per-

formance of estimation and inference based on the mean bias-reducing adjusted score

equation and compare it to ML and REML under various parameterisations. Chapter 2

also includes a special case of linear mixed models, random effects meta-analysis and

meta-regression models. These models are used for synthesising the results from in-

dependent studies investigating a common effect of interest. Kosmidis et al. (2017)

derived the adjusted score equation for mean bias reduction in random effects meta-

analysis and meta-regression models and proposed a likelihood-based test for conduct-

ing inference. In this chapter, we complement Kosmidis et al. (2017) with new results

on computational efficiency, estimation, and inference.

In Chapter 3 we consider variations of the mean bias-reducing adjusted score equa-
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tion for models with tractable likelihood. Firth (1993) uses the bias function to obtain

the adjusted score equation. We show that solving an adjusted score equation where

the bias function is replaced by its simulation-based estimate, also leads to estima-

tors with o(n−1) bias, and the estimators are consistent and asymptotically normally

distributed. The “iterated bootstrap with likelihood adjustment” algorithm (IBLA) is

presented that can compute the solution of the new bias-reducing adjusted score equa-

tion. The simulation-based adjusted score equation approach is applied and evaluated

in generalised linear models (McCullagh & Nelder, 1989). These models extend stan-

dard linear regression models to encompass non-normally distributed data and possibly

nonlinear functions of the mean. Implementing the proposed simulation-based bias re-

duction method on generalised linear models allows the evaluation of its performance

on estimation and inference compared to the traditional adjusted score equation ap-

proach (Firth, 1993).

Chapter 4 extends the use of the simulation-based adjusted score equation ap-

proach derived in Chapter 3 as a mean bias reduction method in the case of models

with intractable likelihood. We give conditions under which an approximation of the

likelihood function may be used in order to derive mean bias-reduced estimates. In

this chapter we also prove the asymptotic properties of the proposed estimators and

modify the IBLA algorithm such that it can be used for the calculation of the mean

bias-reduced estimates.

Chapter 5 evaluates the performance of the mean bias-reduction method proposed

in Chapter 4 on generalised linear mixed models (McCulloch et al., 2008). These mod-

els are an extension of linear mixed models that can handle non-normally distributed

clustered data. They can also be seen as an extension of generalised linear models that

include random effects in addition to the usual fixed effects. We evaluate the perfor-

mance of IBLA against the most popular existing methods used in fitting generalised

linear mixed models.

In Chapter 6 we deviate from mean bias reduction and turn to median bias reduc-

tion, while staying in the familiar framework proposed in Firth (1993). Kenne Pagui

et al. (2017) consider the median as a centering index for the score, and an adjusted

score function for median bias reduction then results by subtracting from the score its
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approximate median. In this chapter we first derive the adjusted score equation for

median bias reduction in linear mixed models, and compare it to the relative equation

for mean bias reduction derived in Chapter 2. Second, we derive the adjusted score

equation based on a median adjustment of the score function for median unbiased esti-

mation for random effects meta-analysis and meta-regression models, and compare it

to the relative equation for mean bias reduction proposed in Kosmidis et al. (2017).

A summary of the main results is given in Chapter 7, where we also indicate some

related open topics for further work in the area.

Computing environment and typeset

For the computational requirements of the thesis, the R language (R Core Team, 2017)

was used and all the figures were created using the ggplot2 R package (Wickham,

2009). The simulation results were computed using a workstation with 24 cores at

2.90GHz and 80GB memory running under the CentOS 7 operating system, using one

core per data set.

ggplot2


Chapter 2

Mean bias reduction in linear mixed

models

2.1 Introduction

Linear mixed models are widely used for analysing clustered data, that is data

in which the observations are grouped into disjoint classes (clusters) according to

some classification criterion (Longford, 1993). Mixed models are also suitable for

analysing longitudinal data collected from studies designed to investigate changes over

time about a characteristic which is measured repeatedly for each individual (Laird &

Ware, 1982), as well as repeated measurements from experimental designs where sev-

eral individuals participate and multiple measurements are taken on each individual

(Lindstrom & Bates, 1988).

Typically the linear mixed model parameters, which consist of the fixed effects and

the variance components, are estimated by ML. The ML estimators of the fixed effects

are unbiased, but the ML estimators of the variance components are negatively biased,

because they do not take into account the loss in degrees of freedom resulting from the

estimation of the fixed effects (see, for example, Harville, 1977; Kackar & Harville,

1984; Lindstrom & Bates, 1988).

To reduce the bias in the variance component estimators Patterson & Thompson

(1971) and Harville (1974) suggest modifying the log-likelihood using generalised

least squares residuals. This modification leads to a likelihood-based function which

differs from the log-likelihood (ignoring any quantities that are constant at the parame-
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ters) by an extra additive term, and the estimation method is referred to as the residual

or restricted maximum likelihood (REML). Harville (1977) applied REML to the lin-

ear mixed model as given in Section 2.2. REML takes into account the degrees of

freedom for the fixed effects in the linear mixed model, and consequently the estima-

tion of the variance components is unbiased. However, standard inferential procedures,

such as the Wald test, tend to be anti-conservative when using the REML estimates and

the sample size is small (Gumedze & Dunne, 2011).

A prominent special case of linear mixed models is random effects meta-analysis

and meta-regression, a core tool for synthesising the results from independent stud-

ies investigating a common effect of interest. Introduced in DerSimonian & Laird

(1986), the model expresses the heterogeneity between studies in terms of a variance

component that can be estimated through standard estimation techniques. Contrary

to linear mixed models, the error variances in the random effects meta-analysis and

meta-regression are assumed to be known, and hence are not being estimated.

The random effects meta-analysis and meta-regression is an interesting special case

of linear mixed models, because frequentist inference is not performing well, espe-

cially when the number of studies is small or moderate. Specifically, the estimation of

the heterogeneity parameter can be highly imprecise, which in turn results in mislead-

ing conclusions (Guolo & Varin, 2017; Kosmidis et al., 2017). Examples of recently

proposed methods that attempt to improve inference are the resampling (Jackson &

Bowden, 2009) and double resampling (Zeng & Lin, 2015) approaches, and the mean

bias-reducing penalised likelihood (mean BRPL) approach (Kosmidis et al., 2017).

Specifically, Kosmidis et al. (2017) show that maximisation of the mean BRPL results

in an estimator of the heterogeneity parameter that has notably smaller bias than ML

with small loss in efficiency, and illustrate that inference based on the mean BRPL

outperforms its competitors in terms of inferential performance.

In this chapter we will restrict ourselves to the framework of linear mixed models

in which the errors and the random effects are normally distributed. First, we use the

adjusted score equation approach (Firth, 1993) to derive the mean bias-reducing ad-

justed score equation for linear mixed models. The derived bias-reducing score equa-

tions can be used for model estimation under any parameterisation of the variance-
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covariance matrix of the random effects. We show that the mean bias-reduced (mean

BR) estimates of the variance components are identical to the REML estimates under

certain parameterisations. The performance of the mean bias-reducing adjusted score

equations is investigated through simulation studies and a real-data example from Pot-

thoff & Roy (1964). Our results illustrate that confidence intervals based on the Wald

statistic and the mean BRPL estimates outperform confidence intervals based on the

ordinary Wald or likelihood ratio statistics, in terms of coverage. Next, we focus on

random effects meta-analysis and meta-regression and we use simulation studies and

real data applications to complement Kosmidis et al. (2017) with new results on the

computational efficiency of mean BRPL estimation and distribution of p-values.

2.2 Linear mixed model

In a linear mixed model the observations y1, . . . ,yn are assumed to be realisations

of the random variables Y1, . . . ,Yn , respectively, and Y1, . . . ,Yn are independent condi-

tionally on random effects. The model can be expressed in matrix form as

Y = Xβ +Zα + ε , (2.1)

where Y = (Y1, . . . ,Yn)
T , X is the n× p matrix of known covariates, β is a p-

dimensional vector of the fixed effects, Z is a n× q known design matrix, α is the

q-dimensional vector of random effects, and ε is the vector of errors. Both α and ε are

unobservable. Typically, we assume the random effects and errors to be independent

and normally distributed withα

ε

∼ N

0q

0n

 ,

Σ(σ2) 0q×n

0n×q σ2
ε In

 , (2.2)

where σ2 represents the vector of all the unknown dispersion parameters, σ2
ε is the

error variance, 0q denotes a q-dimensional vector of zeros, 0q×n denotes a q×n matrix

of zeros, and In is the n×n identity matrix.

Let ψ = (σ2T
,σ2

ε )
T be the m-dimensional vector of all unknown variance com-

ponents. The marginal distribution of Y is multivariate normal with mean Xβ and
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variance-covariance matrix V (ψ) = ZΣ(σ2)ZT +σ2
ε In . The elements of V (ψ) are as-

sumed to be differentiable up to second order with respect to the elements of ψ .

2.3 Methods of estimation

The most common likelihood-based estimation methods adopted in linear mixed

models are ML and REML (Longford, 1993). The log-likelihood function for the

parameter θ = (β T,ψT)T in model (2.1) is up to an additive constant given by

l(θ) =−1
2
[
log |V (ψ)|+R(β )TV (ψ)−1R(β )

]
, (2.3)

where |V (ψ)| denotes the determinant of V (ψ), and R(β ) = y−Xβ , y = (y1, . . . ,yn)
T.

By differentiating l(θ) with respect to the model parameters we obtain the score func-

tion s(θ) with components sβ (θ) = XTV (ψ)−1R(β ) and

sψr(θ) =
1
2

{
R(β )TV (ψ)−1 ∂V (ψ)

∂ψr
V (ψ)−1R(β )− tr

(
V (ψ)−1 ∂V (ψ)

∂ψr

)}
,

where ψr is the rth component of ψ , r ∈ {1, . . . ,m}.

The expected information matrix i(θ) is a block-diagonal matrix with diagonal

blocks iββ = Eθ ( jββ ) and iψψ = Eθ ( jψψ), where jββ and jψψ are the diagonal blocks

of the observed information matrix j(θ) = ∇∇Tl(θ), whose expression is given in

Appendix A. Specifically, iββ = XTV (ψ)−1X and iψψ is a m×m matrix with (r,s)th

element

iψrψs =
1
2

tr
(

V (ψ)−1 ∂V (ψ)

∂ψr
V (ψ)−1 ∂V (ψ)

∂ψs

)
.

The ML estimator of θ , θ̂ = (β̂ T, ψ̂T)T, results from solving the equations sβ (θ) =

0p and sψr(θ) = 0 for all r ∈ {1, . . . ,m}. Once ψ̂ is found, β̂ can be calculated by the

closed-form expression β̂ = {XTV (ψ̂)−1X}−1XTV (ψ̂)−1y .

Following Jiang (2007, Chapter 1) we assume that rank(X) = p and that G is an

n× (n− p) matrix such that rank(G) = n− p and GTX = 0(n−p)×p . We can find up to

n− p linearly independent combinations GTy whose distribution does not depend on

β , for example, any n− p of the least-squares residuals of the regression of y on X . In

REML we treat GTy as the data and use ML estimation for the variance components.



34 Chapter 2. Mean bias reduction in linear mixed models

The REML estimates of the variance components do not depend on the choice of G

and maximise the restricted log-likelihood which can be written up to a constant as

l‡(θ) = l(θ)− 1
2

log |XTV (ψ)−1X | . (2.4)

The derivative of l‡(θ) with respect to the rth variance component is

s‡
ψr
(θ) = sψr(θ)+

1
2

tr
(

V (ψ)−1H(ψ)
∂V (ψ)

∂ψr

)
, (2.5)

with H(ψ) = X(XTV (ψ)−1X)−1XTV (ψ)−1.

Let ψ̂‡ be the REML estimator of ψ that solves s‡
ψ(θ) = 0m . The REML estimates

for the fixed effects are usually obtained using the generalised least squares estimator

β̂ ‡ = Φ(ψ̂‡)XTV (ψ̂‡)−1y, where β̂ ‡ is an unbiased estimator of β (Kackar & Harville,

1984). The matrix Φ(ψ) = (XTV (ψ)−1X)−1 is the variance-covariance matrix of the

asymptotic limiting distribution of β̂ ‡ as the number of clusters goes to infinity, and

Φ̂‡ = Φ(ψ̂‡) can be used as an approximation to the variance-covariance matrix of

β̂ ‡ (Pinheiro, 1994, Chapter 3). However, Φ̂‡ is biased when the sample size is small

which can seriously overestimate β (Kackar & Harville, 1984). Ignoring any possible

bias in ψ̂‡, Kenward & Roger (1997) propose a better approximation to the small

sample variance-covariance matrix of β̂ ‡ through an adjusted estimator of the variance-

covariance matrix of the fixed effects, which can be used to form a scaled Wald-type

statistic that can result in better performance when conducting small sample inference

for fixed effects.

2.4 Mean bias reduction

We recall from Section 1.3 that a suitable bias-reducing adjustment A(θ) to the

score vector has components

At(θ) =
1
2

tr
[
{i(θ)}−1 {Pt(θ)+Qt(θ)}

]
, (2.6)

for t ∈{1, . . . , p+m}, where Pt(θ)=Eθ [s(θ)s(θ)Tst(θ)] and Qt(θ)=Eθ [− j(θ)st(θ)].

Let t ∈ {1, . . . , p} correspond to an element of parameter β and t ∈ {p+1, . . . , p+m}
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correspond to an element of parameter ψ . We find that At(θ) = 0 for t ∈ {1, . . . , p}

and

At(θ) =
1
2

tr
[
V (ψ)−1H(ψ)

∂V (ψ)

∂ψt−p

]
+

1
2

tr
[
{iψψ}−1P4t(ψ)

]
for t ∈ {p+1, . . . , p+m} , where P4t(ψ) is a m×m matrix with (r,s)th element

(P4t)r,s =
1
2

tr
(

V (ψ)−1 ∂ 2V (ψ)

∂ψr∂ψs
V (ψ)−1 ∂V (ψ)

∂ψt−p

)
.

The detailed calculation of the above results is given in Appendix A.

The mean BR adjusted score function for the fixed effects and the variance compo-

nents of linear mixed models is s∗
β
(θ) = sβ (θ) and

s∗ψr
(θ) = s‡

ψr
(θ)+

1
2

tr
[
{iψψ}−1P4ψr(ψ)

]
, r ∈ {1, . . . ,m}

respectively, and the mean BR estimates θ̂ ∗ = (β̂ ∗T, ψ̂∗T)T are the roots of the p+m

equations s∗
β
(θ) = 0p and s∗ψ(θ) = 0m .

Theorem 1. For covariance structures where

∂ 2V (ψ)

∂ψr∂ψs
= 0 (2.7)

for all pairs (r,s), r,s ∈ {1, . . . ,m}, the mean bias-reducing adjusted score function

s∗ψr
(θ) coincides with the derivative of the restricted log-likelihood function s‡

ψr(θ) .

Then s∗
β
(θ) and s∗ψ(θ) are the derivatives of the mean BRPL function l∗(θ) = l(θ)−

1
2 log |XTV (ψ)−1X | .

Proof of Theorem 1: The condition in (2.7) implies that P4t(ψ) = 0m×m for all

t ∈ {p+1, . . . , p+m}, and therefore, s∗ψ(θ) = s‡
ψ(θ).

A class of covariance structures for linear mixed models for which the condition in

Theorem 1 holds is defined by Σ(σ2) = ∑
m−1
i=1 σ2

i Gi , where σ2
i are the elements of the

variance-covariance matrix Σ(σ2) and Gi are known matrices. It is worth noting that

the natural parameterisation for the unique elements in the variance-covariance matrix

of the random effects satisfies the condition in Theorem 1.
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2.5 Parameter estimation

Calculating the parameter estimates can be challenging especially when the

random-effect structure is complex and/or the number of subjects or the number of ob-

servations per subject is small. In such cases any estimation algorithm might converge

to parameter estimates that correspond to degenerate or singular variance-covariance

matrices (Bates et al., 2015, Section 3.1). For example, if we are trying to fit a linear

mixed model with a random intercept we might get zero random-effects variance, or

in a linear mixed model with correlated random intercepts and slopes we might get

a boundary correlation estimate of −1 or 1. Moreover, the variance components are

constrained in complicated ways because the variance-covariance matrix of the uncon-

ditional distribution of the random effects has to be positive-definite.

For this reason we recommend using a suitable transformation of the parameters

in the variance-covariance matrix of the random effects such that the resulting mean

BR estimates of the variance-covariance matrix are positive-definite. Lindstrom &

Bates (1988) describe the use of Cholesky factors for implementing unconstrained

ML and REML estimation of the variance components in linear mixed models. The

idea in Lindstrom & Bates (1988) is to replace Σ(σ2) in (2.2) by LLT, where L is the

Cholesky factor of Σ(σ2), whose unique elements form an unconstrained parameter

vector. Then instead of estimating the natural random-effect parameters, we estimate

the parameters on and below the diagonal of the lower triangular Cholesky factor. This

ensures positive-definiteness and, hence, the invertibility of the variance-covariance

matrix when evaluated at the parameter estimates. The disadvantage of this reparame-

terisation is that the elements in the Cholesky factor lack direct interpretation in terms

of the original variances and covariances.

Let θ̂ ∗ = (β̂ ∗T, λ̂ ∗T, σ̂2∗
ε )T be the mean BR estimates, where λ̂ ∗ are the estimates of

the lower triangular elements of L. The Cholesky factor of Σ(σ2) does not satisfy the

condition in Theorem 1, and therefore θ̂ ∗ is different than the REML estimator θ̂ ‡. We

obtain θ̂ ∗ with the nleqslv R function (Hasselman, 2017) which numerically solves

the system of adjusted score equations applying the Newton method with a numerical

Jacobian matrix. The algorithm we implemented for computing the mean BR estimates

nleqslv
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may fail in estimating the variance components, especially for models with complex

random-effect structure, unless good starting values are available. For this reason, we

suggest using the REML estimates as starting values in the algorithm. We declare

the algorithm has converged when the components of the mean bias-reducing adjusted

score function are all smaller than ε = 10−6 in absolute value when evaluated at θ̂ ∗.

2.6 Statistical inference

When the variance components are estimated using ML one can use the Wald test

statistic to test the null hypothesis β = β0 against the alternative β 6= β0 . Other ap-

propriate inferential procedures are the likelihood ratio (LR) and the score tests. The

three tests are asymptotically equivalent with a χ2
p asymptotic null distribution (see,

for example, Pace & Salvan, 1997, Section 5.9).

When the variance components are estimated using REML the Wald statistic has

been found to be anti-conservative especially for small sample sizes, i.e. the test in-

dicates that an effect may be important more often than expected under the null hy-

pothesis of no effect (Gumedze & Dunne, 2011). The LR and score tests are also not

reliable when REML estimation has been used. Kenward & Roger (1997) proposed a

scaled Wald statistic, based on the adjusted estimator of the variance-covariance ma-

trix of the REML fixed-effect estimates Φ̂
‡
A , which accounts for the extra variability

introduced by estimating the variance components by REML. Specifically, the bias-

corrected variance-covariance matrix of the REML fixed effects is

Φ̂
‡
A = Φ̂

‡ +2Φ̂
‡

{
m

∑
r=1

m

∑
s=1

Wrs

(
Qrs−PrΦ̂

‡Ps−
1
4

Rrs

)}
Φ̂

‡ , (2.8)

where Wrs is the (r,s)th element of the inverse of the expected information matrix i‡ψψ

evaluated at ψ̂‡, and

Qrs = XTV (ψ̂‡)−1 ∂V (ψ̂‡)

∂ψr
V (ψ̂‡)−1 ∂V (ψ̂‡)

∂ψs
V (ψ̂‡)−1X ,

Pr = −XTV (ψ̂‡)−1 ∂V (ψ̂‡)

∂ψr
V (ψ̂‡)−1X ,

Rrs = XTV (ψ̂‡)−1 ∂ 2V (ψ̂‡)

∂ψr∂ψs
V (ψ̂‡)−1X .
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The expected information matrix i‡ψψ is a m×m matrix with (r,s)th element

i‡ψrψs
= iψrψs− tr

(
V (ψ)−1H(ψ)

∂V (ψ)

∂ψr
V (ψ)−1 ∂V (ψ)

∂ψs

)
+

1
2

tr
(

V (ψ)−1H(ψ)
∂V (ψ)

∂ψr
V (ψ)−1H(ψ)

∂V (ψ)

∂ψs

)
+

1
2

tr
(

V (ψ)−1H(ψ)
∂ 2V (ψ)

∂ψr∂ψs

)
.

In the current work we focus on Wald-type inference. Specifically, we compare the

performance of the Wald test using the mean BR estimates with the Wald test using

the ML and REML estimates, as well as the Kenward & Roger (1997) scaled Wald test

(KR) and the LR test.

2.7 Dental data

In this section we use the dental dataset (Potthoff & Roy, 1964) to illustrate the

problematic behaviour of ML in terms of estimation and inference due to bias in the

variance component estimates. The dataset consists of 108 measurements on the dis-

tance (mm) from the center of the pituitary to the pterygomaxillary fissure collected

from 27 children (11 girls and 16 boys) at ages 8, 10, 12, 14 years. The objective of

this orthodontic study was to determine whether distances are on average larger for

boys than for girls over time.

Following Edwards et al. (2008) we fit a linear mixed model to this data with three

different fixed-effect structures and two different random-effect structures. Specifically

we fit the following six models written on the observational level as

Model I: Yi j = β0 +β1 ai j +ui0 + εi j

Model II: Yi j = β0 +β1 ai j +β2 gi +ui0 + εi j

Model III: Yi j = β0 +β1 ai j +β2 gi +β3 ai j gi +ui0 + εi j

Model IV: Yi j = β0 +β1 ai j +ui0 +ai j ui1 + εi j

Model V: Yi j = β0 +β1 ai j +β2 gi +ui0 +ai j ui1 + εi j

Model VI: Yi j = β0 +β1 ai j +β2 gi +β3 ai j gi +ui0 +ai j ui1 + εi j .
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In the above models Yi j denotes the jth measurement ( j = 1, . . . ,4) of the ith child

(i = 1, . . . ,27), ai j denotes the age of the ith child when the jth measurement was

made, gi denotes the gender of the ith child (0 for male, 1 for female), ui0 is a random

intercept that takes into account heterogeneity between children, and ui1 is a random

slope of age within children correlated with the random intercept. For models I-III we

assume that ui0 are independent and normally distributed with N(0,σ2
u0
). For models

IV-VI we assume that the random vectors (ui0,ui1)
T are independent and identically

distributed bivariate normal with mean zero and variance-covariance matrix Σ. The

matrix Σ and its Cholesky factor L are given by

Σ =

 σ2
u0

ρσu0σu1

ρσu0σu1 σ2
u1

 and L =

λ1 0

λ2 λ3

 .

Tables 2.1 and 2.2 give the ML, REML, and mean BR estimates of the parame-

ters involved in models I-VI where the reported variance component estimates are the

estimates of ψ = (σ2
u0
,σ2

u1
,ρ,σ2

ε )
T and ψ = (λ1,λ2,λ3,σ

2
ε )

T, respectively. The param-

eterisation ψ = (σ2
u0
,σ2

ε )
T of models I-III in Table 2.1 satisfies the condition in (2.7),

and hence the REML and mean BR results are identical. Tables 2.1 and 2.2 illustrate

that the fixed-effect estimates are similar between the three methods but their stan-

dard errors generally differ. Inclusion of random slopes in models IV-VI reduces error

variance. The results also show that adding a fixed effect for any of the covariance

structures impacts the estimates of the random effects variances, with the impact be-

ing more evident on the variance of the random intercepts. For example, comparing

the estimates of the parameters in models IV and V given in Table 2.1, we see that

the inclusion of gender as a fixed effect inflates the estimates of σ2
u0

from around 5 to

nearly 8. This also affects the correlation between random intercept and random slope,

increasing the estimate in absolute value. As a general conclusion, we argue that under

various parameterisations and for various estimation methods, adding a fixed effect in

the model can result in marked changes to the estimates of the variance components.

Also, the bias reduced estimates of the variance components are larger than the ML

estimates. This is typical, because the ML estimates do not account for the degrees of

freedom used to estimate the fixed effects and they tend to be negatively biased.
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Table 2.1: ML, REML, and mean BR estimates of the parameters in linear mixed models I-VI
for the dental data using the parameterisation ψ = (σ2

u0
,σ2

u1
,ρ,σ2

ε )
T. Estimated standard errors

are reported in parentheses.
Fixed effects Variance components

Model Method β0 β1 β2 β3 σ2
u0

σ2
u1

ρ σ2
ε

I ML 16.76 (0.79) 0.66 (0.06) - - 4.29 - - 2.02
REML/Mean BR 16.76 (0.80) 0.66 (0.06) - - 4.47 - - 2.05

II ML 17.71 (0.82) 0.66 (0.06) -2.32 (0.73) - 2.99 - - 2.02
REML/Mean BR 17.71 (0.83) 0.66 (0.06) -2.32 (0.76) - 3.27 - - 2.05

III ML 16.34 (0.96) 0.78 (0.08) 1.03 (1.51) -0.30 (0.12) 3.03 - - 1.87
REML/Mean BR 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.12) 3.30 - - 1.92

IV ML 16.76 (0.76) 0.66 (0.07) - - 4.81 0.05 -0.58 1.72
REML 16.76 (0.78) 0.66 (0.07) - - 5.42 0.05 -0.61 1.72

Mean BR 16.76 (0.78) 0.66 (0.07) - - 5.42 0.05 -0.75 1.72

V ML 17.64 (0.86) 0.66 (0.07) -2.15 (0.73) - 6.99 0.05 -0.76 1.72
REML 17.64 (0.89) 0.66 (0.07) -2.15 (0.76) - 7.82 0.05 -0.77 1.72

Mean BR 17.62 (0.88) 0.66 (0.07) -2.12 (0.66) - 7.97 0.05 -0.84 1.72

VI ML 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.13) 4.56 0.02 -0.60 1.72
REML 16.34 (1.02) 0.78 (0.09) 1.03 (1.60) -0.30 (0.13) 5.79 0.03 -0.67 1.72

Mean BR 16.34 (1.02) 0.78 (0.09) 1.03 (1.60) -0.30 (0.13) 5.79 0.03 -0.81 1.72

Table 2.2: ML, REML, and mean BR estimates of the parameters in linear mixed models I-VI
for the dental data using the Cholesky parameterisation. Estimated standard errors are reported
in parentheses.

Fixed effects Variance components

Model Method β0 β1 β2 β3 λ1 λ2 λ3 σ2
ε

I ML 16.76 (0.79) 0.66 (0.06) - - 2.07 - - 2.02
REML 16.76 (0.80) 0.66 (0.06) - - 2.11 - - 2.05

Mean BR 16.76 (0.81) 0.66 (0.06) - - 2.17 - - 2.05

II ML 17.71 (0.82) 0.66 (0.06) -2.32 (0.73) - 1.73 - - 2.02
REML 17.71 (0.83) 0.66 (0.06) -2.32 (0.76) - 1.81 - - 2.05

Mean BR 17.71 (0.84) 0.66 (0.06) -2.32 (0.78) - 1.86 - - 2.05

III ML 16.34 (0.96) 0.78 (0.08) 1.03 (1.51) -0.30 (0.12) 1.74 - - 1.87
REML 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.12) 1.82 - - 1.92

Mean BR 16.34 (0.99) 0.78 (0.08) 1.03 (1.55) -0.30 (0.12) 1.87 - - 1.92

IV ML 16.76 (0.76) 0.66 (0.07) - - 2.19 -0.12 0.17 1.72
REML 16.76 (0.78) 0.66 (0.07) - - 2.33 -0.14 0.18 1.72

Mean BR 16.76 (0.80) 0.66 (0.08) - - 2.54 -0.17 0.20 1.72

V ML 17.64 (0.86) 0.66 (0.07) -2.15 (0.73) - 2.64 -0.16 0.14 1.72
REML 17.64 (0.89) 0.66 (0.07) -2.15 (0.76) - 2.80 -0.17 0.15 1.72

Mean BR 17.60 (0.91) 0.66 (0.07) -2.06 (0.80) - 2.95 -0.19 0.16 1.72

VI ML 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.13) 2.13 -0.09 0.12 1.72
REML 16.34 (1.02) 0.78 (0.09) 1.03 (1.60) -0.30 (0.13) 2.41 -0.12 0.13 1.72

Mean BR 16.34 (1.05) 0.78 (0.09) 1.03 (1.65) -0.30 (0.14) 2.62 -0.15 0.16 1.72
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In order to further investigate the performance of the ML, REML, and mean BR

methods we performed a simulation study where we considered only linear mixed

models I-III. From each of the models I-III we simulated 10000 independent samples

with true parameter values equal to the ML estimates shown in Table 2.1.

Table 2.3 gives the estimated mean bias of the estimates under the ψ = (σ2
u0
,σ2

ε )
T

parameterisation, the percentage of underestimation, the mean squared error, and the

estimated relative increase in the mean squared error from its absolute minimum (the

variance) due to bias (Kosmidis, 2014b, Table 5). The latter is calculated as the square

of the bias divided by the variance. Table 2.3 illustrates the underestimation of the

variance components by ML. The REML/mean BR methods correct for this underes-

timation. Comparing the values in the last column of Table 2.3 we can see the sig-

nificance of the effect of estimation bias, especially in models II and III. The mean

squared errors of the ML estimates of the variance components are inflated by as much

as 7.5% due to bias from their minimum values (the variances). The corresponding

inflation factors for the REML/mean BR estimators are almost zero.

The simulated samples were also used to calculate the empirical p-value distribu-

tion for the two-sided tests that each parameter is equal to the true values based on

the LR and the Wald-type statistics. Table 2.4 shows that the empirical p-value dis-

tribution for the KR and the Wald statistic using the mean BR estimates are closest to

uniformity.

Next, we repeated the simulation study where instead of estimating the variance

components under the ψ = (σ2
u0
,σ2

ε )
T parameterisation, we estimated ψ = (σu0,σ

2
ε )

T.

The results from this simulation setting are reported in Tables 2.5 and 2.6. The magni-

tude of mean bias of the ML estimates is smaller under this parameterisation, but ML

still underestimates the variance components. The REML and mean BR methods re-

duce this bias and they also perform better in terms of percentage of underestimation.

The mean squared error is similar across all methods. The mean squared errors of the

ML estimates of the variance components are inflated by as much as 12.3% due to bias

from their minimum values, while the corresponding inflation factors for the REML

and mean BR estimators are significantly smaller and do not exceed 1%.

Similar to the previous parameterisation, we used the simulated samples to calcu-
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Table 2.3: Mean bias, percentage of underestimation (PU), and mean squared error (MSE) of
the variance component estimates for the linear mixed models I-III using the dental data setting
and the ψ = (σ2

u0
,σ2

ε )
T parameterisation.

Model Parameter Method Bias PU MSE Bias2/Variance (%)

I σ2
u0

ML -0.166 58.3 1.645 1.707
REML/Mean BR 0.006 53.0 1.743 0.002

σ2
ε ML -0.019 54.0 0.100 0.362

REML/Mean BR 0.006 51.2 0.102 0.036

II σ2
u0

ML -0.250 63.7 0.897 7.471
REML/Mean BR 0.004 53.3 0.972 0.001

σ2
ε ML -0.019 54.0 0.100 0.362

REML/Mean BR 0.006 51.2 0.102 0.036

III σ2
u0

ML -0.244 63.6 0.892 7.152
REML/Mean BR 0.004 53.4 0.971 0.002

σ2
ε ML -0.041 57.2 0.087 1.939

REML/Mean BR 0.006 51.4 0.090 0.037

Table 2.4: Empirical p-value distribution (%) for the likelihood ratio test and the tests based
on the Wald statistic using the dental data setting and the ψ = (σ2

u0
,σ2

ε )
T parameterisation.

Model α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

I Likelihood ratio 1.1 2.7 4.9 9.4 24.7 49.9 74.8 89.7 94.7 97.4 99.0
Wald using ML 1.2 2.8 5.3 9.7 24.9 50.0 74.8 89.7 94.7 97.4 99.0
Kenward-Roger 1.0 2.5 4.7 9.1 24.4 49.6 74.6 89.5 94.6 97.4 99.0
Wald using mean BR 1.2 2.7 5.2 9.4 24.6 49.7 74.6 89.6 94.7 97.4 99.0

II Likelihood ratio 1.6 3.2 6.0 12.0 27.4 51.5 76.2 90.8 95.4 97.6 99.3
Wald using ML 2.2 4.1 6.7 12.8 27.9 51.6 76.2 90.8 95.4 97.6 99.3
Kenward-Roger 1.2 2.6 4.9 10.1 25.4 49.3 74.9 90.3 95.3 97.5 99.2
Wald using mean BR 1.8 3.3 5.9 11.6 26.3 50.1 75.3 90.3 95.3 97.5 99.2

III Likelihood ratio 1.0 2.7 5.6 10.4 26.0 50.1 74.7 89.9 95.4 97.7 99.0
Wald using ML 1.2 3.1 6.0 10.9 26.1 50.1 74.7 89.9 95.4 97.7 99.0
Kenward-Roger 0.9 2.5 5.4 10.0 25.2 49.5 74.5 89.8 95.3 97.7 99.0
Wald using mean BR 1.0 2.8 5.6 10.4 25.5 49.6 74.5 89.8 95.3 97.7 99.0

late the empirical p-value distribution for the two-sided tests that each parameter is

equal to the true values based on the LR and the Wald-type statistics. Table 2.6 shows

that the empirical p-value distribution for the KR and the Wald statistic using the mean

BR estimates are closest to uniformity.

In conclusion, the REML and mean BR estimators have smaller estimated mean

bias and percentage of underestimation than the ML estimator. Also, the simulation

studies suggest that the Wald-type statistics using REML or mean BR estimates and the

KR statistic are more appropriate for statistical inference than LR and Wald statistics,

and result in confidence intervals with good coverage properties.
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Table 2.5: Mean bias, percentage of underestimation (PU), and mean squared error (MSE) of
the Cholesky parameter estimates for the linear mixed models I-III using the dental data setting
and the ψ = (σu0 ,σ

2
ε )

T parameterisation.
Model Parameter Method Bias PU MSE Bias2/Variance (%)

I σu0 ML -0.065 58.3 0.102 4.279
REML -0.023 53.0 0.102 0.532

Mean BR 0.028 47.1 0.105 0.766
σ2

ε ML -0.019 54.0 0.100 0.362
REML 0.006 51.2 0.102 0.036

Mean BR 0.006 51.2 0.102 0.036

II σu0 ML -0.097 63.7 0.086 12.267
REML -0.023 53.3 0.082 0.633

Mean BR 0.027 46.5 0.084 0.851
σ2

ε ML -0.019 54.0 0.100 0.362
REML 0.006 51.2 0.102 0.036

Mean BR 0.006 51.2 0.102 0.036

III σu0 ML -0.094 63.6 0.084 11.802
REML -0.022 53.4 0.081 0.609

Mean BR 0.026 46.8 0.083 0.835
σ2

ε ML -0.041 57.2 0.087 1.939
REML 0.006 51.4 0.090 0.037

Mean BR 0.006 51.4 0.090 0.037

Table 2.6: Empirical p-value distribution (%) for the tests based on the Wald statistic using the
dental data setting and the ψ = (σu0 ,σ

2
ε )

T parameterisation.
Model α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

I Likelihood ratio 1.1 2.7 4.9 9.4 24.7 49.9 74.8 89.7 94.7 97.4 99.0
Wald using ML 1.2 2.8 5.3 9.7 24.9 50.0 74.8 89.7 94.7 97.4 99.0
Wald using REML 1.2 2.7 5.2 9.4 24.6 49.7 74.6 89.6 94.7 97.4 99.0
Kenward-Roger 1.0 2.5 4.7 9.1 24.4 49.6 74.6 89.5 94.6 97.4 99.0
Wald using mean BR 1.2 2.7 5.2 9.4 24.6 49.7 74.6 89.6 94.7 97.4 99.0

II Likelihood ratio 1.6 3.2 6.0 12.0 27.4 51.5 76.2 90.8 95.4 97.6 99.3
Wald using ML 2.2 4.1 6.7 12.8 27.9 51.6 76.2 90.8 95.4 97.6 99.3
Wald using REML 1.8 3.3 5.9 11.6 26.3 50.1 75.3 90.3 95.3 97.5 99.2
Kenward-Roger 1.3 2.8 5.2 10.7 26.0 50.0 75.3 90.4 95.3 97.5 99.2
Wald using mean BR 1.5 3.0 5.4 10.5 25.4 48.9 74.6 90.2 95.2 97.5 99.2

III Likelihood ratio 1.0 2.7 5.6 10.4 26.0 50.1 74.7 89.9 95.4 97.7 99.0
Wald using ML 1.2 3.1 6.0 10.9 26.1 50.1 74.7 89.9 95.4 97.7 99.0
Wald using REML 1.0 2.8 5.6 10.4 25.5 49.6 74.5 89.8 95.3 97.7 99.0
Kenward-Roger 0.9 2.5 5.4 10.0 25.2 49.5 74.5 89.8 95.3 97.7 99.0
Wald using mean BR 1.0 2.8 5.6 10.4 25.5 49.6 74.5 89.8 95.3 97.7 99.0

2.8 Simulation study

In this section we present simulation results to study the behaviour of the mean BR

method under small and moderate sample sizes when fitting a linear mixed model with

a random intercept and a correlated random slope.
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We generated data from the model used by Vaida & Blanchard (2005), defined as

yi j = (β0 +β1t j)+(αi + t jbi)+ εi j (i = 1, . . . ,10 , j = 1, . . . ,ni) (2.9)

where β0 = −2.78, β1 = −0.186, t j = 5 j, (αi,bi)
T is normally distributed with mean

zero and variance-covariance matrix 3.67 −0.126

−0.126 0.279

 ,

and εi j are independent and identically distributed with N(0,σ2
ε ). Following Vaida &

Blanchard (2005) and Liang et al. (2008) we let the error variance be equal to σ2
ε =

0.07052, 0.1412 and 0.2822. Also, we let j take the values (i) j ∈ {0,1, . . . ,5} and (ii)

j ∈ {0,1, . . . ,25}, giving cluster sizes ni = 6 and 26, respectively. For each of these six

scenarios we simulated 10000 samples and we estimated the mean bias, the percentage

of underestimation, the mean squared error, and the variance of the parameter estimates

under the ML, REML, and mean BR fit of model (2.9).

Tables 2.7 and 2.8 summarise the results of the simulation study. The REML and

mean BR methods reduce the bias of the ML estimates of the variance components,

especially of the Cholesky parameter λ1, with the mean BR yielding the smallest bias.

The mean squared error is in all scenarios similar across the three estimation methods.

The mean squared errors of the ML and REML estimates are inflated by as much as

35% and 15% due to bias, respectively. On the other hand, the corresponding inflation

factor for the mean BR estimates is very close to zero and does not exceed 0.4%.

Table 2.8 illustrates once again that the empirical p-value distributions for the KR and

the Wald statistic using the mean BR estimates are closest to uniformity.

