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Abstract
Cell competition is a quality control mechanism through which tissues eliminate
unfit cells. Cell competition can result from short-range biochemical signals or
long-range mechanical cues. However, little is known about how cell-scale interac-
tions give rise to population shifts in tissues, due to the lack of experimental and
computational tools to e�ciently characterise interactions at the single-cell level.

In the work presented in this thesis, I address these challenges by combining
long-term automated microscopy with deep learning image analysis to decipher
how single-cell behaviour determines tissue make-up during competition. Using
a novel high-throughput analysis pipeline, I show that competitive interactions
between MDCK wild-type cells and cells depleted of the polarity protein scribble
are governed by di�erential sensitivity to local density and the cell-type of each
cell’s neighbours. I find that local density has a dramatic e�ect on the rate of
division and apoptosis under competitive conditions. Strikingly, such analysis
reveals that proliferation of the winner cells is up-regulated in neighbourhoods
mostly populated by loser cells.

These data suggest that tissue-scale population shifts are strongly a�ected by
cellular-scale tissue organisation. I present a quantitative mathematical model
that demonstrates the e�ect of neighbour cell-type dependence of apoptosis and
division in determining the fitness of competing cell lines.
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Impact Statement
Our research will provide new understanding of how cell fate is determined by

local interactions within heterogeneous cell populations.
By controlling geometrical confinement using micropatterning techniques and
nutrient supply using microfluidics, it will be possible to determine how these
interactions are influenced by microenvironmental conditions, something with
broad relevance to developmental and stem cell biology in addition to cancer.
Our experiments will provide insight into the temporal evolution of tumour
genetic composition both during growth and in response to therapeutic treatment.
Computational models calibrated using our experiments will allow understanding
of cancer cell interaction based on a rigorous game theoretical framework.
From a clinical standpoint, our experiment and simulation pipeline will allow
exploration of how antioncogenic drugs a�ect a heterogeneous tumour, and allow
for multi-drug therapy design.
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1 Introduction

1.1 Introduction and study concept
Most adult human cancers originate from the transformation of a single cell within
a healthy epithelial cell sheet. Following this event, several rounds of mutation
and selection are believed to take place giving rise to tumour progenitors Moreno
(2008). The cellular make up of cancerous tumours is highly heterogeneous and
continuously evolving Sottoriva et al. (2013),Vogelstein et al. (2013), Navin et al.
(2011). Indeed, as the tumour grows from a single cell lesion to a detectable
aggregate of >109 cells, individual cells progressively acquire more mutations
leading to the emergence of genetically distinct cell lineages. Over time, the
tumour genetic make up becomes spatially heterogeneous with distinct spatial
domains dominated by distinct cancerous cell lineages. Some mutations confer a
competitive advantage (or disadvantage) to the lineage that only becomes appar-
ent when it interacts with other tumour lineages. Boundaries between domains,
where cells from one lineage interact with those from another lineage, are prime
regions for inter-lineage interaction. Understanding these interactions is key to un-
derstanding the evolution of tumours and their response to therapeutic treatments.

Detecting a pre tumour lesion when the number of mutant cells in the tissue
is on the order of hundreds to thousands is a challenging task (Figure 1.1).
Furthermore, it has recently been shown that clonal expansion of transformed
cells can be balanced by the apoptotic elimination of normal cells, thus allowing
mutant cells to proliferate without any detectable morphological aberration.
Hence, it appears that transformed cells compete with their non-transformed
or less transformed neighbours during the initial stages of tumour growth and
the establishment of metastases. How transformed cells interact with their
neighbours is poorly understood, despite a better understanding of the early
stages of cancer progression, and such knowledge would be extremely useful for
developing e�ective screening strategies as well as new treatments. Little is known
about how single cell-level interactions give rise to the global evolution of tumour
make-up because we lack the experimental, computational and analytical tools
to e�ciently characterise interactions between di�erent cancer cell lineages at
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the level of single cells. Therefore, the work described in this thesis was aimed
at developing techniques for characterising the relationships between epithelial
cancer cell lineages at the single-cell level, to understand how cellular interactions
can lead to shifts in the make-up of tissues.

Moreno, 2008 

Figure 1.1: The numbers of cancer The numbers of cancer: 75% of doubling cycles
occur before any change is detectable. Early stages are phenotypically silent, because
expansion of transformed cells is balanced by the apoptotic elimination of wild type
cells, thus allowing mutant cells to proliferate without any detectable morphological
aberration. Hence, transformed cells compete with their non-transformed or less
transformed neighbours during the initial stages of tumour growth and the establishment
of metastases. The image is from Moreno (2008).

1.2 Tumour cell heterogeneity: origins and
implications

Neoplasias are highly heterogeneous. Four types of genetic heterogeneity are
relevant to tumourigenesis (Figure 1.2): (i) intra-tumoural (heterogeneity among
the cells of one tumour), (ii) inter-metastatic (heterogeneity among di�erent
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metastatic lesions), (iii) intra-metastatic (heterogeneity among the cells of an
individual metastasis) and (iv) inter-patient (heterogeneity among the tumours of
di�erent patients). Here the term heterogeneity refers to the presence of cellular
di�erences within a tumour, due to lineage di�erence, arising from both genetic
and epigenetic processes. Particularly, (i) is important to understand cancer
evolution and to design specific treatments. Indeed, from this heterogeneity,
(ii) arises. The founder of a metastasis is a cell that has escaped from the
primary tumour, which proliferated. Founder cells of each metastasis, in theory,
derive from distinct areas of the primary tumour; therefore, they might present
distinctive generic alterations. The inter-metastatic heterogeneity has a huge
clinical relevance Vogelstein et al. (2013). Considering that a typical patient on a
clinical trial usually displays multiple detectable metastatic lesions, if each one
of such lesions derives from a cell with very di�erent genetic background, then
chemotherapeutic cures would be nearly impossible to achieve.

Cellular sub populations were isolated from cancers of every major histological
type and organ site and from both experimental and human cancers. Moreover,
intra tumour heterogeneity was found in tumours induced by a variety of carcino-
gen factors (chemical, physical, or viral agents) Heppner (1984). The origin of
such heterogeneity has extensively been debated and investigated over the years
Sottoriva et al. (2013), Fidler (2016). Two major theories were formulated in order
to explain intra-tumour diversity: the cancer stem cell hypothesis and the clonal
evolution model Campbell and Polyak (2007). The cancer stem cell hypothesis
suggests that, at early stages, a tumour is initiated by a small set of cells with
stem cell-like features (self-renewal and di�erentiation abilities). Such cells are
thought to drive both initiation and progression of the neoplasia and, through
their di�erentiation, to generate the various cell types within the tumour, thus
explaining the intra tumour heterogeneity (Figure 1.3 a). Evidence supporting
the existence of such cells was first found in 1994 when it was shown that a
small population of cells from human acute myeloid leukemia expressing some cell
surface markers associated with normal hematopoietic stem cells could initiate
leukemia in immuno-deficient mouse Lapidot et al. (1994). Since then, further
studies have reported the existence of stem cells in many tumour types such as
lung, brain, skin, prostate, and colon Fang et al. (2005), Singh et al. (2003). The
cancer stem cell model has been validated via transplantation assays, which test
the tumorigenic potential of isolated cells in highly immuno-compromised mice.
Nevertheless, it has been argued that there may be cancer cells that might be
able to contribute to growth and progression of cancer, but that fail to exhibit
this potential after transplantation due to the xenogenic immune response.
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Vogelstein, 2013 

Figure 1.2: Types of tumour diversity Four types of tumour heterogeneity. Clonal
heterogeneity arises from mutations that occurred during initiation of primary tumour.
At the top left, a primary tumour is illustrated by cells with a large fraction of the
total mutations (founder cells in red) from which coloured sub-clones are derived.
Di�erently coloured regions in the sub-clones represent stages of evolution within a
sub-clone. (A) Intra-tumoural: heterogeneity among the cells of the primary tumour.
(B) Inter-metastatic: heterogeneity among di�erent metastatic lesions in the same
patient. (C) Intra-metastatic: heterogeneity among the cells of each metastasis develops
as the metastases grow. (D) Inter-patient: heterogeneity among the tumours of di�erent
patients. Image from Vogelstein et al. (2013).

Conversely, the clonal evolution model hypothesizes that a tumour is initiated
by a cell undergoing several rounds of mutations conferring competitive advantage,
and its progression is driven by natural selection (Figure 1.3 b). According to
this idea, the tumour progenitor can be a random single cell that, following
multiple mutations, gained a selective growth advantage over adjacent normal
cells. Then, genetic instability and uncontrolled proliferation are thought to
give rise to the generation of cells with additional mutations and hence new
characteristics. Therefore, in this model, heterogeneity is caused by the emergence

4



Introduction

of new hereditary traits in pre malignant and tumour cells. The clonal evolution
theory accounts for various traits of tumours, as the above mentioned genomic
instability, which was identified as an "enabling feature" of cancer itself Hanahan
and Weinberg (2011). Various studies have reported mutational heterogeneity
such as diploid and aneuploid clones within a tumour, and di�erent allelic losses
in cells from the same tumour. In 2006, Maley and co-workers showed for the
first time a direct relationship between clonal diversity in pre malignant lesions
and progression to cancer Michor and Polyak (2010), finding that high degrees of
clonal diversity correlate with increased risk of malignancy. Patterns of mutation
compatible with the clonal model were also found in breast carcinomas Campbell
and Polyak (2007). The two theories rely on very di�erent assumptions, but they
are not mutually exclusive and can be reconciled (Figure 1.4 a). A third theory on
the growth and development of tumours has been suggested in recent years: the
"Big Bang" model, Sottoriva et al. (2015). This last model was validated on samples
of colorectal carcinomas and large adenomas and predicts that, after initiation, a
tumour grows as a single expansion of numerous heterogeneous sub-clones. After
initiation, subsequent replication errors are supposed to generate multiple "private"
alterations, accumulating in addition to the "public" alterations which are present
in the progenitor cells. Such private mutations, although being non-dominant,
will persist and spread across the lesion if generated during the early stages of
expansion. Conversely, late-arising alterations will only be found in small regions of
the tumour (Figure 1.4, b). Despite the debate on the origin of such heterogeneity,
the clinical importance of intra tumour diversity is universally acknowledged.
Firstly, it a�ects prognosis by interfering with the molecular classification of
tumours into clinically relevant subtypes. Biopsy samples taken from a patient
might not be representative of the whole cancerous lesion. How many biopsies
does a typical surgeon collect? The heterogeneity signifies that if this number
is low, they might not identify the malignant populations. Furthermore, each
clone deriving from a defined combination of mutations might display di�erent
sensitivity to therapy. Anti-oncogenic therapies may a�ect one cancer cell lineage
more than others and recent work, performed by modelling spatial growth and
genetic evolution, revealed this can lead to rapid change in tumour composition
selecting for the more malignant lineages Waclaw et al. (2015). Hence, the specific
therapeutic strategy of choice depends on identity and make up of the resistant cell
populations. A better knowledge of the composition of tumours or pre malignant
lesions at early stages (during diagnosis) will play a crucial role for improving
both the prognosis and set up of therapeutic treatment of patients.
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Cancer stem cell theory  Clonal  evolution model 

Campbell & Polyak, 2007 

Figure 1.3: The origin of heterogeneity (a) The stem cell theory of cancer
identifies a small subset of cells having self renewal and di�erentiation abilities, as
being responsible for intra-heterogeneity. (b) The clonal evolution theory of cancer.
Any cell can undergo transformation and acquire additional mutations, giving rise
to new lineages of tumour cells. In this cartoon, circles represent cells (with purple
indicating stem or progenitor properties), lightning bolts represent mutagenesis, and
stars represent mutations. The first star in each circle indicates the multiple mutations
needed to convert a normal cell into a cancer cell. The image is from Campbell and
Polyak (2007).

1.2.1 Tumour cell plasticity: role of cellular interactions and
micro-environmental conditions

In addition to being genetically diverse, cancerous tumours present spatially
confined heterogeneous micro-environments with gradients in nutrient availability
and oxygenation (Figure 1.5). The tumour environment is, indeed, composed
of heterogeneous populations of neoplastic cells growing in a complex cellular
array of normal host cells, tumour-derived and/or entrained mesenchymal cells
and inflammatory cells (tumour-associated stroma) in a highly dynamic physical
and biochemical environment Joyce and Pollard (2009). Tumours are, indeed,
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Figure 1.4: Emergence and types of tumour diversity (a) Intra tumour hetero-
geneity can result from both the di�erentiation of cancer stem cells (parallel horizontal
arrows) and the accumulation of mutations in cancer stem cells (vertical arrows) and
transit-amplifying cells (diverging arrows). Image adapted from Michor and Polyak
(2010). (b) Left: The Big bang model of tumour growth suggests that, after initiation,
tumour undergoes a single expansion, made up of numerous intermixed sub-clones.
Alterations in the initiating cell will be present in all tumour cells (clonal). New
alterations will continuously be generated as a result of replication errors (coloured
arrow heads). The earliest mutations will be pervasive, whereas later alterations will
be localized in progressively smaller sub-populations. Right: Diagram illustrating how
early private alterations (yellow or red) are pervasive within the tumour, so that they
can scatter and spread in distant regions during expansion (red). Alterations arising at
later stages are limited to small regions (black, pink, gray). Image from Sottoriva et al.
(2015).

characterised by a fast growing irregular network of blood vessels, which are more
poorly organized than in normal tissues. Such ine�cient network organization
causes poor delivery of nutrients and oxygen and ine�cient clearance of metabolic
breakdown products from the tumour. As a result, the chemical environment is
characterised by regions of hypoxia, where cells activate glycolitic metabolism,
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thus increasing the concentration of acid by-products (Figure 1.5).
Early studies using spontaneously arising tumours in syngenic mice demonstrated
that the number of cells needed to transplant a tumour varies according to the
location of transplantation and their environment. Particularly, such landmark
studies showed that transplantation e�ciency was increased when lethally irradi-
ated cells were injected along with the viable tumour cells (Revesz e�ect) Klímek
(1962). More recent work demonstrated the increased e�cacy of transplanta-
tion in orthotopic sites when cell suspensions containing putative cancer stem
cells are mixed with Matrigel prior implantation Hill (2006), indicating a role
for the growth factors contained in such membrane-like substance to support
proliferation of cancer cells. Indeed, over the years more experimental evidence
has been presented supporting the idea that interaction and stimulation from
the micro-environment determines the transplantation e�ciency together with
the spread and growth of tumour lineages. For instance, it was shown that
cross-talk mediated by nitric oxide signalling between stem cells and endothelial
cells present in the perivascular niche is involved in the progression of glioma-
genesis Charles et al. (2010). Recent work on fixed samples also suggested that
micro-environmental conditions a�ect the outcome of interaction between cell
lineages Garvey et al. (2016). Such evidence led to consider the role of cancer cell
plasticity in determining tumour heterogeneity. An alternative hypothesis to the
cancer stem cell model was formulated, stating that tumour cells retain degrees of
stemness and that these are variably expressed depending on the environment to
which the cells are exposed Hill (2006). In addition to this, several reports have
demonstrated the ability of cancer cells to recruit other cell types and induce
their di�erentiation in order to promote tumour growth and metastasis progres-
sion. For instance, it was shown that cancer cells are able to convert stromal
fibroblasts to a cancer-associated fibroblast (CAF) phenotype. Such CAFs were
responsible, in an in vivo model of breast cancer, for the remodelling of the extra
cellular matrix, thus enabling cancer cell invasion and promotion of metastasis
Avgustinova et al. (2016). Thus, understanding how cancer cell lineages interact
in realistic micro-environments or under stress is crucial for designing anti-cancer
therapies. Traditionally, the biology of solid tumours has been governed by the
study of genetic and epigenetic alterations that transformed cells undergo during
the course of multi-step tumour pathogenesis. However, in recent years, the idea
that the micro-environment is an important determinant of tumour behaviour
has gained increasing popularity Mcallister and Weinberg (2014).
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Figure 1.5: The tumour micro-environment. In the past, cancer biology was
focussed on genetic mutations that normal cells acquire in the carcinogenesis process.
This approach is important but limited, as it does not consider the interaction with
other cell types present in the environment, like stromal cancer associated fibroblasts
(CAFs) or immune system (IS) cells that have been shown to play a role in collaborating
to the proliferation and spreading of malignant phenotype. New approaches for studying
cancer are focused on heterotypic signalling between the diverse cell types within a
tumour. Also, together with complexity in their cellular composition, solid tumours
are characterised by a dynamic and variable chemical environment. Indeed, they are
supported by an irregular vascular network, and this gives rise to poor delivery of
nutrients and oxygen as well as an ine�cient clearance of metabolic breakdown products
from the tumour.

1.3 Cell competition: definition of classical and
super competition

Cell competition was originally observed by Gines Morata and Pedro Ripoll
Morata and Ripoll (1975) during research studies in Drosophila melanogaster
epithelia. While studying a class of mutants called Minutes (M) carrying a loss
of function for protein components of ribosomes, they discovered that homozy-
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gous individuals were not viable, whereas heterozygotes (M/+) were still viable,
although they displayed a decreased growth rate. Interestingly, when Minute
heterozygous cells were in genetic mosaics, confronted to wild-type cells, (M/+)
were eliminated by apoptosis and replaced by wild-type cells. The eliminated
M/+ cells were referred to as "losers" while wild-type cells were termed "win-
ners" as they outcompeted the M/+ cells. The following empirical rules of cell
competition were deduced from the first landmark studies: (i) the viability of
a cell and its representation in the final tissue are context dependent, (ii) less
competitive cells are eliminated (iii), cell competition does not alter total tissue
size, so competition is phenotypically silent. This happens because the expansion
of "winners" is balanced by elimination of "losers" through apoptosis. No change in
overall tissue size and morphology can be detected after competitive interactions
have occurred (Figure 1.6 a).
Further studies revealed that many other genes regulating cell growth and prolifer-
ation play a role in cell competition Tamori and Deng (2011),Simpson and Morata
(1981),Oliver et al. (2004). For instance, it was found that mutant mouse embry-
onic stem cells heterozygous at the Bst locus, which encodes for a riboprotein,
did not contribute to chimaeras after transplantation into blastocysts of a wild
type animal. Nevertheless, in reverse transplantation experiments, wild type cells
contributed disproportionately throughout the animal. This additional evidence
led to consider changes in ribosomal activity as a trigger of cell competition in
mice Oliver et al. (2004). Such results led the field to think, at first, that the
competitive status of a cell (i.e. winner or loser) was linked to its relative growth
rate. Therefore, cell competition was thought to work as an intrinsic homeostatic
control mechanism, maximising tissue fitness by destroying suboptimal cells.
Cell competition attracted further interest after the discovery of super competitors
(Figure 1.6 b): cells that, upon acquisition of an advantageous mutation, are able
to eliminate cells of normal fitness, even if they are vastly outnumbered Merino
et al. (2015), Moreno et al. (2004). The first example of super competitors was
found in Drosophila melanogaster mosaics that juxtaposed cells with di�erent
expression levels of dMyc, a conserved transcription factor regulating multiple
downstream targets involved in proliferation and apoptosis de la Cova, Claire
and Johnston (2010). Clones of cells expressing hypomorph dMyc (which reduces
but does not completely eliminate the function of dMyc) in mutant flies were
viable when surrounded by similar cells, but were eliminated in the proximity of
wild type cells. This confirmed the existence of a mechanism able to eliminate
suboptimal cells (cells with lower levels of Myc) in a developing tissue. Inter-
estingly, wild type cells themselves were eliminated when surrounded by cells
over-expressing the myc gene (3 x Myc cells), which were therefore considered
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super competitors. When small clones of cells over expressing dMyc were found in
a wild type background, they over-proliferated, as expected. However, in addition
to this enhanced growth rate, it was shown that cells over expressing dMyc
were able to induce apoptosis in wild type neighbours Cova et al. (2004),Moreno
et al. (2004). Such induction of cell death was not only due to the increased
proliferation of the dMyc over expressing cells. Indeed, it was shown that cells
over-expressing cyclin E over-proliferated but were not able to induce apoptosis
in neighbouring wild type clones Cova et al. (2004). The induction of cell death
by dMyc over expressing cells caused the tissue to retains its original size, while
becoming dominated by dMyc over expressing cells. Interestingly, this scenario is
reminiscent of field cancerisation Rubin (2011), a theory of cancer development
where a mutation in a single cell allows the mutant cells to progressively colonise
a tissue (Figure 1.6 b).