Lastly, the results suggest that as the cluster size increases, the differences between

the ML, REML and mean BR estimators do not decrease, and the performance of the

LR and traditional Wald tests does not improve. Also, we should note that the KR

statistic is a strong competitor of the Wald statistic using the mean BR estimates when

conducting inference, but the latter has the advantage of being computationally less

expensive and easier to implement.
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Table 2.7: Mean bias, percentage of underestimation (PU), and mean squared error (MSE) of
the Cholesky parameter estimates under the linear mixed model (2.9) with cluster size ni and
variance error σ2

ε .
Bias PU MSE Bias2/Variance (%)

Method λ1 λ2 λ3 σ2
ε λ1 λ2 λ3 σ2

ε λ1 λ2 λ3 σ2
ε λ1 λ2 λ3 σ2

ε

ni = 6,σ2
ε = 0.07052

ML -0.16 0.01 -0.07 0.00 65.8 48.7 72.5 54.5 0.20 0.03 0.02 0.00 13.53 0.14 35.01 0.11
REML -0.06 0.00 -0.04 0.00 56.9 49.4 64.9 54.5 0.20 0.03 0.02 0.00 1.83 0.03 12.82 0.11

Mean BR -0.01 0.00 0.00 0.00 52.0 49.7 50.2 54.5 0.21 0.03 0.02 0.00 0.02 0.00 0.03 0.11

ni = 6,σ2
ε = 0.1412

ML -0.16 0.01 -0.07 0.00 66.0 48.5 72.5 54.5 0.20 0.03 0.02 0.00 13.54 0.15 35.10 0.11
REML -0.06 0.00 -0.04 0.00 56.8 49.4 64.9 54.5 0.20 0.03 0.02 0.00 1.84 0.03 12.87 0.11

Mean BR -0.01 0.00 0.00 0.00 51.9 49.6 50.1 54.5 0.21 0.03 0.02 0.00 0.02 0.01 0.03 0.11

ni = 6,σ2
ε = 0.2822

ML -0.16 0.01 -0.07 0.00 65.8 48.4 72.7 54.5 0.21 0.03 0.02 0.00 13.58 0.16 35.45 0.11
REML -0.06 0.00 -0.04 0.00 56.9 49.2 65.3 54.5 0.21 0.03 0.02 0.00 1.86 0.04 13.08 0.11

Mean BR -0.01 0.00 0.00 0.00 51.8 49.6 50.0 54.5 0.22 0.03 0.02 0.00 0.02 0.01 0.04 0.11

ni = 26,σ2
ε = 0.07052

ML -0.15 0.00 -0.07 0.00 64.9 49.6 73.4 52.0 0.20 0.03 0.02 0.00 12.24 0.07 35.56 0.04
REML -0.06 0.00 -0.05 0.00 56.5 50.2 65.8 52.0 0.21 0.03 0.02 0.00 1.77 0.00 15.14 0.04

Mean BR 0.00 0.00 0.00 0.00 51.5 50.7 51.8 51.8 0.21 0.03 0.02 0.00 0.01 0.01 0.01 0.02

ni = 26,σ2
ε = 0.1412

ML -0.15 0.00 -0.07 0.00 64.8 49.5 73.5 52.0 0.20 0.03 0.02 0.00 12.29 0.07 35.59 0.04
REML -0.05 0.00 -0.04 0.00 56.1 50.3 65.2 52.0 0.21 0.03 0.02 0.00 1.44 0.00 13.11 0.04

Mean BR 0.00 0.00 0.00 0.00 51.6 50.6 51.2 52.0 0.21 0.03 0.02 0.00 0.00 0.00 0.03 0.04

ni = 26,σ2
ε = 0.2822

ML -0.15 0.00 -0.07 0.00 64.7 49.3 73.3 52.0 0.21 0.03 0.02 0.00 12.38 0.07 35.69 0.04
REML -0.05 0.00 -0.04 0.00 56.2 50.2 65.3 52.0 0.21 0.03 0.02 0.00 1.47 0.00 13.15 0.04

Mean BR 0.00 0.00 0.00 0.00 51.7 50.7 51.0 52.0 0.22 0.03 0.02 0.00 0.00 0.00 0.03 0.04
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Table 2.8: Empirical p-value distribution (%) for the tests based on the Wald statistic using
the Cholesky parameter estimates under the linear mixed model (2.9) with cluster size ni and
variance error σ2

ε .

ni σ2
ε α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

6 0.07052 Likelihood ratio 2.3 4.6 8.1 14.5 31.2 56.0 77.1 90.8 95.6 97.8 99.1
Wald using ML 3.8 6.4 9.9 15.6 30.8 54.6 76.1 90.3 95.5 97.6 99.1
Wald using REML 3.1 5.2 8.2 13.7 28.5 52.7 75.1 89.8 95.2 97.5 99.0
Kenward-Roger 1.7 3.7 6.9 12.9 28.9 54.2 76.0 90.2 95.4 97.6 99.1
Wald using mean BR 2.3 3.8 6.3 11.1 24.7 48.7 73.3 88.8 94.8 97.2 99.0

6 0.1412 Likelihood ratio 2.3 4.6 8.0 14.5 31.3 56.0 77.0 90.7 95.6 97.7 99.1
Wald using ML 3.9 6.4 9.9 15.5 30.8 54.7 76.1 90.2 95.5 97.6 99.1
Wald using REML 3.2 5.3 8.2 13.6 28.5 52.7 75.1 89.7 95.3 97.4 99.0
Kenward-Roger 1.7 3.8 6.9 12.8 29.0 54.1 76.1 90.2 95.4 97.6 99.1
Wald using mean BR 2.3 3.9 6.3 11.1 24.6 48.8 73.4 88.9 94.8 97.2 98.9

6 0.2822 Likelihood ratio 2.2 4.6 8.1 14.4 31.3 56.0 77.1 90.6 95.7 97.7 99.1
Wald using ML 3.8 6.4 10.0 15.5 30.7 54.6 76.4 90.2 95.6 97.6 99.1
Wald using REML 3.2 5.3 8.3 13.6 28.5 52.6 75.1 89.6 95.3 97.5 99.0
Kenward-Roger 1.8 3.7 6.9 12.9 29.0 53.9 76.2 90.1 95.6 97.6 99.1
Wald using mean BR 2.2 3.9 6.2 11.1 24.7 48.7 73.2 88.9 94.8 97.3 98.9

26 0.07052 Likelihood ratio 2.2 4.8 8.6 14.9 32.0 55.9 78.3 91.4 95.4 97.7 99.1
Wald using ML 3.9 6.7 10.5 16.1 31.8 54.6 77.4 91.0 95.1 97.5 99.0
Wald using REML 3.1 5.7 8.8 14.2 29.5 52.8 76.5 90.3 94.9 97.4 99.0
Kenward-Roger 1.7 3.7 7.0 13.1 29.7 53.9 77.2 91.0 95.1 97.4 99.1
Wald using mean BR 2.3 4.0 6.6 11.4 25.5 49.1 74.2 89.5 94.5 97.2 98.9

26 0.1412 Likelihood ratio 2.2 4.8 8.6 15.0 32.0 55.9 78.3 91.4 95.4 97.6 99.1
Wald using ML 3.9 6.6 10.3 15.9 31.5 54.4 77.3 91.0 95.2 97.5 99.1
Wald using REML 3.1 5.6 8.7 13.8 29.1 52.5 76.3 90.3 94.9 97.4 99.0
Kenward-Roger 1.7 3.7 7.0 13.1 29.7 53.9 77.2 91.0 95.1 97.5 99.1
Wald using mean BR 2.3 3.9 6.5 11.3 25.2 48.8 74.1 89.5 94.4 97.2 99.0

26 0.2822 Likelihood ratio 2.2 4.8 8.6 14.9 32.0 55.9 78.3 91.4 95.4 97.7 99.1
Wald using ML 3.9 6.5 10.4 15.9 31.5 54.4 77.3 90.9 95.2 97.5 99.1
Wald using REML 3.1 5.6 8.7 13.9 29.1 52.5 76.2 90.3 94.9 97.4 99.0
Kenward-Roger 1.7 3.7 7.0 13.1 29.7 53.9 77.2 90.9 95.2 97.4 99.1
Wald using mean BR 2.3 3.9 6.5 11.3 25.2 48.8 74.1 89.6 94.4 97.2 98.9
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2.9 Mean bias reduction in random effects meta-

analysis and meta-regression

Linear mixed models is a wide class of parametric models including as special

cases the random effects meta-analysis and meta-regression models considered in this

section.

2.9.1 Random effects meta-regression model

Let yi and σ̂2
i denote the estimate of the effect from the ith study (i = 1, . . . ,K) and

the associated within-study variance, respectively, and xi = (xi1, . . . ,xip)
T denote a p-

dimensional vector of study-specific covariates that can be used to account for the

heterogeneity across studies.

The within-study variances σ̂2
i are usually assumed to be estimated well-enough to

be considered as known and equal to the values reported in each study. Then the ob-

servations y1, . . . ,yK are assumed to be realisations of the random variables Y1, . . . ,YK ,

which are independent conditionally on independent random effects U1, . . . ,UK . The

conditional distribution of Yi given Ui = ui is N(ui + xT
i β , σ̂2

i ), where β is an unknown

p-dimensional vector of fixed effects. The random effects U1, . . . ,UK are typically

assumed to be independent with Ui having a N(0,ψ) distribution, where ψ is a param-

eter that attempts to capture the unexplained between-study heterogeneity. In matrix

notation, the random effects meta-regression model has

Y = Xβ +U + ε , (2.10)

where Y = (Y1, . . . ,YK)
T, X is the K× p model matrix with xT

i in its ith row, and ε =

(ε1, . . . ,εK)
T is a vector of independent errors each with a N(0, σ̂2

i ) distribution and

independent of U = (U1, . . . ,UK)
T. Under this specification, the marginal distribution

of Y is multivariate normal with mean Xβ and variance-covariance matrix Σ̂+ψIK ,

where IK is the K×K identity matrix and Σ̂ = diag(σ̂2
1 , . . . , σ̂

2
K). The random effects

meta-analysis results as a special case of meta-regression, by setting X to be a column

of ones.
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2.9.2 Methods of estimation

Under the random effects meta-regression model there are a number of options for

estimating the parameters. A traditional method is ML, which maximises the log-

likelihood function for θ = (β T,ψ)T given by

l(θ) =
1
2
{log |W (ψ)|−R(β )TW (ψ)R(β )} ,

where |W (ψ)| denotes the determinant of W (ψ) = (Σ̂+ψIK)
−1 and R(β ) = y−Xβ .

The score function is

s(θ) =

 XTW (ψ)R(β )
1
2{R(β )

TW (ψ)2R(β )− tr[W (ψ)]}

 (2.11)

and the ML estimator θ̂ = (β̂ T, ψ̂)T is obtained as the solution of s(θ) = 0p+1. Even

though ML is attractive for its asymptotic properties, the resulting between-study het-

erogeneity estimate ψ̂ is negatively biased if the number of studies is small (Schwarzer

et al., 2015, Section 2.3).

Another traditional approach for fitting random effects meta-regression models

is the DerSimonian & Laird (1986) procedure (DL). The DL estimator of β is the

weighted average β̂DL = β̂ (ψ̂DL) = (XTW (ψ̂DL)X)−1XTW (ψ̂DL)y , where ψ̂DL is the

DL estimator of ψ calculated as

ψ̂DL = max
{

0,
Q− (K− p)

tr(Σ̂−1)− tr{(XTΣ̂−1X)−1XTΣ̂−2X}

}
. (2.12)

The quantity Q involved in (2.12) is the observed value of Cochran’s statistic defined as

(y−X β̂ (0))TΣ̂−1(y−X β̂ (0)) (Cochran, 1937). Even though the DL method is simple

to implement, it can lead to unreliable inferential conclusions. Specifically, confidence

intervals for the fixed effects are generally narrower than they should be, because the

variability associated to the estimation of the between-study heterogeneity is not taken

into account (Brockwell & Gordon, 2001; Guolo & Varin, 2017).

Several alternatives to the ML and DL methods have been proposed in the literature

to account for the uncertainty in estimating the between-study heterogeneity, especially
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when the number of studies is small. For example, Knapp & Hartung (2003) intro-

duced a modified limiting distribution of test statistics based on an improved estimator

of the variance of the parameter estimates, Zeng & Lin (2015) suggested a double

resampling approach which accounts for the variation in the estimation of ψ , and re-

cently Kosmidis et al. (2017) suggested maximising a mean BRPL to get reduced-bias

estimates of ψ . The aforementioned proposals have been shown to improve coverage

accuracy by yielding wider confidence intervals for β than those obtained from the ML

or DL approaches.

In this chapter we focus only on the mean BRPL method. The maximum mean

BRPL estimator θ̂ ∗ = (β̂ ∗T, ψ̂∗)T solves the mean bias-reducing adjusted score equa-

tions for β and ψ , specifically s∗
β
(θ) = sβ (θ) and s∗ψ(θ) = sψ(θ)+ tr[W (ψ)H(ψ)]/2,

respectively (Kosmidis et al., 2017). A direct approach for computing θ̂ ∗ is through

the following two-step iterative process (Kosmidis et al., 2017). At the jth iteration

( j = 1,2, . . .)

1. calculate β ( j) by weighted least squares as

β
( j) = (XTW (ψ( j−1))X)−1XTW (ψ( j−1))y

2. solve s∗ψ(θ
( j)(ψ)) = 0 with respect to ψ , where θ ( j)(ψ) = (β ( j)T,ψ)T.

In the above steps, β ( j) is the candidate value for β̂ ∗ at the jth iteration and ψ( j−1) is

the candidate value for ψ̂∗ at the ( j−1)th iteration. The equation in step 2 is solved nu-

merically, by searching for the root of the function s∗ψ(β
( j),ψ) in a predefined positive

interval. For the computations in this chapter we use the DL estimate of ψ as starting

value ψ(0). The iterative process is then repeated until the components of the score

function s∗(θ) are all less than ε = 10−6 in absolute value at the current estimates.

The remainder of this section uses the real data applications used in Kosmidis et al.

(2017) to compare the performance in estimation, inference, and computational speed

of mean BRPL against ML, a method which has not been taken into consideration

in Kosmidis et al. (2017). The first application uses the cocoa data (Taubert et al.,

2007) to study the performance of the methods in a random effects meta-analysis set-

ting, and the second application uses the meat consumption data (Larsson & Orsini,
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2014) to study the performance of the methods in a random effects meta-regression

setting. The results in Kosmidis et al. (2017) demonstrate the superior performance in

estimation and inference against other existing estimation methods for random effects

meta-analysis and meta-regression models, and for this reason we did not include any

of these methods in our study.

2.9.3 Cocoa intake and blood pressure reduction data

Consider the setting in Bellio & Guolo (2016) who carry out a meta-analysis of five

randomised controlled trials from Taubert et al. (2007) on the efficacy of two weeks of

cocoa consumption on lowering diastolic blood pressure. The top panel in Figure 2.1

is a forest plot with the estimated mean difference in diastolic blood pressure before

and after cocoa intake from each study, and the associated 95% Wald-type confidence

intervals. Four out of the five studies reported a reduction of diastolic blood pressure

from cocoa intake.

The random effects meta-analysis model is used to synthesise the evidence from

the five studies. In particular, let Yi be a random variable representing the mean differ-

ence in the diastolic blood pressure after two weeks of cocoa intake in the ith study.

We assume that Y1, . . . ,Y5 are independent random variables where Yi has a Normal

distribution with mean the overall effect β and variance σ̂2
i +ψ .

The bottom panel in Figure 2.1 depicts nominally 95% confidence intervals for β

using various alternative methods. As is apparent, the conclusions when testing the

hypothesis β = 0 can vary depending on the method used. More specifically, the Wald

test using the ML estimates, the DL method, double resampling, and the LR test give

evidence that there is a relationship between cocoa consumption and diastolic blood

pressure, with p-values 0.005, 0.006, 0.016, 0.030, respectively. On the other hand,

Knapp & Hartung (2003) method, the mean BRPL ratio, the Bartlett-corrected LR

(Huizenga et al., 2011), and Skovgaard’s test, suggest that the evidence that cocoa

consumption affects diastolic blood pressure is weaker, with p-values 0.050, 0.053,

0.058, 0.067, 0.077, respectively. The median BRPL ratio that is also reported in

Figure 2.1 is a newly proposed statistic derived in Chapter 6 that can also be used

for carrying out hypothesis tests and constructing confidence intervals for the random

effects meta-regression model parameters.
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Figure 2.1: Forest plot of cocoa data. The outcomes from the five studies are reported in terms
of the diastolic blood pressure (DBP) difference after two weeks of cocoa consumption. A
negative change in DBP indicates favourable hypotensive cocoa actions. Squares represent the
mean effect estimate for each study; the size of the square reflects the weight that the corre-
sponding study exerts in the meta-analysis calculated as the within-study’s inverse variance.
Horizontal line segments represent 95% Wald-type confidence intervals for the effect estimate
of individual studies. In the bottom panel of the plot horizontal line segments represent the
corresponding 95% confidence interval as computed based on various statistics (for details, see
text). The confidence intervals are ordered according to their length.

The ML and the mean BRPL estimates of the heterogeneity parameter in the meta-

analysis model are ψ̂ = 4.199 and ψ̂∗ = 5.546. The estimates of the common effect

are β̂ = −2.799, and β̂ ∗ = −2.811, with estimated standard errors 1.002 and 1.129,

respectively. The bias-reduced estimate of ψ and, as a consequence, the corresponding

estimated standard error for β are larger than their ML counterparts, which is typical

in random effects meta-analysis. The iterative process used for computing the ML and

maximum mean BRPL estimates converged in 4 and 5 iterations, respectively. The

computational run-time for the two-step iterative process which computes the ML and

maximum mean BRPL estimates is 1.1×10−2 and 1.8×10−2 seconds, respectively.

The 95% confidence intervals for β are (−5.26,−0.40) and (−5.73,0.05) for the

LR statistic and the mean BRPL ratio statistic, respectively. The corresponding 95%

confidence intervals for ψ are (1.1,23.5) and (1.4,58.0), respectively.

In order to further investigate the performance of the two approaches to estimation

and inference, we performed a simulation study where we simulated 10000 indepen-

dent samples from the random effects meta-analysis model with parameter values set

to the ML estimates reported earlier, i.e. β0 = −2.799 and ψ0 = 4.199. The esti-
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Table 2.9: Empirical p-value distribution (%) for the tests based on the LR statistic and the
mean BRPL ratio statistic in the cocoa data setting.

α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0
LR 5.9 8.4 11.7 18.2 34.5 57.8 79.1 91.7 96.0 98.0 99.2
Mean BRPL ratio 1.6 3.7 6.7 12.1 28.3 52.8 76.6 90.9 95.5 97.9 99.1

Notes: Each column gives the coverage probability of (1−α)% confidence intervals based on the LR or the mean BRPL ratio
statistics.

mated mean bias of the ML estimator of ψ is −0.990 and the bias corresponding to

the maximum mean BRPL estimator is considerably smaller and equal to 0.028. Let

ψ0 = 4.199. The simulation-based estimates of the probabilities of underestimation

for ψ , Pψ0(ψ̂ ≤ ψ0) and Pψ0(ψ̂
∗ ≤ ψ0) are 0.708 and 0.591 for the ML and maximum

mean BRPL, respectively.

The simulated samples were also used to calculate the empirical p-value distribu-

tion for the two-sided tests that each parameter is equal to the true values based on

the LR statistic and the mean BRPL ratio statistic. Table 2.9 shows that the empirical

p-value distribution for the mean BRPL ratio statistic is closest to uniformity. The

coverage probability of the 95% confidence intervals for β based on the mean BRPL

ratio is notably closer to the nominal level than the one based on the LR. Specifi-

cally, the coverage probabilities for β are 88% and 93% for LR and mean BRPL ratio,

respectively, and the corresponding coverage probabilities for ψ are 88% and 94%,

respectively.

Overall, the results indicate that mean BRPL is superior in estimation against ML

with a small additional computational run-time, and mean BRPL ratio outperforms LR

resulting in confidence intervals with better coverage properties.

2.9.4 Meat consumption data

A well used example in the random effects meta-regression literature is the meat con-

sumption data (Larsson & Orsini, 2014) used for investigating the association between

meat consumption and relative risk of all-cause mortality. The data consists of 16

prospective studies, eight of which are about unprocessed red meat consumption and

eight about processed meat consumption. Figure 2.2 displays the information pro-

vided by each study in the meta-analysis. The results from the studies point towards

the conclusion that high consumption of red meat, in particular processed red meat, is

associated with higher all-cause mortality.



2.9. Mean bias reduction in random effects meta-analysis and meta-regression 53

−1 −0.5 0 0.5 1 1.5

Log Relative Risk

Study 1
Study 2
Study 3
Study 4
Study 5
Study 6
Study 7
Study 8

Study 9
Study 10
Study 11
Study 12
Study 13
Study 14
Study 15
Study 16

−0.34 [−0.60, −0.09]
 0.25 [ 0.18,  0.32]
 0.17 [ 0.12,  0.22]
 0.17 [ 0.03,  0.30]

−0.08 [−0.20,  0.03]
 0.10 [−0.02,  0.21]
 0.22 [−0.27,  0.70]
 0.40 [−0.28,  1.07]

 0.05 [−0.48,  0.57]
 0.15 [ 0.11,  0.18]
 0.22 [ 0.18,  0.27]
 0.24 [ 0.17,  0.31]
 0.18 [ 0.13,  0.24]
 0.36 [ 0.22,  0.50]

 0.06 [−0.29,  0.40]
 0.15 [−0.15,  0.45]

Unprocessed red meat

Processed red meat

Observed Log RR [95% CI]Study by Meat Intake Type

Figure 2.2: The meat consumption data. Outcomes from 16 studies are reported in terms
of the logarithm of the relative risk (Log RR) of all-cause mortality for the highest versus
lowest category of unprocessed red meat, and processed meat consumption. Squares represent
the mean effect estimate for each study; the size of the square reflects the weight that the
corresponding study exerts in the meta-analysis. Horizontal lines represent 95% Wald-type
confidence intervals for the effect estimate of individual studies.

We consider the random effects meta-regression model assuming that Yi has a

N(β0+β1xi, σ̂
2
i +ψ), where Yi is the random variable representing the logarithm of the

relative risk reported in the ith study, and xi takes value 1 if the consumption in the ith

study is about processed red meat and 0 if it is about unprocessed meat (i = 1, . . . ,16).

Table 2.10 gives the ML estimates and the maximum mean BRPL estimates of

the fixed effects and the heterogeneity parameter, along with the corresponding esti-

mated standard errors and the 95% confidence intervals. The results show that the ML

estimate of ψ , as well as the estimated standard errors for the fixed effects have the

smallest values. The LR test indicates some evidence for a higher risk associated to

the consumption of red processed meat with a p-value of 0.047. On the other hand,

the mean BRPL ratio test suggests that there is weaker evidence for higher risk with p-

value of 0.066. The iterative process used for computing the ML and maximum mean

BRPL estimates converged in 8 and 9 iterations, respectively. The computational run-

time for the two-step iterative process which computes the ML and maximum mean

BRPL estimates is 1.2×10−2 and 2.4×10−2 seconds, respectively.

Similar to Section 2.9.3, we performed a simulation study in order to further in-
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Table 2.10: ML and mean BRPL estimates of the model parameters for the meat consumption
data. Estimated standard errors are reported in parentheses. The 95% confidence intervals
based on the LR and mean BRPL ratio are reported in squared brackets.

Method β0 β1 ψ

ML 0.099 (0.044) 0.106 (0.061) 0.009
[-0.004,0.189] [-0.022,0.244] [0.003,0.030]

Mean BRPL 0.095 (0.050) 0.110 (0.069) 0.012
[-0.020,0.199] [-0.040,0.264] [0.003,0.042]

Table 2.11: Empirical p-value distribution (%) for the tests based on the LR statistic and the
mean BRPL ratio statistic using the meat consumption data.

α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0
LR 2.2 4.5 7.7 13.1 28.0 50.0 71.7 86.6 92.1 95.3 97.7
Mean BRPL ratio 1.3 3.0 5.6 11.1 25.9 49.8 73.8 89.0 94.2 96.9 98.6
Notes: Each column gives the coverage probability of (1−α)% confidence intervals based on the LR or the mean

BRPL ratio statistics.

vestigate the performance of the two methods in a meta-regression context. We simu-

lated 10000 independent samples from the meta-regression model at the ML estimates

(β̂0, β̂1, ψ̂)T reported in Table 2.10. ML slightly underestimates the heterogeneity pa-

rameter with mean bias −0.002, while mean BRPL almost fully compensate for the

negative bias of ML estimate, with mean bias 3× 10−5. The percentages of under-

estimation are 72.6% and 56.6% for the ML and maximum mean BRPL estimators,

respectively.

The simulated samples were also used to calculate the empirical p-value distribu-

tion for the tests based on the LR and mean BRPL ratio statistics. Table 2.11 shows

that the empirical p-value distribution for the mean BRPL ratio statistic is closer to

uniformity.

Similar to the cocoa consumption study, the results indicate that in random effects

meta-regression mean BRPL is superior in estimation against ML with a small ad-

ditional computational run-time, and mean BRPL ratio outperforms LR resulting in

confidence intervals with better coverage properties.

2.10 Concluding remarks

In this chapter we derive the adjusted score equations for mean bias reduction of

the ML estimator for linear mixed models under any parameterisation of the variance

components. We show that under certain parameterisations the solution of the mean

bias-reducing adjusted score equations is identical to the REML estimates, and we
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give a sufficient condition for the equality of mean BR with REML estimates. Our

simulation studies indicate that adding a predictor in the fixed effects can increase

the estimated variance of the random effects. The results also illustrate a significant

improvement of the random-effect parameter estimation compared to ML and REML.

This chapter also highlights the need for reducing estimation bias in linear mixed

models. Our results provide evidence that the bias of ML estimates can affect Wald-

type inference. On the other hand, the proposed mean bias reduction method corrects

the anti-conservativeness of the traditional Wald test. The good performance of the

Wald statistic using the mean BR estimates is comparable with the KR statistic (Ken-

ward & Roger, 1997). A disadvantage of the well-established KR approximation is its

complexity in calculating the approximate variance-covariance matrix as well as the

denominator degrees of freedom of its small sample F-distribution, which make the

hypothesis testing computationally more expensive, than simply computing the Wald

statistic using the mean BR estimates. The results were qualitatively similar across all

parameterisations considered.

Lastly, using two simulation settings we were able to retrieve enough information

on the performance of the maximum mean BRPL estimators proposed in Kosmidis

et al. (2017) for mean bias reduction of the ML estimator for random effects meta-

analysis and meta-regression models. All the results illustrate that use of the mean

BRPL succeeds in achieving bias reduction in estimation, which leads to confidence in-

tervals with good coverage properties. The computation of the maximum mean BRPL

estimates is not expensive, as illustrated by the computational run-times and number

of iterations reported.

In Chapter 6 we derive the adjusted score equations for median bias reduction

of the ML estimator for linear mixed models and random effects meta-analysis and

meta-regression, and include more simulation studies to assess the performance of

estimation and inference based on the proposed median bias reduction method, mean

BRPL, and ML.



Chapter 3

Mean bias reduction through

simulation-based adjusted score

equations

3.1 Introduction

In this chapter we consider variants of the adjusted score function proposed in

Firth (1993) to reduce mean bias of the ML estimator regardless of the feasibility of

the bias function, where the term “feasibility” refers to the possibility of a function to

be calculated. Specifically, we show that solving an adjusted score equation where the

bias function is replaced by its simulation-based estimate, also leads to estimators with

o(n−1) bias. Moreover, we introduce the “iterated bootstrap with likelihood adjust-

ment” (IBLA) algorithm, which can be used for the computation of the bias-reduced

estimates.

Additionally, this chapter provides the implementation of IBLA algorithm in the

context of generalised linear models (McCullagh & Nelder, 1989). We choose gener-

alised linear models to evaluate the performance of IBLA because they comprise an im-

portant class of statistical models; they extend linear models to encompass non-normal

response distributions and modelling functions of the mean. Moreover, the likelihood

function of generalised linear models can be written in closed form, which allows the

easy comparison of IBLA to the traditional adjusted score equations method (Firth,

1993). IBLA is also compared with ML and parametric bootstrap (Efron & Tibshirani,
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1993, Chapter 10) methods. Under the parametric bootstrap framework R bootstrap

samples are generated from the model using the estimated parameter values. For each

of the R bootstrap samples the parameter θ is estimated. The bias of an estimator θ̂n

is then estimated as B(boot) = θ̄ − θ̂n , where θ̄ is the average of the estimates based

on each of the R bootstrap samples. The parametric bootstrap bias-reduced estimate is

calculated as θ̂boot = θ̂n−B(boot) = 2θ̂n− θ̄ .

The evaluation of ML, adjusted score equations (Firth, 1993), parametric boot-

strap, and IBLA is performed via simulation studies and real data examples. The first

simulation study considers data from a continuous probability distribution, which sat-

isfies the continuity condition assumed in Section 3.3, whereas the second simulation

study considers data from a discrete probability distribution. Specifically, in the for-

mer simulation study we use a generalised linear model with the log link function and

gamma distributed data and in the latter study we use a generalised linear model with

the logistic link function and binary data. Both simulation studies are designed to com-

pare the finite sample properties of the IBLA estimates and the associated inferential

procedures.

Finally, we apply IBLA on a real-data example. The endometrial cancer grade

study (Heinze & Schemper, 2002) illustrates a binary-response logistic regression anal-

ysis for which one parameter has an infinite ML estimate. The adjusted score equations

do not depend on the finiteness of the ML estimates and yield finite estimates (Firth,

1993). On the contrary, the parametric bootstrap estimates are by definition undefined

when the ML estimates are infinite. In this chapter we demonstrate how adjusting suit-

ably the simulated samples involved in the simulation-based adjusted score equations

results in finite IBLA estimates even when the ML estimates are infinite with positive

probability.

3.2 Simulation-based adjusted score function

Firth (1993) shows that bias reduced estimates can be obtained by solving

sn(θ ;y)− jn(θ ;y)bn(θ) = 0. In the latter equation, sn(θ ;y) is the score function,

jn(θ ;y) is the observed information matrix, and bn(θ) is the first-order term in the

expansion of the bias of the ML estimator θ̂n , as defined in Section 1.3, where the use
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of the subindex highlights the dependence of these quantities on n.

More generally, the theory in Firth (1993) and Kosmidis & Firth (2009) guarantees

that estimators with o(n−1) bias result by the solution of the equation

s∗n(θ ;y) = sn(θ ;y)− jn(θ ;y)Bn(θ)+ vn(θ ;y) = 0 , (3.1)

where Bn(θ) = Eθ (θ̂n−θ) is the bias of θ̂n and vn(θ ;y) = Op(n−1/2). There are cases

where it is difficult to analytically evaluate Bn(θ) and hence equation (3.1) is difficult

to be solved. For this reason, we propose to replace Bn(θ) in (3.1) by its simulation-

based estimate, which makes the adjusted score equation feasible.

Definition 1. Let B̂n,R(θ) = (1/R)∑
R
r=1 θ̂n(Zr)− θ , where θ̂n(Zr) is the solution of

sn(θ ;Zr) = 0, and Zr = z(θ ;Ξr) is a sample of responses simulated from the model

at θ , based on Ξ1, . . . ,ΞR independent copies of a random variable Ξ that does not

depend on θ . Suppressing the dependence of s∗n,R(θ ;y), sn(θ ;y) and jn(θ ;y) on y, the

simulation-based adjusted score function is expressed as

s∗n,R(θ) = sn(θ)− jn(θ)B̂n,R(θ) . (3.2)

3.3 Asymptotic properties

In this section, we consider the asymptotic properties of the estimator obtained

from the equation s∗n,R(θ) = 0p , and we also give some guidance of what values of R

guarantee a reduction of bias in terms of n. The consistency and asymptotic normality

of a sequence θ̂ ∗n,R of roots of s∗n,R(θ) is shown using the results listed in Appendix E

and under the following conditions.

Condition 1. The parameter space Θ is a compact subset of ℜp.

Condition 2. sn(θ) and jn(θ) are continuous functions of θ .

Condition 3. s∗n(θ) has a unique zero at θ̂ ∗n ∈Θ.

Condition 4. s∗n,R(θ) is continuously differentiable for all θ in a neighbourhood of the

true unknown θ0 , and the matrix H∗n,R(θ) with rows ∂ s∗n,R(θ)/∂θ j , j ∈ {1, . . . , p} is

nonsingular.
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Condition 5. For all θ ∈Θ, i ∈ {1, . . . ,n} and { j,k} ∈ {1, . . . , p},

E
(

∂ 2 log fi(yi;θ)

∂θ j∂θk

)
and lim

n→∞

1
n

n

∑
i=1

E
(

∂ 2 log fi(yi;θ)

∂θ j∂θk

)

exist and
1
n

n

∑
i=1

∂ 2 log fi(yi;θ)

∂θ j∂θk

p−→ lim
n→∞

1
n

n

∑
i=1

E
(

∂ 2 log fi(yi;θ)

∂θ j∂θk

)
.

Condition 6. The matrix F̄(θ0) =
(
F̄jk(θ0)

)
1≤ j,k≤p , where

F̄jk(θ0) = lim
n→∞

1
n

n

∑
i=1

E

(
−∂ 2 log fi(yi;θ)

∂θ j∂θk

∣∣∣∣
θ0

)
,

is positive definite.

Condition 7. As n and R go to infinity, n−1[−H∗n,R(θ)]
p−→ F̄(θ) for θ in a neighbour-

hood of θ0 .

Conditions 1-3 are used to show the consistency of θ̂ ∗n,R and the extra conditions 4-7

are useful to derive the asymptotic distribution of θ̂ ∗n,R . The weak law of large numbers

(Davison, 2003, p. 28) gives sufficient conditions for the convergence in probability in

condition 5. Condition 5 also ensures that F̄(θ0) in condition 6 exists. Condition 7 is

justified if [H∗n (θ)−H∗n,R(θ)]/n converges to zero, where H∗n (θ) is the derivative of

s∗n(θ) with respect to θ . The columns of [H∗n (θ)−H∗n,R(θ)]/n are

∂

∂θ j

{
jn(θ)[B̂n,R(θ)−Bn(θ)]

n

}
.

Given n−1 jn(θ)[B̂n,R(θ)− Bn(θ)] is Op(n−1R−1/2) and assuming the higher order

derivatives of an Op(1) term are also Op(1), we have n−1[H∗n (θ) − H∗n,R(θ)] =

Op(n−1R−1/2) = oP(1). Hence n−1[H∗n (θ)−H∗n,R(θ)]
p−→ 0 as R→ ∞.

Theorem 2 shows that with probability one the simulation-based adjusted score

function s∗n,R(θ) converges to the adjusted score function s∗n(θ) uniformly in θ , as

R→∞, and Corollary 1 shows that uniform convergence to the adjusted score function

implies convergence of the simulation-based bias reduced estimator θ̂ ∗n,R to the bias
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reduced estimator θ̂ ∗n proposed in Firth (1993).

Theorem 2. If conditions 1 and 2 are satisfied, then s∗n(θ) and s∗n,R(θ) are such that

supθ∈Θ ‖s∗n,R(θ)− s∗n(θ)‖
p−→ 0 as R→ ∞.

Proof of Theorem 2: Let s∗n,R(θ) be written as the average of R functions, such

that s∗n,R(θ) = (1/R)∑
R
r=1{sn(θ)− jn(θ)(θ̂n(Zr)− θ)} . Van der Vaart (2000, The-

orem 5.9) gives a set of sufficient conditions for uniform convergence of functions

that can be written in the form of an average, according to which we need Θ to

be a compact space, sn(θ)− jn(θ)(θ̂n(Zr)− θ) to be continuous for every θ , and

sn(θ)− jn(θ)(θ̂n(Zr)−θ) to be dominated by an integrable function. Condition 1 cov-

ers for compactness, and sn(θ)− jn(θ)(θ̂n(Zr)−θ) is continuous as the sum of contin-

uous functions. From the triangle inequality, sn(θ)− jn(θ)(θ̂n(Zr)−θ) is bounded on

Θ because there exists a positive number Kn(θ) = ‖sn(θ)‖+‖ jn(θ)(θ̂n(Zr)−θ)‖ such

that ‖sn(θ)− jn(θ)(θ̂n(Zr)−θ)‖ ≤ Kn(θ). In order to show that Kn(θ) is integrable

we need to show that it is continuous on a rectangle in ℜp (Trench, 2003, Theorem

7.1.13). The space Θ is compact, which is equivalent by the Heine-Borel theorem

(Rudin, 1976, pp. 39-40) to Θ being closed and bounded. Then Θ is a closed subset

of a rectangle that is a product of bounded intervals (Lavrent’ev & Savel’ev, 2006, p.

165). Also, the function Kn(θ) is continuous as it is the sum of vector norms. Thus

Kn(θ) is integrable.

Remark 1. Theorem 2 does not cover the case of discrete-response models. This is

because for these models the continuity condition for sn(θ)− jn(θ)(θ̂n(Zr)−θ), which

is one of the sufficient conditions for uniform convergence (see Van der Vaart, 2000, p.

46, and proof of Theorem 2), is not valid. The continuity condition is not valid, because

the sample of responses Z1, . . . ,ZR simulated from the model at θ are not continuous

in terms of θ . However, even though formally our theory does not cover this case,

simulation studies in Section 3.6 demonstrate that the simulation-based adjusted score

equation approach behaves well.

Corollary 1. If conditions 1-3 are satisfied and s∗n,R(θ) converges uniformly to s∗n(θ)

as R→∞ , then any θ̂ ∗n,R ∈Θ such that s∗n,R(θ̂
∗
n,R) = 0 converges in probability to θ̂ ∗n as

R→ ∞ .
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Proof of Corollary 1: In Theorem 2 we established uniform convergence of s∗n,R(θ)

to s∗n(θ) as R→ ∞. Then for every ε > 0, there exists M > 0 such that for R > M,

ε > supθ∈Θ ‖s∗n,R(θ)− s∗n(θ)‖ ≥ ‖s∗n,R(θ̂ ∗n,R)− s∗n(θ̂
∗
n,R)‖= ‖s∗n(θ̂ ∗n,R)‖. So the sequence

{θ̂ ∗n,R} will converge to the unique θ̂ ∗n .

Having established the consistency of θ̂ ∗n,R as an estimator of θ̂ ∗n as R→ ∞, we

can proceed, under some additional conditions, to prove asymptotic normality for

n1/2(θ̂ ∗n,R−θ0).

Theorem 3. If conditions 1-7 are satisfied, the observations are independent and iden-

tically distributed, and the number of Monte Carlo samples R is fixed with n→∞ , then

n1/2(θ̂ ∗n,R− θ0) is asymptotically normally distributed with zero mean and variance-

covariance matrix (1+R−1){E[ ji(θ0)]}−1, where ji(θ) is the observed information

matrix for the ith observation.

Proof of Theorem 3: Because θ̂ ∗n,R is a consistent estimator of the true parameter θ0

as n and R go to infinity, it makes sense to expand s∗n,R(θ) in a Taylor series around θ0.

Application of Taylor’s theorem to s∗n,R(θ) about its solution θ̂ ∗n,R gives 0 = s∗n,R(θ0)+

∇s∗n,R(θ̆)(θ̂
∗
n,R−θ0), where θ̆ = θ0 + t(θ̂ ∗n,R−θ0), with t ∈ (0,1). Thus

n1/2(θ̂ ∗n,R−θ0) =

{
−

∇s∗n,R(θ̆)

n

}−1
s∗n,R(θ0)

n1/2 .

By the central limit theorem (Van der Vaart, 2000, Proposition 2.17) n−1/2sn(θ0)
d−→

N(0p,E[ ji(θ0)]) as n→∞. Again by the central limit theorem and for all r ∈ {1, . . . ,R}

n1/2(θ̂n,r− θ0)
d−→ N(0p,{E[ ji,r(θ0)]}−1) = N(0p,{E[ ji(θ0)]}−1) as n→ ∞ and R is

fixed. Then because {n1/2(θ̂n,r−θ0)}R
r=1 are independent we have the joint limit


n1/2 (θ̂n,1−θ0

)
n1/2 (θ̂n,2−θ0

)
...

n1/2 (θ̂n,R−θ0
)


d−→ N(0pR,D)

where D is a block diagonal matrix with main diagonal blocks the matrices
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{E[ ji(θ0)]}−1. In view of the joint convergence in distribution (joint for all ele-

ments of the vector above) the continuous mapping theorem (Van der Vaart, 2000,

Theorem 2.3) gives

n1/2B̂n,R(θ0) =
1
R

R

∑
r=1

n1/2(θ̂n,r−θ0)
d−→ N

(
0p,

1
R
{E[ ji(θ0)]}−1

)
.

Further, because n−1/2
∑

n
i=1 si(θ0) and (1/R)∑

R
r=1 n1/2(θ̂n,r−θ0) are independent

we have the joint limit as n→ ∞ n−1/2sn(θ0)

n1/2B̂n,R(θ0)

 d−→ N

02p ,
E[ ji(θ0)] 0p×p

0p×p
1
R{E[ ji(θ0)]}−1

 .

In view of the above and the fact that by the weak law of large numbers (Davison,

2003, p. 28) n−1 jn(θ0)
p−→ E[ ji(θ0)] as n→ ∞ , we have that

n−1/2s∗n,R(θ0) =
sn(θ0)

n1/2 −
jn(θ0)

n
n1/2B̂n,R(θ0)

d−→ N
(
0p,
(
1+R−1)E[ ji(θ0)]

)
.

Under the assumption of independent and identically distributed observations the ma-

trix F̄(θ) in Condition 7 is E[ ji(θ)]. Using this result, the consistency of θ̆ , and

Slutsky’s Lemma (Van der Vaart, 2000, Lemma 2.8) we have n1/2(θ̂ ∗n,R − θ0)
d−→

N
(
0p,
(
1+R−1){E[ ji(θ0)]}−1) .

Lastly, Theorem 4 shows that, as long as the number of Monte Carlo samples R

is O(na) with a ≥ 1, the estimator θ̂ ∗n,R has smaller bias than the ML estimator whose

bias is of order O(n−1).

Theorem 4. Let R = O(na), a≥ 1. Then Eθ (θ̂
∗
n,R−θ0) = O(n−3/2) .

The proof of Theorem 4 is included in Appendix B.

3.4 Some examples of simulation-based bias-reduced

estimators

Before giving the algorithm that can be used for computing the simulation-based

bias reduced estimator θ̂ ∗n,R , we give two examples that illustrate how the simulation-
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based adjusted score function s∗n,R(θ) is constructed. In the first example we estimate

the exponential distribution parameter, and in the second example we estimate the

normal distribution parameters.

Example 1. (Exponential distribution parameter). Let the observations y1, . . . ,yn be

realisations of the random variables Y1, . . . ,Yn that are assumed to be independent and

exponentially distributed with mean 1/λ . The score function for the parameter λ is

sn(λ ;y) = n/λ −nȳ , where y = (y1, . . . ,yn)
T, ȳ = (1/n)∑

n
i=1 yi , and the ML estimator

of λ is λ̂n = 1/ȳ. The bias function Bn(λ ) = E(λ̂n)− λ is calculated easily if we

consider that ∑
n
i=1 yi is a Gamma random variable with shape parameter n and rate

parameter λ . Then Bn(λ ) = λ/(n− 1) and thus s∗n(λ ;y) = n(n− 2)/[(n− 1)λ ]− nȳ.