1.3.1 Characterisation of cell competition
The first evidence of the existence of competitive interactions between normal and
transformed cells was shown in Drosophila melanogaster imaginal disc epithelia,
as mentioned in the previous paragraph. Epithelial monolayers in the imaginal
discs of Drosophila are ideal in vivo models to examine the interaction between
transformed and normal cells. The clonal techniques available in Drosophila,
by using genetic tools and inducible site-specific recombination events, enable
researchers to induce mosaic expression of a target genetic mutation. Hence,
such techniques made possible the creation of epithelial monolayers where mutant
cells are surrounded by wild type cells. Specific genes or RNAi constructs can
be targeted in cells within these patches. Using such genetic tools, researchers
demonstrated that transformed cells showed distinct cell responses when sur-
rounded by wild type cells compared to when the whole tissue is populated by
transformed cells. For instance, the context-dependent viability of Minute and
Myc mutants was demonstrated by following over time the size and number of
cells in each patch carrying the target mutation. In this way, it was discovered
that wild type cells in a Minute heterozygous background expanded to cover larger
areas of the adult wing than Minute cells, while Minute cells were eliminated
by apoptosis from a wild type tissue. The e�ect of apoptosis on colony size and
dimensions is relatively easy to test, by expression of dominant negative forms of
important pro-apoptotic proteins (as c-Jun N-terminal kinases, JNK) or, on the
contrary, by site-specific induction of cell death (via expression of Hid, a generic
apoptosis inducer). Overall, these techniques allowed to test for cell-autonomous
or non cell-autonomous behaviour and, as a consequence, Drosophila melanogaster
became a very important model system to identify signalling pathways, features
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Figure 1.6: Cell competition as a context dependent phenomenon a) Top:
A clone of mutant cells is viable in a homotypic environment. Bottom: when mutant
cells are cultured in a heterotypic environment, they are eliminated by healthier wild
type cells (WT). b) Top: Competition between mutant cells with increased cell fitness
(super competitors in grey), inducing apoptosis in surrounding wild type cells. Bottom:
Super competition contributes to cancer progression before morphological changes are
detectable, creating field cancerization. Image from Moreno (2008).

and rules of cell competition processes.
The study of cell competition in vitro has mostly been performed by using sta-
ble cell lines where expression of an shRNA or constitutively active mutants of
oncogenes can be induced by addition of tetracycline Hogan et al. (2009), Kajita
et al. (2010), Norman et al. (2011), as I describe in section 1.6.3. By mixing
in pre-determined ratios such inducible lines with the wild type lineage, it is
possible to produce mosaic tissues where transformed cells are surrounded by
normal neighbours. Importantly, such system allows to control the time of the
induction of the mutant lines. A typical strategy is to let the monolayer grow and
let the neighbouring cells establish mature intercellular junctions before induc-
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ing the transforming mutation. Then, a common approach is to use time-lapse
imaging to follow the fate of mutant cells confronted to wild type neighbours.
Such a protocol has the advantage of enabling to monitor cells over a long time
period (several days) rather than examining just a few fixed time points. It also
allows observation of live cells in real time, from which analysis of cell shape,
morphology and cell death can be performed. Indeed, researchers demonstrated
the occurrence of competition in mammalian cell culture systems by showing that
transformed cells have a higher rate of cell death when in contact with normal
neighbours than when surrounded by similar neighbours. After having assessed
this, many groups oriented their subsequent analysis to the characterisation of the
mechanism by which loser cells are removed from the epithelium. By means of
immuno-fluorescence, confocal imaging and post-processing analysis of time-lapse
data, the interface between winner and loser cells and the morphology of inter-
cellular interactions were studied. For instance, the analysis of the elimination
of v-Src or RasV12 cells from MDCK monolayers demonstrated the existence of
common features in this process (Figure 1.8). In both cases, it was found that
the interaction with normal cells was important to determine the fate of loser
cells. Morphological studies revealed that, prior to elimination, transformed cells
undergo cell shape changes and increase their height due to di�erent organiza-
tion of the actin-myosin cytoskeleton Hogan et al. (2009),Kajita et al. (2010).
From the molecular characterisation of cellular interactions, many aspects of
cell competition were discovered as, for instance, the downstream activation of
MAPK kinases signalling pathways. These reports also suggest the importance of
understanding the molecular mechanisms by which cells belonging to di�erent
lineages recognise each other and indicate a potential role for physical properties
of cells, based on the observation that transformed cells (RasV12 or v-Src) have
altered physical properties (i.e. membrane elasticity) compared to normal cells.
A few years later, the importance of the morphology of winner-loser interface
during cell competition was demonstrated by Levayer and colleagues, Levayer
et al. (2015). They developed a new approach to investigate the interactions
between winner and loser cells, focusing on the analysis of adhesion and tension
generated at the interfaces of competing cell types in Drosophila epithelia. They
demonstrated that elimination of losers is proportional to the area shared with
winners and that mixing between the two cell types is crucial for such elimination
to happen. By measuring via laser nano-ablation the tension generated at ho-
motypic and heterotypic junctions, they showed that winner-loser and loser-loser
contacts were more stable (had lower tension) than winner-winner interfaces.
Such di�erence in tension reflected di�erences in F-actin levels between loser and
winner junctions.
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To date, most studies have quantified competition at the tissue scale, concentrat-
ing on increases in cell death and reporting these for the whole tissue. However, a
tissue scale description of outcome obscures key characteristics of how competition
takes place at the single cell level. Little is known bout how single cell events
can lead to population-wide change to give rise to field cancerisation, for lack
of a good experimental system. Importantly, while apoptosis of loser cells was
thoroughly investigated, the role of cell division has been, so far, overlooked.

1.4 Molecular mechanism of cell competition

1.4.1 The ligand capture model
More than a quarter of a century after the initial discovery of cell competition,
the mechanisms of this phenomenon have not been completely explained at the
molecular level. Cell competition reminiscent phenomena have been reported
to occur across di�erent species and in many tissues, each situation having
peculiarities and di�erences that makes the identification of a universal mechanism
challenging Amoyel and Bach (2014). Two alternative models were suggested in
the first instance: the ligand capture model, which involves a passive fight for
a survival factor, and the "fitness fingerprint" model, where cells communicate
with each other to compare their fitness status and, according to this interaction,
activate specific competitive outcomes (Figure 1.7 a).
The first hypothesis suggested the existence of a Darwinian-like competition
among cells for limiting amounts of survival-promoting factors, resulting in
removal of less fit cells. Such theory was initially formulated on the basis of
studies performed by the Moreno lab, while they were looking at the level of the
morphogen Decapentaplegic (Dpp) in Drosophila imaginal discs Moreno et al.
(2002) ,Moreno et al. (2004). Dpp is a member of the transforming growth factor
(TGF—) family and is known to play a crucial role in determining correct cell
patterning, survival, and growth in flies Burke and Basler (1996). Moreno and
co-workers were able to show, using the Minute and the dMyc models of cell
competition, that markers of diminished Dpp signalling were observed in both
losers of Minute- and dMyc-induced competition Moreno et al. (2002),Moreno
et al. (2004),Tyler et al. (2007). Moreover, it was demonstrated that losers having
reduced dMyc expression could be rescued by increasing the expression of positive
regulators of Dpp signal transduction Moreno et al. (2004). Such evidence led
them to propose that cells compete for Dpp through e�cient capture of the ligand
via receptor-mediated endocytosis. This would explain why Minute and dMyc
mutant cells with weaker ribosomal activity are outcompeted by wild type cells:
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they are less e�cient at Dpp uptake and/ or Dpp-dependent signal transduction.
However, other reports contradict this model Cova et al. (2004). For instance,
cells depleted in the Dpp receptor Thickveins (Tkv) were out-competed by wild
type cells; nevertheless, these cells thrive when confronted to a Minute background
Burke and Basler (1996). This evidence showed that tkv mutant cells can survive
when competing against less fit cells, independently of their lack of Dpp signalling.
Therefore, as the ligand capture model failed in explaining all aspects of cell
competition, an alternative model was introduced, focussed on the importance of
relative fitness of cells for understanding the competition phenomenon.

1.4.2 The comparative fitness model
The "comparative fitness" theory states that cells are able to: (i) recognise
di�erences with neighbouring cells, (ii) acquire either a winner or loser status,
according to the outcome of fitness comparison, (iii) eliminate cells with losers
status if they have a winner status. This theory is based on the definition of
fitness as a parameter that cells are able to measure and compare with one
another. To date, cell and developmental biologist involved in characterisation of
cell competition have not agreed on a definition of fitness that could be universally
applied to all competition scenarios. At first, when Minute and dMyc competition
studies were published, fitness was thought to refer to proliferation and growth
rate Simpson and Morata (1981). Subsequent work demonstrated that this
was not necessarily the case, by revealing that competition could be triggered
by mutations that do not a�ect biogenesis and proliferation Rodrigues et al.
(2012). Accordingly, it was demonstrated that not all the growth regulators (i.e.
PI3K, insulin signalling, cyclin D and cyclin-dependent kinase 4) can induce cell
competition Cova et al. (2004),Vincent et al. (2011).

Further studies performed by Rhiner and colleagues identified a putative
signalling code by which Drosophila melanogaster cells compare their fitness
status by using di�erent isoforms of a transmembrane protein, Flower (Figure 1.7
b), Rhiner et al. (2010). Using microarray techniques, Rhiner identified several
genes specifically activated in cells with low levels of dMyc expression relative to
their neighbours. They found a transcript that was present only in outcompeted
cells, which they called Flower (Fwe). Fwe has three splice variants: Fweubi,
expressed in all of the cells within the imaginal disc, FweLoseA and FweLoseB which
are only expressed by outcompeted cells. The FweLoseA and FweLoseB were also
found in out-competed scribble, tkv-/- and Minute cells. Such evidence suggested
that this was not a specific feature of dMyc induced cell competition. Moreover,
FweLoseA and FweLoseB were expressed by all of the cells in the outcompeted
clone, not only in those in contact with wild type neighbours. This suggested
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Figure 1.7: Proposed mechanisms of cell competition. a) In the ligand capture
model, winners cells (green) are more e�cient in the capture of a survival- promoting
factor (orange circles). As an e�ect of such a Darwinian-like competition, cell death of
losers cells (blue) occurs, because of the lack of su�cient survival signal. Competition is,
therefore, independent on cellular interactions. Image is adapted from Amoyel and Bach
(2014). In contrast, in the comparative fitness model (b), cell competition arises from
interactions and direct comparison of cellular fitness among neighbour cells through
specific fitness markers (FweLose, dSparc, Azot). The cartoon shows four di�erent
scenarios: for instance, cells expressing FweLose but that are either surrounded by cells
with equal or higher levels of FweLose or that express high levels of dSparc are not
eliminated by the tissue. Cells with higher relative levels of FweLose and not enough
dSparc are eliminated, following expression of the gene azot. Image is taken from Merino
et al. (2015). (c) Schematic showing the "fitness fingerprint" competition, as opposed
to the "mechanical competition". The former is based on a contact-dependent fitness
comparison enhanced by mixing between competing lineages; the latter is dominated
by long range mechanical cues, occurring when a clonal population with faster growth
and resistant to apoptosis induces crowding in the neighbouring cells and activates
apoptosis. Image from Levayer et al. (2015).
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that expression of the FweLoseA and FweLoseB was not induced by interaction
with wild type cells Rhiner et al. (2010). It was shown that the expression of
FweLose isoforms at the cell membrane of a cell does not imply that the cell will
be eliminated. Indeed, for elimination to happen, the neighbours of a target
cell need to have lower FweLose isoforms expression: if neighbouring cells have
similar levels of Lose isoforms, no apoptosis is observed Merino et al. (2015),
Rhiner et al. (2010). Furthermore, a secreted protein called dSparc, which acts
in an opposite pathway to the FweLose isoforms, was discovered Portela et al.
(2010). Similarly to FweLose, dSparc expression increased upon cell competition
and functional analysis showed that it acted upstream of apoptosis of loser cells.
Indeed, Portela and collaborators hypothesised that dSparc functions to delay
apoptosis of loser cells, by demonstrating that transcriptional activation of dSparc
provides transient protection from apoptosis to loser cells, pushing them to a sort
of intermediate state (Figure 1.7 b).