The bias reduced estimator that solves s∗n(λ ;y) = 0 is λ̂ ∗n = [(n− 2)/(n− 1)](1/ȳ).

Now consider independent random variables Ξir from the Uniform(0,1) distribution,

with i ∈ {1, . . . ,n}, r ∈ {1, . . . ,R}. The Monte Carlo estimate of the bias function is

B̂n,R(λ ) =−λ

 1
R

R

∑
r=1

{
1
n

n

∑
i=1

logΞir

}−1

+1


and the simulation-based adjusted score function is

s∗n,R(λ ) =
2n
λ
−nȳ+

n
λR

R

∑
r=1

{
1
n

n

∑
i=1

logΞir

}−1

.

The simulation-based bias reduced estimator that solves s∗n,R(λ ) = 0 is

λ̂
∗
n,R =

1
ȳ

 1
R

R

∑
r=1

{
1
n

n

∑
i=1

logΞir

}−1

+2

 .

The bias, variance, and mean squared error of the ML estimator, the bias reduced

estimator obtained by solving the adjusted score function proposed in Firth (1993),

and the simulation-based bias reduced estimator are given in Table 3.1. The two bias

reduced estimators have the same bias of order O(n−2). The variance of λ̂ ∗n,R converges

to the variance of λ̂ ∗n as the Monte Carlo size R→ ∞ . Note that in order to keep the

mean squared error of λ̂ ∗n,R smaller than the mean squared error of the ML estimator,
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Table 3.1: Bias, variance, and mean squared error (MSE) of the three estimators of λ calculated
in Example 1.

λ̂n λ̂ ∗n λ̂ ∗n,R

Estimator 1
ȳ

n−2
n−1

1
ȳ

(
1
R ∑

R
r=1
{ 1

n ∑
n
i=1 logΞir

}−1
+2
)

1
ȳ

Bias λ

n−1 − λ

(n−1)2 − λ

(n−1)2

Variance n2λ 2

(n−1)2(n−2)
n2(n−2)λ 2

(n−1)4
n2(n−2)λ 2

(n−1)4 + 1
R

n4λ 2

(n−1)3(n−2)2

MSE (n+2)λ 2

(n−1)(n−2)
(n2−n−1)λ 2

(n−1)3
(n2−n−1)λ 2

(n−1)3 + 1
R

n4λ 2

(n−1)3(n−2)2

Notes: λ̂n, maximum likelihood estimator; λ̂ ∗n , bias reduced estimator that results from solving
s∗n(λ ) = 0; λ̂ ∗n,R , bias reduced estimator that results from solving s∗n,R(λ ) = 0.

R should be greater than n3/[(3n− 4)(n− 2)] ≈ n/3. In this example, the parametric

bootstrap estimate of λ is identical to λ̂ ∗n,R .

Let Ξ∼ Uniform(0,1). Then Z =−∑
n
i=1 logΞir ∼ Gamma(n,1) and

n E(1/Z) = n
∫

∞

0

1
z

zn−1e−z

Γ(n)
dz =

n
n−1

∫
∞

0

zn−2e−z

Γ(n−1)
dz =

n
n−1

.

By the weak law of large numbers (Davison, 2003, p. 28) we have that

1
R

R

∑
r=1

{
1
n

n

∑
i=1

logΞir

}−1
p−→ E

{1
n

n

∑
i=1

logΞir

}−1
=− n

n−1

as R→ ∞ , and as a result λ̂ ∗n,R
p−→ λ̂ ∗n as R→ ∞ . If we fix R and let n→ ∞ then

λ̂ ∗n,R
p−→ λ . This can be shown using the results

1
ȳ

p−→ λ and
1
R

R

∑
r=1

{
1
n

n

∑
i=1

logΞir

}−1
p−→ 1

R

R

∑
r=1
{E logΞir}−1 =−1

as n→ ∞. Given λ̂ ∗n,R
p−→ λ as n→ ∞ and R is fixed, we can use Taylor’s theorem to

express
√

n(λ̂ ∗n,R−λ0) as

√
n(λ̂ ∗n,R−λ0) =

{
−

H∗n,R(λ̆ )

n

}−1
s∗n,R(λ0)√

n
, where λ̆ = λ̂

∗
n,R + t(λ̂ ∗n,R−λ0) , t ∈ (0,1)

=

{
−

H∗n,R(λ̆ )

n

}−1{
sn(λ0)√

n
− jn(λ0)

n
√

nB̂n,R(λ0)

}
.

By Slutsky’s Lemma (Van der Vaart, 2000, Lemma 2.8) and the following asymptotic
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results:

−
H∗n,R(λ̆ )

n
=

1
n

n

∑
i=1

 2

λ̆ 2
+

1

λ̆ 2

1
R

R

∑
r=1

{
1
n

n

∑
i=1

logΞir

}−1
 p−→ 1

λ 2
0

jn(λ0)

n
=

1
λ 2

0
→ 1

λ 2
0

sn(λ0)√
n

=
√

n

{
1
n

n

∑
i=1

[
1
λ0
− yi

]}
d−→ N

(
0,

1
λ 2

0

)
√

nB̂n,R(λ0) = −
√

nλ

 1
R

R

∑
r=1

{
1
n

n

∑
i=1

logΞir

}−1

+1

 d−→ N
(

0,
λ 2

0
R

)

we get that
√

n(λ̂ ∗n,R−λ0)
d−→ N(0,(1+R−1)λ 2

0 ) as n→ ∞. The first result is obtained

by the law of large numbers (Davison, 2003, p. 28) and the consistency of λ̆ , and

the last two results are obtained by the central limit theorem (Van der Vaart, 2000,

Proposition 2.17). In the above calculations we used

E

{1
n

n

∑
i=1

logΞir

}−1
 = − n

n−1
;

Var

{1
n

n

∑
i=1

logΞir

}−1
 =

n2

(n−1)2(n−2)
.

Example 2. (Normal distribution parameters). Let the observations y1, . . . ,yn be re-

alisations of the random variables Y1, . . . ,Yn that are assumed to be independent and

normally distributed with unknown mean µ and unknown variance σ2. The score

function for the parameter θ = (µ,σ2)T is

sn(θ ;y) =

 1
σ2

n
∑

i=1
(yi−µ)

1
2σ4

n
∑

i=1
(yi−µ)2− n

2σ2

 .

and the ML estimator of θ is θ̂n =
(
ȳ, (1/n)∑

n
i=1(yi− ȳ)2)T, where ȳ = (1/n)∑

n
i=1 yi .

The ML estimator µ̂n = ȳ is an unbiased estimator of µ because E(ȳ) = E(yi) = µ .

On the other hand, the ML estimator σ̂2
n = 1

n ∑
n
i=1(yi− ȳ)2 of σ2 is biased because

E(σ̂2
n ) = E(y2

i )−E(ȳ2) = (σ2 + µ2)− (σ2/n+ µ2) = σ2(1− 1/n). Then, the bias
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function is Bn(θ) = (0,−σ2/n)T , and thus

s∗n(θ ,y) = sn(θ ,y)− in(θ ,y)Bn(θ) =

 1
σ2

n
∑

i=1
(yi−µ)

1
2σ4

n
∑

i=1
(yi−µ)2− n

2σ2 +
1

2σ2

 ,

where in(θ ;y) is the expected information matrix. The bias reduced estimator proposed

in Firth (1993) solves s∗n(θ ;y) = 0 and is equal to θ̂ ∗n =
(
ȳ, (1/(n−1))∑

n
i=1(yi− ȳ)2)T.

Now let Ξir be independent random variables from the Uniform(0,1) distribution

for i ∈ {1, . . . ,n}, r ∈ {1, . . . ,R}. Then Uir = Φ−1(Ξir) are independent random vari-

ables from the standard normal distribution, and Zir = µ + σUir are normally dis-

tributed with N(µ,σ2). The Monte Carlo estimate of the bias function is

B̂n,R(θ) =


1
R

R
∑

r=1

(
1
n

n
∑

i=1
Zir

)
−µ

1
R

R
∑

r=1

(
1
n

n
∑

i=1
(Zir− Z̄r)

2
)
−σ2


and the simulation-based adjusted score function is

s∗n,R(θ) =


1

σ2

n
∑

i=1
yi− nµ

σ2 − 1
σR

R
∑

r=1

n
∑

i=1
Uir

1
2σ4

n
∑

i=1
(yi−µ)2− 1

2σ2R

R
∑

r=1

n
∑

i=1
(Uir−Ūr)

2

 .

Solving s∗n,R(θ) = 0 gives

θ̂
∗
n,R =

µ̂∗n,R

σ̂2∗
n,R

=


ȳ−

√
σ̂2∗

n,R

Rn

R
∑

r=1

n
∑

i=1
Uir

1
n

n
∑

i=1
(yi− µ̂∗n,R)

2
{

1
Rn

R
∑

r=1

n
∑

i=1
(Uir−Ūr)

2
}−1

 .

A simpler form of the estimator σ̂2∗
n,R is obtained if we replace µ̂∗n,R by the unbiased

estimator ȳ.

The bias, variance, and mean squared error of the ML estimator, the paramet-

ric bootstrap estimator, the bias reduced estimator proposed in Firth (1993), and the

simulation-based bias reduced estimator are given in Table 3.2. The bias of σ̂2∗
n,R is

smaller than the bias of the bootstrap estimator for all R> 2(n2+1)/(n−1)≈ 2(n+1) .
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Table 3.2: Bias, variance, and mean squared error (MSE) of the four estimators of σ2 calcu-
lated in Example 2.

σ̂2
n σ̂2

boot

Estimator 1
n

n
∑

i=1
(yi− ȳ)2 1

n

n
∑

i=1
(yi− ȳ)2

{
2− 1

Rn

R
∑

r=1

n
∑

i=1
(Uir−Ūr)

2
}

Bias −σ2

n −σ2

n2

Variance 2σ4
(

n−1
n2

)
2(n−1)(n+1)σ4

n4

{
n+1+ (2n−1)(n−1)

Rn2

}
MSE σ4

(
2n−1

n2

)
2(n−1)(n+1)σ4

n4

{
n+1+ (2n−1)(n−1)

Rn2

}
+ σ4

n4

σ̂2∗
n σ̂2∗

n,R

Estimator 1
n−1

n
∑

i=1
(yi− ȳ)2 1

n

n
∑

i=1
(yi− ȳ)2

{
1

Rn

R
∑

r=1

n
∑

i=1
(Uir−Ūr)

2
}−1

Bias 0 2σ2

R(n−1)−2

Variance 2σ4
( 1

n−1

)
2σ4

(
R2(n−1)[R(n−1)+n−3]
[R(n−1)−2]2[R(n−1)−4]

)
MSE σ4

( 2
n−1

)
σ4
{

2
[R(n−1)−2]2

[
2+ R2(n−1)[R(n−1)+n−3]

R(n−1)−4

]}
Notes: σ̂2

n , maximum likelihood estimator; σ̂2
boot, parametric bootstrap estimator; σ̂2∗

n , bias re-
duced estimator that results from solving s∗n(θ) = 0; σ̂2∗

n,R , bias reduced estimator that results from
solving s∗n,R(θ) = 0.

From the results in Table 3.2 we also notice that in order for σ̂2∗
n,R to be o(n−1), R must

be O(n). The σ̂2∗
n,R estimator converges to σ̂2∗

n in probability for fixed n as R→∞. This

can be shown using the weak law of large numbers (Davison, 2003, p. 28) and the fact

that E[(Uir−Ūr)
2] = 1−n−1.

If we fix R and let n→∞ then we can show that σ̂2∗
n,R→ σ2 by using the asymptotic

results n−1
∑

n
i=1(yi− ȳ)2 p−→ σ2 and n−1

∑
n
i=1
{

R−1
∑

R
r=1(Uir−Ūr)

2} p−→ 1 which are

based on E[(yi− ȳ)2] = σ2−σ2/n→ σ2 and E[(Uir− Ūr)
2] = 1− 1/n→ 1. Given

σ̂2∗
n,R→ σ2 as n→ ∞ and R is fixed, we use Taylor’s theorem to express θ̂ ∗n,R−θ0 as

√
n(θ̂ ∗n,R−θ0) =

{
−

H∗n,R(θ̆)

n

}−1
s∗n,R(θ0)√

n
,

where θ̆ = θ̂ ∗n,R + t(θ̂ ∗n,R−θ0) , t ∈ (0,1). By the weak law of large numbers (Davison,

2003, p. 28)

−
H∗n,R(θ̆)

n
=

1
n


n
∑

i=1

1
σ2

n
∑

i=1

{
yi−µ

σ4 − 1
2Rσ3/2

R
∑

r=1
Uir

}
n
∑

i=1

yi−µ

σ4

n
∑

i=1

{
(yi−µ)2

σ6 − 1
2Rσ4

R
∑

r=1
(Uir−Ūr)

2
}
 p−→

σ2 0

0 2σ4

−1

(3.3)
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and by the central limit theorem (Van der Vaart, 2000, Proposition 2.17)

s∗n,R(θ)√
n

=
√

n


1
n


n
∑

i=1

{
yi−µ

σ2 − 1
σR

R
∑

r=1
Uir

}
n
∑

i=1

{
(yi−µ)2

2σ4 − 1
2σ2R

R
∑

r=1
(Uir−Ūr)

2
}



d−→ N

0

0

 ,
 1

σ2

(
1+ 1

R

)
0

0 1
2σ4

(
1+ 1

R

)
 (3.4)

as n→ ∞. Then by Slutsky’s Lemma (Van der Vaart, 2000, Lemma 2.8)

√
n(θ̂ ∗n,R−θ0)

d−→ N

0

0

 ,(1+
1
R

)σ2 0

0 2σ4

 .

In order to get (3.3) and (3.4) we used the following results

E

[
yi−µ

σ2 − 1
σR

R

∑
r=1

Uir

]
= 0 ,

E

[
(yi−µ)2

2σ4 − 1
2σ2R

R

∑
r=1

(Uir−Ūr)
2

]
=

1
2σ2 −

1
2σ2

(
1− 1

n

)
=

1
2σ2n

→ 0 ,

Var

[
yi−µ

σ2 − 1
σR

R

∑
r=1

Uir

]
=

1
σ4 Var(yi)+

1
σ2R

Var(Uir) =
1

σ2

(
1+

1
R

)
,

Var

[
(yi−µ)2

2σ4 − 1
2σ2R

R

∑
r=1

(Uir−Ūr)
2

]
=

1
2σ4

(
1+

1
R

)
,

and

Cov

(
yi−µ

σ2 − 1
σR

R

∑
r=1

Uir ,
(yi−µ)2

2σ4 − 1
2σ2R

R

∑
r=1

(Uir−Ūr)
2

)
=

=
1

2σ6 Cov
(
yi,(yi−µ)2)+ 1

2σ3R2 Cov

(
R

∑
r=1

Uir ,
R

∑
r=1

(Uir−Ūr)
2

)
=

1
2σ6 Cov

(
yi,y2

i
)
− µ

σ6 Var(yi)+
1

2σ3R
Cov

(
Uir,(Uir−Ūr)

2)
=

1
2σ6 2µσ

2− µ

σ6 σ
2 +

1
2σ3R

Cov
(
Uir,(Uir−Ūr)

2)
=

1
2σ3R

Cov
(
Uir,(Uir−Ūr)

2)
→ 1

2σ3R
Cov

(
Uir,U2

ir
)
= 0 as n→ ∞ .
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As a general observation from Examples 1 and 2 we notice that both examples

suggest R should be O(n) in order to achieve bias reduction when solving the equation

s∗n,R(θ) = 0p .

3.5 Iterated bootstrap with likelihood adjustment

A direct approach for computing the simulation-based bias-reduced estimator θ̂ ∗n,R ,

the solution of s∗n,R(θ) = sn(θ)− jn(θ)B̂n,R(θ) = 0, is through a quasi Newton-

Raphson iteration. Specifically, θ̂ ∗n,R is obtained through an iteration of the form

θ
( j+1)
n = (2θ

( j)
n − θ̄

( j)
n,R)+{ jn(θ

( j)
n )}−1sn(θ

( j)
n ) , (3.5)

where θ
( j)
n is the candidate value for θ̂ ∗n,R at the jth iteration, and θ̄

( j)
n,R is the aver-

age of the ML estimates calculated for each of R simulated samples from the model

at θ
( j)
n . Starting from the ML estimate, a single iteration gives the parametric boot-

strap corrected estimate, so iteration (3.5) can be seen as a generalisation of the boot-

strap for bias correction (Efron & Tibshirani, 1993, Chapter 10). The extra term

{ jn(θ
( j)
n )}−1sn(θ

( j)
n ) is the reason we refer to the proposed bias reduction method as

iterated bootstrap with likelihood adjustment (IBLA).

A stopping criterion for the iterations is the absolute difference of two consecutive

candidate values for θ̂ ∗n,R evaluated at each of the parameters is less than some prespec-

ified ε > 0. Based on practical experimentation, IBLA reaches the neighbourhood of

the solution of the simulation-based adjusted score equation quickly, and then varies in

that neighbourhood. In all our simulations we assume the algorithm converges when

|θ ( j+1)
n − θ

( j)
n | < 10−6. We recommend using the same initial state for the random

number generator in each iteration in order to achieve a smooth estimator of the bias

function.

3.6 Bias reduction in generalised linear models

3.6.1 Generalised linear model

In a generalised linear model the observations y1, . . . ,yn are assumed to be realisations

of the independent random variables Y1, . . . ,Yn , respectively, with Yi having a distribu-
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tion in the exponential family (McCullagh & Nelder, 1989). The exponential family

has probability density function or mass function of the form

fYi(yi;γi,φ) = exp[φ−1{yiγi−b(γi)}+ c(yi,φ)] , (3.6)

where b(·) and c(·, ·) are known functions, and γi and φ > 0 are possibly unknown pa-

rameters. In this setting, we have E(Yi) = µi = ∂b(γi)/∂γi and Var(Yi) = φvi , where φ

is the dispersion parameter and vi = v(µi) = ∂ µi/∂γi is the variance function. The nat-

ural parameter γ = (γ1, . . . ,γn)
T is a strictly monotonic function of µ = (µ1, . . . ,µn)

T.

A generalised linear model is defined by (3.6) and by a one-to-one twice differen-

tiable link function g(µ) = η , relating the mean µ of the probability distribution of

Y = (Y1, . . . ,Yn)
T to the linear predictor of the model η = (η1, . . . ,ηn)

T. The linear

predictor is expressed as η = Xβ , where X is the n× p known design matrix of rank

p, and β = (β1, . . . ,βp)
T is the vector of unknown parameters to be estimated.

In general, the link function allows µ to be non-linearly related to the predictors,

and is used to map µ onto the real line allowing the parameters to take any value on

the Euclidean space without violating the possibly bounded range of µ implied by

the model. This enables the modelling of non-normally distributed responses, such as

categorical data and count data, without having to transform the data. For example,

log-linear models use the log link function g(µ) = log µ which is appropriate when

µ cannot be negative, such as with count data. Another important generalised linear

model is the logistic regression model, which models the log of an odds via the logit

link function g(µ) = log[µ/(1−µ)]. The logit link function is appropriate when µ is

between 0 and 1, such as a probability.

3.6.2 Gamma-response log-linear model

In this simulation study we evaluate the ML, adjusted score equations (Firth, 1993),

parametric bootstrap, and IBLA methods using data from the Gamma distribution, a

probability distribution which satisfies the continuity condition assumed in Section 3.3.

Specifically, we simulated 10000 samples from a log-linear model with linear pre-

dictor ηi = β0 +β1xi , i ∈ {1, . . . ,n}, and the observations are assumed to be realisa-

tions of independent Gamma distributed random variables with shape parameter 1/φ
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Table 3.3: Bias, mean squared error (MSE), and empirical coverage probability of Wald-type
confidence intervals for the parameters of the gamma-response log-linear model with n = 10
and true parameter values β0 = 0.5, β1 = 1.2, φ = 0.25.

β0 β1 φ

Method R Bias MSE Coverage Bias MSE Coverage Bias MSE Coverage
ML - -0.025 0.028 0.880 0.008 0.086 0.864 -0.051 0.012 0.721

mean BR - -0.001 0.027 0.912 -0.008 0.086 0.903 -0.003 0.014 0.826
BOOT 50 0.024 0.028 0.897 -0.002 0.086 0.890 -0.031 0.012 0.808

100 0.018 0.028 0.896 0.012 0.086 0.886 -0.033 0.012 0.786
500 0.002 0.028 0.908 -0.007 0.086 0.897 -0.010 0.013 0.817

IBLA 50 0.039 0.029 0.907 -0.009 0.086 0.900 -0.013 0.013 0.822
100 0.030 0.029 0.905 0.005 0.086 0.896 -0.017 0.013 0.829
500 0.009 0.028 0.912 -0.009 0.086 0.905 0.001 0.015 0.837

Notes: The coverage probabilities correspond to nominally 95% confidence intervals.

and scale parameter φ µ . The true parameter values were set to β0 = 0.5, β1 = 1.2,

φ = 0.25, and the covariate was simulated from a uniform distribution U [−1,1]. The

sample size was set to n = 10. For each simulated sample we estimated the parameter

θ = (β0,β1,φ)
T.

A summary of the simulations is given in Table 3.3. The results indicate that in

order for the parametric bootstrap and IBLA methods to reduce the bias of the ML

estimators, R must be large compared to the sample size. The empirical coverage of

the confidence intervals is smaller than the nominal 95% level for all statistics, but

the confidence intervals obtained using the mean BR estimates obtained from solving

the traditional adjusted score equations, the parametric bootstrap, and IBLA estimates

have empirical coverage that is relatively closer to the nominal level.

Figure 3.1 shows how the Monte Carlo estimate of the bias function of the dis-

persion parameter behaves for each value of R used in the simulation setting. As R

gets larger, the Monte Carlo estimate of the bias function becomes smoother and ap-

proaches the first-order term of the bias of the ML estimator used in the adjusted score

equation proposed in Firth (1993).

3.6.3 Logistic regression

The generalised linear model that uses the logit link function, i.e.

log
(

µi

1−µi

)
=

p

∑
j=1

β jxi j , i = 1, . . . ,n
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Figure 3.1: Monte Carlo estimate of bias of the ML estimator of φ in a gamma-response log-
linear model with n = 10 and β0 = 0.5, β1 = 1.2. The curves correspond to Monte Carlo size R
equal to 50 (dotted), 100 (dashed), and 500 (solid). The grey line is the first-order term of the
bias of the ML estimator of φ .

is referred to as logistic regression. This is the most important model for binary-

response data, where the observations y1, . . . ,yn are assumed to be realisations of inde-

pendent Bernoulli distributed random variables Y1, . . . ,Yn with probability π1, . . . ,πn .

In binary-response logistic regression models the ML estimates of the parameters

can be infinite, which happens when a hyperplane separates the set of explanatory

variable values having y = 0 from the set having y = 1 (Albert & Anderson, 1984). In

this case the space of explanatory variable values is said to have complete separation

(Agresti, 2015, Chapter 5.4.2). The bias-reduced estimates obtained from the adjusted

score function approach do not depend upon the finiteness of the ML estimates (Firth,

1993). Other bias reduced estimates, such as the parametric bootstrap estimates, are

undefined when the ML estimates are infinite.

By definition, the IBLA estimates also depend on the finiteness of the ML estimates

through the simulation-based estimator of the bias function. The use of the trimmed

mean or the median instead of the mean of the R parameter estimates when estimating

the bias of θ̂n can reduce, but not eliminate, the possibility of infinite IBLA estimates.

This is because there are cases in which more than half bootstrap samples give infinite

ML estimates. For this reason, we propose modifying at each iteration the simulated

binary responses y to yc = c+ y(1− 2c), where c is a small positive constant. By

this simple modification of the algorithm we eliminate the possibility of infinite IBLA

estimates. In our simulations we set c = 10−8.
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3.6.3.1 Simulation study

In this simulation study we simulated 10000 samples from a logistic regression model

with linear predictor ηi = β0+β1xi , i∈ {1, . . . ,n}, in order to evaluate the performance

of ML, adjusted score equations (Firth, 1993), parametric bootstrap, and IBLA meth-

ods using data that do not satisfy the continuity condition assumed in Section 3.3. The

parameters of interest θ = (β0,β1) were set to β0 = 1, β1 = 1.5, and the covariate was

simulated from a standard normal distribution. The parameter values and the model

matrix were obtained from Siino et al. (2016). The sample size was set to n = 60,120

and 240.

The ML estimator θ̂n of the binary logistic model solves sn(θ)=∑
n
i=1 (yi−πi)xi j =

0 and the mean bias-reducing estimator θ̂ ∗n proposed in Firth (1993) solves s∗n(θ) =

∑
n
i=1 (yi +hi/2−hiπi−πi)xi j = 0, where j ∈ {1, . . . , p}, and hi is the leverage for the

ith observation (Firth, 1992). The leverage is defined as the ith diagonal element of the

“hat” matrix WX(XTWX)−1XT, with W = φ−1diag{κ2i} and κ2i being the variance of

the ith observation. The Bernoulli distribution has φ = 1 and κ2i = πi(1−πi) .

The number of Monte Carlo samples R used to calculate the simulation-based esti-

mate of the bias function in s∗n,R(θ) was set to be proportional to n. We denote by θ̂ ∗n,R1

the IBLA estimates obtained when the Monte Carlo size is R1 = n. Similarly, θ̂ ∗n,R2
,

θ̂ ∗n,R3
, and θ̂ ∗n,R4

correspond to the IBLA estimates obtained when the Monte Carlo size

is R2 = 2n , R3 = 3n , and R4 = 4n , respectively. The IBLA estimates were calculated

by using the adjusted simulated samples yc in each iteration of the algorithm.

The results of the simulation study are summarised in Table 3.4. We observe that

for all n ML yields the largest bias and mean squared error. The IBLA approach is in all

cases among the best two methods in terms of bias and mean squared error. Regarding

coverage properties, all fitting methods perform equally well for moderate and large

sample sizes, giving coverage probabilities close to the nominal 95% level. When

n = 60 the estimated coverage probabilities are slightly larger than the nominal level.

In general, from this simulation study, it seems evident that IBLA is a good alternative

for improving the estimation of regular statistical models, especially in terms of mean

squared error.

Figure 3.2 shows how the simulation-based estimate of the bias function behaves
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Table 3.4: Bias, mean squared error (MSE), and empirical coverage probability of Wald-type
confidence intervals for the parameters of the binary logistic model with true values β0 = 1,
β1 = 1.5.

n = 60 n = 120 n = 240

Method R Bias MSE Coverage Bias MSE Coverage Bias MSE Coverage
β0 ML - 0.064 0.152 0.962 0.035 0.067 0.958 0.019 0.032 0.958

mean BR - 0.002 0.124 0.963 0.006 0.061 0.957 0.004 0.030 0.958
BOOT n -0.028 0.113 0.962 -0.034 0.056 0.953 -0.017 0.029 0.956

2n -0.060 0.088 0.971 -0.032 0.056 0.955 -0.003 0.029 0.959
3n -0.055 0.090 0.970 -0.022 0.056 0.958 0.001 0.030 0.959
4n -0.054 0.094 0.967 -0.021 0.057 0.957 0.001 0.030 0.958

IBLA n -0.017 0.118 0.964 -0.030 0.056 0.954 -0.014 0.029 0.958
2n -0.050 0.095 0.971 -0.026 0.056 0.958 -0.001 0.030 0.960
3n -0.051 0.093 0.969 -0.017 0.056 0.959 0.003 0.030 0.959
4n -0.051 0.095 0.969 -0.017 0.057 0.958 0.002 0.030 0.959

β1 ML - 0.144 0.336 0.960 0.064 0.134 0.955 0.027 0.058 0.954
mean BR - 0.011 0.245 0.954 0.002 0.117 0.952 -0.003 0.055 0.951

BOOT n 0.025 0.224 0.960 -0.060 0.109 0.943 -0.030 0.054 0.945
2n -0.083 0.185 0.953 -0.048 0.110 0.947 -0.017 0.053 0.948
3n -0.116 0.189 0.944 -0.038 0.107 0.950 -0.014 0.054 0.949
4n -0.093 0.192 0.948 -0.036 0.110 0.949 -0.011 0.054 0.949

IBLA n 0.040 0.241 0.961 -0.050 0.109 0.947 -0.025 0.053 0.946
2n -0.057 0.197 0.956 -0.039 0.109 0.949 -0.012 0.053 0.950
3n -0.092 0.197 0.948 -0.029 0.107 0.953 -0.009 0.054 0.951
4n -0.072 0.198 0.953 -0.028 0.109 0.951 -0.007 0.054 0.951

Notes: The coverage probabilities correspond to nominally 95% confidence intervals.

n=60 n=120 n=240
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Figure 3.2: Monte Carlo estimate of bias of the ML estimator of β1 in a binary logistic model
with β0 = 0.5. The curves correspond to Monte Carlo size R equal to n (dotdashed), 2n (dotted),
3n (dashed), and 4n (solid). The grey line is the first-order term of the bias of β̂1 .

for values of R = {n,2n,3n,4n} for each of the three values of sample size n con-

sidered. As R gets larger, the Monte Carlo estimate of the bias function becomes a

smoother and better approximation of the first-order term in the bias expansion.
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3.6.3.2 Endometrial cancer grade study

As a real-data example we consider the endometrial cancer grade dataset analysed in

Heinze & Schemper (2002) and in Agresti (2015, Chapter 5.7.1). The goal of the

study was to evaluate the relationship between the histology of the endometrium of 79

patients (0 = low grade for 30 patients, 1 = high grade for 49 patients) and three risk

factors: neovasculation, pulsatility index of arteria uterina, and endometrium height. A

logistic regression model has been fitted with parameter θ = (β0,β1,β2,β3)
T, where β0

is an intercept and the remaining parameters correspond to neovasculation, pulsatility

index of arteria uterina, and endometrium height, respectively.

Table 3.5 shows the ML, the mean BR estimates, the parametric bootstrap es-

timates, and the IBLA estimates of the binary-response logistic model parameters.

For the parametric bootstrap and IBLA, the estimates were calculated by sampling

R = {n,2n,3n,4n} bootstrap samples from the fitted model at the candidate value. In

this dataset 13 patients have neovasculation and they all are with high grade histologic

type of the endometrium. This leads to infinite ML estimate of β1 due to the quasi-

complete separation problem (Heinze & Schemper, 2002). The other ML estimates are

not affected by the quasi-complete separation. The parametric bootstrap estimate of β1

is also infinite, because by definition it depends on the ML estimate. On the contrary,

the mean BR method does not depend on the finiteness of the ML estimate and yields a

finite estimate of β1. In order for IBLA to yield a finite estimate of β1 we set the quasi

Newton-Raphson algorithm start from the mean BR instead of the ML estimates, and

we also used the adjusted simulated responses yc in each iteration.

Figure 3.3 shows the iterations for IBLA for the endometrial cancer grade data for

the four values of R considered. Comparing the mean BR to the IBLA estimates of

β1 reported in Table 3.5 we notice that the mean BR estimate is more than twice the

relative IBLA estimate.

In order to further investigate the performance of IBLA, we performed a simulation

study where we considered a binary-response logistic model with true parameter values

equal to θ = (1.5,2,0,−2)T, and used the neovasculation, pulsatility index of arteria

uterina, and endometrium height risk factors from the endometrial cancer grade data

as the covariates. Based upon 10000 replications of simulated data we present in
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Table 3.5: ML, mean BR, parametric bootstrap (BOOT), and IBLA estimates of
the model parameters for the endometrial cancer study. The estimated standard
errors are reported in parentheses.

Method R β0 β1 β2 β3

ML - 4.305 (1.637) +∞ (+∞) -0.042 (0.044) -2.903 (0.846)
mean BR - 3.775 (1.489) 2.929 (1.551) -0.035 (0.040) -2.604 (0.776)

BOOT n 3.839 (1.534) +∞ (+∞) -0.035 (0.042) -2.632 (0.787)
2n 3.687 (1.503) +∞ (+∞) -0.032 (0.041) -2.561 (0.772)
3n 3.604 (1.491) +∞ (+∞) -0.033 (0.041) -2.493 (0.961)
4n 3.704 (1.508) +∞ (+∞) -0.035 (0.042) -2.532 (0.767)

IBLA n 3.489 (1.372) 1.220 (0.914) -0.028 (0.034) -2.465 (0.736)
2n 3.402 (1.349) 1.072 (0.882) -0.025 (0.033) -2.442 (0.729)
3n 3.366 (1.343) 1.112 (0.883) -0.027 (0.033) -2.400 (0.721)
4n 3.472 (1.357) 1.093 (0.883) -0.030 (0.033) -2.445 (0.729)

R=n R=2n R=3n R=4n
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Figure 3.3: Plot of the candidate values for the IBLA estimates of the binary logistic model
parameters β0 (square), β1 (cross), β2 (triangle), and β3 (circle). The starting values of the
algorithm are set to the mean BR estimates shown in Table 3.5.

Table 3.6 the bias and mean squared error of the estimates from the four fitting methods

(ML, mean BR, BOOT, IBLA). We also give the estimated coverage probability of the

individual Wald-type confidence intervals at levels 90, 95, and 99%. The mean BR and

IBLA methods reduce the bias and mean squared error of the ML estimates, with the

former being best in terms of bias and the latter being best in terms of mean squared

error. Parametric bootstrap does not always achieve an improvement in the estimation.

Finally, comparing the coverage probabilities obtained at the three nominal levels, it is

evident that the Wald-type confidence intervals calculated based on any of the methods

are close to the nominal level, except for the confidence intervals calculated based on

the parametric bootstrap estimates, which significantly undercover the true parameter

value across parameter β1.
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Table 3.6: Bias, mean squared error (MSE), and empirical coverage probability of Wald-type
confidence intervals for βi (i ∈ {0,1,2,3}) in the endometrial cancer grade setting.

Nominal
level (%) ML mean BR BOOT IBLA

R - - n 2n 3n n 2n 3n

β0 Bias - 0.287 -0.010 -0.381 -0.496 -0.522 -0.229 -0.213 -0.127
MSE - 2.595 1.900 2.945 3.955 5.125 1.710 1.567 1.454

Coverage 90 0.903 0.916 0.895 0.872 0.882 0.913 0.922 0.928
95 0.956 0.961 0.952 0.927 0.930 0.961 0.963 0.969
99 0.996 0.995 0.991 0.970 0. 971 0.995 0.996 0.997

β1 Bias - 1.007 -0.013 -1.595 -2.188 -2.342 -0.359 -0.499 -0.536
MSE - 1.425 0.754 2.555 2.852 2.907 0.548 0.591 0.536

Coverage 90 0.938 0.937 0.536 0.368 0.331 0.910 0.912 0.910
95 0.972 0.971 0.626 0.487 0.440 0.954 0.958 0.957
99 0.995 0.995 0.753 0.690 0.657 0.994 0.995 0.994

β2 Bias - -0.002 -0.001 0.001 0.001 0.002 0.001 0.001 -0.001
MSE - 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Coverage 90 0.888 0.910 0.897 0.917 0.923 0.928 0.929 0.934
95 0.948 0.960 0.954 0.963 0.966 0.966 0.971 0.973
99 0.993 0.996 0.993 0.994 0.996 0.998 0.997 0.998

β3 Bias - -0.251 0.011 0.329 0.474 0.520 0.172 0.183 0.161
MSE - 1.018 0.659 2.076 2.522 3.593 0.566 0.513 0.460

Coverage 90 0.906 0.902 0.869 0.816 0.839 0.893 0.894 0.911
95 0.961 0.950 0.923 0.876 0.884 0.945 0.943 0.952
99 0.993 0.989 0.974 0.926 0.926 0.988 0.986 0.988

3.7 Concluding remarks

In this chapter we propose IBLA, a computational method for the reduction of bias

of the ML estimator that is applicable regardless of the infeasibility of the bias function.

Our method extends the framework in Firth (1993) and Kosmidis & Firth (2009) and

systematically corrects the mechanism that produces the ML estimates by introducing

a small bias in the score function. This extension relies on the use of the Monte Carlo

approximation of the bias function instead of the first-order bias term. Under suitable

conditions we show the consistency and asymptotic normality of the IBLA estimator as

the Monte Carlo size R goes to infinity. We also show that bias reduction is achieved for

R = O(nα) , α ≥ 1. A formal proof for the asymptotic normality of the IBLA estimator

when the observations are independent but non identically distributed remains to be

formulated, and further work is required in this direction.

The Monte Carlo approximation of the bias function depends upon the existence

of the ML estimates and so IBLA may fail, for example, in situations like logistic re-
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gression where the ML estimates are infinite with positive probability. We propose

adjusting suitably the bootstrap samples generated during the computation of the ap-

proximated bias function so that all ML estimates obtained are finite, thus producing

finite IBLA estimates.

Finally, we evaluate the performance of IBLA in terms of bias, mean squared er-

ror, and coverage probability in the framework of generalised linear models, includ-

ing models for which the simulation-based adjusted score function is discontinuous in

terms of θ . The simulation results suggest that IBLA does not outperform the tradi-

tional adjusted score function approach (Firth, 1993) in terms of bias, but it yields the

smallest mean squared error. Also, IBLA is better than ML and parametric bootstrap

in terms of bias, mean squared error, and coverage probabilities.

Summing up, we conclude that IBLA can be regarded as an overall improvement

over ML and parametric bootstrap, even for discrete-response models. Another ad-

vantage of IBLA estimates is that they do not depend upon the finiteness of the ML

estimates, whereas by definition, the parametric bootstrap estimates are infinite when

the ML estimates are infinite. Lastly, the implementation of IBLA is rather attractive

because it does not require an analytic expression for the first-order term of the bias,

like the traditional adjusted score equation (Firth, 1993) does. IBLA allows practition-

ers to obtain bias reduced estimates through the solution of a feasible equation, just by

having the score function, the observed information matrix, and the ability to simulate

samples from the model.



Chapter 4

Mean bias reduction for models with

intractable likelihood

4.1 Introduction

In this chapter we consider variations of the adjusted score functions proposed in

Firth (1993) to reduce mean bias of the ML estimator, that apply regardless of the fea-

sibility of the bias function and the tractability of the likelihood function. A likelihood

is defined as intractable when it cannot be evaluated analytically, and the integrals

involved in it require approximations, or its evaluation is prohibitively expensive for

practical purposes.

In Chapter 3 we show that solving an adjusted score equation where the bias func-

tion is replaced by its simulation-based estimate, also leads to estimators with o(n−1)

bias. In this chapter we further extend the typical framework of adjusting the score

function and show that a suitable approximation of the likelihood can be used in order

to obtain an approximate adjusted score equation. The solution to this equation yields

estimators with smaller bias than the maximum approximate likelihood estimator that

maximises the approximate log-likelihood. We give the conditions under which an ap-

proximation of the likelihood may be used in order to derive bias-reduced estimates,

and we show that the Laplace approximation (Tierney & Kadane, 1986) satisfies them.

However, the tractable approximate adjusted score equation is infeasible due to the

infeasibility of the approximate bias function. For this reason, we replace the approx-

imate bias function by its simulation-based estimate, which leads to the development
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of a feasible and tractable adjusted score equation method for removing the first-order

term in the asymptotic expansion of the bias of the maximum approximate likelihood

estimator.

4.2 Tractable simulation-based adjusted score function

Definition 2. Let s̃n(θ) and j̃n(θ) be the gradient and negative Hessian matrix of an ap-

proximation of the log-likelihood, and B̃n(θ) = Eθ (θ̃n−θ), with θ̃n being a maximum

approximate likelihood estimator such that s̃n(θ̃n) = 0. Also consider the tractable but

infeasible approximate adjusted score function

s̃∗n(θ) = s̃n(θ)− j̃n(θ)B̃n(θ) . (4.1)

Let θ̃ ∗n be the solution of s̃∗n(θ) = 0. Theorem 5 gives the conditions that an ap-

proximation method needs to satisfy in terms of n, in order for the estimator θ̃ ∗n to have

smaller bias than θ̃n .

Theorem 5. If s̃n(θ)− sn(θ) = O(na) , j̃n(θ)− jn(θ) = O(nb) , and B̃n(θ)−Bn(θ) =

O(nc) with max{a,b−1,c+1} ≤ −1/2 then θ̃ ∗n has o(n−1) bias.

Proof of Theorem 5: Using the expressions s̃n(θ)− sn(θ) = O(na) , j̃n(θ)− jn(θ) =

O(nb) , B̃n(θ)−Bn(θ) = O(nc) and given also that Bn(θ) = O(n−1) , we can write the

mean bias reducing adjusted score function based on the observed information matrix

(Firth, 1993) in the form

s∗n(θ) = sn(θ)− jn(θ)Bn(θ)+ v(θ)

= [s̃n(θ)−O(na)]− [ j̃n(θ)−O(nb)]Bn(θ)+ v(θ)

= s̃n(θ)−O(na)− j̃n(θ)Bn(θ)+O(nb−1)+ v(θ)

= s̃n(θ)−O(na)− j̃n(θ)[B̃n(θ)−O(nc)]+O(nb−1)+ v(θ)

= s̃n(θ)− j̃n(θ)B̃n(θ)−O(na)+ [ jn(θ)+O(nb)]O(nc)+O(nb−1)+ v(θ)

= s̃∗n(θ)+O(nmax{a,b−1,c+1})+ v(θ) .