1.4.3 Mechanical competition
Finally, recent experimental evidence suggested the existence of a di�erent mode
for cell competition, named mechanical competition, where mechanical stress
and cell density within the tissue are the major determinants of the competition
outcome (Figure 1.7 c). Levayer and co-workers Levayer et al. (2016) formulated
this model while studying delamination occurring in the mid-line of Drosophila
melanogaster notum epithelia. They found that apoptosis and delamination
in this region was non cell-autonomous, but influenced by local tissue proper-
ties. Therefore, they tested the hypothesis that mechanical stress a�ected cell
delamination non cell-autonomously by inducing ectopic local increases in cell
density. Ras signalling is known to increase proliferation and block apoptosis
Kurada and White (1998); therefore they induced rapid growth and survival
through clonal expression of an active allele of the oncogene Ras. By doing
this, they showed that activation of the Ras oncogene in isolated clones was
su�cient to compress the neighbouring tissue and eliminate wild type cells up to
several cell diameters away from the clones Levayer et al. (2016). Notably, these
apoptosis/delaminations were not driven by fitness-dependent competition as
they were not strictly contact dependent and no expression of the fitness markers
FweLose or dSparc was detected in the loser cells. Therefore, a new model of super
competition that acts independently of cell recognition and fitness comparison
was postulated. Such model proposed that this type of competition was triggered
only by mechanical stress due to the comparison of population having di�erent
growth rate. Interestingly, Levayer and colleagues also argued that dMyc induced
super competition is unlikely to be driven by crowding induced death, as strong
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over-expression of dMyc is known to increase apoptosis within the clone. In
addition to this, dMyc over-expressing clones undergo cell intercalation and cell
mixing with the surrounding wild type tissue Levayer et al. (2015). Therefore
no major deformations in the neighbouring tissue were observed, suggesting that
the mechanical stress is dissipated. While competition was initially thought to
take place only at the interface between cell lineages, the discovery of mechanical
competition revealed that this is not necessarily the case and that extrusion may
take place several cell diameters away from this interface.

1.5 Cell competition in cancer evolution
Over the years, scientific reports have linked cell competition to the carcinogenesis
process. In its original definition (Figure 1.6 a), cell competition was interpreted
as a sort of defence mechanism, whose aim was to maximise tissue fitness and
organ function by eliminating suboptimal cells Moreno et al. (2004). Indeed,
several groups showed selective apoptosis of transformed cells Hogan et al. (2009),
Kajita et al. (2010) or cells where the expression of important tumour suppressor
genes was knocked-down Brumby and Richardson (2003),Tamori et al. (2010),
Tamori and Deng (2011) when such mutated cells were confronted with wild type
neighbours. In 2009, Hogan and co-workers demonstrated that upon expression
of constitutively active oncogenic Ras (RasV12), 80% of transformed MDCK cells
were eliminated by wild type neighbours, via apical extrusion (Figure 1.8) Hogan
et al. (2009). No extrusion was observed when transformed cells were cultured in
pure populations. It is important to mention that Ras GTPase is a key regulator
of multiple cellular processes, such as cell growth and proliferation, cell survival,
actin cytoskeletal reorganization, and cell polarity Vigil et al., 2010. Therefore,
when mutated to a constitutively active form, Ras is a very dangerous oncogene,
representing an early event in almost 33% of all human cancers Karnoub and
Weinberg (2008). Similar results were obtained when Rous sarcoma virus Src gene
expression was induced in both MDCK cells (Figure 1.8) and Zebrafish systems
Kajita et al. (2010). V-Src was the first retro-viral oncogene to be identified
Hunter and Sefton (1980); it encodes for a tyrosine kinase which can phosporylate
multiple proteins on tyrosine residues. Src regulates the activity of a variety
of cellular processes and functions (the actin cytoskeleton, cell adhesions, cell
proliferation).

The possible role of cell competition as an intrinsic homeostatic system through
which normal cells sense and remove pre cancerous cells was confirmed by further
studies performed on a class of polarity genes: scribble (Scrib), lethal-giant
larvae (Lgl), and discs large (Dlg). These genes are required for establishment and
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Figure 1.8: Mechanism of apical extrusion of transformed cells from normal
epithelial monolayers. a) Activation of an oncogene (RasV12 or v-Src) in a single
epithelial cell (green) within a monolayer of normal cells. b-c) Interaction with normal
neighbours cause the transformed cell to modulate its shape, signalling, and behaviour,
suggesting that transformed and normal cells recognize di�erences between them. The
process of apical extrusion of transformed epithelial cells from normal monolayers
requires specific common features: (i) the interaction with normal cells, (ii) myosin
II-dependent increase in cell height and cell shape of the transformed cells and (iii)
activation of MAPK signaling pathways. d) Oncogene-transformed cells are apically
extruded from normal epithelial monolayers. Image from Hogan et al. (2011).

maintenance of apico-basal polarity in epithelial tissues of both flies and mammals.
Therefore mutants epithelia have structural defects (polarity mismatches) and
their cells were termed as structurally defective cells (SDCs). Moreover, the
Drosophila melanogaster Scrib, Lgl, and Dlg were shown to negatively regulate cell
proliferation and were therefore classified as tumour suppressor genes Bilder (2004).
A similar role was described for scribble and Lgl in mammals; it was demonstrated
that loss of scribble induces disruption of three dimensional architecture of
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mammary epithelial cells and inhibits apoptosis Zhan et al. (2011). In mice,
knock-out of the mammalian homologue of Lgl leads to hyper-proliferation and
loss of cell polarity in neuroepithelial cells Klezovitch et al. (2004). Cells mutant for
any of these three genes are viable, show a faster proliferation, and a higher growth
rate that will eventually lead to overgrowth when in a homotypic environment.
However, when mutant clones are confronted with wild type cells, they are
eliminated in a context specific way, which is a typical hallmark of cell competition
Bilder (2004). Interestingly, in this type of competition, the losers are the faster
proliferating population, in contrast to Myc and Minute-induced competition
where the opposite is observed. Hence, in the context of SDC cells, competition
works as a defence mechanism which preserves tissue homeostasis against the
proliferation of cells showing a tumourigenic potential (Figure 1.9 a).

The involvement of tumour suppressor pathways in cell competition was demon-
strated in mammals by using mouse models Bondar, Tanya (2010). By injecting
bone marrow from low dose irradiated (IR) and untreated mice into lethally
irradiated recipient mice, Bondar and co-workers found that the hematopoietic
stem and progenitor cells (HSPCs) from untreated mice outcompeted those from
irradiated mice. These results are consistent with the concept of cell competition
as a mechanism that selects for the least damaged cells. Using an elegant tech-
nique, Bondar and colleagues produced genetic mosaic mice models where they
could alter p53 gene expression. By performing experiments in this model, they
showed that cells with lower p53 activity are somehow able to outcompete cells
with higher p53 activity, following irradiation. In contrast to what found in cell
competition occurring in Drosophila melanogaster epithelia, in the hematopoietic
system apoptosis was not required for the p53+/- cells to dominate. Bondar
and collaborators reported, instead, a senescence-like phenotype in outcompeted
HSPCs, with increased expression of senescence markers p16INK4a and Ezh2
Bondar, Tanya (2010). In this situation, winner cells displace other stem cells
(losers) from their niche, causing their di�erentiation. As a result, loser cells
do not contribute to the stem cell pool. The IR stress induced p53-mediated
cell competition showed, therefore, some distinct aspects from the competition
features described in Drosophila melanogaster studies Moreno et al. (2004). For
instance, in the p53 competition, loser cells are outcompeted only after IR stress
is induced. Nevertheless, this phenomenon is reminiscent of cell competition and
indicates the first evidence of p53 involvement in this process. Moreover, since
it targets long-lived HSPCs, where mutations are believed to accumulate during
oncogenesis, it may be a key player in early stages of cancer development.

The discovery that the proto-oncogene Myc was able to induce super competition
led to the hypothesis that cell competition could be related to cancer, but in an
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opposite way to what I discussed so far. Indeed, in the case of super competition,
transformed cells are able to expand by killing surrounding wild type tissue by
apoptosis, leading to the proliferation of oncogene activated phenotypes. In flies,
only two related pathways were identified that can transform cells into super
competitors Ziosi et al. (2010): the Myc and the Hippo (Hpo) -Yorkie (Yki) Zhao
et al. (2011) pathways (Figure 1.9 b). The highly conserved Hpo signaling pathway
is important in the regulation of organ size, preventing hyperplastic disease by
restricting the activity of the transcriptional cofactor Yki. Further studies reported
that, upon over expression of Yki or down regulation of Hpo, apoptosis of wild
type neighbours was specifically observed in the presence of transformed cells
Chen et al. (2012). In contrast to dMyc induced super competition, which I
discussed in the previous paragraph, when Yki was over- expressed the tissue
size (i.e. Drosophila melanogaster eyes) was not preserved; rather it expanded
abnormally. Later, it was shown that dMyc is a transcriptional target of Yki and
that dMyc upregulation is a common feature of Hpo pathway mutant cells Ziosi
et al. (2010). In addition to this, Ziosi and co-workers demonstrated that some of
the e�ects of Yki are mediated by Myc. For instance, the protein biosynthesis
and cellular growth due to dMyc over expression is responsible for promoting the
clonal expansion of Hpo pathway mutant cells. Nevertheless, Yki has additional
e�ects besides activating dMyc, as demonstrated by the fact that Hpo pathway
mutants do not undergo spontaneous apoptosis as dMyc expressing cells do.
Hence, it appears that the two genes cooperate, with the Hpo pathway mutant
cells being able to use high levels of dMyc to proliferate rapidly. Furthermore, it
was discovered that when Yki over expressing cells were found in a dMyc over
expressing background, their clonal expansion was reduced. Importantly, YAP
(the Yki ortholog in humans) deregulation was reported in various types of human
cancers M. (2009). The cooperation of dMyc and Yki in super competition helped
elucidate the dual role that cell competition might play in cancer. Indeed, it
appears that cell competition could either restrict or promote tumour progression;
the determinant in each situation will be the output of the genetic interactions
occurring with adjacent cells.