Hence, from (3.1), the solution of (4.1) has o(n−1) bias if max{a,b−1,c+1}≤−1/2.



4.3. Asymptotic properties 81

The adjusted score function in (4.1) is generally infeasible because the bias function

B̃n(θ) = Eθ (θ̃n−θ) cannot be computed. A natural way to tackle the infeasibility of

(4.1) is to replace the bias function B̃n(θ) by its simulation-based estimate.

Definition 3. The tractable and feasible estimating equation is

s̃∗n,R(θ) =
1
R

R

∑
r=1

s̃∗n(θ ;Zr) = 0 , (4.2)

where s̃∗n(θ ;Zr) = s̃n(θ)− j̃n(θ)(θ̃n(Zr)−θ). In the above expressions, θ̃n(Zr) is the

solution of s̃n(θ ;Zr) = 0, and Zr = z(θ ;Ξr) is a sample of responses simulated from

the model at θ , based on Ξ1, . . . ,ΞR independent copies of a random variable Ξ that

does not depend on θ . In this way, E[s̃∗n(θ ;Z)] = s̃∗n(θ) for Z = z(θ ,Ξ) and any θ ∈Θ.

Definition 4. Let the Monte Carlo estimate of the bias function B̃n(θ) be B̃n,R(θ) =

θ̄n,R−θ with θ̄n,R = (1/R)∑
R
r=1 θ̃n(Zr). The tractable simulation-based adjusted score

function in (4.2) can be expressed as s̃∗n,R(θ) = s̃n(θ)− j̃n(θ)B̃n,R(θ) .

4.3 Asymptotic properties

The following conditions result in the consistency and asymptotic normality of the

root θ̃ ∗n,R of the tractable simulation-based adjusted score function s̃∗n,R(θ). Note that

we still assume compactness of the parameter space as stated in condition 1.

Condition 8. s̃n(θ) and j̃n(θ) are continuous for all θ ∈Θ.

Condition 9. s̃∗n(θ) has a unique zero at θ̃ ∗n ∈Θ.

Condition 10. s̃∗n,R(θ) is continuously differentiable for all θ in a neighbourhood of the

true unknown θ0, and the matrix H̃∗n,R(θ) with elements ∂ s̃∗n,R(θ)/∂θ j , j ∈ {1, . . . , p}

is nonsingular.

Condition 11. For all θ ∈Θ, i ∈ {1, . . . ,n} and { j,k} ∈ {1, . . . , p},

E
(

∂ 2 log f̃i(yi;θ)

∂θ j∂θk

)
and lim

n→∞

1
n

n

∑
i=1

E
(

∂ 2 log f̃i(yi;θ)

∂θ j∂θk

)

exist and
1
n

n

∑
i=1

∂ 2 log f̃i(yi;θ)

∂θ j∂θk

p−→ lim
n→∞

1
n

n

∑
i=1

E
(

∂ 2 log f̃i(yi;θ)

∂θ j∂θk

)
.
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Condition 12. The matrix ¯̃F(θ0) =
(

¯̃Fjk(θ0)
)

1≤ j,k≤p
, where

¯̃Fjk(θ0) = lim
n→∞

1
n

n

∑
i=1

E

(
−∂ 2 log f̃i(yi;θ)

∂θ j∂θk

∣∣∣∣
θ0

)
,

is positive definite.

Condition 13. As n and R go to infinity, n−1[−H̃∗n,R(θ)]
p−→ ¯̃F(θ) for θ in a neighbour-

hood of θ0 .

Conditions 8-9 are for the consistency of θ̃ ∗n,R and conditions 10-13 are additionally

necessary for the asymptotic normality of θ̃ ∗n,R . Using Lemma 1, where we prove the

continuity of s̃∗n,R(θ) and s̃∗n(θ), we show in Theorem 6 that with probability one the

tractable simulation-based adjusted score function s̃∗n,R(θ) converges to the tractable

but infeasible adjusted score function s̃∗n(θ) in (4.1) uniformly in θ , as R→ ∞, which

in turn results to θ̃ ∗n,R being a consistent estimator of θ0.

Lemma 1. If conditions 1 and 8 are satisfied, then (i) the feasible and tractable ad-

justed score function s̃∗n,R(θ), and (ii) the infeasible but tractable adjusted score func-

tion s̃∗n(θ), are continuous.

Proof of Lemma 1: Condition 8 implies result (i) because s̃∗n,R(θ) is the sum

of continuous functions (Rudin, 1976, Theorem 4.9). In order to prove continu-

ity of s̃∗n(θ), consider some θ ∈ Θ and a sequence {θ j} such that θ j → θ . Then,

lim j→∞ s̃∗n(θ j) = lim j→∞ E[s̃∗n(θ j;Z)]. The function s̃∗n(θ ;Z) is continuous and bounded

by its supremum for all θ ∈ Θ, which is finite as it is the supremum of a continuous

function over a compact set (Rudin, 1976, Theorem 4.16). Applying the bounded con-

vergence theorem (Feller, 2008, p. 111), lim j→∞ E[s̃∗n(θ j;Z)] = E[lim j→∞ s̃∗n(θ j;Z)].

Thus, lim j→∞ s̃∗n(θ j) = s̃∗n(θ) and result (ii) is obtained.

The law of large numbers (Van der Vaart, 2000, Proposition 2.16) implies that the

Monte Carlo estimate of the bias function B̃n,R(θ) converges in probability to Bn(θ) for

every θ ∈ Θ as R→ ∞, which implies that s̃∗n,R(θ) converges to s̃∗n(θ). This pointwise
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convergence is, though, not strong enough to guarantee convergence of the solutions of

equation (4.2) to the infeasible θ̃ ∗n , which according to Theorem 5 has o(n−1) bias. Ac-

cording to Van der Vaart (2000, Section 5.2), a sufficient condition for the convergence

of the solutions is the uniform convergence of s̃∗n,R(θ) to s̃∗n(θ). Similar to Theorem 2,

Theorem 6 outlines sufficient conditions for the uniform convergence and is inspired

by Van der Vaart (2000, Theorem 5.9) and the subsequent discussion therein.

Theorem 6. If conditions 1 and 8 are satisfied, then s̃∗n(θ) and s̃∗n,R(θ) are such that

supθ∈Θ ‖s̃∗n,R(θ)− s̃∗n(θ)‖
p−→ 0 as R→ ∞.

Proof of Theorem 6: A set of sufficient conditions for uniform convergence of func-

tions that can be written as an average is that Θ is compact, that the functions s̃∗n(θ ;Z)

are continuous for every θ , and that they are dominated by an integrable function

(Van der Vaart, 2000, Theorem 5.9). Condition 1 and Lemma 1 cover for compactness

and continuity. From the triangle inequality the function s̃∗n(θ ;Z) is bounded on Θ be-

cause there exists a positive number Kn(θ) = ‖s̃n(θ)‖+‖ j̃n(θ)(θ̃n(Z)−θ)‖ such that

s̃∗n(θ ;Z)≤ Kn(θ). In order to show that Kn(θ) is integrable we need to show that it is

continuous on a rectangle in ℜp (see, Trench, 2003, Theorem 7.1.13). The space Θ is

compact, which is equivalent by the Heine-Borel theorem (Rudin, 1976, pp. 39-40) to

Θ being closed and bounded. Then Θ is a closed subset of a rectangle that is product

of bounded intervals (Lavrent’ev & Savel’ev, 2006, p. 165). Also, the function K(θ)

is continuous as it is the sum of vector norms. Thus it is integrable.

The following corollary establishes that the tractable and feasible estimator θ̃ ∗n,R

converges in probability to the reduced-bias tractable but infeasible estimator θ̃ ∗n , and

thus θ̃ ∗n,R is a consistent estimator of θ̃ ∗n . Consistency of θ̃ ∗n,R requires that the number

of Monte Carlo samples R in the construction of B̃n,R(θ) goes to infinity as n→ ∞ .

Corollary 2. If conditions 1, 8, and 9 are satisfied and s̃∗n,R(θ) converges uniformly

to s̃∗n(θ), then any θ̃ ∗n,R ∈ Θ such that s̃∗n,R(θ̃
∗
n,R) = 0 converges in probability to θ̃ ∗n as

R→ ∞ . Also, θ̃ ∗n,R is a consistent estimator of θ0 .

Proof of Corollary 2: In Theorem 6 we established uniform convergence of s̃∗n,R(θ)

to s̃∗n(θ) , as R→ ∞. Then for every ε > 0, there exists M > 0 such that for R > M,
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ε > supθ∈Θ ‖s̃∗n,R(θ)− s̃∗n(θ)‖≥ ‖s̃∗n,R(θ̃ ∗n,R)− s̃∗n(θ̃
∗
n,R)‖= ‖s̃∗n(θ̃ ∗n,R)‖ . So the sequence

{θ̃ ∗n,R} will converge to the unique θ̃ ∗n . Also, from Theorem 5 we have that θ̃ ∗n
p−→ θ0 as

n→ ∞. Thus θ̃ ∗n,R
p−→ θ0 .

Having established the consistency of the tractable and feasible estimator as an es-

timator of the unknown θ0 as R and n go to infinity, we proceed under some additional

conditions to prove the asymptotic normality of n1/2(θ̃ ∗n,R−θ0).

Theorem 7. If conditions 1 and 8-13 are satisfied, the observations are independent

and identically distributed, and the number of Monte Carlo samples R is fixed with

n→∞ , then n1/2(θ̃ ∗n,R−θ0) is asymptotically normally distributed with zero mean and

covariance matrix (1+R−1){E[ j̃i(θ0)]}−1.

The proof of Theorem 7 is similar to the proof of Theorem 3, and is given below.

Proof of Theorem 7: Because θ̃ ∗n,R is a consistent estimator of the true parameter θ0

as n and R go to infinity, it makes sense to expand s̃∗n,R(θ) in a Taylor series around θ0.

Application of Taylor’s theorem to s̃∗n,R(θ) about its solution θ̃ ∗n,R gives 0 = s̃∗n,R(θ0)+

∇s̃∗n,R(θ̆)(θ̃
∗
n,R−θ0), where θ̆ = θ0 + t(θ̃ ∗n,R−θ0), with t ∈ (0,1). Thus

n1/2(θ̃ ∗n,R−θ0) =

{
−

∇s̃∗n,R(θ̆)

n

}−1
s̃∗n,R(θ0)

n1/2 .

By the central limit theorem (Van der Vaart, 2000, Proposition 2.17) n−1/2s̃n(θ0)
d−→

N(0p,E[ j̃i(θ0)]) as n→∞. Again by the central limit theorem and for all r ∈ {1, . . . ,R}

n1/2(θ̃n,r− θ0)
d−→ N(0p,{E[ j̃i,r(θ0)]}−1) = N(0p,{E[ j̃i(θ0)]}−1) as n→ ∞ and R is

fixed. Then because {n1/2(θ̃n,r−θ0)}R
r=1 are independent we have the joint limit


n1/2 (θ̃n,1−θ0

)
n1/2 (θ̃n,2−θ0

)
...

n1/2 (θ̃n,R−θ0
)


d−→ N(0pR,D)

where D is a block diagonal matrix with main diagonal blocks the matrices

{E[ j̃i(θ0)]}−1. In view of the joint convergence in distribution (joint for all ele-
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ments of the vector above) the continuous mapping theorem (Van der Vaart, 2000,

Theorem 2.3) gives

n1/2B̃n,R(θ0) =
1
R

R

∑
r=1

n1/2(θ̃n,r−θ0)
d−→ N

(
0p,

1
R
{E[ j̃i(θ0)]}−1

)
.

Further, because n−1/2
∑

n
i=1 s̃i(θ0) and (1/R)∑

R
r=1 n1/2(θ̃n,r−θ0) are independent

we have the joint limit as n→ ∞ n−1/2s̃n(θ0)

n1/2B̃n,R(θ0)

 d−→ N

02p ,
E[ j̃i(θ0)] 0p×p

0p×p
1
R{E[ j̃i(θ0)]}−1

 .

In view of the above and the fact that by the weak law of large numbers (Davison,

2003, p. 28) n−1 j̃n(θ0)
p−→ E[ j̃i(θ0)] as n→ ∞ , we have that

n−1/2s̃∗n,R(θ0) =
s̃n(θ0)

n1/2 −
j̃n(θ0)

n
n1/2B̃n,R(θ0)

d−→ N
(
0p,
(
1+R−1)E[ j̃i(θ0)]

)
.

Under the assumption of independent and identically distributed observations the ma-

trix ¯̃F(θ) in Condition 13 is E[ j̃i(θ)]. Using this result, the consistency of θ̆ , and

Slutsky’s Lemma (Van der Vaart, 2000, Lemma 2.8) we have n1/2(θ̃ ∗n,R − θ0)
d−→

N
(
0p,
(
1+R−1){E[ j̃i(θ0)]}−1) .

4.4 Iterated bootstrap with likelihood adjustment

A direct approach for computing the tractable simulation-based bias-reduced esti-

mator that solves s̃∗n,R(θ̃
∗
n,R) = 0 with s̃∗n,R(θ) = s̃n(θ)− j̃n(θ)B̃n,R(θ) is through IBLA

algorithm that was introduced in Section 3.5. Specifically, θ̃ ∗n,R is obtained through a

similar iteration with (3.5), where the derivatives of the likelihood are replaced by the

derivatives of the approximated likelihood, i.e.

θ
( j+1)
n = (2θ

( j)
n − θ̄

( j)
n,R)+{ j̃n(θ

( j)
n )}−1s̃n(θ

( j)
n ) . (4.3)

In the above iterations, θ
( j)
n is the candidate value for θ̃ ∗n,R at the jth iteration, and θ̄

( j)
n,R

is the average of the maximum approximate likelihood estimators calculated for each
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of R simulated samples from the model at θ
( j)
n .

Starting from the maximum approximate likelihood estimate, a single iteration

gives the approximate parametric bootstrap corrected estimate. A stopping criterion

for the iterations is |θ ( j+1)
n −θ

( j)
n | < ε , for some prespecified ε > 0. We recommend

using the same initial state for the random number generator in each iteration in order

to achieve a smooth estimator of the bias function.

4.5 Adjusted score functions with Laplace approxima-

tion

In this section we show that Laplace approximation (Tierney & Kadane, 1986)

satisfies the conditions in Theorem 5, and therefore it can be used to approximate the

likelihood and yield a tractable adjusted score equation whose solution has smaller

mean bias.

Suppose the marginal likelihood Ln(θ ;y) of a model involves integrals of the form∫
ℜd exp{nq(α|y,θ)}dα . For each fixed θ , the Laplace approximation relies on an

approximation to q(α|y,θ), using its second-order Taylor series expansion. This is

given by q(α|y,θ)≈ q(αmax|y,θ)+ 1
2(α−αmax)

TΣαmax(θ)(α−αmax), where αmax is the

maximum of q(α|y,θ) , and Σαmax(θ) is the Hessian matrix of q(α|y,θ) evaluated at

αmax . When we integrate the approximation of exp{nq(α|y,θ)} over α , we have

∫
ℜd

enq(α|y,θ)dα ≈ (2π/n)d/2
σαmaxenq(αmax|y,θ) , (4.4)

where σαmax = |−Σαmax(θ)|−1/2.

The expansion in (4.4) is accurate to order O(n−1) since we only consider the first-

order terms of Laplace approximation (Tierney & Kadane, 1986), i.e.

∫
ℜd

enq(α|y,θ)dα = (2π/n)d/2
σαmaxenq(αmax|y,θ) (1+O(n−1)

)
.

A more refined result is given by

∫
ℜd

enq(α|y,θ)dα = (2π/n)d/2
σαmaxenq(αmax|y,θ)

(
1+

c1(y,θ)
n

+
c2(y,θ)

n2 +O(n−3)

)
,
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where c1(y,θ) and c2(y,θ) are assumed to be O(1) (Tierney & Kadane, 1986). Let

qk = qk(αmax|y,θ) where qk(α|y,θ) is the kth derivative of q(α|y,θ) with respect to α .

The constants c1(y,θ) and c2(y,θ) are given by

c1(y,θ) =
1
8

σ
4
αmax

q4 +
5

24
σ

6
αmax

q2
3

c2(y,θ) =
1

48
σ

6
αmax

q6 +
35
384

σ
8
αmax

q2
4 +

7
48

σ
8
αmax

q3q5 +
35
64

σ
10
αmax

q2
3q4 +

385
1152

σ
12
αmax

q4
3 .

Let L̃n(θ ;y) be the Laplace approximation of Ln(θ ;y) . Then the log-likelihood

ln(θ ;y) is

ln(θ ;y) = logLn(θ ;y)

= log
(

L̃n(θ ;y)
(

1+
c1(y,θ)

n
+

c2(y,θ)
n2 +O(n−3)

))
= log L̃n(θ ;y)+ log

(
1+

c1(y,θ)
n

+
c2(y,θ)

n2 +O(n−3)

)
= l̃n(θ ;y)+ log

(
1+O(n−1)

)
= l̃n(θ ;y)+O(n−1) . (4.5)

The first derivative of (4.5) yields

sn(θ ;y) = s̃n(θ ;y)+∇θ log
(

1+
c1(y,θ)

n
+

c2(y,θ)
n2 +O(n−3)

)
= s̃n(θ ;y)

+

(
∇θ c1(y,θ)

n
+

∇θ c2(y,θ)
n2 +O(n−3)

)
◦
(

1+
c1(y,θ)

n
+

c2(y,θ)
n2 +O(n−3)

)−1

= s̃n(θ ;y)+
∇θ c1(y,θ)

n
+

∇θ c2(y,θ)−∇θ c1(y,θ)c1(y,θ)
n2 +O(n−3)

= s̃n(θ ;y)+O(n−1) . (4.6)

The second derivative of (4.5) is

Hn(θ ;y) = H̃n(θ ;y)+∇θ

(
∇θ c1(y,θ)

n
+

∇θ c2(y,θ)−∇θ c1(y,θ)c1(y,θ)
n2 +O(n−3)

)
= H̃n(θ ;y)+

∇∇T
θ

c1(yi,θ)

n
+O(n−2)

= H̃n(θ ;y)+O(n−1) . (4.7)
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Results 4.6 and 4.7, show that the first two conditions in Theorem 5 are satisfied, where

in this example s̃n(θ) and j̃n(θ) denote the gradient and negative Hessian matrix of the

Laplace approximation of the log-likelihood.

The last condition we need to check is if B̃n(θ)−Bn(θ) = Eθ (θ̃n− θ̂n) = O(nc)

with c ≤ −3/2. In order to find the order of B̃n(θ)−Bn(θ) we need the asymptotic

expansion of θ̃n− θ̂n , where θ̃n maximises l̃n(θ ;y) and θ̂n maximises ln(θ ;y) . Ap-

pendix C contains all the details on the asymptotic expansion of θ̃n− θ̂n , which is

calculated to be θ̃n− θ̂n = n−1 {E[ jn(θ0;y)]}−1
∇θ b(y,θ0)+Op(n−5/2) . Taking ex-

pectations on both sides we have

Eθ (θ̃n− θ̂n) = n−1 {E[ jn(θ0;y)]}−1 E (∇θ b(y,θ0))+Op(n−5/2) ,

which results to Eθ (θ̃n− θ̂n) = O(n−2).

To sum up, we showed that s̃n(θ)− sn(θ) = O(n−1) , j̃n(θ)− jn(θ) = O(n−1) ,

and B̃n(θ)−Bn(θ) = O(n−2), and the conditions in Theorem 5 hold. Therefore, the

Laplace-based mean bias reduced estimator θ̃ ∗n has o(n−1) bias.

4.6 Concluding remarks

The tractable simulation-based adjusted score function proposed in Section 4.2 al-

lows the calculation of bias-reduced estimates in models with intractable likelihood.

We give the three conditions that need to be satisfied so that an approximation of the

likelihood is suitable for bias reduction. We established that Laplace approximation

matches the conditions for the applicability of the tractable simulation-based adjusted

score function method. Also, we established the consistency and asymptotic normal-

ity of the bias-reduced estimates under suitable conditions. A formal proof for the

asymptotic normality of the tractable simulation-based bias-reduced estimator when

the observations are independent but non-identically distributed remains to be formu-

lated, and further work is required in this direction.

The performance of the tractable simulation-based adjusted score equation ap-

proach is evaluated in the framework of generalised linear mixed models (McCulloch

et al., 2008) in Chapter 5.



Chapter 5

Bias reduction in generalised linear

mixed models

5.1 Introduction

Generalised linear mixed models are widely used for analysing non-normally dis-

tributed clustered data. The key characteristic of such models is the use of random

effects to capture the between-cluster heterogeneity. The mixed model assumes that

the responses are conditionally independent given a random effect and that the con-

ditional means depend on random effects, fixed effects and covariates according to a

generalised linear model specification. McCulloch et al. (2008, Chapter 7) provide a

thorough overview of the models.

The integrals involved in the likelihood function of a generalised linear mixed

model have, generally, no closed-form, and, hence, the likelihood function is in-

tractable. There have been many proposals for estimating the parameters of the model,

including approximating the likelihood by numerical integration or using a penalised

quasi-likelihood (see, for example, Pinheiro & Chao, 2012; Breslow & Clayton, 1993).

However, the estimators that are obtained from maximising an approximated likelihood

have usually poor frequentist properties resulting in problems in inference, specifically

in hypothesis testing and confidence intervals (McCulloch et al., 2008, Chapter 7).

In this chapter we focus on remedying such phenomena by producing variants of

maximum approximate likelihood for generalised linear mixed models based on the

methodology and the associated computational procedures developed in Chapter 4.
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Specifically, we employ the bias reduction method that operates via the adjustment of

the derivative of the approximate likelihood and the approximation of the bias function

using Monte Carlo, and use IBLA and Laplace approximation for the computation of

the tractable simulation-based bias reduced estimates.

First, we study a simple generalised linear mixed model, a binomial-response

model with a fixed intercept and a random intercept only. For this model we ana-

lytically derive the adjusted score function (Firth, 1993). The purpose of this exercise

is to demonstrate the challenges that one has to face when implementing the tradi-

tional adjusted score function approach for generalised linear mixed models. We also

highlight the necessity for an extension of the method, such as IBLA, which can han-

dle more complex and realistic models with covariates in the linear predictor or with

complex random effect specifications.

Second, we use real data sets and conduct simulation studies to evaluate the perfor-

mance of IBLA against some of the existing estimation methods used in the literature.

5.2 Generalised linear mixed model

A generalised linear mixed model is specified by the linear predictor, the link func-

tion, the conditional distribution for the response variable given the random effects,

and the random effects distribution. The linear predictor is Xβ +Zα , where X is the

n× k design matrix of fixed-effects terms associated with the k regressors, β is the

corresponding k× 1 vector of the fixed-effects regression coefficients, Z is the n× q

design matrix for the q random effects and α is the q×1 vector of the random effects.

The conditional mean µi of the response is modelled as g(µi) = XT
i β + ZT

i α , where

g(·) is the link function.

The observations y1, . . . ,yn are assumed to be realisations of the random variables

Y1, . . . ,Yn from the exponential family of distributions (3.6), which are independent

conditionally on the unobserved random effects. To complete the specification of the

model we assign a distribution to the random effects, which are commonly assumed to

follow a multivariate normal distribution with zero mean.
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The likelihood function of a generalised linear mixed model can be written as

L(θ) =
∫

∏
i

fYi|α(yi|α) fα(α)dα , (5.1)

where the integration is over the q-dimensional distribution of α , fYi|α(yi|α) is the

conditional probability function of Yi given α , and fα(α) is the density function of the

random effects. In general, (5.1) cannot be evaluated in closed form. In simple models,

e.g. generalised linear mixed models with a random intercept, the log-likelihood is the

sum of independent contributions from each cluster, each of which involves just an one-

dimensional integral, which can be readily and accurately evaluated using numerical

integration techniques (McCulloch et al., 2008, Chapter 7).

5.3 Estimation in generalised linear mixed model

This section presents some of the most common methods that have been proposed

for estimating generalised linear mixed models, and variants of those that have been

proposed in an attempt to improve estimation quality. Some of the methods described

here are used in the simulation studies presented later in this chapter when evaluating

the performance of IBLA in terms of estimation and inference.

5.3.1 Standard estimation methods

(i) Maximum approximate likelihood

Fitting generalised linear mixed models via maximum likelihood involves integrat-

ing over the random effects. In general, these integrals are intractable, and numerical

integration techniques can be used to evaluate them. Maximising the approximated

likelihood then yields the maximum approximate likelihood estimates. Laplace ap-

proximation of the log-likelihood (Tierney & Kadane, 1986; Pinheiro & Chao, 2012)

is the computationally least intensive compared to other Gaussian quadrature rules

(Liu & Pierce, 1994) or Monte Carlo integration techniques (McCulloch, 1997) that

can also be used to compute maximum approximate likelihood estimates.

Maximum approximate likelihood estimators have the desirable behaviour of being

asymptotically unbiased and consistent under increasing cluster size and the number of

clusters (Jiang et al., 2013). However, the underestimation of the variance components
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for finite sample sizes is a common concern for statisticians (see, for example, Kuk,

1995; Raudenbush et al., 2000). This underestimation can result in severe problems

in inference, because bias in the variance components estimates leads to the under-

estimation of the standard errors for the fixed effects, which in turn result in shorter

confidence intervals and smaller p-values.

(ii) Penalised quasi-likelihood

Another popular method for fitting generalised linear mixed models is penalised

quasi-likelihood (PQL) proposed in Breslow & Clayton (1993), who linearise the con-

ditional mean of the model and then repeatedly apply linear mixed model techniques to

the approximated model. The linearisation is achieved by expanding the logarithm of

the integrand of the likelihood defined in (5.1) as a quadratic Taylor expansion about its

maximum and then applying Laplace approximation to the integrals over the random

effects.

Let the log-likelihood of the observations in the ith cluster be written as li =

c
∫

e−k(αi)dαi . Breslow & Clayton (1993) proposed a Laplace-based penalised quasi-

likelihood defined as

lP(β ,σ2) =
q

∑
i=1

(
l̃i−
{α(max)

i }2

2σ2

)
,

where α
(max)
i denotes the solution to ∂k(αi)/∂αi = 0, l̃i = li(β ,α

(max)
i ) is the log-

conditional density at the maximising value α
(max)
i , and ∑

q
i=1{α

(max)
i }2/(2σ2) is a

penalty term. The PQL estimators (β̂PQL, σ̂
2
PQL)

T simultaneously solve the mean and

variance score equations

∂ lP(β ,σ2)

∂β
= 0;

1
2

q

∑
i=1

(
l̃(1)2i +

l̃(2)i

1−σ2l̃(2)i

)∣∣∣∣∣
β=β̂PQL

= 0 ,

where l̃(k)i = l(k)i (β ,α
(max)
i ) and l(k)i (β ,αi) = ∂ kli/∂αk

i . Breslow & Clayton (1993)

showed that this approximation leads eventually to estimating equations based on PQL

for the mean parameters and pseudo-likelihood for the variances.
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Even though this estimation procedure is relatively simple and fast to implement it

is known to produce biased estimates, especially in generalised linear mixed models

with a small number of observations for each random effect (Breslow & Lin, 1995;

Lin & Breslow, 1996). Also, because we compute a quasi-likelihood rather than a true

likelihood, this makes PQL not directly useful for the definition of pivotal quantities

for hypothesis testing and confidence intervals.

5.3.2 Improved estimation methods

The problem of inaccurate estimation has led to the development of several proposals

for reducing the bias.

(i) Approximate parametric bootstrap

A popular method for correcting bias is parametric bootstrap (Efron & Tibshirani,

1993, Chapter 10). In the framework of generalised linear mixed models the maximum

approximate likelihood estimates can be used in the computation of the approximate

parametric bootstrap estimates. The bias of the maximum approximate likelihood es-

timator θ̃ is estimated as B̃(boot) = θ̄ − θ̃ , where θ̄ is the average of the maximum

approximate likelihood estimates based on each of the R bootstrap samples. The ap-

proximate parametric bootstrap estimate is calculated as θ̃boot = θ̃ − B̃(boot) = 2θ̃ − θ̄ .

(ii) Corrected penalised quasi-likelihood

Breslow & Lin (1995) and Lin & Breslow (1996) studied the bias of penalised

quasi-likelihood estimators. They showed that the size of the asymptotic bias can be

serious when the random effects have large variance and the cluster size is small, and

developed bias correction methods for the regression parameters and the variance com-

ponents. The simulation studies in Lin & Breslow (1996) demonstrate that correction

to the PQL regression coefficient estimates fails to reduce bias unless the amount of

dispersion is small. When the magnitude of dispersion is moderate or large, Lin &

Breslow (1996) recommend only correction of the variance components and recalcu-

lation of the regression coefficients using the corrected PQL variance components.

(iii) Iterative bootstrap

Kuk (1995) proposed a method of adjusting initial estimates to yield consistent

estimates, via a computationally intensive, iterated version of bootstrap which gives

asymptotically consistent and unbiased estimates. To obtain an initial estimate θ (0)
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Kuk (1995) suggest maximising the log-likelihood function l(θ ;y,α(0)) with respect

to θ , where α(0) is some imputed value of the unobserved α that can depend on both

y and θ . The iterative bootstrap estimate results from iterative bias correction for θ (0),

where in each iteration an updated estimate of bias of θ (0) leads to an updated bias-

corrected estimate of θ . Let b(k) be the updated estimate of bias at the kth iteration and

h(θ) be the asymptotic mean of θ (0). The iterative procedure is

b(k+1) = h(θ (k))−θ
(k) ;

θ
(k+1) = θ

(0)−b(k+1) ,

where b(0) is set to 0 so that the initial candidate estimate for the iterative bootstrap

estimate is θ (0). The function h(θ) can be approximated by ĥR(θ), the average of the

θ (0) values calculated for each of R simulated samples. In each iterative step a new set

of R bootstrap samples is generated from the model at θ (k) and then we subtract θ (k)

from the new mean bootstrap parameter estimates to obtain updated bias estimates.

These bias estimates are then subtracted from the initial estimates θ (0) to obtain a

new set of bias-corrected estimates. The cycle is continued until some appropriate

convergence criterion is satisfied.

5.4 Logistic random intercept model

In this section we apply the adjusted score function approach (Firth, 1993) to the

binomial-response generalised linear model with logistic link and a random intercept.

Implementing the adjusted score function approach on this simple model identifies

the prohibitive challenges involved with directly implementing the vanilla method to

more complex mixed models. We also conduct a simulation study to compare the

performance of the adjusted score function approach with IBLA.

5.4.1 The traditional adjusted score equations

The binomial-response generalised linear mixed model with logistic link and a random

intercept is defined as

logit(πi) = β +αi , (5.2)
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where β is the intercept of the model and αi is the effect for the ith subject, i ∈

{1, . . . ,q}, assumed to be normally distributed with mean 0 and variance σ2. The

random variable Y = (Y1, . . . ,Yq)
T is assumed to consist of conditionally independent

elements, each following a binomial distribution with mi number of trials and success

probability πi in each trial. Let θ = (β ,σ2)T. The log-likelihood of the binomial-

response logistic random intercept model is

l(θ) =
q

∑
i=1

log

(∫ (mi

yi

)(
eαi+β

1+ eαi+β

)yi(
1

1+ eαi+β

)mi−yi 1√
2πσ2

e−
α2

i
2σ2 dαi

)
. (5.3)

We recall from (1.5) that the adjusted score function (Firth, 1993) can be expressed

as

s∗t (θ) = st(θ)+
1
2

tr[{i(θ)}−1{Pt(θ)+Qt(θ)}],

where t = 1 corresponds to parameter β and t = 2 corresponds to parameter σ2. The

score function for parameter θ is derived analytically in Appendix D.1 and has ele-

ments s1(θ) =
q
∑

i=1
(yi−miE(πi|yi)) and s2(θ) =

q
∑

i=1

(
−(2σ2)−1 +(2σ4)−1E(α2

i |yi)
)
,

where

E(πi|yi) =
∫ eαi+β

1+ eαi+β
P(αi|yi)dαi ,

E(α2
i |yi) =

∫
α

2
i P(αi|yi)dαi .

In Appendix D.1 we also derive the adjusted score functions under the assumption

of balanced data (i.e. mi = m for all i). These can be expressed as

s∗1(θ) = s1(θ)+
1
2

(
Q1(θ)

|i(θ)|
+1
)

=
q

∑
i=1

[
yi +

1
2q
−mE(πi|yi)+

1
2q

Q1(θ)

|i(θ)|

]
(5.4)

s∗2(θ) = s2(θ)+
1
2

(
Q2(θ)

|i(θ)|
− 1

2σ2

)
=

q

∑
i=1

[
− 1

2σ2 −
1

4σ2q
+

1
2σ4 E(α2

i |yi)+
1
2q

Q2(θ)

|i(θ)|

]
. (5.5)
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The quantities Q1(θ)/|i(θ)| and Q2(θ)/|i(θ)| do not depend on q and have

Q1(θ) =
q2m
4σ8

{
mE2

Yi
[E(πi|yi)E(α2

i |yi)]−mE2
Yi
[E(α2

i πi|yi)]+
(

EYi[E
2(α2

i |yi)]−σ
4
)

×
(
−2EYi[E(π

2
i |yi)]+2mEYi[yiE2(πi|yi)]−m(m+1)EYi[E(πi|yi)E(π2

i |yi)]

− (m+1)(m−2)EYi[E(π
3
i |yi)]

)
+2m

(
EYi[E(α

2
i πi|yi)]−EYi[E(πi|yi)E(α2

i |yi)]
)

×
(

EYi[E(α
2
i π

2
i |yi)]−mEYi[E(πi|yi)E(α2

i πi|yi)]+EYi[yiE(πi|yi)E(α2
i |yi)]

)
− 4σ

2m
(

EYi[E(α
2
i πi|yi)]−EYi[E(πi|yi)E(α2

i |yi)]
)

×
(

EYi[E(πi|yi)]− (m+1)EYi[E(π
2
i |yi)]+mEYi[E

2(πi|yi)]
)

− m
(

EYi[E(πi|yi)E(α4
i |yi)]−EYi[E(α

4
i πi|yi)]

)
×

(
EYi[E(πi|yi)]− (m+1)EYi[E(π

2
i |yi)]+mEYi[E

2(πi|yi)]
)}

;

Q2(θ) =
q2m
8σ12

{
mσ

2
(

EYi[E(α
2
i πi|yi)]−EYi[E(πi|yi)E(α2

i |yi)]
)2

+
(

EYi[E
2(α2

i |yi)]−σ
4
)(

EYi[E(α
2
i πi|yi)]−EYi[E(πi|yi)E(α2

i |yi)]

− 2EYi[yiE(πi|yi)E(α2
i |yi)]+(m+1)EYi[E(π

2
i |yi)E(α2

i |yi)]+(m−1)EYi[E(α
2
i π

2
i |yi)]

)
− 2

(
EYi[E(α

2
i πi|yi)]−EYi[E(πi|yi)E(α2

i |yi)
)(

EYi[yiE2(α2
i |yi)]

− mEYi[E(α
2
i |yi)E(α2

i πi|yi)]
)
+
(

EYi[E(α
2
i |yi)E(α4

i |yi)]−5σ
2EYi[E

2(α2
i |yi)]+2σ

6
)

×
(

EYi[E(πi|yi)]− (m+1)EYi[E(π
2
i |yi)]+mEYi[E

2(πi|yi)]
)}

,

and the determinant of the expected information matrix is

|i(θ)| =
q2m
4σ8

{
−m

(
EYi[E(α

2
i πi|yi)]−EYi[E(πi|yi)E(α2

i |yi)]
)2

+
(
EYi[E

2(α2
i |yi)]−σ

4)(EYi[E(πi|yi)]− (m+1)EYi[E(π
2
i |yi)]+mEYi[E

2(πi|yi)]
)}

.

Based on the theory in Kosmidis & Firth (2009), we expect the quantity

Q1(θ)/|i(θ)| to approach −2π(β ), where π(β ) = eβ/(1+ eβ ), as we let σ2 go to

zero, i.e. we are under the framework of generalised linear models. Kosmidis &

Firth (2009) expressed the adjusted score function for the regression coefficients of

a binomial-response generalised linear model via a pseudo-data representation as

s∗(β ) = ∑
q
i=1
(
yi +hi(β )/2−

(
mi +hi(β )

)
πi(β )

)
xir , where hi is the ith diagonal el-
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ement of the hat matrix H = X(XTWX)−1XTW and W = diag{κ2i}, κ2i being the

variance of yi . For the simple case of a generalised linear model with logit(πi) = β ,

s∗(β ) takes the form

s∗(β ) =
q

∑
i=1

[
yi +

1
2q
−
(

mi +
1
q

)
πi

]
. (5.6)

Comparing the functions in (5.4) and (5.6) it is clear that if the derivations above are

correct, Q1(θ)/|i(θ)| should approach −2π(β ) as σ2 approaches zero.

When the variance of a normal distribution tends to zero, the probability density

fX(x), with X ∼ N(µ,σ2), eventually tends to zero at any x 6= µ , but grows without

limit if x = µ , while its integral remains equal to 1. The Dirac delta function can be

viewed as a limit of the Gaussian distribution, with

δ (x−µ) = lim
σ2→0

1√
2πσ2

e−
(x−µ)2

2σ2 =

0, if x 6= µ

∞, if x = µ

(5.7)

and is constrained to satisfy the identity
∫

∞

−∞
δ (x−µ)d(x−µ) = 1. Using (5.7), basic

properties of limits, and applying Lebesgue’s dominated convergence theorem (Rudin,

1976, p. 318), we obtain Results 1-5, which are proved in Appendix D.2:

Result 1. lim
σ2→0

EYi[E(πi|yi)E(α2
i |yi)] = lim

σ2→0
EYi[E(α

2
i πi|yi)] .

Result 2. lim
σ2→0

EYi[E(πi|yi)E(α4
i |yi)] = lim

σ2→0
EYi[E(α

4
i πi|yi)] .

Result 3. lim
σ2→0

EYi[E
2(πi|yi)] = lim

σ2→0
EYi[E(π

2
i |yi)] .

Result 4. lim
σ2→0

EYi[yiE2(πi|yi)] = mi lim
σ2→0

EYi[E(π
3
i |yi)] .

Result 5. lim
σ2→0

EYi[E(πi|yi)E(π2
i |yi)] = lim

σ2→0
EYi[E(π

3
i |yi)] .

As expected, using Results 1-5 we obtain

lim
σ2→0

Q1(θ)

|i(θ)|
= lim

σ2→0

−2Eαi(π
2
i )+2Eαi(π

3
i )

Eαi(πi)−Eαi(π
2
i )

=−2
(

π(β )3−π(β )2

π(β )2−π(β )

)
=−2π(β ).
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5.4.2 Approximating the intractable integrals

The intractable integrals involved in the traditional adjusted score equations can be

approximated by numerical integration. Numerical integration techniques include the

Laplace approximation (Tierney & Kadane, 1986), the Gauss-Hermite quadrature ap-

proximation (Abramowitz & Stegun, 1965), and the adaptive Gauss-Hermite quadra-

ture approximation (Liu & Pierce, 1994).

A quadrature rule is an approximation of an integral, usually stated as a weighted

sum of function values at K specified points (nodes or abscissae) within the domain of

integration. The Gauss-Hermite quadrature rule can be employed for approximating

the value of integrals of the form
∫

∞

−∞
e−x2

f (x)dx, as

∫
∞

−∞

e−x2
f (x)dx≈

K

∑
k=1

ωk f (uk), (5.8)

where uk are the roots of the Hermite polynomial HK(u), and ωk are the weights with

HK(u) = (−1)Keu2 dK

duK e−u2
; ωk =

2K−1K!
√

π

K2[HK−1(uk)]2
.

The weights and nodes used in Gaussian quadrature rules can be obtained from

Abramowitz & Stegun (1965, Table 25.8). Generally, using large values of K in-

creases the accuracy but also the computational run-time of the approximation. Al-

though Gauss-Hermite quadrature is easy to implement, it can completely miss the

maximum of the integrand and, as a consequence, lead to biased estimators (Huber

et al., 2004). The bias with Gauss-Hermite quadrature approximation is explained by

the fact that it is based on the summation over prespecified and fixed quadrature points

irrespective of the range where the function is concentrated.

An improvement of Gauss-Hermite quadrature and Laplace approximations is pro-

vided by an adaptive Gaussian quadrature which searches for the maximum of the

integrand, and approximates adaptively the function in the neighbourhood of the max-

imum. Consequently, adaptive Gauss-Hermite quadrature improves efficiency by dra-

matically reducing the number of quadrature points needed to effectively approxi-

mate the integral than ordinary Gauss-Hermite quadrature. This technique centres and
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rescales the quadrature nodes and approximates
∫

∞

−∞
g(x)dx, where g(x) = eq(x), as

∫
∞

−∞

g(x)dx≈
√

2σ̂

K

∑
k=1

ω
∗
k g(µ̂ +

√
2σ̂uk), (5.9)

where ω∗k = ωkeu2
k and the quadrature points are centred at the mode of the Laplace

approximation, µ̂ = maxx q(x), with spread determined by σ̂ = {−q′′(µ̂)}−1/2 (Liu &

Pierce, 1994). Adaptive Gauss-Hermite quadrature with one node becomes the Laplace

approximation. This result follows immediately from (4.4) and (5.9) for one quadrature

point given that the node and weight are equal to u1 = 0 and w1 =
√

π . Thus adaptive

Gauss-Hermite quadrature can be thought of as a higher-order Laplace approximation.

An implicit assumption of the Laplace and adaptive Gauss-Hermite quadrature ap-

proximations is that the function q(x) is unimodal. Some of the integrals in the adjusted

score function derived in Section 5.4.1 are bimodal, because αk
i , k being an even num-

ber, is involved in the integrand. For example,

Eαi(α
2
i πi) =

∫
α

2
i

eαi+β

1+ eαi+β
fαi(αi) dαi ,

Eαi(α
4
i πi) =

∫
α

4
i

eαi+β

1+ eαi+β
fαi(αi) dαi ,

where fαi(αi) is the density function of αi , are bimodal. As a result, their approxima-

tions may be poor whichever maximum point is taken.

Demidenko (2013, Chapter 7) proposed improving the Laplace approximation by

splitting the domain of integration (−∞,∞) into (−∞,c) and (c,∞), where c is any

point between the two maxima. The improved Laplace approximation is then ex-

pressed as

∫
∞

−∞

eq(x)dx≈
√

2π

{
σ̂1eq(µ̂1)Φ

(
c− µ̂1

σ̂1

)
+ σ̂2eq(µ̂2)

[
1−Φ

(
c− µ̂2

σ̂2

)]}
, (5.10)

where Φ(·) is the standard normal cumulative distribution function, µ̂1, µ̂2 are the two

maxima points of q(x) and σ̂i = {−q′′(µ̂i)}−1/2, i ∈ {1,2}.

Below we introduce a new approximation method for numerical integration which

is an extension of the Liu & Pierce (1994) approximation and can be used for ap-
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proximating integrals with bimodal integrands. For this reason, the method can be

considered as an “improved adaptive Gauss-Hermite quadrature” approximation. Sim-

ilarly to improved Laplace approximation, when the function q(x) is bimodal we can

split the integral into two integrals around each maximum.

Proposition 1. The Kth-order improved adaptive Gauss-Hermite quadrature approx-

imation of
∫

∞

−∞
g(x)dx is

∫
∞

−∞

g(x)dx≈
√

2

[
σ̂1

K

∑
k=1

w∗kg(−
√

2σ̂1uk + c)+ σ̂2

K

∑
k=1

w∗kg(
√

2σ̂2uk + c)

]
, (5.11)

where σ̂i , i ∈ {1,2}, is the scale of the Laplace approximation calculated at the ith

maximum point of q(x) with g(x) = eq(x).

Proof of Proposition 1: Steen et al. (1969) and Galant (1969) developed Gaussian

quadratures for the semi-infinite integral
∫

∞

0 e−x2
f (x)dx ≈ ∑

K
k=1 wk f (uk), where wk

and uk are the weights and abscissae given in Steen et al. (1969, Table II) for K ∈

{2, . . . ,15}. Based on this result and using integration by substitution (t = x− c) we

obtain the general form of the semi-infinite integral for any threshold c,

∫
∞

c
e−x2

f (x)dx ≈
K

∑
k=1

wk f (uk + c)e−(c
2+2cuk) ;

∫ c

−∞

e−x2
f (x)dx ≈

K

∑
k=1

wk f (−uk + c)e−(c
2−2cuk) .

Following the Liu & Pierce (1994) methodology and using the above results we obtain

∫
∞

c
g(x)dx =

∫
∞

c

g(x)

1√
2πσ2 e−

(x−µ)2

2σ2

1√
2πσ2

e−
(x−µ)2

2σ2 dx

t= x−µ√
2σ

=
∫

∞

c−µ√
2σ

√
2σet2

g(µ +
√

2σt)e−t2
dt

≈
√

2σ̂

K

∑
k=1

wke
(

uk+
c−µ̂√

2σ̂

)2

g(µ̂ +
√

2σ̂uk +(c− µ̂))e
−
((

c−µ̂√
2σ̂

)2
+2
(

c−µ̂√
2σ̂

)
uk

)

=
√

2σ̂

K

∑
k=1

wkeu2
k g(
√

2σ̂uk + c) , (5.12)
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and, similarly,

∫ c

−∞

g(x)dx ≈
√

2σ̂

K

∑
k=1

w∗kg(−
√

2σ̂uk + c) . (5.13)

Summing (5.12) and (5.13) yields (5.11).

It is worth noting that eventually improved adaptive Gauss-Hermite quadrature ap-

proximation depends on the maxima points of q(x) only through σ̂i . We can also derive

an expression for improved adaptive Gauss-Hermite quadrature in the interval [c1,c2],

which can be used when the domain (−∞,∞) needs to be split into more than two

intervals.

Proposition 2. The Kth-order improved adaptive Gauss-Hermite quadrature approx-

imation of
∫ c2

c1
g(x)dx is

∫ c2

c1

g(x)dx≈ (c2− c1)
K

∑
k=1

w∗kg((c2− c1)uk + c1) . (5.14)

Proof of Proposition 2: Using the transformation x = (c2− c1)t + c1 we obtain the

standard Gauss-Hermite quadrature approximation

∫ c2

c1

e−x2
f (x)dx ≈ (c2− c1)

K

∑
k=1

wkeu2
k f ((c2− c1)uk + c1)e−((c2−c1)uk+c1)

2
,

where wk and uk are the weights and abscissae given in Steen et al. (1969, Table III)

for K ∈ {2, . . . ,10}. Using the same line of argument as in the proof of Proposition 1,

we obtain the result in (5.14).

To verify whether the first-order improved adaptive Gauss-Hermite quadrature and

improved Laplace approximations are identical, we need to calculate the weight and

abscissa of the former approximation when K = 1, because these are not reported

in Steen et al. (1969). The abscissa u1 = 1/
√

π solves the first-order polynomial,

p1(u) = u− (1− e−b2
)/(
√

πerf(b)) when b→ ∞, where erf(b) is the error function

and
√

π erf(b) =
∫ b
−b e−t2

dt. The weight w1 =
√

π/2 is calculated from the weight

expression w1 = γ0/[p′1(u1)p0(u1)], where p0(u) = 1 and γ0 =
∫

∞

0 e−u2
du. Using u1
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and w1 in (5.11) we calculate the first-order improved adaptive quadrature approxima-

tion to be
√

πe1/π

[
σ̂1eq(−

√
2σ̂1/

√
π+c)+ σ̂2eq(

√
2σ̂2/

√
π+c)

]
. This result is different from

the improved Laplace approximation in (5.10), and therefore, the improved adaptive

Gauss-Hermite quadrature cannot be seen as a higher-order improved Laplace approx-

imation.

Summing up, the most accurate numerical integration technique between the

Laplace approximation, the Gauss-Hermite quadrature and the adaptive Gauss-

Hermite quadrature approximations, is the latter, whereas the fastest technique is

Laplace approximation (Liu & Pierce, 1994; Demidenko, 2013, Chapter 7).

Example 3. (Illustration of a bimodal integral) We consider the example in Demi-

denko (2013, p. 343) to illustrate the performance of improved Laplace and improved

adaptive Gauss-Hermite quadrature approximations by approximating the integral

∫
∞

−∞

x2e−
1
2 (x

2+x)dx

for which q(x) = 1
2(x

2+x)−2log|x|. The function−q(x) has two local maxima points,

µ̂1 = −1.686 and µ̂2 = 1.186 (Figure 5.1). For this integral it is natural to set the

threshold c to zero. Table 5.1 shows the values of the integral for the approxima-

tion techniques under consideration using various quadrature points when applicable.

The results show that integration must be carried out with care when a function is

bimodal. Standard Laplace and adaptive Gauss-Hermite quadrature fail to estimate

the integral unless a large number of quadrature points is used. On the other hand,

improved Laplace yields an approximation of 3.62 which is close to the true value

of 3.55. Improved adaptive Gauss-Hermite quadrature yields even better results ap-

proaching the true value of the integral with the use of just 5 quadrature points and

reaching the exact value in 3 decimal places for 10 quadrature points. Lastly, as ex-

pected, we observe that the values calculated using adaptive Gauss-Hermite quadrature

with one node are identical to the ones obtained using Laplace approximation, but this

does not extend to the improved versions of the two approximations.
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Figure 5.1: An example with bimodal function, −q(x) = 2log|x|− 1
2(x

2 + x).

−4 −2 0 2 4

−
6

−
4

−
2

0

x

−
q(

x)

Table 5.1: Approximations of
∫

∞

−∞
x2e−

1
2 (x

2+x)dx

Approximation Method Details Result

Laplace using 1st maximum 3.062
Laplace using 2nd maximum 0.620
improved Laplace 3.619

adaptive GHQ 1 quadrature point using 1st maximum 3.062
adaptive GHQ 1 quadrature point using 2nd maximum 0.620
improved adaptive GHQ 1 quadrature point 1.065

adaptive GHQ 2 quadrature points using 1st maximum 2.995
adaptive GHQ 2 quadrature points using 2nd maximum 0.592
improved adaptive GHQ 2 quadrature points 2.388

adaptive GHQ 5 quadrature points using 1st maximum 3.187
adaptive GHQ 5 quadrature points using 2nd maximum 1.097
improved adaptive GHQ 5 quadrature points 3.519

adaptive GHQ 10 quadrature points using 1st maximum 3.540
adaptive GHQ 10 quadrature points using 2nd maximum 3.003
improved adaptive GHQ 10 quadrature points 3.550

adaptive GHQ 15 quadrature points using 1st maximum 3.550
adaptive GHQ 15 quadrature points using 2nd maximum 3.493
improved adaptive GHQ 15 quadrature points 3.550
Notes: The exact value of the integral is 3.550. The Laplace and adaptive Gauss-Hermite quadrature

(adaptive GHQ) approximations at the first or second minimum point of q(x) are calculated using
(4.4) and (5.9), respectively. The improved versions of these approximations are given in (5.10) for
the Laplace and (5.11) for the improved adaptive Gauss-Hermite quadrature.

5.4.3 Simulation study

This section compares via simulations the performance of the adjusted score equation

approach (Firth, 1993) with IBLA and maximum approximate likelihood.

The maximum approximate likelihood estimates are calculated by maximising the

Laplace approximation of the log-likelihood. The IBLA estimates are calculated by
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solving the tractable simulation-based adjusted score equations in (4.2) using the algo-

rithm in Section 4.4, where the first and second derivatives of the Laplace approxima-

tion of the log-likelihood are used, the maximum approximate likelihood estimates are

set to be the starting values, and R is set to 50. Recall from Section 4.5 that Laplace

approximation is suitable for bias reduction through the adjustment of the approximate

score function. The unimodal integrals involved in the adjusted score equations de-

rived in Section 5.4.1 are approximated using the adaptive Gauss-Hermite quadrature

(Liu & Pierce, 1994) with K = 20, and the bimodal integrals are approximated using

the improved adaptive Gauss-Hermite quadrature with K = 15.

In this simulation study we simulated the data from the binomial-response gener-

alised linear mixed model with logistic link and a random intercept with true fixed-

effect parameter β = 0.5. We assume that the data is balanced, with binomial denomi-

nator m = 10, and the number of clusters is set to q = 20. Five values of the variance

component σ2 are chosen, specifically σ2 ∈ {0.25,0.5,1.0,1.5,2.0}. For each value of

σ2 considered, we simulated 10000 data sets initialising the random number generator

at a common state. The maximum approximate likelihood, adjusted score equation

approach, and IBLA are evaluated in terms of mean bias, mean squared error, and

coverage probability. The results of the simulation study are summarised in Table 5.2.

The results illustrate the underestimation of the variance component by Laplace-

based maximum likelihood, which increases as random effects become more hetero-

geneous. Laplace-based IBLA and the adjusted score equation approach based on

adaptive quadrature approximation reduce the bias of the maximum approximate like-

lihood estimates, with the latter yielding the smallest mean bias. Our explanation for

the better improvement of the estimation of variance components by the traditional ad-

justed score equations is that it relies on finding the roots of an adjusted version of the

scores based on the theory in Firth (1993) rather than finding the roots of an objective

function. Also, a more precise approximation technique has been used in the adjusted

score equations compared to the Laplace approximation used in IBLA. The bias of the

fixed effect estimates is close to zero for all methods. Comparing the mean squared er-

rors, we observe that the three methods yield similar mean squared errors for the fixed

effect, whereas for the variance component maximum approximate likelihood has the
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Table 5.2: Mean bias and mean squared error (MSE) for the parameters of the
binomial-response generalised linear mixed model with logistic link and a random
intercept, and empirical coverage probability of 90%, 95% and 99% confidence
intervals for β based on the Wald statistic.

Parameter True Method Bias MSE Coverage probability (%)
value 90% 95% 99%

β 0.5 La-ML 0.003 0.036 88.6 93.8 98.5
adGHQ-AS 0.002 0.036 89.4 94.3 98.6

La-IBLA -0.002 0.037 89.0 93.9 98.6
σ2 0.25 La-ML -0.018 0.050 - - -

adGHQ-AS 0.005 0.056 - - -
La-IBLA -0.007 0.058 - - -

β 0.5 La-ML 0.002 0.048 89.0 94.0 98.4
adGHQ-AS 0.001 0.048 89.7 94.5 98.5

La-IBLA -0.003 0.047 89.4 94.2 98.5
σ2 0.5 La-ML -0.038 0.114 - - -

adGHQ-AS -0.003 0.121 - - -
La-IBLA -0.010 0.127 - - -

β 0.5 La-ML 0.006 0.076 88.9 94.1 98.3
adGHQ-AS 0.005 0.075 89.5 94.5 98.3

La-IBLA -0.004 0.075 89.5 94.7 98.4
σ2 1.0 La-ML -0.048 0.338 - - -

adGHQ-AS -0.001 0.346 - - -
La-IBLA 0.015 0.355 - - -

β 0.5 La-ML 0.007 0.102 89.1 94.1 98.5
adGHQ-AS 0.004 0.101 89.8 94.5 98.7

La-IBLA -0.005 0.102 90.2 95.2 98.8
σ2 1.5 La-ML -0.060 0.668 - - -

adGHQ-AS -0.006 0.675 - - -
La-IBLA 0.024 0.732 - - -

β 0.5 La-ML 0.008 0.132 89.1 94.0 98.5
adGHQ-AS 0.004 0.130 89.5 94.4 98.7

La-IBLA -0.007 0.131 89.8 94.8 98.8
σ2 2.0 La-ML -0.063 1.108 - - -

adGHQ-AS -0.006 1.113 - - -
La-IBLA 0.021 1.185 - - -

Notes: La-ML, Laplace-based maximum likelihood; adGHQ-AS, adjusted score equation approach (Firth, 1993)
using (improved) adaptive Gauss-Hermite quadrature; La-IBLA, Laplace-based iterated bootstrap with likelihood
adjustment with R = 50.

smallest mean squared error, followed closely by the adjusted score equation approach

and IBLA. Lastly, the empirical coverage probabilities of the 90%, 95% and 99% con-

fidence intervals for β based on the Wald statistic and the mean bias-reduced estimates

are closer to the nominal level than those based on the Wald statistic and the maxi-

mum approximate likelihood estimates. The conservativeness of the latter inferential

procedure is a result of the underestimation of the variance components by maximum

approximate likelihood.
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To sum up, IBLA is found to be a good alternative for reducing the bias of maxi-

mum approximate likelihood estimates, having the additional advantage of being easier

to apply in more complex mixed models.

5.4.4 Challenges with adjusted score functions

In Section 5.4.1 we have seen how the approximation of the first-order bias can be

achieved via the direct approximation of a number of expectations (see Appendix D.1),

because the model under consideration is relatively simple. However, in general, the

requirement for joint null moments of the log-likelihood derivatives makes the calcu-

lation of the adjusted score functions proposed in Firth (1993) challenging.

Consider, for example, adding a single continuous covariate to the binomial-

response generalised linear mixed model with logistic link and a random intercept,

i.e.

logit(πi j) = βxi j +αi , (5.15)

with yi j|αi ∼ Binomial(mi,πi j) and αi ∼ N(0,σ2), for i ∈ {1, . . . ,q}, j ∈ {1, . . . ,ni}.

The log-likelihood for this model is

l(β ,σ2) =
q

∑
i=1

log

(∫ ni

∏
j=1

(
mi

yi j

)
eyi j(αi+βxi j)

(1+ eαi+βxi j)mi

1√
2πσ2

e−
α2

i
2σ2 dαi

)
. (5.16)

The score functions are

s1(θ) =
q

∑
i=1

ni

∑
j=1

[
xi jyi j−mixi jE(πi j|yi j)

]
,

s2(θ) =
q

∑
i=1

ni

∑
j=1

[
1

2σ4 E(α2
i |yi j)−

1
2σ2

]
,

and the observed information matrix elements are

j11(θ) =
q

∑
i=1

ni

∑
j=1

[
mix2

i jE(πi j|yi j)−mixi j(mi + xi j)E(π2
i j|yi j)+m2

i xi j{E(πi j|yi j)}2] ,
j12(θ) =

q

∑
i=1

ni

∑
j=1

[ mi

2σ4 E(πi j|yi j)E(α2
i |yi j)−

mi

2σ4 E(α2
i πi j|yi j)

]
,

j22(θ) =
q

∑
i=1

ni

∑
j=1

[
− 1

2σ4 +
1

σ6 E(α2
i |yi j)−

1
4σ8 E(α4

i |yi j)+
1

4σ8{E(α
2
i |yi j)}2

]
.
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Obtaining the expectations involved in the expected information matrix and the

adjusted score function requires computationally more expensive calculations. In Sec-

tion 5.4.1 we studied the simple generalised linear mixed model with binomial re-

sponses, a random intercept and a fixed intercept on the logit scale. For that model we

had to approximate one integral for each expectation. Adding covariates in the linear

predictor of the generalised linear mixed model requires the approximation of ni inte-

grals for each expectation. For example, one of the integrals we had to approximate

for model (5.2) was

E(πi|yi) =
∫ eαi+β

1+ eαi+β
P(αi|yi)dαi .

The corresponding integral for model (5.15) is

E(πi j|yi j) =
∫ eαi+βxi j

1+ eαi+βxi j
P(αi|yi)dαi ,

which needs to be approximated ni times, one for each j ∈ {1, . . . ,ni}. Also, for

more complicated structures (e.g. crossed random effects) the integrals involved in

the adjusted score function are no longer one-dimensional and numerical integration

becomes more difficult (McCulloch et al., 2008, Section 7.4).

This study illustrates the challenges in evaluating the traditional adjusted score

function for generalised linear mixed models and highlights the extent of the need for

an alternative way of approximating the bias function, which would enable the imple-

mentation of an adjusted score function approach in models with more complicated

linear predictors. The simulations in Section 5.4.3 indicate that a prominent exten-

sion of the traditional adjusted score function for models with intractable likelihood is

the tractable simulation-based adjusted score function introduced in Chapter 4, using

IBLA for the computation of the bias-reduced estimates.

5.5 Real-data examples

This section considers two real-data examples that are used to evaluate the perfor-

mance of IBLA in estimation and inference against the maximum approximate likeli-

hood, PQL, corrected PQL, and approximate parametric bootstrap methods. The data

sets used are the multicenter clinical trial (Beitler & Landis, 1985) and the Culcita sea
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stars (McKeon et al., 2012). The responses of the first data set follow a binomial dis-

tribution and the responses of the second data set are binary. We fit a logistic linear

model with a random intercept to both data sets.

Both examples are challenging in terms of model fitting. The multicenter clinical

trial (Beitler & Landis, 1985) example is a small dataset with only 16 observations,

and the Culcita sea stars (McKeon et al., 2012) example is challenging because the

variance of the random effects is large (σ̂2 = 11.8). Given the challenging format of

the data sets, there is a large possibility of convergence issues for all the methods under

consideration. Convergence issues are generated, for example, when the gradient at the

estimated values is not equal to zero and the Hessian matrix is not positive definite. One

could argue that convergence failures are considered to be a minor issue and choose to

discard any samples that give convergence issues. However, it is generally bad practice

to discard samples as this can skew and bias the results when estimating the distribution

of the estimators. Our strategy for avoiding any convergence issues when fitting the

model to the multicenter clinical trial (Beitler & Landis, 1985) and the Culcita sea

stars (McKeon et al., 2012) data sets is to estimate the standard deviation, instead of

the variance, of the random effects.

5.5.1 Multicenter clinical trial

Beitler & Landis (1985) consider a multicenter clinical trial which investigates the suc-

cess of two topical cream treatments (active drug and control) in curing an infection.

The number of trials and favorable cures were recorded for each treatment for a total

of 8 clinics. Table 5.3 shows the data of favorable response to active drug and con-

trol treatment from the multicenter randomised clinical trial. The clinics are ordered

arbitrarily according to decreasing sample sizes. In all clinics, except for the eighth

(which has the smallest number of patients), the drug produced a higher proportion of

favorable responses, albeit only slightly higher than the control therapy in some clinics.

For this data we consider the generalised linear mixed model with linear predictor

logit(πi j) = β0 +β1xi j +αi , where β0 is the fixed intercept, β1 is the fixed effect as-

sociated with the treatment indicator variable xi j that takes value 0 for control and 1

for the active drug, and αi is the normally distributed random intercept with zero mean

and variance σ2 that takes into account heterogeneity between clinics. The subindex
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Table 5.3: Data for the multicenter randomised clinical trial example

Response

Clinic Treatment Favourable Unfavourable Total Proportion favorable

1 Drug 11 25 36 0.306
Control 10 27 37 0.270

2 Drug 16 4 20 0.800
Control 22 10 32 0.688

3 Drug 14 5 19 0.737
Control 7 12 19 0.368

4 Drug 2 14 16 0.125
Control 1 16 17 0.059

5 Drug 6 11 17 0.353
Control 0 12 12 0.000

6 Drug 1 10 11 0.091
Control 0 10 10 0.000

7 Drug 1 4 5 0.200
Control 1 8 9 0.111

8 Drug 4 2 6 0.667
Control 6 1 7 0.857

i ∈ {1, . . . ,8} indicates the clinic and the subindex j ∈ {1,2} indicates the treatment.

The observations are assumed to be realisations of random variables which are inde-

pendent conditionally on the random effects, following a binomial distribution with mi j

number of trials and success probability πi j in each trial. The binomial denominators

mi j range between 5 and 37.

Table 5.4 gives the parameter estimates of β0, β1, and σ , when the model is fitted

by maximum approximate likelihood, PQL, corrected PQL, approximate parametric

bootstrap, and IBLA. The maximum approximate likelihood, approximate parametric

bootstrap and IBLA methods use the Laplace approximation. The maximum approxi-

mate likelihood yields the smallest estimate for σ . This might be an indication of the

underperformance of the method which can be explained by the small sample size of

the dataset. According to Breslow & Lin (1995), maximum approximate likelihood is

expected to perform better than PQL when the outcomes are binomials having moder-

ately large denominators, and corrected PQL is expected to behave similarly to PQL.

The approximate parametric bootstrap and IBLA also yield larger estimates of σ than

maximum approximate likelihood. The standard errors of the estimated parameters are

similar for all methods except for the approximate parametric bootstrap which yields

smaller standard errors for R= 64. The computational run-times for the methods under

consideration are, in increasing order, 0.04,0.30,1.42,4.68,7.81,8.31,11.89 seconds
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Table 5.4: Estimates of the model parameters for the multicenter clinical
trial data. The estimated standard errors are reported in parentheses.

La-ML PQL CPQL La-BOOT La-IBLA

R - - - 64 128 64 128

β0 -1.197 -1.147 -1.148 -1.215 -1.205 -1.221 -1.218
(0.553) (0.559) (0.564) (0.502) (0.538) (0.580) (0.599)

β1 0.739 0.726 0.727 0.732 0.719 0.715 0.728
(0.300) (0.296) (0.296) (0.257) (0.305) (0.303) (0.303)

σ 1.390 1.426 1.442 1.560 1.530 1.450 1.524
Notes: La-ML, Laplace-based maximum likelihood; PQL, penalised quasi-likelihood; CPQL,

corrected penalised quasi-likelihood; La-BOOT, Laplace-based parametric bootstrap; La-IBLA,
Laplace-based iterated bootstrap with likelihood adjustment.

Table 5.5: Mean bias and mean squared error (MSE) for the parameters of the logistic
mixed model for the multicenter clinical trial setting, and empirical coverage probability
of 90%, 95% and 99% confidence intervals for β0 and β1 based on the Wald statistic.

La-ML PQL CPQL La-BOOT La-IBLA

(1−α)% R - - - 64 128 64 128

β0 Bias - -0.012 0.039 0.037 -0.031 -0.013 -0.023 -0.010
MSE - 0.328 0.286 0.287 0.284 0.315 0.315 0.307

Coverage 90 0.858 0.864 0.868 0.826 0.836 0.880 0.887
95 0.911 0.914 0.916 0.888 0.899 0.932 0.937
99 0.968 0.965 0.966 0.958 0.962 0.975 0.977

β1 Bias - 0.006 -0.010 -0.009 -0.012 -0.017 -0.020 -0.013
MSE - 0.100 0.096 0.096 0.098 0.100 0.098 0.100

Coverage 90 0.900 0.894 0.894 0.884 0.886 0.904 0.899
95 0.953 0.945 0.945 0.942 0.946 0.955 0.951
99 0.989 0.985 0.985 0.986 0.987 0.992 0.991

σ Bias - -0.123 -0.091 -0.076 0.068 0.017 -0.062 -0.006
MSE - 0.229 0.193 0.195 0.217 0.220 0.218 0.212

Notes: La-ML, Laplace-based maximum likelihood; PQL, penalised quasi-likelihood; CPQL, corrected penalised
quasi-likelihood; La-BOOT, Laplace-based parametric bootstrap; La-IBLA, Laplace-based iterated bootstrap with like-
lihood adjustment

for the PQL, corrected PQL, maximum approximate likelihood, approximate paramet-

ric bootstrap with R = 64, IBLA with R = 64, approximate parametric bootstrap with

R = 128, and IBLA with R = 128, respectively. Also, we note that the number of it-

erations taken per fit for the iterative process of Section 4.4 to converge was 7 and 4

iterations when R was set to 64 and 128, respectively. The starting values used for the

iterative process were the maximum approximate likelihood estimates.

In order to further investigate the performance of the fitting methods, we performed

a simulation study where we simulated 10000 independent samples from the gener-

alised linear mixed model with parameter values set to the maximum approximate

likelihood estimates reported in Table 5.4.
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The results in Table 5.5 illustrate the underestimation of σ by maximum approxi-

mate likelihood using Laplace approximation, which yields the largest bias in absolute

value across all methods considered (PQL, corrected PQL, approximate parametric

bootstrap and IBLA using Laplace approximation). PQL and CPQL perform better

than maximum approximate likelihood, but they also underestimate σ . The bias of

these three methods is explained by the small sample size of the data set. Laplace-

based parametric bootstrap and IBLA are the best methods in terms of improving

the estimation of σ , with the latter being the best method when R = 128. The bias

of the fixed effect estimates is close to zero for all methods. Comparing the mean

squared errors, we observe that maximum approximate likelihood has the largest mean

squared error. Lastly, the estimated coverage probabilities of the 90%, 95% and 99%

confidence intervals for β0 based on the Wald statistic and any of the estimates un-

der consideration are smaller than the nominal level, but IBLA gives the best results.

The corresponding estimated coverage probabilities for β1 are all notably closer to the

nominal level. Overall, Laplace-based IBLA is the best method in terms of reducing

the bias of Laplace-based ML estimates. It also reduces the mean squared error and

the confidence intervals based on the IBLA estimates have generally better coverage

properties.

The average computational run-times for the methods under consideration are, in

increasing order, 0.04,0.05,0.72,6.69,12.65,13.74,16.44 seconds for the PQL, cor-

rected PQL, maximum approximate likelihood, approximate parametric bootstrap with

R = 64, IBLA with R = 64, approximate parametric bootstrap with R = 128, and IBLA

with R = 128, respectively. Also, we note that the average number of iterations taken

per fit for the iterative process of Section 4.4 to converge was 7.4 and 3.1 iterations

when R was set to 64 and 128, respectively.

5.5.2 Culcita sea stars

This example represents a small-scale ecological field experiment. The data are

from McKeon et al. (2012), and represent trials of coral-eating sea stars Culcita no-

vaeguineae (hereafter Culcita) attacking coral that harbour differing combinations of

protective symbionts (crabs and shrimp). The design is a randomised complete block

design with two replications per treatment per block, four treatments (no symbionts,
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Table 5.6: Estimates of the model parameters for the Culcita sea stars data.
The estimated standard errors are reported in parentheses.

La-ML PQL CPQL La-BOOT La-IBLA

R - - - 50 100 50 100

β0 5.096 3.847 3.938 4.741 4.508 5.238 4.912
(1.813) (1.288) (1.342) (1.554) (1.624) (1.814) (1.721)

β1 -3.842 -2.978 -3.036 -3.205 -3.146 -3.991 -3.701
(1.465) (1.165) (1.184) (1.516) (1.682) (1.493) (1.411)

β2 -4.431 -3.483 -3.562 -4.318 -4.006 -4.643 -4.285
(1.552) (1.207) (1.231) (1.628) (1.780) (1.590) (1.493)

β3 -5.599 -4.445 -4.561 -5.327 -5.076 -5.392 -5.102
(1.725) (1.264) (1.294) (1.831) (1.897) (1.704) (1.612)

σ 3.437 2.716 2.910 3.293 3.137 3.034 2.952
Notes: La-ML, Laplace-based maximum likelihood; PQL, penalised quasi-likelihood; CPQL, corrected

penalised quasi-likelihood; La-BOOT, Laplace-based parametric bootstrap; La-IBLA, Laplace-based iter-
ated bootstrap with likelihood adjustment

crabs only, shrimp only, both crabs and shrimp), with each of these units of eight re-

peated in ten blocks, giving a total of 80 observations. A natural way to model this data

is by means of a generalised linear mixed model that takes into account heterogeneity

between blocks. Predation is the binary response, and the linear predictor is

logit[P(yi j = 1|αi)] = β0 +β1ci j +β2si j +β3bi j +αi , (5.17)

where ci j, si j and bi j are dummy variables denoting the treatment used in the ith block

at the jth repetition, namely crabs only, shrimp only, and both crabs and shrimp, re-

spectively.

Table 5.6 gives the estimates of model (5.17) for the methods under consideration.

PQL and corrected PQL give the smallest estimates of σ , which based on Breslow &

Lin (1995) and Lin & Breslow (1996) can be an indication of underperformance of

the methods due to the large variance of the random effects and the small cluster size.

Also, the PQL and corrected PQL estimates of the fixed effects are the smallest in

absolute value. The computational run-times for the methods under consideration are,

in increasing order, 0.04,0.05,0.37,19.68,23.38,39.34,45.77 seconds for the PQL,

corrected PQL, maximum approximate likelihood, approximate parametric bootstrap

with R = 50, IBLA with R = 50, approximate parametric bootstrap with R = 100, and

IBLA with R = 100, respectively. The iterative process of Section 4.4 converged in 11

and 10 iterations when R was set to 50 and 100, respectively.
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Table 5.7: Mean bias and mean squared error (MSE) for the parameters of the logistic mixed
model for the Culcita sea stars setting, and empirical coverage probability of 90%, 95% and
99% confidence intervals for βi (i ∈ {0,1,2,3}) based on the Wald statistic.

La-ML PQL CPQL La-BOOT La-IBLA

(1−α)% R - - - 50 100 50 100

β0 Bias - 3.707 1.830 1.415 0.878 0.756 0.842 0.711
MSE - 80.372 71.565 47.683 32.352 27.011 31.144 27.275

Coverage 90 0.747 0.779 0.810 0.843 0.862 0.856 0.882
95 0.815 0.845 0.865 0.917 0.932 0.928 0.941
99 0.904 0.906 0.917 0.922 0.943 0.935 0.956

β1 Bias - -2.920 -2.165 -1.726 -0.902 -0.726 -0.825 -0.713
MSE - 55.693 68.754 45.301 23.563 19.745 24.012 19.847

Coverage 90 0.856 0.838 0.847 0.873 0.884 0.880 0.891
95 0.908 0.885 0.892 0.920 0.932 0.928 0.939
99 0.957 0.926 0.927 0.961 0.970 0.972 0.981

β2 Bias - -3.068 -2.116 -1.619 -0.803 -0.697 -0.788 -0.676
MSE - 58.448 69.089 45.580 24.231 20.338 24.958 20.504

Coverage 90 0.838 0.824 0.839 0.859 0.865 0.871 0.882
95 0.893 0.875 0.886 0.918 0.925 0.931 0.942
99 0.950 0.924 0.927 0.968 0.979 0.970 0.979

β3 Bias - -3.332 -2.005 -1.619 -0.799 -0.697 -0.775 -0.676
MSE - 63.178 68.273 45.161 25.323 22.568 25.452 22.638

Coverage 90 0.830 0.796 0.818 0.864 0.875 0.872 0.886
95 0.882 0.856 0.870 0.909 0.916 0.923 0.934
99 0.945 0.916 0.921 0.968 0.976 0.976 0.983

σ Bias - 1.338 -0.738 -0.543 0.563 0.417 0.356 0.284
MSE - 27.331 1.100 0.935 9.154 8.973 9.232 9.568

Notes: La-ML, Laplace-based maximum likelihood; PQL, penalised quasi-likelihood; CPQL, corrected penalised quasi-
likelihood; La-BOOT, Laplace-based parametric bootstrap; La-IBLA, Laplace-based iterated bootstrap with likelihood adjust-
ment

Similar to the multicenter clinical trial example, we performed a simulation study

in order to further investigate the performance of the five methods in a generalised

linear mixed model context with a large random-effect variance. We simulated 10000

independent samples from model (5.17) at the maximum approximate likelihood esti-

mates reported in Table 5.6.

Table 5.7 presents the mean bias, mean squared error and empirical coverage prob-

abilities of two-sided confidence intervals based on the Wald statistic for the fixed

effects. The results for the fixed effects are similar across the five methods in broad

outline; the methods overestimate the fixed intercept β0 and underestimate the fixed

effects associated with the treatment βi, i = {1,2,3}. As expected, the standard esti-

mation methods (Laplace-based maximum likelihood and PQL) yield the largest bias,

and corrected PQL reduces the bias of PQL estimates. Laplace-based parametric boot-

strap and IBLA yield the best results in terms of bias, with the latter giving slightly
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better results. Mean squared errors tend to be smaller under the Laplace-based para-

metric bootstrap and IBLA estimation, with some of them being less than half the mean

squared errors under the maximum approximate likelihood or PQL estimation.

The good performance of Laplace-based IBLA is also evident in the estimation

of the standard deviation of the random effects σ , yielding the smallest bias across

the five methods. The PQL and corrected PQL methods underestimate σ , contrary to

the rest of the methods that yield positive bias. Laplace-based parametric bootstrap

and IBLA reduce the mean squared error of Laplace-based maximum likelihood, but

PQL and corrected PQL perform best in terms of mean squared error even though

they suffer from larger bias of the σ estimates. Callens & Croux (2005) in their study

compared PQL with adaptive Gaussian quadrature and ordinary Gaussian quadrature

in estimating parameters for logistic regression mixed models and found that in terms

of mean squared error, the quadrature methods perform relatively poorly in compari-

son with PQL, which concurs with our findings. An explanation given in Callens &

Croux (2005) is that the number of quadrature points used in the numerical integration

techniques is not adequate to outperform the mean squared error of PQL.

Comparing the empirical coverage probabilities, the results in Table 5.7 indicate the

conservativeness of the Wald statistic based on the maximum approximate likelihood

estimates. On the contrary, the coverage probabilities of the 90, 95 and 99% confidence

intervals for any of the fixed effects based on the Wald statistic and the approximate

parametric bootstrap or IBLA estimates are notably closer to the nominal level, with

the former being slightly more conservative than the latter.

The average computational run-times for the methods under consideration are, in

increasing order, 0.12,0.14,1.63,9.38,11.62,13.93,18.07 seconds for the PQL, cor-

rected PQL, maximum approximate likelihood, approximate parametric bootstrap with

R = 50, IBLA with R = 50, approximate parametric bootstrap with R = 100, and IBLA

with R = 100, respectively. On average, the iterative process of Section 4.4 converged

in 8.4 and 5.1 iterations when R was set to 50 and 100, respectively.

In summary, Laplace-based IBLA seems to do well in estimating logistic mixed

models producing mean bias-reduced estimates, even in the case of a large random

effects dispersion and a small cluster size. The method also appears to perform well
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when the resulting estimates are used to construct Wald-type inferences.

5.6 Concluding remarks

In this chapter we tested the performance of IBLA of Section 4.4 in the context

of generalised linear mixed models. First, we compared the performance of IBLA in

estimation and inference with the traditional adjusted score equation (Firth, 1993). In

order to do that, we used a simple logistic mixed model with a fixed intercept and a

random intercept only. The results indicate that the traditional adjusted score equation

method is better in reducing the bias in the estimated variance component parameters,

but IBLA also improves estimation. As expected, the Monte Carlo size R governs the

accuracy of IBLA. Accuracy increases with increasing R, but at the cost of longer com-

putational run-time. However, the calculations required for obtaining the traditional

adjusted score equations and the large number of intractable integrals that are involved

in the equations, make their derivation a challenging task, especially for generalised

linear mixed models with more complex random and fixed effects structures. On the

other hand, IBLA depends only on the first two derivatives of a suitably approximated

log-likelihood and hence it can be implemented virtually for any model.

Second, we tested IBLA through two real-data applications to generalised linear

mixed models with a random intercept. These examples illustrate that when the cluster

size is small or the dispersion parameter is large, standard estimation methods such as

the maximum approximate likelihood and the PQL tend to be inaccurate. The large

bias in the estimated dispersion parameter affects inference on regression coefficients,

and the Wald test is conservative. Corrected PQL attempts to improve PQL estimation

but the promised improvement depends on the cluster size and the variance structure.

Approximate parametric bootstrap reduces the bias in the maximum approximate like-

lihood estimates and also improves inference. Even though IBLA is the computation-

ally most expensive method, in most cases it was found to be the best method in terms

of mean bias, mean squared error and empirical coverage probabilities.

Overall, IBLA appears to be a promising algorithm for computing bias-reduced es-

timates in the framework of generalised linear mixed models. More numerical studies

are needed to evaluate its behaviour in other generalised linear mixed models.



Chapter 6

Median bias reduction in linear mixed

models

6.1 Introduction

Chapter 2 dealt with mean bias reduction in linear mixed models. In this chapter,

we consider a different type of bias, namely, median bias reduction in linear mixed

models.

Section 6.2 presents the median bias reducing method proposed in Kenne Pagui

et al. (2017). Kenne Pagui et al. (2017) show that under suitable conditions third-order

median unbiased estimators can be obtained by the solution of a suitably adjusted

score equation. Such median bias-reduced (median BR) estimators have component-

wise the same probability of over and under-estimating the true parameter value. A

key property of these estimators, not shared with the mean bias-reduced ones, is that

any monotone component-wise transformation of the estimators results automatically

in median bias-reduced estimators of the transformed parameters (Kenne Pagui et al.,

2017). Such equivariance property can be useful e.g. in the context of random effects

meta-analysis we considered in Section 2.9 where the Fisher information and, hence,

the asymptotic variances of various likelihood-based estimators depend only on the

heterogeneity parameter.

In Section 6.3 we derive the adjusted score equation for median bias reduction

in linear mixed models defined in Chapter 2, and compare it to the corresponding

equation for mean bias reduction derived in Section 2.4. The two equations differ by
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one extra term. Sections 6.4 and 6.5 use the same dataset and simulation study used in

Sections 2.7 and 2.8 to compare the performance of the mean and median BR methods

in reducing the bias of ML estimates. The results provide evidence on the effectiveness

of median bias reduction in improving estimation and Wald-type inference.

In Section 6.6 we derive the median bias-reducing adjusted score functions for ran-

dom effects meta-analysis and meta-regression. The adjusted score functions are found

to correspond to a median bias reducing penalised likelihood (median BRPL), whose

logarithm differs from the logarithm of the mean BRPL in Kosmidis et al. (2017) by

a simple additive term that depends on the heterogeneity parameter. Since the adjust-

ments to the score function for mean and median bias reduction are both of order O(1),

the same arguments as in Kosmidis et al. (2017) are used to obtain a median BRPL ra-

tio statistic with known asymptotic null distribution that can be used for carrying out

hypothesis tests and constructing confidence regions or intervals for either the fixed ef-

fect or the heterogeneity parameter. The simulation studies and real data applications

used in Kosmidis et al. (2017) are used to assess the performance of estimation based

on the median BRPL, and compare it to ML and the mean BRPL. We also compare the

performance of median BRPL ratio statistic with LR and mean BRPL ratio statistics.