1.6 The scribble complex and its function in
epithelia

Scribble was first identified in 2000 as a mutant that disrupted epithelial morpho-
genesis in Drosophila melanogaster embryos (Figure 1.10 c). Drosophila scribble is
a large sca�old protein (1,756 amino-acids) containing 16 amino terminal leucine
rich repeats (LRR), two LAP specific domains and four (PDZ) domains located
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Figure 1.9: Cell competition and its role in cancer evolution a) Tumour
suppressor (lgl, dgl, scribble) inactivation or activation of oncogenes (Ras V12, vSRC)
lead to the elimination of pre-cancerous cells by cell competition mechanisms. Thus,
in this scenario, cell competition acts as a defence mechanism. b) supercompetition
phenomena can transform cells into supercompetitors, which are able to induce apoptosis
in surrounding wild type cells. Super competition, therefore, promotes field cancerization
and the expansion of the mutated phenotype in the tissue.

towards the carboxyl terminus of the protein (Figure 1.10 b) Bilder and Perrimon
(2000). In Drosophila melanogaster, scribble protein localised to the septate
junction (analogous to the tight junction in vertebrates), at the interface between
the apical and the basolateral cell membranes (Figure 1.10 a). The LRR repeats
are responsible for the specific plasma membrane localization, both in mammalian
cells and in Drosophila melanogaster Navarro et al. (2005). Indeed, it was shown
that substitution of a single amino-acid in the LRR sequence caused cytoplasmic
scribble localization, thus inactivating the function of the protein Navarro et al.
(2005). The PDZ domains were shown to play an important role for mediating
interactions with other proteins Nagasaka et al. (2010), but were not required
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for rescuing the polarity defects in scribble mutants. Scribble structure has been
highly conserved during evolution, so that proteins from Caenorhabditis elegans,
Drosophila melanogaster and mammals share common domains. Indeed, in 2003,
a mammalian homologue of scribble (hScrib) was found Dow et al. (2003). Human
scribble is slightly shorter (1630 amino-acids) than its Drosophila melanogaster
homologue, with whom it shares 37% total amino acid sequence, with higher
homology at the highly conserved LRR and PDZ regions (Figure 1.10 b) Dow
et al. (2003). Interestingly, expression of GFP-hScrib in Drosophila melanogaster
scribble mutant clones rescues the mutant phenotype (Figure 1.10 d), demon-
strating the functional conservation of the proteins Dow et al. (2003).

Together with the lethal giant larvae homologue (Lgl) and the disc-large
homologue (Dlg), scribble forms a complex known to determine baso-lateral
membrane identity and regulate the expansion of the apical domain Bilder and
Perrimon (2000). A major function of this complex is to restrict the Par complex to
its apical localisation Humbert et al. (2008). The establishment and maintenance
of polarity in epithelial cells is, indeed, strictly determined by three complexes
(Figure 1.10 a): the Crumbs complex which localises to the apical membrane, the
Par complex which localises to the sub-apical region, and the Scribble complex.
In mammalian epithelial cells, the Scribble complex is found at the basolateral
membrane whereas it is at the septate junction in flies. Likewise, the Par complex
has a slightly di�erent localisation in mammalian and Drosophila melanogaster
epithelial cells. In the former, it is found at the tight junction, whereas in the
latter it is localised apical to the septate junction. In spite of these di�erences,
the molecules and interactions between these complexes are highly conserved
between species Humbert et al. (2008).

Mutants for Scrib, Lgl and Dgl genes were identified by their similar neoplastic
phenotype, characterised by aberrant growth of larval tissues. Deletion in any
one of the components of the scribble complex caused larvae to develop normally
until their lgl, dgl and scrib maternal supplies run out. Hence, their epithelial
imaginal discs lose their polarised architecture. As a result, epithelial cells fail to
di�erentiate and over proliferate, giving rise to a multi-layered amorphous mass
Bilder (2004). The larvae cannot proceed to pupal development and eventually
die as giant overgrown larvae. For this reason, the three genes (Scrib, Lgl, Dgl)
were labelled as Drosophila neoplastic tumour suppressor genes.

In mammalian cells, the contribution of scribble to the regulation of apical-basal
polarity and epithelial morphogenesis is less clear. No major disruption in apico-
basal polarity in mammalian epithelial cells lacking scribble was observed when
culturing cells in standard in vitro culture. Similarly, when culturing MCF-10A or
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MDCK cells in 3D, either using Matrigel or type I collagen gels, the formation of
3D cysts with the correct polarity was observed, although there was a significant
suppression of apoptosis, which is required for the proper formation of the acini
structure Dow et al. (2003).

1.6.1 Scribble and its role in regulating cell proliferation
Cross-talk between polarity complexes and signalling pathways regulating tissue
growth has been shown both in Drosophila melanogaster and mammalian cells.
Further work in Drosophila melanogaster showed that scribble mutant cells
proliferate aberrantly Brumby and Richardson (2003) in addition to failing in
di�erentiation. Indeed, scribble was identified in a screen for suppressors of a cyclin
E hypomorph mutation in Drosophila melanogaster eye imaginal discs, suggesting
that it regulates entry into S phase (Figure 1.10 a). In the developing eye, Lgl
and Scrib mutant clones also show abnormal expression of CycE, together with a
higher number of cells in S phases than control Brumby and Richardson (2003).
The role of scribble in the control of CycE expression was also demonstrated
by a study of genes required for basolateral junction signalling in the follicular
epithelial cells of the Drosophila ovary Zhao et al. (2008). According to this study,
loss of scribble (and Lgl, Dgl) produced ectopic expression of CycE, followed
by early S phases and mitoses. Therefore, in Drosophila epithelial cells, Scrib,
Dlg and Lgl appear to negatively regulate proliferation by controlling cell cycle
progression.
Experimental evidence suggests that scribble also regulates cell proliferation in
mammalian cell lines, although the mechanism by which this regulation occurs is
less well characterized. For instance, it was shown that over-expression of hScrib
in various cell lines, either epithelial (MDCK, HeLa) or fibroblastic (NIH3T3)
inhibited cell proliferation by arresting the cell cycle in G1 phase and blocking
their progression through S phase. Conversely, knock-down of scribble in Caco-2
epithelial cells resulted in an increased number of cells in S phase Nagasaka et al.
(2006). Altogether, these results suggested a role for scribble in controlling entry
into S phase, thus regulating proliferation Nagasaka et al. (2006). Recently, it
was shown that hScrib can directly regulate the extracellular signal-regulated
kinase (ERK) Nagasaka et al. (2010). Indeed, this study reported that loss of
hScrib caused elevated phospho-ERK levels and nuclear translocation in human
keratinocytes. Despite these results, no evidence of scribble knock-down causing
abnormal or overgrown phenotypes similar to the Drosophila giant larvae has
been reported in mammalians models (reviewed by Humbert et al. (2008)).
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Figure 1.10: The scribble complex is a key regulator of apico-basal polarity.
(a) Three modules are responsible for the polarization of epithelial cells: the Crumbs
complex, the Par complex, and the Scribble polarity module. The localization of
polarity complexes is essential to their function. Antagonistic interactions regulate
the activity and localization of such complexes. Polarity proteins have been shown
to be at the centre of signalling pathways. The Scribble polarity complex works as
a tumour-suppressor by inhibiting the expression of either Cyclin E, a crucial cell
cycle regulator, or DIAP1, an apoptosis inhibitor. Image from Humbert et al. (2008).
(b) Schematic representation of EGFP-hScrib fusion protein with reference to dScrib.
Similarly to its Drosophila homologue, hScrib contains 16 LRRs and four PDZ domains.
Image from Dow et al. (2003). (c) Scrib mutations cause disorganization of epithelia.
Top: Wild-type cuticle (left), Cuticle from scribble mutant embryo (right). Bottom:
SEM image of wild type embryo showing an organised integrated epithelium structure
(Left) scribble mutant embryo SEM picture showing a disorganised structure, with poor
cellular adhesion. Image from Bilder and Perrimon (2000). (d) hScrib is a functional
homologue of the Drosophila tumour suppressor scribble, as it is able to rescue the
giant larvae phenotype induced by scribble inactivating mutations. Image from Dow
et al. (2003).
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1.6.2 Scribble in human cancer and cancer models
Scribble, together with the other proteins of the Scribble complex, Dlg and Lgl, has
been linked to the development of tumours, not only in Drosophila melanogaster
but also in mammalians models (reviewed in Humbert et al. (2008)). As described
in the previous section, mutations in Drosophila Scrib, Dlg and Lgl produced
neoplastic tumours in epithelial tissues, characterised by apico-basal cell polarity
mismatches and loss of proliferation control. Mutants with loss of function or de-
pletion of scribble displayed disrupted apico-basal polarity, and some cooperation
with oncogenic signals to promote tumour cell migration, invasion, and survival.
Low expression or loss of function of scribble protein is frequently observed in
advanced tumours (Table 1.11), where the epithelial cytoarchitecture is normally
disrupted Martin-Belmonte and Perez-Moreno (2012). Furthermore, recent evi-
dence has shown that reduction in the expression or mislocalization of scribble
has an inhibitory e�ect on apoptosis but also enhances transformation through
the proto-oncoprotein Myc in 3D cultures of human epithelial cells Zhan et al.
(2011). Similar e�ects have been shown in human breast tumours and transgenic
mouse mammary tumours caused by scribble down-regulation or mislocalization,
which resulted in block of apoptosis and enhancement of carcinogenesis. By using
a murine cancer model, it was shown that cells over expressing Myc, which had
also undergone scribble knock-down, produced detectable tumours quicker than
Myc mutants alone when injected into mammary fat pads of mice Zhan et al.
(2011).
The most direct link between the scribble protein and tumour initiation was
indicated in the property of this protein of being targeted by oncoviral proteins
(reviewed by Thomas et al. (2005)). Human scribble was isolated in a screen
for proteins targeted for ubiquitin-mediated degradation by the High-Risk Papil-
lomavirus E6 (HPV E6) oncoprotein. Therefore, it appeared that binding and
ubiquitination of scribble from E6 oncoprotein would result in its proteosomal
degradation, the decreasing level of scribble correlating with increasing malignancy
in cervical cancers Nakagawa and Huibregtse (2000). Indeed, over expression
of scribble was shown to inhibit transformation of mice epithelial cells by HPV
E6/7 proteins Nakagawa and Huibregtse (2000). Notably, Human papillomavirus
(HPV) infections are associated with over 90% of cervical cancers. Other proteins
containing a PDZ domain (therefore other polarity proteins) were shown to be
targeted for degradation by the human papilloma virus (HPV) oncoproteins, E6
and E7 Nakagawa and Huibregtse (2000), thus complicating the identification
of the specific contribution of loss of scribble in HPV infected tumours Thomas
et al. (2005). However, it was demonstrated that over-expression of scribble in
cell culture suppresses colony formation in cells that contain the E7 oncoprotein
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and oncogenic RasV12 Nakagawa and Huibregtse (2000), suggesting that loss of
scribble is important for HPV driven tumour initiation.

Although these data suggested a model where scribble acts as an evolutionary-
conserved tumour suppressor, its role in human cancer, in vivo, is more debated.
In contrast to the scientific evidence reporting that scribble expression is lost
during human carcinogenesis, other studies have shown that scribble levels increase
and that the protein is improperly localised in certain human tumours in vivo
Vaira et al. (2011). A comparative study conducted on samples of cancers of the
colon, liver, prostate, uterus, thyroid, lung, bladder, breast, ovary, and stomach
tissues found strong scribble immunoreactivity in all cases, except for the thyroid
Vaira et al. (2011). For instance, scribble activity was ubiquitously high and often
found in the cytosol of cells from tumour tissues representing various breast cancer
types, regardless of the hormonal receptor. These data are supported by reports
that found the chromosomal region corresponding to the scribble locus (8q24.3)
amplified in a wide range of cancer cell lines, as well as breast and ovarian tumours
SangWun Kim, JaeWook Kim, Young Tae Kim,* Jae Hoon Kim, Sunghoon Kim,
Bo Sung Yoon and Kim (2007),Naylor et al. (2005). Experiments performed
by transfecting anti-scribble siRNA in lung cancer models demonstrated that
such depletion strongly a�ected cell migration and limited cell invasion. Notably,
the samples examined were independent of oncogenic signalling or viral (HPV)
transformation. It is important to mention that experimental evidence, first
collected in Drosophila melanogaster and later extended to mammalian cells,
demonstrated that scribble works as a general regulator of directional cell motility,
mostly via the assembly of multiprotein complexes and the activation of small
GTPase signalling at the leading edge of migrating cells (reviewed Humbert
et al. (2008)). Hence, in this alternative model, scribble is proposed to promote
carcinogenesis by enhancing aberrant cell motility and invasion, thus partially
contributing to a type of epithelial-mesenchymal transition. Another study of
scribble in human cancer shows that scribble expression in tumours is very
heterogeneous, with very low levels of the protein in some regions but strong
expression in others Zhan et al. (2011). Furthermore, in the regions where scribble
expression was maintained, the tumour-associated scribble exhibited a di�use
cytoplasmic reactivity, suggesting that the protein could be mutated. Future
investigations should address whether scribble mutations are common events
in human cancers, and if they are the cause of scribble delocalization into the
cytosol.
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Figure 1.11: Alterations of the scribble complex in epithelial transformation
and human cancer. Low expression, loss of function and mislocalization of scribble
and the other polarity proteins belonging to the scribble complex are frequently observed
in advanced human tumours Martin-Belmonte and Perez-Moreno (2012).

1.6.3 Scribble and cell competition
Together with Minute and Myc, cell competition triggered by Scrib suppression
is one of the best characterised examples in literature. The phenomenon was
initially observed in Dropophila melanogaster by Brumby and colleagues. They
reported apoptosis in clones of scribble depleted cells when induced in wild type
background, as opposed to the giant larva phenotype observed when the tissue
was homogeneously depleted of scribble Brumby and Richardson (2003). These
studies were performed in the Drosophila eye disc, which is a very good system
to study putative tumour suppressors and oncogenes because it undergoes a
well characterised progressive di�erentiation and a tightly regulated proliferation
program Wol� and Ready (1991). Experiments performed in such a system
confirmed that most of the cells belonging to the scribble mutant clones failed to
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di�erentiate and exhibited abnormal expression of CycE and increased number of
divisions Brumby and Richardson (2003). Thus, when confronted with wild type
cells, scribble mutant cells showed phenotypes consistent with the documented role
of scribble as a tumour suppressor. However, the size of the scribble mutant clones
induced in a wild type background eye imaginal disc was considerably smaller
than the size of control wild type GFP clones. This observation was intriguing,
considering the increased proliferation observed in cells upon scribble knock-down,
which in this study was measured by bromodeoxyuridine (BrdU) staining. Further
observations revealed that this was due to increased cell death of scribble mutant
cells within the clone. Indeed, expression of the caspase inhibitor p35 in scribble
clones produced clones with larger size. Notably, the most significant rescue of
scribble clonal size was achieved by expression of a dominant-negative version of
the Drosophila melanogaster c-Jun N-terminal kinases (JNK) homolog, Basket
(BskDN), induced specifically within the scribble mutant clone. This results
suggested that the JNK induced apoptosis was responsible for the removal of
Scribble mutant cells Brumby and Richardson (2003). In both mammalians cells
and Drosophila melanogaster, JNK is known to induce a stress response leading
to apoptosis Mcmahon et al. (2015). Finally, further experiments were performed
to test whether JNK induced apoptosis was a cell-autonomous response to a loss
of cell polarity or, alternatively, if it was induced by the surrounding wild type
tissue. Therefore the wild type eye disc tissue surrounding the scribble mutant
clones was removed by expression of the cell death inducer, Hid; this experiment
resulted in increased viability of the scribble mutant clones, tissue overgrowth and
lethality, thus demonstrating the importance of neighbouring cells in determining
the fate of scribble mutants. Further studies demonstrated that the removal of
scribble mutant clones from the eye imaginal disc epithelium is dependent on
Eiger, the Drosophila melanogaster homologue of tumour necrosis factor alpha
(TNF–) Igaki et al. (2002). Indeed, scribble/Eiger -/- double mutant clones had
increased survival, suggesting that scribble mutant clones may be the source
of Eiger. These data are consistent with other reports indicating Eiger as an
activator of JNK signalling, which is required for elimination of scribble clones
Igaki et al. (2002),Brumby and Richardson (2003).

In 2011, evidence of scribble induced competition was demonstrated in an in
vitro mammalian model Norman et al. (2011). Indeed, Norman and collaborators
showed that the fate of scribble knock-down MDCK cells was influenced by
the presence of wild type cells in their neighbourhood. Wild type MDCK cells
represent a good system to model a healthy epithelial tissue, with cells forming
polarised and well connected monolayers which enable the study of cellular inter-
actions happening between neighbours. For this study, Norman and collaborators
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established an MDCK cell line stably expressing scribble shRNA in a tetracycline-
inducible manner (scribblekd) Norman et al. (2011). This strategy had been used
before Hogan et al. (2009),Kajita et al. (2010), as it allowed the proper mixing
of transformed cells with non-transformed cells, resulting in the production of
a mosaic of epithelial cells. The use of this system also mimics the initiation of
cancer, as it allows to have just one cell with the mutation surrounded by wild type
cells. Therefore this system, aimed at emulating the chimeric tissue of Drosophila
melanogaster epithelia, proved to be e�cient for analysis of cellular processes at
the interface between mutants and normal epithelial cells. By mixing in a 10:90
ratio scribblekd with MDCK wild type cells, Norman demonstrated that only
upon tetracycline induction, scribblekd undergo apoptosis (as demonstrated by the
expression of specific apoptosis markers, such as caspase 3) and subsequent apical
extrusion from the monolayer (Figure 1.12 a). However, when cultured in pure
populations, the scribblekd cell line was still viable and able to form an epithelial
monolayer. Indeed, when cultured at high density, scribblekd mostly maintained a
proper apico-basal polarity, as shown by localization of gp135 to the apical domain
and the presence of ZO-1 at tight junctions (Figure 1.12 c) Norman et al. (2011).
This study also investigated the mechanism by which apical extrusion happened
and revealed that it occurs after apoptosis initiation. Indeed, by blocking the
activity of Myosin II, which is required for the extrusion process Rosenblatt et al.
(2001), many dead scribblekd cells remained within the monolayer Norman et al.
(2011). Following to the reports of JNK induced apoptosis of scribble mutants in
Drosophila, JNK activity was evaluated by Norman and co-workers. Interestingly,
no sign of JNK activity was found in scribblekd undergoing apoptosis; conversely,
it was found that the activity of p38 protein kinase was significantly increased in
scribblekd surrounded by wild type neighbours. This result suggested that p38
MAPK, which had also been shown to be activated in response to various cellular
stresses and to induce apoptosis Zarubin and Han (2005), is responsible for the
death of MDCK scribblekd cells Norman et al. (2011).

Further investigations performed by Wagsta� and co-workers helped elucidate
the mechanism playing a role in the MDCK scribble induced competition, moving
from the important contribution given by Norman’s work. Using the same
inducible scribblekd line, they demonstrated that the competition phenomenon
was independent on the exchange of soluble factors between the two cell lineages, by
performing experiments with conditioned medium and transwell assays Wagsta�
et al. (2016). Interestingly, they found that the growth rate of scribblekd cells was
not a�ected by conditioned medium from competing cultures. They also showed
no significant di�erence when scribblekd cells were cultured in a transwell system
together with co-cultures of competing (wild-type/scribblekd) cells. This suggested
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Figure 1.12: Scribble depletion induces cell competition in MDCK cells.
Representative images from time-lapse movies of competition assays performed by
mixing scribblekd cells, fluorescently labelled with CMTPX dye (red), and wild type
MDCK cells in a 1:10 relative ratio. Experiments were performed both in the presence
(a) and absence (b) of tetracycline induction. Cells were stained with SYTOX Blue to
label dead cells. Scale bar is 10 µm. Apoptosis of scribblekd was only observed upon
tetracycline induction. (c) E�ect of scribble knock-down on cell polarity. scribblekd cells
were cultured in the absence (left) and presence (right) of tetracycline. Then immuno-
fluorescence was performed using anti-gp135 (green) to mark the apical membrane and
anti-E-cadherin antibodies (red), to label adherens junctions. Nuclei were stained with
DAPI. Scale bars: 10 µm. All images are from Norman et al. (2011).
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that soluble factors were not involved and shed a light on the potential role of
cell-cell contacts and interactions. Indeed, Wagsta� and colleagues demonstrated
that scribblekd cells were outcompeted by MDCK wild-type cells by means of
mechanical competition arising from di�erences in the tolerances of each cell
type to density. By using micro-patterned substrates to confine cell growth on
a pre-determined area and stretchable PDMS membranes to allow compression
of confluent monolayer, they proved that scribblekd cells are hypersensitive to
crowding conditions (Figure 1.13). Indeed, when cultured in pure populations,
the density in each cell population first increases before reaching a plateau (the
homeostatic density). This homeostatic density was maintained over time because
the rate of cell death exactly compensated the rate of cell birth. Notably, scribblekd

cells reached lower homeostatic densities than wild type cells because of a threefold
larger apoptosis rate Wagsta� et al. (2016). However, when cultured in competitive
conditions (10:90 scribblekd and wild type ratio), the wild type cells are able to
compact scribblekd cells, causing an increase in their density and even a greater
increase in death rates Wagsta� et al. (2016). These results suggested that changes
in density induced increases in apoptosis events that alone might be su�cient
to result in the elimination of the scribblekd cells. Interestingly, Wagsta� and
co-workers were able to identify the genes and pathways involved in this behaviour,
by comparing transcriptional profiling of outcompeted scribblekd, control wild
type cells and an isolate of scribblekd cells that was resistant to cell competition.
They found that cells depleted of scribble showed an increased baseline level of
p53, which is both necessary and su�cient to induce hypersensitivity to crowding
and confer a mechanical loser status. Furthermore, they showed that compaction
itself increased the already high p53 expression of scribblekd cells and outlined
the mechano-transduction cascade leading to elimination of scribblekd. Indeed,
they showed that the compaction of scribblekd cells is responsible for activation
of the Rho-associated kinase (ROCK). Following activation of ROCK, increased
p38 levels were measured in scribblekd cells, consistent with experimental results
reported by Norman Norman et al. (2011), leading to further p53 elevation
and cell death Wagsta� et al. (2016). Overall, this study demonstrated the
existence of a mechanical cell competition, which had only been hypothesised
before, where cell death is triggered by mechanical insults rather than molecular
signalling. In addition to this, it indicated the important role of p53 activation
in determining mechanical loser status, as p53 is required for both acquiring a
low homeostatic cell density and hypersensitivity to compaction. Elimination
of scribblekd cells was e�ectively rescued by either a p53 depleted (scribblekd

p53-/- ) version of the inducible cell line or by adding a p53 inhibitor to the
culture medium. Such paradigm of p53-mediated mechanical cell competition
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was also demonstrated in a mouse model, by using primary cultures of mouse
tracheal epithelial cells (MTECs) Wagsta� et al. (2016). Indeed, when inducing
mild p53 activation in these cells by addition of Nutlin-3, a remarkable decrease
(26%) of homeostatic cell density and an increased number of extrusion events
were observed. This is reminiscent of the hypersensitivity to crowding shown
by scribblekd cells. Moreover, cell competition was observed when co-culturing
MTECs wild type cells with MTECs deficient in p53 (p53-/-) following Nutlin-3
treatment. In such condition, cell death and extrusion of MTECs wild type cells
was demonstrated. Interestingly, neither mechanical insults nor p53 inhibition
were able to rescue the Drosophila melanogaster scribble depleted mutants from
being eliminated by wild type cells Wagsta� et al. (2016), thus suggesting a
di�erent underlying mechanism of mechanical competition in Drosophila.