Comparison with other methods is not done, because the mean BRPL ratio statistic

is already a strong competitor against them in terms of inferential performance as is

illustrated in the comparisons in Kosmidis et al. (2017).

6.2 Adjusted score equation for median bias reduction

Kenne Pagui et al. (2017) propose an adjusted score equation approach which can

be used to obtain median bias-reduced estimators. Specifically, under the model, the

new estimator has a distribution with component-wise medians closer to the “true”

parameter values than the ML estimator. Kenne Pagui et al. (2017) consider the me-

dian as a centring index for the score, and the adjusted score function for median bias

reduction then results by subtracting from the score its approximate median.

Let j(θ) be the observed information matrix and i(θ) be the expected information

matrix with tth column it(θ). Let also it(θ) and itt(θ) be the tth column and the tth

diagonal element of {i(θ)}−1, with t ∈ {1, . . . , p+m}. Kenne Pagui et al. (2017) show



118 Chapter 6. Median bias reduction in linear mixed models

that a median bias-reduced estimator θ̂ † can be obtained by solving an adjusted score

equation of the form s†(θ) = s(θ)+A†(θ) = 0, where the extra additive term A†(θ)

is of order O(1), with tth element

A†
t (θ) =

1
2

tr
[
{i(θ)}−1(Pt(θ)+Qt(θ))

]
−{it(θ)}TK†(θ) . (6.1)

The quantities Pt(θ) = Eθ [s(θ)sT(θ)st(θ)] and Qt(θ) = Eθ [− j(θ)st(θ)] in (6.1) are

those introduced by Kosmidis & Firth (2009) for mean bias-reduction, and K†(θ) is a

(p+m)-vector with tth element K†
t (θ) = {it(θ)}TKt(θ) where Kt(θ) is another (p+

m)-vector with uth element

Ktu(θ) = tr
[

it(θ){it(θ)}T

itt(θ)

(
1
3

Pu(θ)+
1
2

Qu(θ)

)]
.

Given that A†(θ) is of order O(1), θ̂ † has the same asymptotic distribution as

θ̂ (Kenne Pagui et al., 2017), i.e. multivariate normal with mean θ and variance-

covariance matrix {i(θ)}−1, which can be consistently estimated as {i(θ̂ †)}−1.

6.3 Median bias reducing adjusted score equation for

linear mixed models

In the context of linear mixed models values of t and u in {1, . . . , p} correspond to

the elements of parameter β , and values of t and u in {p+1, . . . , p+m} correspond to

the elements of parameter ψ . The quantity Kt(θ) has the form

Kt(θ) =

 0p

κ1t

 for t ∈ {1, . . . , p} or Kt(θ) =

 0p

κ2t

 for t ∈ {p+1, . . . , p+m}

(6.2)

where κ1t and κ2t are column vectors with uth elements

κ1tu =
1
3

tr

(
{i−1

ββ
}t{i−1

ββ
}T

t

itt
P2u(ψ)

)
,

κ2tu = −1
6

tr

(
{i−1

ψψ}t−p{i−1
ψψ}T

t−p

itt
P3u(ψ)

)
+

1
2

tr

(
{i−1

ψψ}t−p{i−1
ψψ}T

t−p

itt
P4u(ψ)

)
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for u ∈ {1, . . . ,m}, where the matrices P2u(ψ), P3u(ψ), and P4u(ψ) are defined in Ap-

pendix A. Using the result in (6.2) we have A†
t (θ) = 0 for t ∈ {1, . . . , p} (regression

parameters) and A†
t (θ) = At(θ)− {iψψ}T

t−pκ† for t ∈ {p + 1, . . . , p + m} (variance

components), where κ† is a column vector with rth element κ†
r = {i−1

ψψ}T
rκ2,p+r , for

r ∈ {1, . . . ,m}.

The median BR adjusted score functions for the fixed- and random-effect param-

eters of linear mixed models are s†
β
(θ) = sβ (θ) and s†

ψr(θ) = s∗ψr
(θ)−{iψψ}T

rκ† , re-

spectively. The median BR estimates θ̂ † = (β̂ †T, ψ̂†T)T solve the equations s†
β
(θ) = 0p

and s†
ψ(θ) = 0m .

Let θ̂ † = (β̂ †T, λ̂ †T, σ̂2†
ε )T be the median BR estimate of θ , where λ̂ † is the esti-

mate of the lower triangular elements of the Cholesky factor L. We compute θ̂ † using

the nleqslv R package (Hasselman, 2017), and we use the mean BR estimates as

starting values in the algorithm that calculates the median BR estimates.

6.4 Dental data

In this section, we revisit the example of dental data (Potthoff & Roy, 1964) dis-

cussed in Section 2.7, where the ML, REML, and mean BR methods were evaluated

under six different model structures and two different parameterisations. All the tables

in this section are the same tables given in Section 2.7 where we further add the results

obtained from the median BR method.

The median BR estimates of the linear mixed model parameters in models I-VI

are added in Table 6.1. We observe that the median BR estimates of the fixed effects

are similar to the ML, REML, and mean BR estimates. The estimates of the variance

components differ. Specifically, the median BR estimates of σ2
u0

are the largest among

the four methods, and the median BR estimates of ρ seem to be closer to the REML

estimates. The corresponding results based on the Cholesky parameterisation are given

in Table 6.2. For models I-III, which are the models with only a random intercept, the

median BR estimates of the variance components are similar to the mean BR estimates.

For models IV-VI, which are the models with a random slope correlated with a random

intercept, the mean BR estimates of λ1 are the largest, followed by the median BR

estimates.

nleqslv
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Table 6.1: ML, REML, mean BR, and median BR estimates of the linear mixed model pa-
rameters in models I-VI for the dental data (Potthoff & Roy, 1964) using the parameterisation
ψ = (σ2

u0
,σ2

u1
,ρ,σ2

ε )
T. Estimated standard errors are reported in parentheses.

Fixed effects Variance components

Model Method β0 β1 β2 β3 σ2
u0

σ2
u1

ρ σ2
ε

I ML 16.76 (0.79) 0.66 (0.06) - - 4.29 - - 2.02
REML/Mean BR 16.76 (0.80) 0.66 (0.06) - - 4.47 - - 2.05

Median BR 16.76 (0.81) 0.66 (0.06) - - 4.60 - - 2.07

II ML 17.71 (0.82) 0.66 (0.06) -2.32 (0.73) - 2.99 - - 2.02
REML/Mean BR 17.71 (0.83) 0.66 (0.06) -2.32 (0.76) - 3.27 - - 2.05

Median BR 17.71 (0.84) 0.66 (0.06) -2.32 (0.77) - 3.37 - - 2.07

III ML 16.34 (0.96) 0.78 (0.08) 1.03 (1.51) -0.30 (0.12) 3.03 - - 1.87
REML/Mean BR 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.12) 3.30 - - 1.92

Median BR 16.34 (0.99) 0.78 (0.08) 1.03 (1.55) -0.30 (0.12) 3.40 - - 1.94

IV ML 16.76 (0.76) 0.66 (0.07) - - 4.81 0.05 -0.58 1.72
REML 16.76 (0.78) 0.66 (0.07) - - 5.42 0.05 -0.61 1.72

Mean BR 16.76 (0.78) 0.66 (0.07) - - 5.42 0.05 -0.75 1.72
Median BR 16.76 (0.79) 0.66 (0.07) - - 5.75 0.06 -0.60 1.74

V ML 17.64 (0.86) 0.66 (0.07) -2.15 (0.73) - 6.99 0.05 -0.76 1.72
REML 17.64 (0.89) 0.66 (0.07) -2.15 (0.76) - 7.82 0.05 -0.77 1.72

Mean BR 17.62 (0.88) 0.66 (0.07) -2.12 (0.66) - 7.97 0.05 -0.84 1.72
Median BR 17.62 (0.90) 0.66 (0.07) -2.12 (0.79) - 8.20 0.05 -0.75 1.74

VI ML 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.13) 4.56 0.02 -0.60 1.72
REML 16.34 (1.02) 0.78 (0.09) 1.03 (1.60) -0.30 (0.13) 5.79 0.03 -0.67 1.72

Mean BR 16.34 (1.02) 0.78 (0.09) 1.03 (1.60) -0.30 (0.13) 5.79 0.03 -0.81 1.72
Median BR 16.34 (1.03) 0.78 (0.09) 1.03 (1.62) -0.30 (0.14) 6.15 0.03 -0.65 1.74

Next, we used the same independent samples generated in the simulation study in

Section 2.7, and computed the estimated mean bias of the median BR estimates un-

der the ψ = (σ2
u0
,σ2

ε )
T parameterisation, the percentage of underestimation, the mean

squared error, and the estimated relative increase in the mean squared error from its

absolute minimum (the variance) due to bias (Kosmidis, 2014b, Table 5). We see in

Table 6.3 that median BR reduces the mean bias of the ML estimates, but it does not

perform as well as the mean BR does in this respect. The mean BR approach is also

better than the median BR in terms of mean squared error, but the median BR is the

best method in terms of percentage of underestimation.

The simulated samples were also used to calculate the empirical p-value distribu-

tion for the two-sided tests that each parameter is equal to the true values based on the

LR and the Wald-type statistics. The results in Table 6.4 suggest that the empirical

p-value distribution for the Wald statistic using the median BR estimates is similar to
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Table 6.2: ML, REML, mean BR, and median BR estimates of the linear mixed model param-
eters in models I-VI for the dental data (Potthoff & Roy, 1964) using the Cholesky parameter-
isation. Estimated standard errors are reported in parentheses.

Fixed effects Variance components

Model Method β0 β1 β2 β3 λ1 λ2 λ3 σ2
ε

I ML 16.76 (0.79) 0.66 (0.06) - - 2.07 - - 2.02
REML 16.76 (0.80) 0.66 (0.06) - - 2.11 - - 2.05

Mean BR 16.76 (0.81) 0.66 (0.06) - - 2.17 - - 2.05
Median BR 16.76 (0.81) 0.66 (0.06) - - 2.14 - - 2.07

II ML 17.71 (0.82) 0.66 (0.06) -2.32 (0.73) - 1.73 - - 2.02
REML 17.71 (0.83) 0.66 (0.06) -2.32 (0.76) - 1.81 - - 2.05

Mean BR 17.71 (0.84) 0.66 (0.06) -2.32 (0.78) - 1.86 - - 2.05
Median BR 17.71 (0.84) 0.66 (0.06) -2.32 (0.78) - 1.84 - - 2.07

III ML 16.34 (0.96) 0.78 (0.08) 1.03 (1.51) -0.30 (0.12) 1.74 - - 1.87
REML 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.12) 1.82 - - 1.92

Mean BR 16.34 (0.99) 0.78 (0.08) 1.03 (1.55) -0.30 (0.12) 1.87 - - 1.92
Median BR 16.34 (0.99) 0.78 (0.08) 1.03 (1.55) -0.30 (0.12) 1.84 - - 1.94

IV ML 16.76 (0.76) 0.66 (0.07) - - 2.19 -0.12 0.17 1.72
REML 16.76 (0.78) 0.66 (0.07) - - 2.33 -0.14 0.18 1.72

Mean BR 16.76 (0.80) 0.66 (0.08) - - 2.54 -0.17 0.20 1.72
Median BR 16.76 (0.79) 0.66 (0.07) - - 2.40 -0.14 0.20 1.74

V ML 17.64 (0.86) 0.66 (0.07) -2.15 (0.73) - 2.64 -0.16 0.14 1.72
REML 17.64 (0.89) 0.66 (0.07) -2.15 (0.76) - 2.80 -0.17 0.15 1.72

Mean BR 17.60 (0.91) 0.66 (0.07) -2.06 (0.80) - 2.95 -0.19 0.16 1.72
Median BR 17.60 (0.90) 0.66 (0.07) -2.07 (0.80) - 2.85 -0.18 0.16 1.74

VI ML 16.34 (0.98) 0.78 (0.08) 1.03 (1.54) -0.30 (0.13) 2.13 -0.09 0.12 1.72
REML 16.34 (1.02) 0.78 (0.09) 1.03 (1.60) -0.30 (0.13) 2.41 -0.12 0.13 1.72

Mean BR 16.34 (1.05) 0.78 (0.09) 1.03 (1.65) -0.30 (0.14) 2.62 -0.15 0.16 1.72
Median BR 16.34 (1.03) 0.78 (0.09) 1.03 (1.62) -0.30 (0.14) 2.48 -0.13 0.15 1.74

that of the Wald statistic using the mean BR estimates, and close to uniformity.

Lastly, we obtained the corresponding results under the ψ = (σu0,σ
2
ε )

T parameter-

isation. We did not repeat the simulation study in order to obtain the estimates of ψ .

Instead, because of the equivariance of the median BRPL estimators under monotone

component-wise parameter transformations, the median BR estimates of σu0 were cal-

culated by taking the square root of the median BR estimates of σ2
u0

obtained in the last

simulation study. The results for the ψ = (σu0,σ
2
ε )

T setting are reported in Tables 6.5

and 6.6. Median BR reduces the bias of the ML estimates and it also performs well

in terms of percentage of underestimation. The mean squared error is similar across

all methods. The mean squared errors of the median BR estimates of the variance

components are inflated by as much as 1% due to bias from their minimum values.
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Table 6.3: Mean bias, percentage of underestimation (PU), and mean squared error (MSE) of
the variance component estimates for the linear mixed models I-III using the dental data setting
and the ψ = (σ2

u0
,σ2

ε )
T parameterisation.

Model Parameter Method Bias PU MSE Bias2/Variance (%)

I σ2
u0

ML -0.166 58.3 1.645 1.707
REML/Mean BR 0.006 53.0 1.743 0.002

Median BR 0.132 49.7 1.854 0.946
σ2

ε ML -0.019 54.0 0.100 0.362
REML/Mean BR 0.006 51.2 0.102 0.036

Median BR 0.023 49.2 0.105 0.513

II σ2
u0

ML -0.250 63.7 0.897 7.471
REML/Mean BR 0.004 53.3 0.972 0.001

Median BR 0.099 49.5 1.036 0.959
σ2

ε ML -0.019 54.0 0.100 0.362
REML/Mean BR 0.006 51.2 0.102 0.036

Median BR 0.018 49.2 0.105 0.513

III σ2
u0

ML -0.244 63.6 0.892 7.152
REML/Mean BR 0.004 53.4 0.971 0.002

Median BR 0.100 49.5 1.034 0.968
σ2

ε ML -0.041 57.2 0.087 1.939
REML/Mean BR 0.006 51.4 0.090 0.037

Median BR 0.022 49.3 0.092 0.520

Table 6.4: Empirical p-value distribution (%) for the likelihood ratio test and the tests based
on the Wald statistic using the dental data setting and the ψ = (σ2

u0
,σ2

ε )
T parameterisation.

Model α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

I Likelihood ratio 1.1 2.7 4.9 9.4 24.7 49.9 74.8 89.7 94.7 97.4 99.0
Wald using ML 1.2 2.8 5.3 9.7 24.9 50.0 74.8 89.7 94.7 97.4 99.0
Kenward-Roger 1.0 2.5 4.7 9.1 24.4 49.6 74.6 89.5 94.6 97.4 99.0
Wald using mean BR 1.2 2.7 5.2 9.4 24.6 49.7 74.6 89.6 94.7 97.4 99.0
Wald using median BR 1.1 2.7 4.9 9.3 24.6 49.6 74.6 89.5 94.6 97.4 99.0

II Likelihood ratio 1.6 3.2 6.0 12.0 27.4 51.5 76.2 90.8 95.4 97.6 99.3
Wald using ML 2.2 4.1 6.7 12.8 27.9 51.6 76.2 90.8 95.4 97.6 99.3
Kenward-Roger 1.2 2.6 4.9 10.1 25.4 49.3 74.9 90.3 95.3 97.5 99.2
Wald using mean BR 1.8 3.3 5.9 11.6 26.3 50.1 75.3 90.3 95.3 97.5 99.2
Wald using median BR 1.6 3.2 5.6 11.2 25.7 49.4 74.8 90.2 95.3 97.5 99.2

III Likelihood ratio 1.0 2.7 5.6 10.4 26.0 50.1 74.7 89.9 95.4 97.7 99.0
Wald using ML 1.2 3.1 6.0 10.9 26.1 50.1 74.7 89.9 95.4 97.7 99.0
Kenward-Roger 0.9 2.5 5.4 10.0 25.2 49.5 74.5 89.8 95.3 97.7 99.0
Wald using mean BR 1.0 2.8 5.6 10.4 25.5 49.6 74.5 89.8 95.3 97.7 99.0
Wald using median BR 1.0 2.7 5.5 10.3 25.3 49.5 74.5 89.8 95.3 97.7 99.0

Similar to the previous parameterisation, we used the simulated samples to calcu-

late the empirical p-value distribution for the two-sided tests that each parameter is

equal to the true values based on the LR and the Wald statistic. The results are re-

ported in Table 6.6 and are qualitatively similar to the ones obtained using the first

parameterisation in Table 6.4.
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Table 6.5: Mean bias, percentage of underestimation (PU), and mean squared error (MSE) of
the Cholesky parameter estimates for the linear mixed models I-III using the dental data setting
and the ψ = (σu0 ,σ

2
ε )

T parameterisation.
Model Parameter Method Bias PU MSE Bias2/Variance (%)

I σu0 ML -0.065 58.3 0.102 4.279
REML -0.023 53.0 0.102 0.532

Mean BR 0.028 47.1 0.105 0.766
Median BR 0.033 46.5 0.106 1.044

σ2
ε ML -0.019 54.0 0.100 0.362

REML 0.006 51.2 0.102 0.036
Mean BR 0.006 51.2 0.102 0.036

Median BR 0.023 49.2 0.105 0.513

II σu0 ML -0.097 63.7 0.086 12.267
REML -0.023 53.3 0.082 0.633

Mean BR 0.027 46.5 0.084 0.851
Median BR 0.030 46.1 0.085 1.050

σ2
ε ML -0.019 54.0 0.100 0.362

REML 0.006 51.2 0.102 0.036
Mean BR 0.006 51.2 0.102 0.036

Median BR 0.018 49.2 0.105 0.513

III σu0 ML -0.094 63.6 0.084 11.802
REML -0.022 53.4 0.081 0.609

Mean BR 0.026 46.8 0.083 0.835
Median BR 0.030 46.1 0.084 1.060

σ2
ε ML -0.041 57.2 0.087 1.939

REML 0.006 51.4 0.090 0.037
Mean BR 0.006 51.4 0.090 0.037

Median BR 0.022 49.3 0.092 0.520

Table 6.6: Empirical p-value distribution (%) for the tests based on the Wald statistic using the
dental data setting and the ψ = (σu0 ,σ

2
ε )

T parameterisation.
Model α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

I Likelihood ratio 1.1 2.7 4.9 9.4 24.7 49.9 74.8 89.7 94.7 97.4 99.0
Wald using ML 1.2 2.8 5.3 9.7 24.9 50.0 74.8 89.7 94.7 97.4 99.0
Wald using REML 1.2 2.7 5.2 9.4 24.6 49.7 74.6 89.6 94.7 97.4 99.0
Kenward-Roger 1.0 2.5 4.7 9.1 24.4 49.6 74.6 89.5 94.6 97.4 99.0
Wald using mean BR 1.2 2.7 5.2 9.4 24.6 49.7 74.6 89.6 94.7 97.4 99.0
Wald using median BR 1.1 2.7 4.9 9.3 24.6 49.6 74.6 89.5 94.6 97.4 99.0

II Likelihood ratio 1.6 3.2 6.0 12.0 27.4 51.5 76.2 90.8 95.4 97.6 99.3
Wald using ML 2.2 4.1 6.7 12.8 27.9 51.6 76.2 90.8 95.4 97.6 99.3
Wald using REML 1.8 3.3 5.9 11.6 26.3 50.1 75.3 90.3 95.3 97.5 99.2
Kenward-Roger 1.3 2.8 5.2 10.7 26.0 50.0 75.3 90.4 95.3 97.5 99.2
Wald using mean BR 1.5 3.0 5.4 10.5 25.4 48.9 74.6 90.2 95.2 97.5 99.2
Wald using median BR 1.5 2.9 5.3 10.4 25.2 48.8 74.6 90.1 95.2 97.5 99.2

III Likelihood ratio 1.0 2.7 5.6 10.4 26.0 50.1 74.7 89.9 95.4 97.7 99.0
Wald using ML 1.2 3.1 6.0 10.9 26.1 50.1 74.7 89.9 95.4 97.7 99.0
Wald using REML 1.0 2.8 5.6 10.4 25.5 49.6 74.5 89.8 95.3 97.7 99.0
Kenward-Roger 0.9 2.5 5.4 10.0 25.2 49.5 74.5 89.8 95.3 97.7 99.0
Wald using mean BR 1.0 2.8 5.6 10.4 25.5 49.6 74.5 89.8 95.3 97.7 99.0
Wald using median BR 1.0 2.7 5.5 10.3 25.3 49.5 74.5 89.8 95.3 97.7 99.0
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In a nutshell, the results in this section suggest that median BR reduces the bias

and mean squared error of ML estimates and is a good competitor to mean BR.

6.5 Simulation study

In this section, we revisit the simulation study performed in Section 2.8, where

we studied the behaviour of the ML, REML, and mean BR methods under small and

moderate sample sizes when fitting a linear mixed model with a random intercept and

a correlated random slope. Similar to the previous section, we generated the same

samples and added the results obtained from the median BR method in Tables 6.7 and

6.8.

Table 6.7 indicates that the mean BR and median BR methods reduce the bias of

the ML estimates of the variance components, especially λ1, yielding smaller bias than

REML. The results on the percentage of underestimation for the Cholesky parameters

and the variance error indicate that median bias reduction is achieved by solving the

median BR adjusted score equations. The mean squared error is in all scenarios similar

across the four estimation methods. The mean squared errors of the ML and REML

estimates are inflated by as much as 35% and 15% due to bias from their variance,

respectively. On the other hand, the corresponding inflation factors for the mean BR

and median BR estimators are very close to zero and do not exceed 0.4%. Table 6.8

indicates once again that the empirical p-value distribution for the KR and the Wald

statistic using the mean BR and median BR estimates are closest to uniformity.
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Table 6.7: Mean bias, percentage of underestimation (PU), and mean squared error (MSE) of
the Cholesky parameter estimates under the linear mixed model (2.9) with cluster size ni and
variance error σ2

ε .
Bias PU MSE Bias2/Variance (%)

Method λ1 λ2 λ3 σ2
ε λ1 λ2 λ3 σ2

ε λ1 λ2 λ3 σ2
ε λ1 λ2 λ3 σ2

ε

ni = 6,σ2
ε = 0.07052

ML -0.16 0.01 -0.07 0.00 65.8 48.7 72.5 54.5 0.20 0.03 0.02 0.00 13.53 0.14 35.01 0.11
REML -0.06 0.00 -0.04 0.00 56.9 49.4 64.9 54.5 0.20 0.03 0.02 0.00 1.83 0.03 12.82 0.11

Mean BR -0.01 0.00 0.00 0.00 52.0 49.7 50.2 54.5 0.21 0.03 0.02 0.00 0.02 0.00 0.03 0.11
Median BR 0.01 0.00 0.01 0.00 50.3 49.7 48.5 51.5 0.22 0.03 0.02 0.00 0.07 0.00 0.39 0.17

ni = 6,σ2
ε = 0.1412

ML -0.16 0.01 -0.07 0.00 66.0 48.5 72.5 54.5 0.20 0.03 0.02 0.00 13.54 0.15 35.10 0.11
REML -0.06 0.00 -0.04 0.00 56.8 49.4 64.9 54.5 0.20 0.03 0.02 0.00 1.84 0.03 12.87 0.11

Mean BR -0.01 0.00 0.00 0.00 51.9 49.6 50.1 54.5 0.21 0.03 0.02 0.00 0.02 0.01 0.03 0.11
Median BR 0.01 0.00 0.01 0.00 50.3 49.6 48.4 51.5 0.22 0.03 0.02 0.00 0.07 0.00 0.39 0.17

ni = 6,σ2
ε = 0.2822

ML -0.16 0.01 -0.07 0.00 65.8 48.4 72.7 54.5 0.21 0.03 0.02 0.00 13.58 0.16 35.45 0.11
REML -0.06 0.00 -0.04 0.00 56.9 49.2 65.3 54.5 0.21 0.03 0.02 0.00 1.86 0.04 13.08 0.11

Mean BR -0.01 0.00 0.00 0.00 51.8 49.6 50.0 54.5 0.22 0.03 0.02 0.00 0.02 0.01 0.04 0.11
Median BR 0.01 0.00 0.01 0.00 50.3 49.6 48.5 51.5 0.22 0.03 0.02 0.00 0.06 0.01 0.39 0.16

ni = 26,σ2
ε = 0.07052

ML -0.15 0.00 -0.07 0.00 64.9 49.6 73.4 52.0 0.20 0.03 0.02 0.00 12.24 0.07 35.56 0.04
REML -0.06 0.00 -0.05 0.00 56.5 50.2 65.8 52.0 0.21 0.03 0.02 0.00 1.77 0.00 15.14 0.04

Mean BR 0.00 0.00 0.00 0.00 51.5 50.7 51.8 51.8 0.21 0.03 0.02 0.00 0.01 0.01 0.01 0.02
Median BR 0.02 0.00 0.00 0.00 49.8 50.7 50.3 50.4 0.22 0.03 0.02 0.00 0.26 0.01 0.09 0.03

ni = 26,σ2
ε = 0.1412

ML -0.15 0.00 -0.07 0.00 64.8 49.5 73.5 52.0 0.20 0.03 0.02 0.00 12.29 0.07 35.59 0.04
REML -0.05 0.00 -0.04 0.00 56.1 50.3 65.2 52.0 0.21 0.03 0.02 0.00 1.44 0.00 13.11 0.04

Mean BR 0.00 0.00 0.00 0.00 51.6 50.6 51.2 52.0 0.21 0.03 0.02 0.00 0.00 0.00 0.03 0.04
Median BR 0.02 0.00 0.01 0.00 50.2 50.6 49.3 50.6 0.22 0.03 0.02 0.00 0.17 0.00 0.37 0.01

ni = 26,σ2
ε = 0.2822

ML -0.15 0.00 -0.07 0.00 64.7 49.3 73.3 52.0 0.21 0.03 0.02 0.00 12.38 0.07 35.69 0.04
REML -0.05 0.00 -0.04 0.00 56.2 50.2 65.3 52.0 0.21 0.03 0.02 0.00 1.47 0.00 13.15 0.04

Mean BR 0.00 0.00 0.00 0.00 51.7 50.7 51.0 52.0 0.22 0.03 0.02 0.00 0.00 0.00 0.03 0.04
Median BR 0.02 0.00 0.01 0.00 50.2 50.7 49.5 50.6 0.22 0.03 0.02 0.00 0.16 0.00 0.37 0.01
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Table 6.8: Empirical p-value distribution (%) for the tests based on the Wald statistic using
the Cholesky parameter estimates under the linear mixed model (2.9) with cluster size ni and
variance error σ2

ε .

ni σ2
ε α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

6 0.07052 Likelihood ratio 2.3 4.6 8.1 14.5 31.2 56.0 77.1 90.8 95.6 97.8 99.1
Wald using ML 3.8 6.4 9.9 15.6 30.8 54.6 76.1 90.3 95.5 97.6 99.1
Wald using REML 3.1 5.2 8.2 13.7 28.5 52.7 75.1 89.8 95.2 97.5 99.0
Kenward-Roger 1.7 3.7 6.9 12.9 28.9 54.2 76.0 90.2 95.4 97.6 99.1
Wald using mean BR 2.3 3.8 6.3 11.1 24.7 48.7 73.3 88.8 94.8 97.2 99.0
Wald using median BR 2.2 3.7 6.2 10.9 24.3 48.4 73.1 88.6 94.8 97.2 99.0

6 0.1412 Likelihood ratio 2.3 4.6 8.0 14.5 31.3 56.0 77.0 90.7 95.6 97.7 99.1
Wald using ML 3.9 6.4 9.9 15.5 30.8 54.7 76.1 90.2 95.5 97.6 99.1
Wald using REML 3.2 5.3 8.2 13.6 28.5 52.7 75.1 89.7 95.3 97.4 99.0
Kenward-Roger 1.7 3.8 6.9 12.8 29.0 54.1 76.1 90.2 95.4 97.6 99.1
Wald using mean BR 2.3 3.9 6.3 11.1 24.6 48.8 73.4 88.9 94.8 97.2 98.9
Wald using median BR 2.2 3.7 6.1 10.8 24.2 48.3 73.1 88.7 94.7 97.2 98.9

6 0.2822 Likelihood ratio 2.2 4.6 8.1 14.4 31.3 56.0 77.1 90.6 95.7 97.7 99.1
Wald using ML 3.8 6.4 10.0 15.5 30.7 54.6 76.4 90.2 95.6 97.6 99.1
Wald using REML 3.2 5.3 8.3 13.6 28.5 52.6 75.1 89.6 95.3 97.5 99.0
Kenward-Roger 1.8 3.7 6.9 12.9 29.0 53.9 76.2 90.1 95.6 97.6 99.1
Wald using mean BR 2.2 3.9 6.2 11.1 24.7 48.7 73.2 88.9 94.8 97.3 98.9
Wald using median BR 2.1 3.8 6.1 10.7 24.3 48.3 73.1 88.9 94.8 97.2 98.9

26 0.07052 Likelihood ratio 2.2 4.8 8.6 14.9 32.0 55.9 78.3 91.4 95.4 97.7 99.1
Wald using ML 3.9 6.7 10.5 16.1 31.8 54.6 77.4 91.0 95.1 97.5 99.0
Wald using REML 3.1 5.7 8.8 14.2 29.5 52.8 76.5 90.3 94.9 97.4 99.0
Kenward-Roger 1.7 3.7 7.0 13.1 29.7 53.9 77.2 91.0 95.1 97.4 99.1
Wald using mean BR 2.3 4.0 6.6 11.4 25.5 49.1 74.2 89.5 94.5 97.2 98.9
Wald using median BR 2.3 3.8 6.4 11.2 25.0 48.7 74.0 89.3 94.4 97.1 98.9

26 0.1412 Likelihood ratio 2.2 4.8 8.6 15.0 32.0 55.9 78.3 91.4 95.4 97.6 99.1
Wald using ML 3.9 6.6 10.3 15.9 31.5 54.4 77.3 91.0 95.2 97.5 99.1
Wald using REML 3.1 5.6 8.7 13.8 29.1 52.5 76.3 90.3 94.9 97.4 99.0
Kenward-Roger 1.7 3.7 7.0 13.1 29.7 53.9 77.2 91.0 95.1 97.5 99.1
Wald using mean BR 2.3 3.9 6.5 11.3 25.2 48.8 74.1 89.5 94.4 97.2 99.0
Wald using median BR 2.2 3.8 6.3 11.1 24.7 48.4 73.9 89.3 94.4 97.2 99.0

26 0.2822 Likelihood ratio 2.2 4.8 8.6 14.9 32.0 55.9 78.3 91.4 95.4 97.7 99.1
Wald using ML 3.9 6.5 10.4 15.9 31.5 54.4 77.3 90.9 95.2 97.5 99.1
Wald using REML 3.1 5.6 8.7 13.9 29.1 52.5 76.2 90.3 94.9 97.4 99.0
Kenward-Roger 1.7 3.7 7.0 13.1 29.7 53.9 77.2 90.9 95.2 97.4 99.1
Wald using mean BR 2.3 3.9 6.5 11.3 25.2 48.8 74.1 89.6 94.4 97.2 98.9
Wald using median BR 2.2 3.7 6.3 11.1 24.7 48.4 73.9 89.4 94.4 97.2 98.9

6.6 Median bias reduction in random effects meta-

analysis and meta-regression

In the context of random effects meta-regression values of t and u in {1, . . . , p}

correspond to the elements of parameter β , and t,u = p+ 1 correspond to parameter

ψ .
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The observed information matrix j(θ) for the random effects meta-regression

model (2.10) is

j(θ) =

 XTW (ψ)X XTW (ψ)2R(β )

XTW (ψ)2R(β ) R(β )TW (ψ)3R(β )− 1
2 tr[W (ψ)2]


and the expected information matrix i(θ) is

i(θ) =

XTW (ψ)X 0p

0T
p

1
2 tr[W (ψ)2]

 . (6.3)

For this model

Pt(θ) =−Qt(θ) =

 0p×p XTW (ψ)2Xt

XTW (ψ)2Xt 0

 (t = 1, . . . , p) ,

and

Pp+1(θ) =

XTW (ψ)2X 0p

0T
p tr(W (ψ)3)

 and Qp+1(θ) =

0p×p 0p

0T
p − tr(W (ψ)3)

 ,

where Xt is the tth column of X .

The median bias-reducing adjustment for the random effects meta-analysis and

meta-regression models is obtained by plugging the above expressions into (6.1) and

has the form

A†(θ) =

 0p

1
2 tr[W (ψ)H(ψ)]+ 1

3
tr[W (ψ)3]
tr[W (ψ)2]

 , (6.4)

where H(ψ) = X(XTW (ψ)X)−1XTW (ψ). Substituting (6.4) in the expression for

s†(θ) gives that the median bias-reducing adjusted score functions for β and ψ are

s†
β
(θ) = sβ (θ) and

s†
ψ(θ) = sψ(θ)+

1
2

tr[W (ψ)H(ψ)]+
1
3

tr[W (ψ)3]

tr[W (ψ)2]
,

respectively.
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The median BR adjusted score function for the variance component ψ differs

from the corresponding mean BR adjusted score function by one extra additive term,

whereas the two adjusted score functions for the regression coefficients β are identical.

6.7 Computation of median bias-reduced estimator

A direct approach for computing the estimator θ̂ † = (β̂ †T, ψ̂†)T is through a modi-

fication of the two-step iterative process in Kosmidis et al. (2017). At the jth iteration

( j = 1,2, . . .)

1. calculate β ( j) by weighted least squares as

β
( j) = (XTW (ψ( j−1))X)−1XTW (ψ( j−1))y

2. solve s†
ψ(θ

( j)(ψ)) = 0 with respect to ψ , where θ ( j)(ψ) = (β ( j)T,ψ)T.

In the above steps, β ( j) is the candidate value for β̂ † at the jth iteration and ψ( j−1) is

the candidate value for ψ̂† at the ( j−1)th iteration. The equation in step 2 is solved nu-

merically, by searching for the root of the function s†
ψ(β

( j),ψ) in a predefined positive

interval. For the computations in this chapter we use the DL estimate of ψ as starting

value ψ(0). The iterative process is then repeated until the components of the score

function s†(θ) are all less than ε = 10−6 in absolute value at the current estimates.

6.8 Median bias-reducing penalised likelihood

Although it is not generally true that the median BR adjusted scores are the gra-

dients of a suitable penalised log-likelihood, in this case s†(θ) is the gradient of the

median BRPL

l†(θ) = l(θ)− 1
2

log |XTW (ψ)X |− 1
6

log[tr(W (ψ)2)] , (6.5)

where the expression for the differential of the log-determinant has been used in the

derivation of (6.5). Hence, θ̂ † is also the maximum median BRPL estimator. The

median BRPL in (6.5) differs from the mean BRPL derived in Kosmidis et al. (2017)

by the term − log[tr(W (ψ)2)]/6.
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An advantage of the median BRPL estimators over mean BRPL ones is that the

former are equivariant under monotone component-wise parameter transformations

(Kenne Pagui et al., 2017). In the context of random effects meta-analysis and meta-

regression, this equivariance implies that not only we get a median bias-reduced es-

timator of ψ , but we also get median bias-reduced estimates of the standard errors

for β by calculating the square roots of the diagonal elements of {i(θ)}−1 in (6.3) at

ψ†. This is because i(θ) is a function of ψ only, and moreover the square roots of

the diagonal elements of {i(θ)}−1 are monotone functions of ψ . The monotonicity of

the standard errors for β can be shown by showing that the diagonal elements of the

first derivative with respect to ψ of (XTW (ψ)X)−1 are positive. The above holds be-

cause d(XTW (ψ)X)−1/dψ = (XTW (ψ)X)−1(XTW (ψ)2X)(XTW (ψ)X)−1 is a product

of positive definite matrices, which in turn results to a positive definite matrix.

6.9 Penalised likelihood-based inference

For inference about either the components of the fixed effects β or the between-

study heterogeneity ψ we propose the use of the median BRPL ratio. If θ = (τT,λ T)T

and λ̂
†
τ is the maximiser of l†(θ) for fixed τ , then the same arguments as in Kosmidis

et al. (2017) can be used to show that the logarithm of the median BRPL ratio statistic

2{l†(τ̂†, λ̂ †)− l†(τ, λ̂ †
τ )} (6.6)

has a χ2
dim(τ) asymptotic distribution, as K goes to infinity. Specifically, the adjustment

to the score function is additive and of order O(1). As a result, the extra terms in

the asymptotic expansion of the logarithm of the median BRPL that depend on the

penalty and its derivatives disappear as information increases, and the expansion has

the same leading term as that of the log-likelihood (see, for example, Pace & Salvan,

1997, Section 9.4, for an asymptotic expansion of the log-likelihood).

6.10 Cocoa intake and blood pressure reduction data

In this section, we revisit the example of the cocoa data analysed in Section 2.9.3,

where the performance of estimation and inference based on the ML and mean BR was
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Table 6.9: ML, mean BRPL, and median BRPL estimates of the model parameters for the co-
coa data. Estimated standard errors are reported in parentheses. The 95% confidence intervals
based on the LR, mean BRPL ratio and median BRPL ratio are reported in squared brackets.

Parameter Iterations until Computational
Method β ψ convergence run-time (sec)

ML -2.799 (1.002) 4.199 4 1.1×10−2

[-5.26, -0.40] [1.10, 23.5]
Mean BRPL -2.811 (1.121) 5.546 6 1.8×10−2

[-5.73, 0.05] [1.00, 38.5]
Median BRPL -2.818 (1.244) 6.897 11 1.5×10−2

[-6.21, 0.52] [1.40, 58.0]
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Figure 6.1: Plot of LR (dotted), mean BRPL (dashed) and median BRPL (solid) ratio statistic
in (6.6) when τ is β (left) and ψ (right). The horizontal line is the 95% quantile of the limiting
χ2

1 distribution, and its intersection with the values of the statistics results in the endpoints of
the corresponding 95% confidence intervals.

evaluated.

The ML, the maximum mean BRPL and the maximum median BRPL estimates

of the meta-analysis model parameters are given in Table 6.9. We observe that the

bias-reduced estimates of ψ and, as a consequence, the corresponding estimated stan-

dard errors for β are larger than their ML counterparts, which is typical in random

effects meta-analysis. Also, for both β and ψ , the confidence intervals based on the

LR statistic are the narrowest and the confidence intervals based on the median BRPL

ratio statistic are the widest. The confidence intervals are also illustrated in Figure 6.1,

which gives the value of LR, mean BRPL and median BRPL ratio statistic in (6.6) for

a range of values of τ , when τ is either β or ψ . The horizontal line in Figure 6.1 is the

95% quantile of the limiting χ2
1 distribution, and its intersection with the values of the

statistics results in the endpoints of the corresponding 95% confidence intervals.
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Figure 6.2: Boxplots for the ML, the maximum mean BRPL, and the maximum median BRPL
estimates of β and ψ as calculated from 10000 simulated samples under the ML fit using the
cocoa data. The square point is the empirical mean of the estimates. The dashed grey horizontal
line is at the parameter value used to generate the data.

Table 6.10: Empirical p-value distribution (%) for the tests based on the LR statistic, the mean
BRPL ratio statistic, and the median BRPL ratio statistic in the cocoa data setting.

α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0
LR 5.9 8.4 11.7 18.2 34.5 57.8 79.1 91.7 96.0 98.0 99.2
Mean BRPL ratio 1.6 3.7 6.7 12.1 28.3 52.8 76.6 90.9 95.5 97.9 99.1
Median BRPL ratio 0.6 1.8 4.1 8.6 23.1 48.5 74.2 89.9 94.9 97.5 99.1

Notes: Each column gives the coverage probability of (1−α)% confidence intervals based on the three statistics.

In order to further investigate the performance of the three approaches to estimation

and inference, we performed a simulation study where we simulated 10000 indepen-

dent samples from the random effects meta-analysis model with parameter values set

to the ML estimates reported in Table 6.9, i.e. β0 =−2.799 and ψ0 = 4.199. Figure 6.2

shows boxplots of the estimates of β and ψ calculated from each of the 10000 sim-

ulated samples. The distributions of the three alternative estimators for β are similar.

On the other hand, the ML estimator of ψ has a large negative mean bias, maximum

median BRPL tends to over-correct for that bias, while maximum mean BRPL almost

fully corrects for the bias of ML estimator. The distribution of the median BRPL esti-

mates has the heaviest right tail. The simulation-based estimates of the probabilities of

underestimation for ψ , Pψ0(ψ̂ ≤ψ0), Pψ0(ψ̂
∗≤ψ0) and Pψ0(ψ̂

†≤ψ0) are 0.708, 0.591

and 0.493 for the ML, maximum mean BRPL, and maximum median BRPL, respec-

tively, illustrating how effective maximising the median BRPL in (6.5) is in reducing

the median bias of the ML estimator of ψ .

The simulated samples were also used to calculate the empirical p-value distribu-

tion for the two-sided tests that each parameter is equal to the true values based on the
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LR statistic, the mean BRPL ratio statistic, and the median BRPL ratio statistic. Ta-

ble 6.10 shows that the empirical p-value distribution for the mean and median BRPL

ratio statistics are closest to uniformity, with the latter being slightly more conserva-

tive than the former. The coverage probability of the 95% confidence intervals for β

based on the mean BRPL ratio and the median BRPL ratio are notably closer to the

nominal level than those based on the LR. Specifically, the coverage probabilities for

β are 88%, 93%, and 96% for LR, mean BRPL ratio, and median BRPL ratio respec-

tively, and the corresponding coverage probabilities for ψ are 88%, 94%, and 96%,

respectively.

6.11 Simulation study

More extensive simulations under the random effects meta-analysis model (2.10)

are performed here using the design in Brockwell & Gordon (2001). Specifically, the

data yi , i ∈ {1, . . . ,K}, are simulated from model (2.10) with true fixed-effect param-

eter β = 0.5. The within-study variances σ̂2
i are independently generated from a χ2

1

distribution and are multiplied by 0.25 before restricted to the interval (0.009,0.6).

Eleven values of the between-study variance ψ ranging from 0 to 0.1 are chosen, and

the number of studies K ranges from 5 to 200. For each combination of ψ and K con-

sidered, we simulated 10000 data sets initialising the random number generator at a

common state. The within-study variances where generated only once and kept fixed

while generating the samples.

Zeng & Lin (2015) compared the performance of their proposed double resampling

method with the DerSimonian & Laird (1986) method, the profile likelihood method in

Hardy & Thompson (1996), and the resampling method in Jackson & Bowden (2009)

and showed that the double resampling method improves the accuracy of statistical

inference. Based on these results Kosmidis et al. (2017) compared the performance of

their mean BRPL approach with the double resampling method and illustrated that the

former results in confidence intervals with coverage probabilities closer to the nominal

level that the alternative methods.

We take advantage of the results reported in Zeng & Lin (2015) and Kosmidis et al.

(2017) and evaluate the performance of estimation and inference based only on the
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median BRPL with that based on the ML and the mean BRPL. The estimators of the

fixed and random-effect parameters obtained from the three methods are calculated

using variants of the two-step algorithm described in Section 6.7. In the second step of

the algorithm the candidate values for the ML, and maximum mean and median BRPL

estimators of the between-study variance ψ are calculated by searching for the root of

the partial derivatives of l(θ), l∗(θ), and l†(θ) with respect to ψ , in the interval (0,3).

First, we compare the performance of the ML, maximum mean BRPL and maxi-

mum median BRPL estimators in terms of percentage of underestimation. Figure 6.3

shows that the median bias-reducing adjustment is the most effective in reducing me-

dian bias even for small values of K. As expected, the ML and maximum mean BRPL

estimators also approach the limit of 50% underestimation as K grows, with the latter

being closer to 50% than the former. Figure 6.4 shows that maximum median BRPL

is also effective in reducing the mean bias of the ML estimator of ψ but only for mod-

erate to large values of K, while maximum mean BRPL results in estimators with the

smallest bias.

Figures 6.5 and 6.6 show the estimated coverage probability for the one-sided and

two-sided confidence intervals for β based on the LR, mean BRPL ratio and median

BRPL ratio statistics at the 95% nominal level. Figure 6.7 shows the estimated cov-

erage probability for the two-sided confidence intervals for ψ based on the LR, mean

BRPL ratio and median BRPL ratio statistics at the 95% nominal level. For small

values of ψ or small and moderate number of studies K the empirical coverage of the

intervals is larger than the nominal 95% level. In general, the confidence intervals

based on mean and median BRPL ratio have empirical coverage that is closer to the

nominal level with the latter having generally better coverage. The differences between

the three methods diminish as the number of studies K increases.
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Figure 6.3: Empirical percentage of underestimation for ψ for random effects meta-analysis.
The percentage of underestimation is calculated for increasing values of ψ in the interval
[0,0.1] and with K ranging from 5 to 200. The curves correspond to the maximum median
BRPL (solid), maximum mean BRPL (dashed), and ML (dotted) estimators. The grey hori-
zontal line is at the target of 50% underestimation.
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Figure 6.4: Empirical mean bias of ψ estimates for random effects meta-analysis. The mean
bias is calculated for increasing values of ψ in the interval [0,0.1] and with K ranging from 5
to 200. The curves correspond to the maximum median BRPL (solid), maximum mean BRPL
(dashed), and ML (dotted) estimators. The grey horizontal line is at zero.
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Figure 6.5: Empirical coverage probabilities of one-sided (right) confidence intervals for β for
random effects meta-analysis. The curves correspond to nominally 95% confidence intervals
based on the median BRPL ratio (solid), the mean BRPL ratio (dashed), and the LR (dotted).
The grey horizontal line is at the 95% nominal level.
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Figure 6.6: Empirical coverage probabilities of two-sided confidence intervals for β for ran-
dom effects meta-analysis. The curves correspond to nominally 95% confidence intervals based
on the median BRPL ratio (solid), the mean BRPL ratio (dashed), and the LR (dotted). The
grey horizontal line is at the 95% nominal level.
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Figure 6.7: Empirical coverage probabilities of two-sided confidence intervals for ψ for ran-
dom effects meta-analysis. The empirical coverage is calculated with β = 0.5. The curves
correspond to nominally 95% confidence intervals based on the median BRPL ratio (solid), the
mean BRPL ratio (dashed), and the LR (dotted). The grey horizontal line is at the 95% nominal
level.

Figures 6.8 and 6.9 give the power of the LR, the mean BRPL ratio, and the median

BRPL ratio tests for testing the null hypothesis β = 0.5 against various alternatives.

Specifically, we simulated 10000 data sets under the alternative hypothesis that param-

eter β is equal to b = 0.5+δK−1/2, where δ ranges from 0 to 2.25. In Figure 6.8 the

power is calculated using critical values of the the asymptotic null χ2
1 distribution of the

statistics. In Figure 6.9 the power is calculated using critical values based on the exact

null distribution of each statistic, obtained by simulation under the null hypothesis. In

this way, the three tests are calibrated to have size 5%.
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Figure 6.8: Empirical power of the likelihood-based tests of asymptotic level 0.05 for random
effects meta-analysis for testing β = 0.5. The empirical power is calculated for increasing
values of β , for K ∈ {5,10,15} and ψ ∈ {0,0.025,0.05}. The curves correspond to median
BRPL ratio (solid), mean BRPL ratio (dashed), and LR (dotted) tests. The grey horizontal line
is at the 5% nominal size.
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Figure 6.9: Empirical power of the likelihood-based tests of exact level 0.05 for random effects
meta-analysis for testing β = 0.5. The empirical power is calculated for increasing values of
β , for K ∈ {5,10,15} and ψ ∈ {0,0.025,0.05}. The curves correspond to median BRPL ratio
(solid), mean BRPL ratio (dashed), and LR (dotted) tests. The grey horizontal line is at the 5%
nominal size.

Figure 6.8 shows that the three tests have monotone power and for small values of

K the LR test yields the largest power. This is because the LR test is oversized, while

the mean and median BRPL ratio tests are slightly more conservative and this conser-

vativeness comes at the cost of lower power. As the number of studies K increases the

three tests approach the nominal size and provide similar power.
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Figure 6.10: Average number of iterations until the two-step iterative process converges for
random effects meta-analysis for increasing values of ψ in the interval [0,0.1] and with K rang-
ing from 5 to 200. The curves correspond to the maximum median BRPL (solid), maximum
mean BRPL (dashed), and ML (dotted) estimators.
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Figure 6.11: Average computational run-time per fit for random effects meta-analysis for in-
creasing values of ψ in the interval [0,0.1] and with K ranging from 5 to 200. The curves
correspond to the maximum median BRPL (solid), maximum mean BRPL (dashed), and ML
(dotted) estimators.

The use of the exact critical values in Figure 6.9 allows us to compare the perfor-

mance of the tests without letting the oversizing or the conservativeness of a test skew

the power results. Figure 6.9 shows that the power of the median BRPL ratio test is

almost identical to that of the mean BRPL ratio test, and both tests have larger power

than the LR test. Again, inference based on either of the two penalised likelihoods

becomes indistinguishable from classical likelihood inference as the number of studies

increases.

Lastly, it is worth noting that across all ψ and K values considered, the average

number of iterations taken per fit for the two-step iterative process to converge is six
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iterations for every method. The average computational run-time for the algorithm to

run is 0.008,0.022, and 0.017 seconds for the ML, mean BRPL, and median BRPL

methods, respectively. Figures 6.10 and 6.11 show the average number of iterations

and the average computational run-time taken per fit for the two-step iterative process

to converge for each value of K and ψ used in the simulation study. The results show

that in all cases convergence of the algorithm is achieved after a small number of

iterations for all three methods, and the difference in computational run-time from ML

for the two bias reducing methods is small.

6.12 Meat consumption data

In this section, we revisit the meat consumption data (Larsson & Orsini, 2014) used

in Section 2.9.4 as an example of random effects meta-regression.

Table 6.11 gives the ML estimates, the maximum mean BRPL estimates, and the

maximum median BRPL estimates of the fixed effects and the heterogeneity param-

eter, along with the corresponding estimated standard errors and the 95% confidence

intervals. The ML estimates of ψ and the estimated standard errors for the fixed ef-

fects have the smallest values. The LR test indicates some evidence for a higher risk

associated to the consumption of red processed meat with a p-value of 0.047. On the

other hand, the mean BRPL ratio test suggests that there is weaker evidence for higher

risk with a p-value of 0.066. The median BRPL ratio test also gives weak evidence

for higher risk with a p-value of 0.074. The estimation algorithm used for computing

the ML, maximum mean BRPL, and maximum median BRPL estimates converged in

8, 9, and 12 iterations, respectively. The computational run-time for the two-step iter-

ative process which computes the ML, maximum mean BRPL, and maximum median

BRPL estimates is 1.2×10−2, 2.4×10−2, and 1.5×10−2 seconds, respectively.

Next, we performed a simulation study in order to further investigate the perfor-

mance of the three methods in a meta-regression context. We simulated 10000 in-

dependent samples from the meta-regression model at the ML estimates (β̂0, β̂1, ψ̂)T

reported in Table 6.11. Figure 6.12 shows boxplots of the estimates of ψ . ML under-

estimates the heterogeneity parameter, while mean BRPL and median BRPL almost

fully compensate for the negative bias of ML estimates, with the latter having slightly
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Table 6.11: ML, mean BRPL, and median BRPL estimates of the model parameters for the
meat consumption data. Estimated standard errors are reported in parentheses. The 95% con-
fidence intervals based on the LR, mean BRPL ratio and median BRPL ratio are reported in
squared brackets.

Method β0 β1 ψ

ML 0.099 (0.044) 0.106 (0.061) 0.009
[-0.004,0.189] [-0.022,0.244] [0.003,0.030]

Mean BRPL 0.095 (0.050) 0.110 (0.069) 0.012
[-0.020,0.199] [-0.040,0.264] [0.003,0.042]

Median BRPL 0.093 (0.052) 0.111 (0.072) 0.013
[-0.027,0.203] [-0.048,0.271] [0.004,0.048]

Notes: ML, Maximum likelihood; Mean BRPL, Mean bias-reducing penalised likeli-
hood; Median BRPL, Median bias-reducing penalised likelihood.

0
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3

ML Mean BRPL Median BRPL
Method

ψ
×

10
0

Figure 6.12: Boxplots for the ML, mean BRPL, and median BRPL estimates of ψ as calculated
from 10000 simulated samples under the ML fit using the meat consumption data. The square
point is the mean of the estimates obtained from each method. The dashed grey horizontal line
is at the parameter value used to generate the data.

Table 6.12: Empirical p-value distribution (%) for the tests based on the LR statistic, the mean
BRPL ratio statistic, and the median BRPL ratio ratio statistic using the meat consumption
data.

α×100 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0
LR 2.2 4.5 7.7 13.1 28.0 50.0 71.7 86.6 92.1 95.3 97.7
Mean BRPL ratio 1.3 3.0 5.6 11.1 25.9 49.8 73.8 89.0 94.2 96.9 98.6
Median BRPL ratio 1.0 2.5 4.9 9.9 25.1 49.7 74.7 89.8 94.8 97.5 98.9
Notes: LR, Likelihood ratio statistic; Mean BRPL ratio, Mean BRPL ratio statistic; Median BRPL ratio, Median BRPL

ratio statistic. Each column gives the coverage probability of (1−α)% confidence intervals based on the three statistics.

heavier tails.

The percentages of underestimation when estimating ψ are 72.6%, 56.6%, and

49.9% for the ML, maximum mean BRPL, and maximum median BRPL estimators,

respectively. The results indicate that median BRPL performs best in terms of percent-

age of underestimation, followed by the mean BRPL.

The simulated samples were also used to calculate the empirical p-value distribu-

tion for the tests based on the likelihood, mean BRPL and median BRPL ratio statistics.

Table 6.12 shows that the empirical p-value distributions for the mean and the median

BRPL ratio statistics are the ones closest to uniformity.
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6.13 Concluding remarks

In this chapter we derive the adjusted score equations for the median bias reduction

of the ML estimator for linear mixed models under any parameterisation of the variance

components. We show that the median bias-reducing adjusted score function of the

variance components differs from the relative mean bias reducing function by one extra

additive term.

We also derive the median bias-reducing adjusted score equations for random

effects meta-analysis and meta-regression models. In the random-effects meta-

regression context, we show that the solution of the median bias-reducing adjusted

score equations is equivalent to maximising a penalised log-likelihood. The logarithm

of that penalised likelihood differs from the logarithm of the mean BRPL in Kos-

midis et al. (2017) by a simple additive term. The main advantage of the maximum

median BRPL estimators from the maximum mean BRPL ones is their equivariance

under monotone component-wise parameter transformations, which leads to median

bias-reduced standard errors.

Using various settings we were able to retrieve enough information on the perfor-

mance of the maximum median BRPL estimators. All the simulation studies illustrate

that use of the median bias-reducing adjusted scores succeeds in achieving median

centring in estimation, and results in confidence intervals with good coverage proper-

ties. This chapter also provides evidence that median bias reduction corrects the anti-

conservativeness of the traditional Wald test in the linear mixed models framework,

and the good performance of the Wald statistic using the median BR estimates is com-

parable with the KR statistic (Kenward & Roger, 1997) and the Wald statistic using the

mean BR estimates. Furthermore, in the random effects meta-regression framework,

while tests based on the LR suffer from size distortions, the median BRPL ratio statis-

tic results in tests with size and power properties, sometimes better than those of the

mean BRPL ratio statistic in Kosmidis et al. (2017).



Chapter 7

Final Remarks

7.1 Summary of the thesis

The current thesis explores solutions to the important problem of reducing the bias

in the estimation of mixed models, which are widely used for modelling dependence

within clustered data. Reducing the bias is important because bias affects the perfor-

mance of standard inferential procedures, such as the Wald and likelihood ratio tests.

A popular method for reducing the mean and median bias of the ML estimator in

regular parametric models is the adjusted score equations (Firth, 1993; Kenne Pagui

et al., 2017). The superior properties of the mean and median BR estimators over the

ML estimator (see, for example, Kosmidis & Firth, 2009; Kenne Pagui et al., 2017),

motivated us to further enhance the impact of the method in improving estimation and

inference for mixed models. Specifically, we aimed:

(i) To derive the mean BR adjusted score equations (Firth, 1993) in the case of

linear mixed models and simple generalised linear mixed models, and to assess the

performance of the bias-reduction method in estimation and inference.

(ii) To widen the applicability of the mean BR adjusted score equations method

(Firth, 1993) in models where it cannot be directly implemented, e.g. models with

infeasible bias function or intractable likelihood, and to demonstrate the effectiveness

of the extended mean BR method, IBLA, in removing the first-order bias from the

(approximate) ML estimators.

(iii) To derive the median BR adjusted score equations (Kenne Pagui et al., 2017) in

the case of linear mixed models and random effects meta-analysis and meta-regression,



142 Chapter 7. Final Remarks

and to assess the performance of the bias-reduction method in estimation and inference.

In what follows we describe the main findings from our research related to each of

the aforementioned aims.

(i) Derive the mean BR adjusted score equations (Firth, 1993) in the case of linear

mixed models and simple generalised linear mixed models, and assess the performance

of the bias-reduction method in estimation and inference.

Chapter 2 derives the adjusted score equations in the case of linear mixed mod-

els, and Chapter 5 derives the adjusted score equations in the case of logistic linear

models with a fixed intercept and a random intercept only. For linear mixed mod-

els we showed that, for general parameterisations of the variance-covariance matrix

of the distribution of the random effects, the adjusted score function of the variance

components differs from the REML score function by an extra additive term. We also

showed that for covariance structures with ∂ 2V (ψ)/∂ψr∂ψs = 0 for all pairs (r,s),

r,s ∈ {1, . . . ,m}, where V (ψ) is the variance-covariance matrix of the marginal dis-

tribution of the responses and ψ is the vector of variance components, the mean BR

adjusted score function is the derivative of a mean BRPL which coincides with the

REML likelihood. Hence, maximising the mean BRPL is equivalent to calculating the

REML estimator for ψ . Furthermore, Chapter 2 demonstrates that the bias of the ML

estimates affects Wald-type inference. Numerical studies provide evidence that the ad-

justed score equations method corrects the anti-conservativeness of the Wald test. The

Wald-type confidence intervals for the mean BR estimates have good coverage prop-

erties. The corresponding coverage probabilities obtained from the Kenward & Roger

(1997) method are also close to the nominal level, but the method has the disadvantage

of being computationally more expensive. Finally, complementing the work in Kos-

midis et al. (2017), we demonstrate the successful mean bias reduction in estimation

and the good coverage properties of the LR confidence intervals under the framework

of the random-effects meta-analysis and meta-regression models.

Chapter 5 demonstrates that the adjusted score equations method preserves the

good estimation and coverage properties in the framework of logistic linear models

with a fixed intercept and a random intercept only. However, the implementation of the

method in more complex generalised linear mixed models can be challenging, because
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it requires the approximation of a large number of intractable integrals, and a high

number of quadrature points for their accurate approximation.

(ii) Widen the applicability of the mean BR adjusted score equations method (Firth,

1993) in models where it cannot be directly implemented, e.g. models with infeasible

bias function or intractable likelihood, and demonstrate the effectiveness of the ex-

tended mean BR method, IBLA, in removing the first-order bias from the (approximate)

ML estimators.

Chapter 3 and Chapter 4 present extended versions of the traditional adjusted score

equations for mean bias reduction, and introduce the IBLA algorithm for the compu-

tation of the bias-reduced estimates. The asymptotic properties of the resulting bias-

reduced estimators are also derived. Specifically, in Chapter 3 we propose an adjusted

score equation that can be used to derive mean bias-reduced estimates for models with

infeasible bias function, and in Chapter 4 we propose an adjusted score equation that

can be used for bias reduction in models with intractable likelihood. There are two

main differences between the proposed adjusted score equations and the traditional

adjusted score equation (Firth, 1993). These are (i) the use of a Monte Carlo approxi-

mation of the bias function, instead of using the bias function, in order to achieve fea-

sibility of the equations, and (ii) the use of the derivatives of a suitably approximated

log-likelihood in order to achieve tractability, instead of obtaining explicit expressions

for the adjusted score functions and then approximating them. We show that the IBLA

estimators obtained for models with infeasible bias function or intractable likelihood

are consistent and asymptotically normally distributed. Two additional important find-

ings are that the Monte Carlo size used for approximating the bias function must be

of order O(nα), with α ≥ 1, in order to achieve mean bias reduction, and that Laplace

approximation is suitable for use in the simulation-based approximate adjusted score

function. Even though our theoretical findings do not cover the case of models where

the bias function is not continuous (e.g. in generalised linear models with discrete

responses), numerical studies in Chapter 3 demonstrate that the simulation-based ad-

justed score equation method performs well in terms of estimation and inference.

The IBLA algorithm is a quasi Newton-Raphson iteration that can compute the

solution of the new bias-reducing adjusted score equations. Starting from the ML es-
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timate (or the maximum approximate likelihood estimate in the case of models with

intractable likelihood), a single iteration gives the (approximate) parametric bootstrap

estimates. The advantages of IBLA against parametric bootstrap are: (i) based on

numerical studies we have evidence that even though parametric bootstrap performs

well in reducing the bias of ML estimates, IBLA performs better both in terms of

bias and mean squared error, (ii) numerical studies also indicate that Wald-type con-

fidence intervals have better coverage properties when using IBLA instead of para-

metric bootstrap estimates, (iii) IBLA gives finite estimates even when the ML esti-

mates are infinite with positive probability, while parametric bootstrap estimates by

definition depend on the finiteness of the ML estimates. The finiteness of IBLA es-

timates is achieved by suitably modifying in each iteration the simulated responses y

to yc = c+ y(1− 2c), where c is a small positive constant. The only advantage of

parametric bootstrap against IBLA is that it is computationally less expensive.

Chapter 5 examines the performance of IBLA in the framework of generalised

linear mixed models and compares it with standard estimation methods (ML using nu-

merical integration, PQL) and bias reduction methods (corrected PQL, approximate

parametric bootstrap) that have been developed in the literature. Even though IBLA

is the computationally most expensive method, it is the most accurate in fitting gener-

alised linear mixed models with a random intercept, even under challenging settings

with a small cluster size or with a large random-effects variance.

(iii) Derive the median BR adjusted score equations (Kenne Pagui et al., 2017) in

the case of linear mixed models and random effects meta-analysis and meta-regression,

and assess the performance of the bias-reduction method in estimation and inference.

Lastly, we derived the adjusted score equations for median instead of mean bias

reduction in the framework of linear mixed models and their special case, random-

effects meta-analysis and meta-regression. We showed that the median BR adjusted

score function of the variance components differs from the mean BR function by one

extra additive term. In the random-effects meta-regression context, we showed that

the solution of the median BR adjusted score equations is equivalent to maximising

a penalised log-likelihood. The main advantage of the maximum median BRPL es-

timators from the maximum mean BRPL ones is their equivariance under monotone
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component-wise parameter transformations, which, in the case of random effects meta-

regression, leads to median bias-reduced standard errors.

All in all, achieving our aims offers a large flexibility in the applicability of the ad-

justed score equations method (Firth, 1993) in linear mixed models. Moreover, there

is strong indication that IBLA is superior than other popular estimation methods in

generalised linear mixed models in that it yields variance component estimates with

smaller bias, which in turn improve inference on the fixed effects. Despite the theoret-

ical and computational challenges of IBLA, we believe that it will offer practitioners a

formal and flexible statistical framework for bias reduction for models with intractable

likelihood, that will make an impact in many application areas where bias reduction is

beneficial.

7.2 Further work on IBLA

This section lists some topics for future research that were not covered in this thesis.

Some of the items in the list have already been mentioned in the concluding remarks

of the chapters and others relate to implementing IBLA on various application areas.

1. Reduce the computational run-time of IBLA.

The computational efficiency of the algorithm mainly depends on the Monte

Carlo size R used for the calculation of the simulation-based bias function.

The simulation cost of this procedure could be reduced by the use of variance-

reduction techniques (see, for example, Fieller & Hartley, 1954; Davidson &

MacKinnon, 1992), which would increase the precision of the estimated bias

function by decreasing the variability of the Monte Carlo simulation output.

Hence, a more accurate estimate of the bias function could be obtained with

a smaller value of R.

2. Develop a rule for the selection of an optimal Monte Carlo size R.

Theorem 4 shows that in order to achieve bias reduction, R must be of order

O(nα), with α ≥ 1. We aim to research if we can develop a more precise selec-

tion rule for R that governs the accuracy of the simulation-based adjusted score

function and, as a result, the accuracy of the IBLA estimates.
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3. Assess the adequacy of numerical integration for bias reduction using IBLA.

In Section 4.5 we showed that Laplace approximation (Tierney & Kadane, 1986)

satisfies the conditions in Theorem 5, and therefore it can be used to approxi-

mate the likelihood and yield a tractable adjusted score equation whose solution

has smaller mean bias than the maximum approximate likelihood estimate. We

aim to investigate if other approximation techniques, such as the Gauss-Hermite

quadrature (Abramowitz & Stegun, 1965), the adaptive Gauss-Hermite quadra-

ture (Liu & Pierce, 1994) or the sequential reduction method (Ogden, 2015), also

satisfy the conditions in Theorem 5, and can therefore be used for bias reduction

via IBLA.

4. Explore further the asymptotic properties of the IBLA estimates.

A formal proof for the asymptotic normality of the IBLA estimator when the

observations are independent but non-identically distributed remains to be for-

mulated. The proof is going to make use of the Lindeberg central limit theorem

(Van der Vaart, 2000, Proposition 2.27).

5. Study the performance of IBLA using generalised linear mixed models with

more complex structures and other response distributions.

The numerical studies in Chapter 5 evaluate the performance of IBLA in es-

timation and inference for the logistic linear models with a random intercept

and responses following a binomial distribution. It would be interesting to see

if IBLA performs well in the estimation of more complex models, e.g. models

with a random intercept and a random slope, or models with crossed random

effects. Moreover, we plan to explore the performance of IBLA in generalised

linear mixed models with other response distributions, such as the Poisson dis-

tribution.

6. Derive which parameterisation for variance-covariance matrix is best for IBLA.

In the current thesis we only considered one parameterisation for unstruc-

tured variance-covariance matrices (the elements of the Cholesky factor of the

variance-covariance matrix) and one parameterisation for structured (the vari-

ance of the random effects and their correlation). We plan to investigate how
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IBLA behaves under other parameterisations for variance-covariance matrices

that allow unconstrained estimation of the associated parameters. For exam-

ple, it may be that for some of the parameterisations the algorithm convergences

faster to a solution of the adjusted score equations, and this could be used as a

criterion for choosing among them.

7. Development of statistical software for the public use of IBLA.

We plan to create an R package (R Core Team, 2017) for bias reduction via ad-

justed score equations in mixed models, in order to make it easy for practitioners

to use either IBLA or the traditional adjusted score equations method (where

applicable).

8. Implement IBLA in Item Response Theory (IRT) models.

Our future research agenda also includes studying the performance of IBLA in

IRT models, a special modelling setting which has multiple uses in educational

testing, psychometrics and other disciplines (Baker & Kim, 2004). The label

“item response theory” reflects the dependence of the theory upon an examinee’s

responses to items. Consider realisations yis of independent random variables

Yis , i = 1, . . . ,N, s = 1, . . . ,n. A general model for the probability of correct

response for the sth examinee in the ith item given the ability level γs is given

by P(yis = 1|γs) = ci+(1−ci)g{di(γs+βi)}, where g(·) is a link function, yis is

the dichotomous response, γs is the sth examinee’s level on the latent scale, ci is

the guessing parameter, di is the discrimination parameter, and βi is the easiness

parameter for the ith item. The guessing parameter expresses the probability

that an examinee with very low ability responds correctly to an item by chance,

the discrimination parameter quantifies how well the item distinguishes between

subjects with low/high standing in the latent scale, and the easiness parameter

expresses the difficulty level of the item (Rizopoulos, 2006).

The IRT models fit within the framework of generalised linear mixed models,

because they introduce latent variables to account for the heterogeneity across

participants. For example, the one-parameter logistic model assumes that the

link function is the logistic function, that there is no guessing parameter (ci = 0)
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and the discrimination parameter di is fixed. A special case of the one-parameter

logistic model is the Rasch model (Rasch, 1960) for which di = 1, for all i and

is defined as P(yis = 1|γs) = g(γs + βi) . The Rasch model can be seen as a

generalised linear mixed model if βi (items) are considered as fixed effects and

γs (abilities) are considered as random effects.

Despite the simplicity of the models getting good parameter estimates is chal-

lenging. These challenges involve dealing with biased ML variance components

estimates (Agresti, 2002, Section 12.1.5) and infinite estimates, for example,

when the persons are perfectly separated with respect to a specific item. As

such, they provide a natural testing ground for the methodology that has been

developed in this thesis.

9. Implement IBLA in logistic regression models in meta-analysis.

The logistic regression models in meta-analysis are used for synthesizing in-

formation from different studies reporting dichotomous data, such as death or

occurrence of a disease (Simmonds & Higgins, 2016). When raw individual

participant data of dichotomous outcomes are available from each study a one-

stage mixed-effects logistic regression model may be used to estimate an overall

summary effect in a single analysis (Turner et al., 2000), instead of using the

traditional two-stage approach which first estimates the effect in each study and

then combines the effects in a meta-analysis.

For analyses of controlled trials comparing an experimental against a control

treatment Simmonds & Higgins (2016) define the one-stage mixed-effects logis-

tic regression model as g(pi j) = (t + vi)xi j +φi , where pi j is the probability of

an event in treatment arm j (1 for experimental, 0 for control) of trial i, t is the

average treatment effect, vi represents the deviation of each trial’s true treatment

effect (log-odds ratio) from the average, xi j = 0/1 indicates the control/treatment

group for the jth individual in the ith trial, and φi is the baseline risk of the event

in the ith trial. The link function g(·) is typically the logit link, in which case t

is a log risk ratio. It is assumed that vi is normally distributed with mean zero

and variance τ2, i.e. τ2 is the heterogeneity in treatment effects across trials. It
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is also assumed that the parameters φi are fixed and unrelated across studies.

ML does not take into account the use of the same data in the estimation of

the fixed effects, and therefore the estimate of τ2 is generally negatively biased

(Turner et al., 2000). The results in Turner et al. (2000) also provide evidence

that the bias in the ML estimates affects the Wald confidence intervals, which are

narrower than expected. As such, it would be interesting to derive the adjusted

score equations for the logistic regression models in meta-analysis, and study

the estimation and inferential properties of the IBLA bias-reduced estimates.
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Appendix A

Derivation of mean bias-reducing

adjusted scores in linear mixed models

The elements of the observed information matrix j(θ) for the linear mixed model

in (2.1) are

jββ = XTV (ψ)−1X

jβψr = XTV (ψ)−1 ∂V (ψ)

∂ψr
V (ψ)−1R(β )

jψrψs =
1
2

R(β )TV (ψ)−1 ∂V (ψ)

∂ψr
V (ψ)−1 ∂V (ψ)

∂ψs
V (ψ)−1R(β )

+
1
2

R(β )TV (ψ)−1 ∂V (ψ)

∂ψs
V (ψ)−1 ∂V (ψ)

∂ψr
V (ψ)−1R(β )

−1
2

R(β )TV (ψ)−1 ∂ 2V (ψ)

∂ψr∂ψs
V (ψ)−1R(β )

−1
2

tr
(

V (ψ)−1 ∂V (ψ)

∂ψr
V (ψ)−1 ∂V (ψ)

∂ψs

)
+

1
2

tr
(

V (ψ)−1 ∂ 2V (ψ)

∂ψr∂ψs

)

for r,s ∈ {1, . . . ,m}.

Let t ∈ {1, . . . , p} correspond to an element of parameter β . Then

Pt(θ) =−Qt(θ) =

 0p×p P1t(ψ)

P1t(ψ)T 0m×m

 , (A.1)

where P1t(ψ) is a p×m matrix with (r,s)th element

(P1t)r,s = XT
r V (ψ)−1 ∂V (ψ)

∂ψs
V (ψ)−1XT

t , r ∈ {1, . . . , p} ,s ∈ {1, . . . ,m} .
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Let t ∈ {p+1, . . . , p+m} correspond to an element of parameter ψ . Then

Pt(θ) =

 P2t(ψ) 0p×m

0m×p P3t(ψ)

 , Qt(θ) =

 0p×p 0p×m

0m×p −P3t(ψ)+P4t(ψ)

 , (A.2)

where P2t(ψ) is a p× p matrix with (r,s)th element

(P2t)r,s = XT
r V (ψ)−1 ∂V (ψ)

∂ψt−p
V (ψ)−1XT

s , r,s ∈ {1, . . . , p}

P3t(ψ) is a m×m matrix with (r,s)th element

(P3t)r,s = tr
(

V (ψ)−1 ∂V (ψ)

∂ψr
V (ψ)−1 ∂V (ψ)

∂ψs
V (ψ)−1 ∂V (ψ)

∂ψt−p

)
, r,s ∈ {1, . . . ,m}

and P4t(ψ) is a m×m matrix with (r,s)th element

(P4t)r,s =
1
2

tr
(

V (ψ)−1 ∂ 2V (ψ)

∂ψr∂ψs
V (ψ)−1 ∂V (ψ)

∂ψt−p

)
, r,s ∈ {1, . . . ,m} .

The mean bias-reducing adjustment for θ is obtained by plugging the above ex-

pressions into (2.6).
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Proof of Theorem 4

Proof of Theorem 4: Let θ = (θ1, . . . ,θp)
T, s∗n,R(θ) = (s∗1(θ), . . . ,s

∗
p(θ))

T, and δ =

θ̂ ∗n,R−θ0 , where δ = Op(n−1/2) by Theorem 3. Using Einstein summation convention

we write the expansion of s∗j(θ) around θ0 as

0 = s∗j(θ̂
∗
n,R) = s∗j +δ

ss∗js +
1
2

δ
sts∗jst +

1
6

δ
stus∗jstu +Op(n−1) , (B.1)

where s∗js, s∗jst , s∗jstu denote the partial derivatives of s∗j with respect to θ j ( j ∈

{1, . . . , p}) evaluated at θ0 , δ st = δ sδ t , δ stu = δ sδ tδ u , and s, t,u take values in the

index set {1, . . . , p}.

Let s∗j = s j+ Â j , where Â j is the jth element of− jn(θ0)B̂n,R(θ0). We express Â j as

Â j = A j +C j , where A j is the jth element of − jn(θ0)Bn(θ0) and C j is the jth element

of − jn(θ0)[B̂n,R(θ0)−Bn(θ0)]. The term A j is Op(1) and C j is Op(R−1/2)Op(1). Let

s js, s jst , s jstu denote the partial derivatives of s j evaluated at θ0, and Â js, Â jst , Â jstu

denote the partial derivatives of Â j evaluated at θ0 . Assume the higher order derivatives

of the Op(1) terms are also Op(1). Then

0 = s j + Â j +δ
ss js +δ

sÂ js +
1
2

δ
sts jst +

1
2

δ
st Â jst +

1
6

δ
stus jstu +

1
6

δ
stuÂ jstu +Op(n−1)

= s j +A j +C j +δ
ss js +δ

sA js +δ
sC js +

1
2

δ
sts jst +

1
2

δ
stA jst +

1
2

δ
stC jst

+
1
6

δ
stus jstu +

1
6

δ
stuA jstu +

1
6

δ
stuC jstu +Op(n−1)

= s j +A j +C j +δ
ss js +δ

sA js +δ
sC js +

1
2

δ
sts jst +

1
6

δ
stus jstu +Op(n−1) ,

where the terms δ stA jst = Op(n−1), δ stC jst = Op(n−(2+a)/2), δ stuA jstu = Op(n−3/2),
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δ stuC jstu = Op(n−(3+a)/2) are incorporated in the Op(n−1) remainder, and δ sC js =

Op(n−(1+a)/2). Re-expressing in terms of the centred log-likelihood derivatives we

have

0 = s j +A j +C j +δ
s(s js−µ js)+δ

s
µ js +δ

sA js +δ
sC js +

1
2

δ
st(s jst−µ jst)

+
1
2

δ
st

µ jst +
1
6

δ
stu(s jstu−µ jstu)+

1
6

δ
stu

µ jstu +Op(n−1) .

For simplicity denote H js = s js−µ js , H jst = s jst−µ jst , and H jstu = s jstu−µ jstu , where

all are Op(n1/2). Then

0 = s j +A j +C j +H jsδ
s +µ jsδ

s +A jsδ
s +C jsδ

s +
1
2

H jstδ
st +

1
2

µ jstδ
st

+
1
6

H jstuδ
stu +

1
6

µ jstuδ
stu +Op(n−1)

= s j +A j +C j +H jsδ
s +µ jsδ

s +A jsδ
s +C jsδ

s +
1
2

H jstδ
st +

1
2

µ jstδ
st

+
1
6

µ jstuδ
stu +Op(n−1) ,

where H jstuδ stu = Op(n−1) and is incorporated in the Op(n−1) remainder.

The above can be expressed as

−µ jsδ
s = s j +A j +C j +H jsδ

s +A jsδ
s +C jsδ

s +
1
2

H jstδ
st +

1
2

µ jstδ
st

+
1
6

µ jstuδ
stu +Op(n−1) .

By the second Bartlett identity (Bartlett, 1953) µ j,s = −µ js and so, for the matrix

inverse of the Fisher information we have µ j,s = −µ js. Using the latter and solving

with respect to δ r we have

δ
r = µ

r, js j +µ
r, jA j +µ

r, jC j +µ
r, jH jsδ

s +µ
r, jA jsδ

s +µ
r, jC jsδ

s +
1
2

µ
r, jH jstδ

st

+
1
2

µ
r, j

µ jstδ
st +

1
6

µ
r, j

µ jstuδ
stu +Op(n−2) .

Again, for simplicity denote sr = µr, js j , Ar = µr, jA j , Hr
s = µr, jH js , µr

st = µr, jµ jst and
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so on, and express the preceding expression as

δ
r = sr +Ar +Cr +Hr

s δ
s +Ar

sδ
s +Cr

sδ
s +

1
2

Hr
stδ

st +
1
2

µ
r
stδ

st +
1
6

µ
r
stuδ

stu +Op(n−2) ,

where

sr = Op(n−1/2)

Ar = Op(n−1)

Cr = Op(n−(2+a)/2)

Hr
s δ

s = Op(n−1/2)Op(n−1/2) = Op(n−1)

Ar
sδ

s = Op(n−1)Op(n−1/2) = Op(n−3/2)

Cr
sδ

s = µ
r, jC jsδ

s = Op(n−1)Op(n−a/2)Op(n−1/2) = Op(n−(3+a)/2)

Hr
stδ

st = Op(n−1/2)Op(n−1) = Op(n−3/2)

µ
r
stδ

st = Op(1)Op(n−1) = Op(n−1)

µ
r
stuδ

stu = Op(1)Op(n−3/2) = Op(n−3/2) .

Reordering the terms in decreasing order we get:

δ
r =



sr +Ar +Hr
s δ s + 1

2 µr
stδ

st +Cr +Ar
sδ

s + 1
2Hr

stδ
st+

1
6 µr

stuδ stu +Cr
sδ s +Op(n−2) if 0 < a < 1

sr +Ar +Hr
s δ s + 1

2 µr
stδ

st +Ar
sδ

s + 1
2Hr

stδ
st+

1
6 µr

stuδ stu +Cr +Op(n−2) if 1≤ a < 2

sr +Ar +Hr
s δ s + 1

2 µr
stδ

st +Ar
sδ

s + 1
2Hr

stδ
st+

1
6 µr

stuδ stu +Op(n−2) if a≥ 2

Using the iterative substitution method with

δ
r =

sr +Ar +Hr
s δ s + 1

2 µr
stδ

st +Cr +Op(n−3/2) if 0 < a < 1

sr +Ar +Hr
s δ s + 1

2 µr
stδ

st +Op(n−3/2) if a≥ 1
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we get

δ
r =



sr +Ar +Hr
s ss + 1

2 µr
sts

st +Cr +Cr
sss +Hr

s As +µr
sts

sAt

+Ar
ss

s +Hr
s Hs

t st +µr
stH

s
ustu + 1

2Hr
s µs

tustu + 1
2 µr

st µ
s
uvstuv

+1
2Hr

sts
st + 1

6 µr
stusstu +Hr

sCs +µr
sts

sCt +Cr
sAs

+Cr
sHs

t st + 1
2Cr

s µs
tustu +Cr

sC
s +Op(n−2) if 0 < a < 1

2

sr +Ar +Hr
s ss + 1

2 µr
sts

st +Cr +Cr
sss +Hr

s As +µr
sts

sAt

+Ar
ss

s +Hr
s Hs

t st +µr
stH

s
ustu + 1

2Hr
s µs

tustu + 1
2 µr

st µ
s
uvstuv

+1
2Hr

sts
st + 1

6 µr
stusstu +Hr

sCs +µr
sts

sCt +Cr
sAs

+Cr
sHs

t st + 1
2Cr

s µs
tustu +Op(n−2) if 1

2 ≤ a < 1

sr +Ar +Hr
s ss + 1

2 µr
sts

st +Hr
s As +µr

sts
sAt +Ar

ss
s

+Hr
s Hs

t st +µr
stH

s
ustu + 1

2Hr
s µs

tustu + 1
2 µr

st µ
s
uvstuv

+1
2Hr

sts
st + 1

6 µr
stusstu +Cr +Op(n−2) if 1≤ a < 2

sr +Ar +Hr
s ss + 1

2 µr
sts

st +Hr
s As +µr

sts
sAt +Ar

ss
s

+Hr
s Hs

t st +µr
stH

s
ustu + 1

2Hr
s µs

tustu + 1
2 µr

st µ
s
uvstuv

+1
2Hr

sts
st + 1

6 µr
stusstu +Op(n−2) if a≥ 2

The asymptotic bias of θ̂ ∗n,R is obtained by taking expectations in both sides, where

we make use of the following rule:

E(Hd) =

O(nd/2) if d is even

O(n(d−1)/2) if d is odd

with Hd being the product of d centered log-likelihood derivatives.
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Thus for a≥ 1 we have E(δ r) = E
[
sr +Ar +Hr

s ss + 1
2 µr

sts
st]+Op(n−3/2) , where

E(sr) = E(µr, js j) = µ
r, jE(s j) = 0

E(Ar) = E(µr, jA j) = µ
r, jE(A j) = µ

r,sE(As)

E(Hr
s ss) = E(µr, jH jsµ

s,ksk) = µ
r, j

µ
s,kE(H jssk) = µ

r, j
µ

s,kE[(s js−µ js)sk]

= µ
r, j

µ
s,kE(s jssk) = µ

r, j
µ

s,k
µ js,k = µ

r,s
µ

t,u
µst,u

E(µr
sts

st) = µ
r, j

µ jstE(µs, js jµ
t,ksk) = µ

r, j
µ

s, j
µ

t,k
µ jstE(s jsk)

= µ
r, j

µ
s, j

µ
t,k

µ jst µ j,k = µ
r, j

µ
t,k

µ jst µ
s, j

µ j,k

= µ
r, j

µ
t,k

µ jstδ
s
k , where δ

s
k = 1 if s = k and 0 otherwise

= µ
r, j

µ
t,s

µ jst = µ
r,s

µ
t,u

µstu

E(Cr) = E(µr, jC j) = µ
r, jE(C j)

= µ
r, jE({− jn(θ0)[B̂n,R(θ0)−Bn(θ0)]} j)

= 0.