1.7 Machine learning and its application in biology
Automated image analysis of cells and tissues has been an active research field in
computer science and biomedical informatics for decades. In recent years, it has
experienced an exponential development thanks to the progress in microscopy
hardware Wienert et al. (2012). In biological laboratories, the widespread use
of motorised microscopes for time-resolved live imaging assays generates a huge
amount of data, that can reach up to 105 images per day Conrad and Gerlich
(2010). Such high-throughput systems dictate the need for implementation of
automated data analysis for multiple reasons. Firstly, this facilitates the work
of researchers and releases them from manual analysis of large datasets. Second
and most important, automated image processing provides reliable and objective
quantitative measurements. However, a common challenge in the development of
an analytical work-flow consists in the complexity and diversity of image data.
Analytical tools developed for a specific assay, when applied to di�erent cellular
types or simply to images of lower quality, often show poorer performances and
require parameter tuning or adaptations of the software. Engineering pre-existing
image analysis packages requires an accurate knowledge of the algorithm used
in the software and can be quite di�cult to achieve and time-consuming when
approached by non experts.
The introduction of machine learning (ML) methods aims at overcoming simi-
lar obstacles and providing a universal analytical tool for analysis of biological
images Bishop (2013),Hastie et al. (2001). The innovation of ML consists in the
development of algorithms able to identify the best processing rules from the data
provided as examples, rather than relying on manual adjustments. Therefore,
ML links the problem of learning from data samples to the general concept of
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Figure 1.13: Depletion of scribble induce sensitivity to crowding and low-
ers homeostatic density in MDCK cells. (a) Fluorescence images from time
lapse movies representing growth of scribblekd cells labelled with GFP, cultured on
micropatterned arenas (diameter 800 µm) in the presence (left) and absence (right)
of tetracycline induction. Remarkably, cells cultured without addition of tetracycline
reached higher density, as also confirmed by the presence of multicellular hemispherical
structures known as blisters. Scale bar is 100 µm (b) Immuno histochemical staining of
cleaved Caspase-3 (red) performed on non-induced (left) and induced (right) scribblekd

cells staining with DAPI (blue nuclei) at both low and high density. These pictures
show increased cell death of induced scribblekd cells at higher density. Scale bar is 50
µm. Images from Wagsta� et al. (2016).

inference. Every learning process consists of two phases: (i) a training phase,
during which a dedicated dataset is used to implement a computer system from
inherent structure and pattern within this data; (ii) the use of the computer
system for making predictions on new dataset Bishop (2013),Hastie et al. (2001).
There are two main types of ML methods: supervised (SML) and unsupervised
(UML) learning. In SML, the user needs to manually annotate into distinct cate-
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gories (classes) some features extracted from images of the training dataset. The
learning algorithm automatically infers the rules to discriminate the classes, which
can then be applied to the full data set (Figure 1.14). By doing so, SML is able
to generalize from a few selected examples. As a consequence, the choice of the
sample and its accurate classification are extremely important for the performance
of the ML. To improve the classification accuracy of ML methods, a temporal
model describing the biological process under investigation can be implemented
Held et al. (2010). For instance, when looking at chromatin morphology changes
during cell division, it is possible to define a clear direction for transition from
one state (class) to another, given the large body of scientific knowledge available
about cell cycle progression. Therefore, the formulation of a scheme defining the
state transition allowed during a biological process can be used for correcting
ambiguous morphologies. Such ambiguity often occurs at state transitions, when
morphology of a state is subjected to a gradual change and single object-based
classification can result relatively inaccurate.
SML is widely used in image-based screening for its ability to detect cell morpholo-
gies and phenotypes. Typically, the screening is aimed at determining whether an
experimental perturbation (e.g. drug treatment, RNAi or genetic manipulation)
produces a distinctive cellular phenotype, for instance characterised by a change
in cell morphology or expression/ localisation of a fluorescent protein. SML has
been successfully applied for analysis of various types of biological assays and large
scale applications: high-content RNAi screening Conrad and Gerlich (2010),Held
et al. (2010), drug development and proteomics Sommer and Gerlich (2013),
cancer prognosis and prediction (reviewed in Kourou et al. (2015)). In this field,
particularly, ML methods have become a popular tool for medical researchers,
as they allow identification of recurrent patterns and discovery of unknown links
between the multiple indicators (molecular, cellular and genetic) used for cancer
prediction Kourou et al. (2015).

As mentioned above, SML is based on previous classification of representative
phenotypes; hence, it cannot be used for discovery of new phenotypes, or in any
situation where representative examples are not available. The second type of
ML is unsupervised learning (UML), where no expected or known phenotypes are
provided (Figure 1.14). In this case, the algorithm’s task is to identify clusters,
groups of objects sharing similar features with the input data, without prior user
definition of the output Sommer and Gerlich (2013). In contrast with SML, the
UML has not been frequently used for biological applications, especially because
of the noisy nature of the input data.

Implementation of both SML and UML requires some pre-processing steps
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needed to increase the quality of the data. Typical issues of time-lapse images can
be fixed by removing artefacts produced by the microscope or camera: uneven
illumination of the field of view or pixel noise resulting from low light exposure.
Flat-field correction or application of smoothing filters can dramatically improve
the quality of images (Figure 1.14). Following this, the second step in the work-
flow consists in segmentation of the objects of interest from the image background.
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Automated microscopy 

Pre-processing  of data 
Segmentation 

Feature extraction 

Phenotype examples available 

Supervised learning Unsupervised learning 

Consistent clustering  

Optimize feature set  
reduce feature dimensions 

Object annotation for classifier training 

Accurate  prediction on test data 

Extend training set 
Optimise feature set 

Apply learning method to large scale data-set 

Yes No 

Yes No Yes No 

Figure 1.14: Machine learning pipeline in image-based screening. Diagram
representing the typical machine learning work-flow for cell biological applications. The
first step of the pipeline is aimed at increasing the quality of the data by performing
some standard image pre-processing. Then segmentation is performed by separating
foreground (e.g. cells) from background (object detection) and features are extracted
according to di�erent criteria. The choice of the leaning strategy is influenced by the
a prori knowledge of the phenotypes under investigation. If this is available, then
supervised learning will be implemented. To this extent, a classifier will be trained
based on manual annotation by a human expert. Otherwise, when is not possible to
annotate and define a training data set, unsupervised learning can be implemented,
although this model is not frequently used in biological applications. Image adapted
from Sommer and Gerlich (2013).
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2 Aim of the thesis
The aim of this thesis is to determine the relationships, at the single-cell, level
between normal and mutated epithelial cells proven to engage in mechanical
competition. In particular, I examined how cellular interactions can lead to shifts
in the make-up of cell populations.

To do this, I developed a novel quantitative approach that combines automated
long-term microscopy with deep learning image analysis tools allowing examina-
tion of millions of individual cellular observations per experiment. These data
enable the generation of phase diagrams that show how cell fate (death, division)
depends on interactions with surrounding cells. By application of this method,
it is possible to characterise how cell behaviour is modulated by the fraction
of competitive interactions and how cell population evolves over time in a com-
petitive environment. More specifically, my research was focus on three objectives:

1) Characterisation of pairwise interactions between wild type MDCK cells and
cells of the same lineage depleted of the scribble protein, when mixed in 90:10
ratios;

2) Collaboration to the development of a quantitative mathematical model to
investigate how the density dependence of cell division and apoptosis determine
the time evolution of cell count and the overall population fitness;

3) Exploring how interactions between cancer cells are changed by varying
the relative seeding ratios of the competing cell lines or the topology of the
experimental assay.

39





3 Methods

3.1 Molecular biology and biochemistry techniques

3.1.1 Western Blotting
The level of expression of scribble and other adhesion proteins was evaluated using
Western Blotting. Western Blotting was performed on MDCK H2b-GFP cells,
non-induced MDCK scribblekd H2b-RFP (tet-) and induced MDCK scribblekd

H2b-RFP (tet+) cells. Induction of scribble shRNA was carried out as described
in Norman et al. (2011). Briefly, MDCK scribblekd cells were induced with 1µg/ml
doxycycline (Sigma-Aldrich, D9891) for 70 hours before lysis. Indeed, it had been
previously demonstrated that a 72 hours-long doxycycline induction resulted in a
significant depletion (greater than 90%) of scribble protein level Norman et al.
(2011). For preparation of protein extracts, cells were placed on ice and washed
with cold PBS. After removal of PBS, the cells were lysed using RIPA lysis bu�er
(Santa Cruz Biotechnology) to which protease and phosphatase inhibitors were
added at appropriate concentrations. The lysates were clarified by centrifugation
at 8,000g for 4 min at 4˝C, diluted 1:1 with Laemmli bu�er (Sigma-Aldrich),
denatured for 5 min at 95˝C and loaded onto NuPage 4 -20% gradient gels
(Bio-Rad). Gels were placed in the electrophoresis apparatus and locked in place.
Samples were loaded (30µl per well, 5µl marker) and running bu�er added into
the apparatus. Gels were run at 150 V for 1-2 hours. Proteins resolved with
SDS-page were then transferred to a polyvinylidene fluoride (PDVF) membrane.
Before transfer, membranes were soaked in 100% Methanol for 1-2 min, and then
washed in transfer bu�er. A transfer sandwich was prepared as follows: the PDVF
membrane and the gel (that had been washed in transfer bu�er) were placed
between four sheets of transfer Whattman blotting paper and two sponges soaked
in transfer bu�er. After removing bubbles, the whole sandwich was placed in
a chamber filled with transfer bu�er. The blot was run at 220mA for 2 hours
(longer for large proteins). Membranes were blocked with a mix of 5% Marvel in 1
x TBST for 30 min on a rocker at room temperature; then the primary antibody
was added at the appropriate dilution in 2.5% Marvel/TBST and incubated
overnight in the fridge. Next, membranes were washed 3 times with TBST for 5
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min. The secondary peroxidase conjugated antibody was, then, added in 2.5%
Marvel/TBST and incubated at RT for 1 hour, before being washed three times
with TBST for 5 min. Peroxidase detection was performed by making a 1:1 mix
of solutions of ECL detection reagents (GE Healthcare) and applying it onto the
membranes.