The latter expectation is equal to zero because jn(θ0) and [B̂n,R(θ0)−Bn(θ0)] are in-

dependent, and E[B̂n,R(θ0)−Bn(θ0)] = 0.

The final expression of E(δ r) for α ≥ 1 is

E(δ r) = µ
r,sE(As)+

1
2

µ
r,s

µ
t,u(2µst,u +µstu)+O(n−3/2) .



Appendix C

Asymptotic expansion of θ̃n− θ̂n in

Section 4.5

Let θ ∈ ℜp, s̃ j(θ) be the jth element of s̃n(θ) ( j ∈ {1, . . . , p}), and s j(θ) be the jth

element of sn(θ) . Also, let δ = θ̃n− θ̂n , δ̃ = θ̃n− θ0 and δ̂ = θ̂n− θ0 , such that

δ = δ̃ − δ̂ with δ̃ = Op(n−1/2) by Theorem 7, and δ̂ = Op(n−1/2). Consider the

expansion of s̃ j(θ) around θ0

0= s̃ j(θ̃n)= s̃ j+ δ̃
ss̃ js+

1
2

δ̃
st s̃ jst +

1
6

δ̃
stus̃ jstu+

1
24

δ̃
stuvs̃ jstuv+

1
120

δ̃
stuvxs̃ jstuvx+Op(n−2) ,

where s̃ js, s̃ jst , s̃ jstu, s̃ jstuv, s̃ jstuvx denote the partial derivatives of s̃ j evaluated at θ0 ,

δ̃ st = δ̃ sδ̃ t , δ̃ stu = δ̃ sδ̃ t δ̃ u , δ̃ stuv = δ̃ sδ̃ t δ̃ uδ̃ v , δ̃ stuvx = δ̃ sδ̃ t δ̃ uδ̃ vδ̃ x , and s, t,u,v,x take

values in the index set {1, . . . , p}. Given the Laplace approximation of the derivatives

of the likelihood function has an error of order O(n−1), then we can express the above

expansion as

0 = s j +O(n−1)+ δ̃
ss js + δ̃

sO(n−1)+
1
2

δ̃
sts jst +

1
2

δ̃
stO(n−1)+

1
6

δ̃
stus jstu +

1
6

δ̃
stuO(n−1)

+
1
24

δ̃
stuvs jstuv +

1
24

δ̃
stuvO(n−1)+

1
120

δ̃
stuvzs jstuvz +

1
120

δ̃
stuvzO(n−1)+Op(n−2)

= s j +O(n−1)+ δ̃
ss js + δ̃

sO(n−1)+
1
2

δ̃
sts jst +

1
6

δ̃
stus jstu +

1
24

δ̃
stuvs jstuv

+
1

120
δ̃

stuvxs jstuvx +Op(n−2)

where all the terms that are of equal or smaller order than Op(n−2) are incorporated in

the remainder term. Re-expressing in terms of the centered log-likelihood derivatives
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we have

0 = s j +O(n−1)+ δ̃
s(s js−µ js)+ δ̃

s
µ js + δ̃

sO(n−1)+
1
2

δ̃
st(s jst−µ jst)+

1
2

δ̃
st

µ jst

+
1
6

δ̃
stu(s jstu−µ jstu)+

1
6

δ̃
stu

µ jstu +
1
24

δ̃
stuv(s jstuv−µ jstuv)+

1
24

δ̃
stuv

µ jstuv

+
1

120
δ̃

stuvx(s jstuvx−µ jstuvx)+
1

120
δ̃

stuvx
µ jstuvx +Op(n−2) .

For simplicity denote the centered log-likelihood derivatives by H js , H jst , H jstu , . . . ,

where all are Op(n1/2). Then

0 = s j +O(n−1)+ δ̃
sH js + δ̃

s
µ js + δ̃

sO(n−1)+
1
2

δ̃
stH jst +

1
2

δ̃
st

µ jst +
1
6

δ̃
stuH jstu

+
1
6

δ̃
stu

µ jstu +
1

24
δ̃

stuvH jstuv +
1

24
δ̃

stuv
µ jstuv +

1
120

δ̃
stuvx

µ jstuvx +Op(n−2) ,

where H jstuvxδ̃ stuvx is Op(n−2) and is incorporated in the remainder term. The above

can be expressed as

−µ jsδ̃
s = s j +O(n−1)+H jsδ̃

s +O(n−1)δ̃ s +
1
2

H jst δ̃
st +

1
2

µ jst δ̃
st +

1
6

H jstuδ̃
stu

+
1
6

µ jstuδ̃
stu +

1
24

H jstuvδ̃
stuv +

1
24

µ jstuvδ̃
stuv +

1
120

µ jstuvxδ̃
stuvx +Op(n−2) .

By the second Bartlett identity (Bartlett, 1953) µ j,s = −µ js and so, for the matrix

inverse of the Fisher information we have µ j,s = −µ js. Using the latter and solving

with respect to δ̃ r we have

δ̃
r = µ

r, js j +µ
r, jO(n−1)+µ

r, jH jsδ̃
s +O(n−1)µr, j

δ̃
s +

1
2

µ
r, jH jst δ̃

st +
1
2

µ
r, j

µ jst δ̃
st

+
1
6

µ
r, jH jstuδ̃

stu +
1
6

µ
r, j

µ jstuδ̃
stu +

1
24

µ
r, jH jstuvδ̃

stuv +
1

24
µ

r, j
µ jstuvδ̃

stuv

+
1

120
µ

r, j
µ jstuvxδ̃

stuvx +Op(n−3) .
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Again, for simplicity denote sr = µr, js j , Hr
s = µr, jH js , µr

st = µr, jµ jst and so on, and

express the preceding expression as

δ̃
r = sr +µ

r, jO(n−1)+Hr
s δ̃

s +O(n−1)µr, j
δ̃

s +
1
2

Hr
st δ̃

st +
1
2

µ
r
st δ̃

st +
1
6

Hr
stuδ̃

stu

+
1
6

µ
r
stuδ̃

stu +
1

24
Hr

stuvδ̃
stuv +

1
24

µ
r
stuvδ̃

stuv +
1

120
µ

r
stuvxδ̃

stuvx +Op(n−3) ,

where

sr = Op(n−1/2)

Hr
s δ̃

s = Op(n−1/2)Op(n−1/2) = Op(n−1)

Hr
st δ̃

st = Op(n−1/2)Op(n−1) = Op(n−3/2)

µ
r
st δ̃

st = Op(1)Op(n−1) = Op(n−1)

Hr
stuδ̃

stu = Op(n−1/2)Op(n−3/2) = Op(n−2)

µ
r
stuδ̃

stu = Op(1)Op(n−3/2) = Op(n−3/2)

Hr
stuvδ̃

stuv = Op(n−1/2)Op(n−2) = Op(n−5/2)

µ
r
stuvδ̃

stuv = Op(1)Op(n−2) = Op(n−2)

µ
r
stuvxδ̃

stuvx = Op(1)Op(n−5/2) = Op(n−5/2) .

Reordering the terms in decreasing order we get:

δ̃
r = sr +Hr

s δ̃
s +

1
2

µ
r
st δ̃

st +
1
2

Hr
st δ̃

st +
1
6

µ
r
stuδ̃

stu +
1
6

Hr
stuδ̃

stu +
1

24
µ

r
stuvδ̃

stuv

+µ
r, jO(n−1)+

1
24

Hr
stuvδ̃

stuv +
1

120
µ

r
stuvxδ̃

stuvx +O(n−1)µr, j
δ̃

s +Op(n−3) .

Similarly,

δ̂
r = sr +Hr

s δ̂
s +

1
2

µ
r
st δ̂

st +
1
2

Hr
st δ̂

st +
1
6

µ
r
stuδ̂

stu +
1
6

Hr
stuδ̂

stu +
1

24
µ

r
stuvδ̂

stuv

+
1

24
Hr

stuvδ̂
stuv +

1
120

µ
r
stuvxδ̂

stuvx +Op(n−3) .
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Using the iterative substitution method we get expressions for δ̃ r and δ̂ r, which

when subtracted lead to an expression for δ r = δ̃ r− δ̂ r. This is given by

δ
r = µ

r, jO(n−1)+Hr
s µ

s, jO(n−1)+
1
2

µ
r
sts

s
µ

t, jO(n−1)+
1
2

µ
r
st µ

s, jO(n−1)st

+O(n−1)µr, jss +Op(n−3)

= µ
r, jO(n−1)+Op(n−5/2)

= n−1
µ

r, jG(θ0;y)+Op(n−5/2) ,

where G(θ0;y) is the O(1) quantity in s̃n(θ0) = sn(θ0)+n−1G(θ0;y) .



Appendix D

Results for the logistic mixed model

with a random intercept

D.1 Derivation of the adjusted score function

The first derivatives of the log-likelihood in (5.3) are calculated using the Bayes’

theorem, stated as

P(A|B) = P(B|A)P(A)
P(B)

,

where P(A|B) is the conditional probability of A given B. If we let P(θ) be the prior

distribution of θ , then because f (y,θ) = f (y|θ)P(θ) = P(θ |y) f (y), we have

P(θ |y) = f (y|θ)P(θ)
f (y)

=
f (y|θ)P(θ)∫
f (y|θ)P(θ)dθ

,

where P(θ |y) is called the posterior density of θ . Under the typical framework of

generalised linear mixed models, P(θ) is assumed to be a normal probability density

function and in the current example f (y|θ) is a binomial probability mass function.

Let

I0i =
∫ eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2 dαi

and

P(αi|yi) = I−1
0i

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)
.
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Before we calculate the first and second derivatives of the log-likelihood we first cal-

culate the derivatives of P(αi|yi). These are

∂P(αi|yi)

∂β
= I−2

0i

[
I0i

∂

∂β

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)
− eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

∂ I0i

∂β

]

= P(αi|yi)
∂

∂β
log

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)

− P(αi|yi)
∫

P(αi|yi)
∂

∂β
log

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)
dαi

= P(αi|yi)

[(
yi−mi

eαi+β

1+ eαi+β

)
−
∫

P(αi|yi)

(
yi−mi

eαi+β

1+ eαi+β

)
dαi

]

= P(αi|yi)

[
yi−mi

eαi+β

1+ eαi+β
− yi +mi

∫ eαi+β

1+ eαi+β
P(αi|yi)dαi

]

= miP(αi|yi)

[∫ eαi+β

1+ eαi+β
P(αi|yi)dαi−

eαi+β

1+ eαi+β

]

and

∂P(αi|yi)

∂σ2 = I−2
0i

[
I0i

∂

∂σ2

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)
− eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

∂ I0i

∂σ2

]

= P(αi|yi)
∂

∂σ2 log

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)

− P(αi|yi)
∫

P(αi|yi)
∂

∂σ2 log

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)
dαi

= P(αi|yi)

[(
α2

i
2σ4 −

1
2σ2

)
−
∫

P(αi|yi)

(
α2

i
2σ4 −

1
2σ2

)
dαi

]
= P(αi|yi)

(
α2

i
2σ4 −

1
2σ4

∫
α

2
i P(αi|yi)dαi

)
.
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The first derivatives of the log-likelihood are

∂ l
∂β

=
∂

∂β

q

∑
i=1

log

(∫ eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2 dαi

)

=
q

∑
i=1

∂

∂β
log

(∫ eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2 dαi

)

=
q

∑
i=1

(∫ eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2 dαi

)−1
∂

∂β

(∫ eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2 dαi

)

=
q

∑
i=1

(∫ eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2 dαi

)−1 ∫
∂

∂β

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)
dαi

=
q

∑
i=1

∫
P(αi|yi)

∂

∂β
log

(
eyi(αi+β )

(1+ eαi+β )mi

1√
2πσ2

e−
α2

i
2σ2

)
dαi

=
q

∑
i=1

∫
P(αi|yi)

(
yi−mi

eαi+β

1+ eαi+β

)
dαi

=
q

∑
i=1

{
yi−mi

∫ eαi+β

1+ eαi+β
P(αi|yi)dαi

}

=
q

∑
i=1

[yi−miE(πi|yi)];

and

∂ l
∂σ2 =

q

∑
i=1

∫
P(αi|yi)

∂

∂σ2

(
yi(αi +β )− α2

i
2σ2 −milog(1+ eαi+β )− 1

2
log(2πσ

2)

)
dαi

=
q

∑
i=1

∫
P(αi|yi)

(
α2

i
2σ4 −

1
2σ2

)
dαi

=
q

∑
i=1

(
− 1

2σ2 +
1

2σ4

∫
α

2
i P(αi|yi)dαi

)
=

q

∑
i=1

(
− 1

2σ2 +
1

2σ4 E(α2
i |yi)

)
.
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The second derivatives of the log-likelihood are

∂ 2l
∂β 2 =

∂

∂β

q

∑
i=1

{
yi−mi

∫ eαi+β

1+ eαi+β
P(αi|yi)dαi

}

= −
q

∑
i=1

mi

∫
∂

∂β

[
P(αi|yi)

(
eαi+β

1+ eαi+β

)]
dαi

= −
q

∑
i=1

mi

∫ [
∂P(αi|yi)

∂β

(
eαi+β

1+ eαi+β

)
+

∂

∂β

(
eαi+β

1+ eαi+β

)
P(αi|yi)

]
dαi

= −
q

∑
i=1

mi

{∫ eαi+β

1+ eαi+β
miP(αi|yi)

(∫ eαi+β

1+ eαi+β
P(αi|yi)dαi

)
dαi

−
∫ ( eαi+β

1+ eαi+β

)2

miP(αi|yi)dαi +
∫ eαi+β

(1+ eαi+β )2 P(αi|yi)dαi

}

= −
q

∑
i=1

[
m2

i E2(πi|yi)−mi(1+mi)E(π2
i |yi)+miE(πi|yi)

]
;

∂ 2l
∂σ4 =

∂

∂σ2

q
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i=1
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− 1
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1

2σ4

∫
α

2
i P(αi|yi)dαi

)
=

q
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1
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∂
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(
1

2σ4

)∫
α

2
i P(αi|yi)dαi +

1
2σ4

∂

∂σ2

(∫
α

2
i P(αi|yi)dαi

)]
=

q

∑
i=1

[
1

2σ4 −
1

σ6

∫
α

2
i P(αi|yi)dαi +

1
2σ4

∫
α

2
i

∂P(αi|yi)

∂σ2 dαi

]
= −

q

∑
i=1

[
− 1

2σ4 +
1

σ6 E(α2
i |yi)−

1
4σ8 E(α4

i |yi)+
1

4σ8 E2(α2
i |yi)

]
;

∂ 2l
∂σ2∂β

=
∂

∂β

(
− q

2σ2 +
1

2σ4

q

∑
i=1

E(α2
i |yi)

)

=
1

2σ4

q

∑
i=1

∫
α

2
i

∂P(αi|yi)

∂β
dαi

=
1

2σ4

q

∑
i=1

∫
α

2
i miP(αi|yi)

[∫ eαi+β

1+ eαi+β
P(αi|yi)dαi−

eαi+β

1+ eαi+β

]
dαi

= −
q

∑
i=1

[ mi

2σ4 E(α2
i πi|yi)−

mi

2σ4 E(πi|yi)E(α2
i |yi)

]
.
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We now have all the quantities required to derive the score function (first derivative

of the log-likelihood), the observed information matrix j(θ) (minus the second deriva-

tive of the log-likelihood) and the expected information matrix i(θ) = Eθ{ j(θ)}. Let

s(θ) =

s1(θ)

s2(θ)

 ; j(θ) =

 j11(θ) j12(θ)

j21(θ) j22(θ)

 ; i(θ) =

i11(θ) i12(θ)

i21(θ) i22(θ)

 .

Then

s1(θ) =
q

∑
i=1

(yi−miE(πi|yi));

s2(θ) =
q

∑
i=1

(
− 1

2σ2 +
1

2σ4 E(α2
i |yi)

)
;

j11(θ) =
q

∑
i=1

(
m2

i E2(πi|yi)−mi(1+mi)E(π2
i |yi)+miE(πi|yi)

)
;

j12(θ) =
q

∑
i=1

( mi

2σ4 E(α2
i πi|yi)−

mi

2σ4 E(πi|Yi)E(α2
i |yi)

)
;

j22(θ) =
q

∑
i=1

(
− 1

2σ4 +
1

σ6 E(α2
i |yi)−

1
4σ8 E(α4

i |yi)+
1

4σ8 E2(α2
i |yi)

)
;

i11(θ) =
q

∑
i=1

{
m2

i EYi[E
2(πi|yi)]−mi(1+mi)EYi[E(π

2
i |yi)]+miEYi[E(πi|yi)]

}
;

i12(θ) =
q

∑
i=1

{ mi

2σ4 EYi[E(α
2
i πi|yi)]−

mi

2σ4 EYi[E(πi|yi)E(α2
i |yi)]

}
;

i22(θ) =
q

∑
i=1

{
− 1

2σ4 +
1

σ6 EYi[E(α
2
i |yi)]−

1
4σ8 EYi[E(α

4
i |yi)]+

1
4σ8 EYi[E

2(α2
i |yi)]

}
=

q

∑
i=1

{
− 1

4σ4 +
1

4σ8 EYi[E
2(α2

i |yi)]

}
.

The above expressions for the elements of the expected information matrix are

identical to the expressions for the expected information matrix derived in Wand (2007)

for the binomial-response generalised linear mixed model in (5.2).
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The adjusted score functions proposed in Firth (1993) are

s∗1(θ) = s1(θ)+
1

2|i(θ)|

(
i22EYi[s

3
1− j11s1]−2i12EYi[s

2
1s2− j12s1]+ i11EYi[s1s2

2− j22s1]

)
(D.1)

s∗2(θ) = s2(θ)+
1

2|i(θ)|

(
i22EYi[s

2
1s2− j11s2]−2i12EYi[s1s2

2− j12s2]+ i11EYi[s
3
2− j22s2]

)
(D.2)

where

EYi[s
3
1− j11s1] =

q

∑
i=1

{
EYi[yi]−3miEYi[y

2
i E(πi|yi)]+2m2

i EYi[yiE2(πi|yi)]

− miEYi[yiE(πi|yi)]+mi(1+mi)EYi[yiE(π2
i |yi)]

− m2
i (1+mi)EYi[E(πi|yi)E(π2

i |yi)]+m2
i EYi[E

2(πi|yi)]

}
;

EYi[s
2
1s2− j12s1] =

q

∑
i=1

{
− 1

2σ2 EYi[y
2
i ]+

mi

σ2 EYi[yiE(πi|yi)]−
m2

i
2σ2 EYi[E

2(πi|yi)]

+
1

2σ4 EYi[y
2
i E(α2

i |yi)]−
mi

2σ4 EYi[yiE(α2
i πi|yi)]

+
m2

i
2σ4 EYi[E(πi|yi)E(α2

i πi|yi)]−
mi

2σ4 EYi[yiE(πi|yi)E(α2
i |yi)]

}
;

EYi[S1S2
2− I22S1] =

q

∑
i=1

{
− 3

2σ6 EYi[yiE(α2
i |yi)]+

3mi

2σ6 EYi[E(πi|yi)E(α2
i |yi)]

+
1

4σ8 EYi[yiE(α4
i |yi)]−

mi

4σ8 EYi[E(πi|yi)E(α4
i |yi)]

}
;

EYi[s
2
1s2− j11s2] =

q

∑
i=1

{
− 1

2σ2 EYi[y
2
i ]+

mi

σ2 EYi[yiE(πi|yi)]+
1

2σ4 EYi[y
2
i E(α2

i |yi)]

− mi(1+mi)

2σ2 EYi[E(π
2
i |yi)]+

mi

2σ2 EYi[E(πi|yi)]−
mi

σ4 EYi[yiE(πi|yi)E(α2
i |yi)]

+
mi(1+mi)

2σ4 EYi[E(π
2
i |yi)E(α2

i |yi)]−
mi

2σ4 EYi[E(πi|yi)E(α2
i |yi)]

}
;

EYi[s1s2
2− j12s2] =

q

∑
i=1

{
− 1

2σ6 EYi[yiE(α2
i |yi)]+

1
4σ8 EYi[yiE2(α2

i |yi)]+
mi

4σ6 EYi[E(α
2
i πi|yi)]

+
mi

4σ6 EYi[E(πi|yi)E(α2
i |yi)]−

mi

4σ8 EYi[E(α
2
i |yi)E(α2

i πi|yi)]

}
;

EYi[s
3
2− j22s2] =

q

∑
i=1

{
3

8σ6 −
3

4σ10 EYi[E
2(α2

i |yi)]+
1

8σ12 EYi[E(α
2
i |yi)E(α4

i |yi)]

}
.
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Below we give a list of all the expectations that appear in s∗1(θ) and s∗2(θ):

1. EYi[E(πi|yi)] = Eαi(πi)

2. EYi[E(π
2
i |yi)] = Eαi(π

2
i )

3. EYi[E
2(πi|yi)]

4. EYi[E(α
2
i πi|yi)] = Eαi(α

2
i πi)

5. EYi[E
2(α2

i |yi)]

6. EYi[E(πi|yi)E(α2
i |yi)]

7. EYi[y
3
i ] = miEαi(πi)+3mi(mi−1)Eαi(π

2
i )+mi(mi−1)(mi−2)Eαi(π

3
i )

8. EYi[y
2
i E(πi|yi)] = miEαi(π

2
i )+mi(mi−1)Eαi(π

3
i )

9. EYi[yiE2(πi|yi)]

10. EYi[yiE(πi|yi)] = miEαi(π
2
i )

11. EYi[yiE(π2
i |yi)] = miEαi(π

3
i )

12. EYi[E(πi|yi)E(π2
i |yi)]

13. EYi[y
2
i ] = miEαi(πi)+mi(mi−1)Eαi(π

2
i )

14. EYi[y
2
i E(α2

i |yi)] = miEαi(α
2
i πi)+mi(mi−1)Eαi(α

2
i π2

i )

15. EYi[yiE(α2
i πi|yi)] = miEαi(α

2
i π2

i )

16. EYi[yiE(πi|yi)E(α2
i |yi)]

17. EYi[E(πi|yi)E(α2
i πi|yi)]

18. EYi[yiE(α2
i |yi)] = miEαi(α

2
i πi)

19. EYi[yiE(α4
i |yi)] = miEαi(α

4
i πi)

20. EYi[E(πi|yi)E(α4
i |yi)]

21. EYi[E(π
2
i |yi)E(α2

i |yi)]

22. EYi[yiE2(α2
i |yi)]

23. EYi[E(α
2
i |yi)E(α2

i πi|yi)]

24. EYi[E(α
2
i |yi)E(α4

i |yi)]

Notice that some of the above expectations are expressed in a simpler form, and

this has been achieved by using the Bartlett identities (Bartlett, 1953) and the identities

on conditional expectations.
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For example, we show that EYi[yiE(πi|yi)] = miEαi(π
2
i ), using the identity of

conditional expectations f (yi)E(πi|yi) = E( f (yi)πi|yi), which gives EYi[yiE(πi|yi)] =

EYi[E(yiπi|yi)] = Eαi[EYi|αi(yiπi|yi)] = Eαi[πiEYi|αi(yi|yi)] = Eαi[πi(miπi)] = miEαi(π
2
i ).

Similarly, EYi[y
2
i E(πi|yi)] = Eαi[πiEYi|αi(y

2
i |yi)] = Eαi[πi(miπi(1−πi)+ (miπi)

2)], and

thus EYi[y
2
i E(πi|yi)] = miEαi(π

2
i )+mi(mi−1)Eαi(π

3
i ).

Using the above simplifications we have

EYi[s
3
1− j11s1] =

q

∑
i=1

{
miEYi[E(πi|yi)]−mi(mi +3)EYi[E(π

2
i |yi)]

−mi(mi +1)(mi−2)EYi[E(π
3
i |yi)]+m2

i EYi[E
2(πi|yi)]

+2m2EYi[yiE2(πi|yi)]−m2
i (mi +1)EYi[E(πi|yi)E(π2

i |yi)]

}
;

EYi[s
2
1s2− j12s1] =

q

∑
i=1

{
− mi

2σ2 EYi[E(πi|yi)]+
mi(mi +1)

2σ2 EYi[E(π
2
i |yi)]

− m2
i

2σ2 EYi[E
2(πi|yi)]+

mi

2σ4 EYi[E(α
2
i πi|yi)]−

mi

2σ4 EYi[E(α
2
i π

2
i |yi)]

+
m2

i
2σ4 EYi[E(πi|yi)E(α2

i πi|yi)]−
mi

2σ4 EYi[yiE(πi|yi)E(α2
i |yi)]

}
;

EYi[s1s2
2− j22s1] =

q

∑
i=1

{
− 3mi

2σ6 EYi[E(α
2
i πi|yi)]+

3mi

2σ6 EYi[E(πi|yi)E(α2
i |yi)]

+
mi

4σ8 EYi[E(α
4
i πi|yi)]−

mi

4σ8 EYi[E(πi|yi)E(α4
i |yi)]

}
;

EYi[s
2
1s2− j11s2] =

q

∑
i=1

{
mi

2σ4 EYi[E(α
2
i πi|yi)]−

mi

2σ4 EYi[E(πi|yi)E(α2
i |yi)]

−mi

σ4 EYi[yiE(πi|yi)E(α2
i |yi)]+

mi(mi +1)
2σ4 EYi[E(π

2
i |yi)E(α2

i |yi)]

+
mi(mi−1)

2σ4 EYi[E(α
2
i π

2
i |yi)]

}
;

EYi[s1s2
2− j12s2] =

q

∑
i=1

{
− mi

4σ6 EYi[E(α
2
i πi|yi)]+

mi

4σ6 EYi[E(πi|yi)E(α2
i |yi)]

+
1

4σ8 EYi[yiE2(α2
i |yi)]−

mi

4σ8 EYi[E(α
2
i |yi)E(α2

i πi|yi)]

}
;

EYi[s
3
2− j22s2] =

q

∑
i=1

{
3

8σ6 −
3

4σ10 EYi[E
2(α2

i |yi)]+
1

8σ12 EYi[E(α
2
i |yi)E(α4

i |yi)]

}
.

We substitute these quantities into (D.1) and (D.2) to get the final form of the adjusted

score functions.
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D.2 Proof of Results 1-5

Proof of Result 1: Let L1 = lim
σ2→0

EYi[E(πi|yi)E(α2
i |yi)] and L2 = lim

σ2→0
EYi[E(α

2
i πi|yi)].

L1 = lim
σ2→0

∫ m

∑
k=1

E(πi|yi = k)E(α2
i |yi = k)P(yi = k|αi) f (αi)dαi

= lim
σ2→0

∫ m

∑
k=1

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)(∫
α

2
i P(αi|yi = k)dαi

)
P(yi = k|αi) f (αi)dαi

=
m

∑
k=1

lim
σ2→0

∫ (∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)(∫
α

2
i P(αi|yi = k)dαi

)
P(yi = k|αi) f (αi)dαi

=
m

∑
k=1

lim
σ2→0

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

∫
α

2
i P(αi|yi = k)dαi

∫
P(yi = k|αi) f (αi)dαi

)

=
m

∑
k=1

[
lim

σ2→0

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)
× lim

σ2→0

(∫
α

2
i P(αi|yi = k)dαi

)
× lim

σ2→0

(∫
P(yi = k|αi) f (αi)dαi

)]

=
m

∑
k=1

[
lim

σ2→0

∫ eαi+β

1+eαi+β
P(yi = k|αi) f (αi)∫

P(yi = k|αi) f (αi)dαi
dαi

× lim
σ2→0

(∫
α2

i P(yi = k|αi) f (αi)∫
P(yi = k|αi) f (αi)dαi

dαi

)

× lim
σ2→0

(∫
P(yi = k|αi) f (αi)dαi

)]

=
m

∑
k=1

[ lim
σ2→0

∫ eαi+β

1+eαi+β
P(yi = k|αi) f (αi)dαi

lim
σ2→0

∫
P(yi = k|αi) f (αi)dαi

×
lim

σ2→0

∫
α2

i P(yi = k|αi) f (αi)dαi

lim
σ2→0

∫
P(yi = k|αi) f (αi)dαi

× lim
σ2→0

(∫
P(yi = k|αi) f (αi)dαi

)]

=
m

∑
k=1

[ lim
σ2→0

∫ eαi+β

1+eαi+β
P(yi = k|αi) f (αi)dαi

lim
σ2→0

∫
P(yi = k|αi) f (αi)dαi

× lim
σ2→0

∫
α

2
i P(yi = k|αi) f (αi)dαi

]
. (D.3)

Here it is tempting to move the limit inside the integrals, but this is not always valid.

Lebesgue integration theory has a powerful criterion called Lebesgue’s dominated con-

vergence theorem (Rudin, 1976, p. 318). This theorem tells us that if the limit of the

integrand exists for almost all x, and there is a function H(x) ≥ 0,
∫

∞

−∞
H(x)dx < ∞,

such that | f (x)|< H(x) then the interchange of limit and integration is valid. In other
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words,

lim
t→t0

∫
X

f (x, t)dx =
∫

X
f (x, t0)dx

is justified when | f (x, t)| is bounded (Benedetto & Czaja, 2010, Theorem 3.6.1). In

(D.3) we can interchange limits and integration only in the first part of L1,

lim
σ2→0

∫ eαi+β

1+eαi+β
P(yi = k|αi) f (αi)dαi

lim
σ2→0

∫
P(yi = k|αi) f (αi)dαi

,

where both integrands are bounded in [0,(2πσ2)−1/2]. We then have

L1 =
m

∑
k=1

[∫ eβ

1+eβ
P(yi = k|αi)δ (αi)dαi∫

P(yi = k|αi)δ (αi)dαi
lim

σ2→0

∫
α

2
i P(yi = k|αi) f (αi)dαi

]
.

The quantities eβ/(1+ eβ ) and P(yi = k|αi) are independent of αi , because when σ2

approaches zero, αi also approaches zero. They can then be taken out of the integration

as constants, and the remaining
∫

δ (αi)dαi is equal to unity by construction. The limit

L1 is therefore further simplified to

L1 =
m

∑
k=1

[
eβ

1+ eβ
lim

σ2→0

∫
α

2
i P(yi = k|αi) f (αi)dαi

]

= lim
σ2→0

∫ m

∑
k=1

α
2
i

eβ

1+ eβ
P(yi = k|αi) f (αi)dαi

= lim
σ2→0

∫
α

2
i

eβ

1+ eβ

(
m

∑
k=1

P(yi = k|αi)

)
f (αi)dαi

= lim
σ2→0

∫
α

2
i

eβ

1+ eβ
f (αi)dαi

= lim
σ2→0

Eαi(α
2
i πi)

= lim
σ2→0

EYi[E(α
2
i πi|yi)]

= L2.

Similarly, we can prove Result 2.
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Proof of Result 3: Let L3 = lim
σ2→0

EYi[E
2(πi|yi)] and L4 = lim

σ2→0
EYi[E(π

2
i |yi)]. Using

the same properties of limits and Lebesgue dominated convergence theorem we have:

L3 = lim
σ2→0

∫ m

∑
k=1

E(πi|yi = k)2P(yi = k|αi) f (αi)dαi

= lim
σ2→0

∫ m

∑
k=1

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)2

P(yi = k|αi) f (αi)dαi

=
m

∑
k=1

lim
σ2→0

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)2(∫
P(yi = k|αi) f (αi)dαi

)

=
m

∑
k=1

[
lim

σ2→0

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)2

× lim
σ2→0

(∫
P(yi = k|αi) f (αi)dαi

)]

=
m

∑
k=1

[ lim
σ2→0

(∫ eαi+β

1+eαi+β
P(yi = k|αi) f (αi)dαi

)2

lim
σ2→0

(
∫

P(yi = k|αi) f (αi)dαi)
2 × lim

σ2→0

(∫
P(yi = k|αi) f (αi)dαi

)]

=
m

∑
k=1

(
lim

σ2→0

∫ eαi+β

1+eαi+β
P(yi = k|αi) f (αi)dαi

)2

lim
σ2→0

∫
P(yi = k|αi) f (αi)dαi

=
m

∑
k=1

(∫ eβ

1+eβ
P(yi = k|αi)δ (αi)dαi

)2

∫
P(yi = k|αi)δ (αi)dαi

=
m

∑
k=1

(
eβ

1+ eβ

)2

P(yi = k|αi) =

(
eβ

1+ eβ

)2

;

L4 = lim
σ2→0

EYi[E(π
2
i |yi)] = lim

σ2→0
Eαi(π

2
i )

= lim
σ2→0

∫ ( eαi+β

1+ eαi+β

)2

f (αi)dαi

=
∫ ( eβ

1+ eβ

)2

δ (αi)dαi =

(
eβ

1+ eβ

)2

.

Then L3 = L4 .
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Proof of Result 4: Let L5 = lim
σ2→0

EYi[yiE2(πi|yi)] and L6 = lim
σ2→0

EYi[E(π
3
i |yi)].

L5 = lim
σ2→0

∫ m

∑
k=1

YkE(πi|yi = k)2P(yi = k|αi) f (αi)dαi

= lim
σ2→0

∫ m

∑
k=1

Yk

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)2

P(yi = k|αi) f (αi)dαi

=
m

∑
k=1

Yk lim
σ2→0

(∫ eαi+β

1+ eαi+β
P(αi|yi = k)dαi

)2(∫
P(yi = k|αi) f (αi)dαi

)

=

(
eβ

1+ eβ

)2 m

∑
k=1

YkP(yi = k|αi)

=

(
eβ

1+ eβ

)2

E(yi|αi) = mi

(
eβ

1+ eβ

)3

;

L6 = lim
σ2→0

Eαi(π
3
i )

= lim
σ2→0

∫ ( eαi+β

1+ eαi+β

)3

f (αi)dαi

=
∫ ( eβ

1+ eβ

)3

δ (αi)dαi =

(
eβ

1+ eβ

)3

.

Then L5 = miL6 .

Proof of Result 5: Let L7 = lim
σ2→0

EYi[E(πi|yi)E(π2
i |yi)].

L7 = lim
σ2→0

∫ m

∑
k=1

E(πi|yi = k)E(π2
i |yi = k)P(yi = k|αi) f (αi)dαi

=
m

∑
k=1

[ lim
σ2→0

∫
πiP(yi = k|αi) f (αi)dαi

lim
σ2→0

∫
P(yi = k|αi) f (αi)dαi

× lim
σ2→0

∫
π

2
i P(yi = k|αi) f (αi)dαi

]

=
m

∑
k=1

(
eβ

1+ eβ

)3

P(yi = k|αi) =

(
eβ

1+ eβ

)3

.

Then L6 = L7 .



Appendix E

Key results used to support proofs of

theorems in Chapter 3 and Chapter 4

This appendix contains some key results used to support proofs of theorems and deriva-

tion of results in Chapter 3 and Chapter 4. In order to prove the consistency and asymp-

totic normality of the mean bias-reduced IBLA estimators we use the following main

results:

Lemma E.1. Slutsky lemma (Van der Vaart, 2000, Lemma 2.8)

Let Xn, X and Yn be random vectors or variables. If Xn→ X and Yn→ c for a constant

c, then (i) Xn +Yn→ X + c , (ii) YnXn→ cX , (iii) Y−1
n Xn→ c−1X provided c 6= 0 .

Theorem E.1. Weak law of large numbers (Davison, 2003, p. 28).

If Y1,Y2, . . . is a sequence of independent identically distributed random variables each

with finite mean µ , and if Ȳ = n−1(Y1 + . . .+Yn) is the average of Y1, . . . ,Yn, then

Ȳ
p−→ µ .

Theorem E.2. Van der Vaart (2000, Theorem 5.9) Let Ψn be random vector-valued

functions and let Ψ be a fixed vector-valued function of θ such that for every ε > 0

sup
θ∈Θ

‖Ψn(θ)−Ψ(θ)‖ p−→ 0 ,

inf
θ :d(θ ,θ0)≥ε

‖Ψ(θ)‖> 0 = ‖Ψ(θ0)‖ .

Then any sequence of estimators θ̂n such that Ψn(θ̂n) = op(1) converges in probability

to θ0 .
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Theorem E.3. Central limit theorem (Van der Vaart, 2000, Proposition 2.17)

Let Y1, . . . ,Yn be i.i.d. random variables with EYi = 0 and EY 2
i = 1. Then the sequence

√
nȲn converges in distribution to the standard normal distribution.

Theorem E.4. Continuous mapping theorem (Van der Vaart, 2000, Theorem 2.3)

Let g : ℜk 7→ℜm be continuous at every point of a set C such that P(X ∈C) = 2.

(i) If Xn→ X, then g(Xn)→ g(X);

(ii) If Xn
p−→ X, then g(Xn)

p−→ g(X);

(iii) If Xn
as−→ X, then g(Xn)

as−→ g(X).

Theorem E.5. (Trench, 2003, Theorem 7.1.13)

If f is continuous on a rectangle R in ℜn, then f is integrable on R.

Theorem E.6. Lebesgue’s theorem (Lavrent’ev & Savel’ev, 2006, p. 165)

A subset of ℜm is compact if and only if it is bounded and closed. If X ⊂ℜm is bounded

and closed, then X is a closed subset of a rectangle that is a product of intervals.

The equivalence of (a) and (b) in Theorem E.7 is known as the Heine-Borel theo-

rem.

Theorem E.7. (Rudin, 1976, Theorem 2.41)

If a set E in ℜk has one of the following two properties, then it has the other two:

(a) E is closed and bounded.

(b) E is compact.

(c) Every infinite subset of E has a limit point in E.

Theorem E.8. (Rudin, 1976, Theorem 4.9)

Let f and g be complex continuous functions on a metric space X. Then f +g, f g and

f/g are continuous on X.

Theorem E.9. (Rudin, 1976, Theorem 4.16)

Suppose f is a continuous real function on a compact metric space X, and M =

supp∈X f (p), m = infp∈X f (p). Then there exist points p,q ∈ X such that f (p) = M

and f (q) = m.

Theorem E.10. Bounded convergence theorem (Feller, 2008, p. 111)

Let un be integrable and un → u pointwise. If there exists an integrable U such that

|un| ≤U for all n, then u is integrable and E(un)→ E(u).
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The stochastic order symbols Op and op (see, for example, Van der Vaart, 2000,

Section 2.2) are used for describing the asymptotic order of random quantities and are

defined as follows:

Definition E.1. Consider a sequence of random variables {Xn} and a sequence of con-

stants {an}. We write Xn = op(an) if Xn/an
p−→ 0.

Definition E.2. Consider a sequence of random variables {Xn} and a sequence of con-

stants {an}. We write Xn = Op(an) if for every ε > 0 there exists K(ε)> 0 and n0(ε)

such that, for all n > n0(ε),

P
(∣∣∣∣Xn

an

∣∣∣∣≤ K(ε)

)
> 1− ε .

The statement Xn = Op(1) is equivalent to saying that {Xn} is bounded in probability.

We also make use of the Landau symbols o(·) and O(·).

Definition E.3. Consider two sequences of real constants {an} and {bn}. We write

bn = o(an) if limn→∞ |bn/an|= 0.

Definition E.4. Consider two sequences of real constants {an} and {bn}. We write

bn = O(an) if there exists ε > 0 and positive integer N(ε) such that if n ≥ N(ε) then

limsup |bn|/|an|< ∞ .
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