Table 3.1: Western Blot solutions.

RIPA bu�er

50 mM Tris-Hcl pH7.4 25 ml of 1M solution
150 mM NaCl 15 mL of 5M solution
1% NP-40 (IGEPAL) 5 mL
0.5% Sodium deoxycholate 2.5 g
0.1% SDS 0.5 g
H2O up to 500 mL

Running Bu�er (RB)

250 mM Tris (base) 30.2 g
1.92 M Glycine 144 g
1% SDS 10 g
H2O up to 1L
Heat and stir -

Transfer Bu�er (TB)

48 mM Tris-base 2.91 g
39 mM Glycine 1.46 g
10% SDS 1.87 mL
Methanol 100 mL
H2O up to 500 mL

10x TBS

1.5M NaCl 87.6g
100mM Tris base (Trizma) 12.1g
H2O up to 1L
Adjust to pH8 with HCl

TBST 1 x TBS + 0.1% Tween-20.

3.1.2 Establishing MDCK cell lines stably expressing H2b-FP
In order to visualise the morphology of nucleic acids during the cell cycle, I
established cell lines expressing fluorescently tagged histone markers in a stable
manner. To enable accurate segmentation of the cells, I used di�erent fluorescent
proteins for distinguishing the two competing cell types, thus allowing for accurate
determination of the composition of each cell’s neighbourhood. I transduced
MDCK wt cells with lentiviruses encoding H2b-GFP (Addgene, plasmid #25999)
and the scribblekd cells with lentiviruses encoding H2b-RFP (Addgene, plasmid
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Table 3.2: Primary antibodies for WB and IF.

Antigen/Species Company Catalogue number Dilution

E-cadherin (rat) Thermo-Fisher (ECCD-2) 13-1900 IF 1:100 WB: 1:500

Scribble (goat) Santa Cruz sc-11048 WB 1:500

GAPDH (mouse) Novus Biologicals NB300-221 WB 1:1000

Table 3.3: Secondary antibodies for WB and IF.

Antigen/Species Company Catalogue number Dilution

(HRP)-anti-goat Abcam ab 97110 WB:1:10,000

(HRP)-anti-mouse GE Healthcare NXA931 WB:1:10,000

#26001).The infection was carried out by seeding 5x104 cells in 12 well-plate
and adding to each well, in equal volume, the medium containing the viral
particles together with the culture medium. The concentration of viral particles
was calibrated so that the MOI <1 (500 µl of viruses and 500 µl of medium).
Polybrene (Hexadimethrine bromide, Sigma) was added to the well at a final
concentration of 8 µg/ml, in order to enhance the transduction of cells. Cells
were infected soon after trypsinazion, and incubated with the mixture containing
viral particles at 37˝C and 5% C02 for 4-6 hours. A second round of infection
was performed, following the same steps described for the first round. Finally,
the viral mixture was removed and replaced with culture medium. Infected cells
were grown for 2-3 weeks, until reaching confluency in T75 flask. Cells were
finally sorted using fluorescence activated flow cytometry based on GFP or RFP
fluorescence to yield populations with homogeneous levels of fluorescence.The
sorting was performed at the UCL ICH/GOSH Flow Cytometry Core Facility,
with assistance from Dr.Ayad Eddaoudi and Stephanie Canning. Plasmid and
lentiviruses used for establishing the cell lines were kindly provided by Dr.Pedro
Monteiro and Dr. Susana Godinho (Queen Mary, University of London) and, at
a later stage, by Dr. Ana Lisica.

43



Methods

3.2 Cell biology techniques

3.2.1 Cell culture
Madin-Darby Canine Kidney (MDCK wt) cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM, Thermo-Fisher) supplemented with 10% foetal
bovine serum (FBS, Sigma-Aldrich), GlutamaxTM (Gibco, 1%), Hepes bu�er
25 mM (Sigma-Aldrich) and penicillin/streptomycin (PAA Laboratories GmbH,
1%). MDCK pTR Scribble shRNA (scribblekd) cells were grown in DMEM
supplemented with 10% tetracycline free foetal bovine serum (Clontech, 631106),
GlutamaxTM (Gibco, 1%), penicillin/streptomycin (Gibco, 1%), Hepes bu�er
25 mM (Sigma-Aldrich). Mixed MDCK wt/scribblekd cultures were grown in
DMEM containing 10% tetracycline free foetal bovine serum, 1% GlutamaxTM
and 1% penicillin/streptomycin. When required, doxycycline (Sigma-Aldrich,
D9891) was added to cells at a final concentration of 1µg/ml.

3.2.2 Cell passaging
Cells were typically grown in T25 flasks (VWR) to approximately 70-80% con-
fluence before splitting in order to avoid overcrowding, thus preserving the
maintenance of a correct epithelial morphology. I performed passaging of cells
by aspirating the growth medium and rinsing cells with an equal volume of
sterile phosphate bu�ered saline (PBS). After aspirating PBS, 1 ml trypsin EDTA
solution (0.05% trypsin, 0.53 mM EDTA) was added to the flask and cells were
incubated in an atmosphere containing 5% CO2 in a humidified incubator at 37
˝C for 20-30 minutes. When cells detached from the bottom of the flask and from
each other, pre-warmed culture medium was added to the trypsinised cells, and
the suspension was strongly pipetted up and down in order to break down any
remaining clumps of cells. Finally, an aliquot of the suspended cells (500-1000)
µl was added to 5 ml of fresh medium and seeded into a new T25 flask.

3.2.3 Freezing/thawing of cells
The freezing of cells for long-term storage was performed by trypsinising cells as
described above. At the end of the trypsin incubation, cells were re-suspended
in fresh medium, transferred to a 15 ml tube (BD Biosciences) and spun for
3 minutes at 1500 RPM. The supernatant was discarded while the pellet was
re-suspended into culture medium supplemented with 10% dimethyl sulphoxide
(DMSO, Sigma Aldrich) and 20% FBS. Cells were then aliquoted into cryotubes
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and frozen to -80 ˝C for 2 days prior to transferring to liquid nitrogen for long
term storage.

The thawing procedure was performed by removing the cryotube from liquid
nitrogen and rapidly thawing cells in a 37˝C water bath. Cells were, then, diluted
into pre-heated culture medium in a 15 ml tube and centrifuged for 3 minutes
at 1500 RPM. After centrifugation, the supernatant was aspirated, the pellet
was gently resuspended in complete growth medium and cells transferred in a
T25-T75 (VWR) flask, depending on the number of cells frozen in the cryovial.

3.2.4 Wide-field microscopy
To perform long-term imaging while maintaining steady environmental condition, I
assisted Dr Alan Lowe in the design and assembly of an automated epifluorescence
microscope built inside a standard CO2 incubator (Thermo Scientific Heraeus
BL20). The microscope is composed of a high performance motorized stage
(Prior Proscan III, H117E2IX), a motorised focus controller (Prior FB201 and
PS3H122R) and a 9.1MP CCD camera (Point Grey GS3-U3-91S6M). Three
di�erent LEDs provide brightfield and fluorescence illumination. Brightfield
illumination is provided using a green LED (Thorlabs M520L3, 520nm) while
GFP and mCherry/RFP fluorescent channels illumination use respectively a
blue (Thorlabs M470L3, 470nm) or yellow (Thorlabs M565L3, 565nm) LED. The
blue and yellow LEDs are combined using a dichroic beamsplitter (Semrock),
and focussed onto the back focal plane of a 20x air objective (Olympus 20x,
0.4NA) in an epifluorescence configuration. The LEDs and camera firing were
synchronised via TTL pulses from a DAC (Data Translation DT9834), ensuring
minimal light exposure. To prevent evaporation from the imaging dishes over the
duration of the experiment, a custom built humidified chamber was fabricated
and fitted with a thermocouple and humidity sensor to continuously monitor the
environment (Figure 3.1). Dr. Lowe wrote Python and C++ software to operate
the microscope.

3.2.5 Long-term live imaging and competition assay
Cells were seeded in 35 mm glass bottom Petri-dishes (WillCo), at an initial density
of 1x10´3 cells/µm2. In most competition assays, MDCK wt cells expressing
H2b-GFP were mixed with scribblekd H2b-RFP cells at a ratio of 90:10. In some
experiments, the expression of scribble shRNA had been induced in scribblekd

cells by exposure to doxycycline for 70 hours before seeding. In other experiments,
the cells were maintained in tetracycline free medium to prevent scribble shRNA
induction. Imaging was started 2- 3 hours after seeding. The imaging medium
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a c 

b 

Figure 3.1: Long-term imaging setup Wide-field fluorescence microscope for long-
term imaging built inside a standard C02 incubator (c) equipped with a humidifier
system (green shaded rectangle). The humidifier design was inspired by the micro-
humidification system (Bioptech) a-b),and adapted to fit the incubator space. Such
system was coupled to a small silent air pump (Hidom), to bubble the water vessel; the
out flowing water vapour is coupled to the plexiglass cell chamber.

used during the assay was phenol red free DMEM (Thermo Fisher Scientific,
31053) supplemented with tetracycline-free bovine serum, Hepes, antibiotics and,
for experiments involving induction, doxycycline at the dose indicated above.
Multi-position imaging was performed inside the incubator-scope for a duration
of 80 h, on three di�erent imaging dishes. Typically, 12 regions (4 per dish) of
(530 x 400) µm2 were imaged sequentially, using a 20x objective and every 4 min.
A competition experiment was typically run side-by-side with two controls, in
identical conditions.

3.2.6 Immuno fluorescence
Cells were seeded onto glass coverslips in 12 well-plates. Paraformaldehyde
(PFA) fixation was performed at room temperature; cells were washed with
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PBS before 4% PFA/PBS was applied for 20 min. Cells were then washed 3
times with PBS and permeabilised with 0.5% Triton X100/ PBS for 5 min on
ice. After having removed the permeabilisation solution, unreacted fixative was
passivated by incubating with 5% BSA/PBS solution at room temperature for 30
min. Primary antibody was added, after having been diluted appropriately in
1%BSA/PBS in a minimal volume (50-100µl). Incubation was either performed
at room temperature for 1 hour or overnight at 4˝C. Cells were then washed 3-4
times in PBS and the secondary fluorophore-conjugated antibody was diluted
1:200 in 1%BSA/PBS and the cells were incubated with this at room temperature
for 1 hour. Phalloidin-TRITC (dilution 1:50 from 6.6 µM stock) and DAPI (1
µg/ml) were also included with the secondary antibody to allow for visualization
of F-actin and nucleic acids, respectively. Primary antibodies used are listed in
table 3.2.

3.3 Computational strategy for the analysis of
cellular interactions

All image processing was performed on a Dell Precision workstation running
Ubuntu 16.04LTS with 32 Gb RAM and an NVIDIA GTX1080 GPU, and all
code used for image processing was developed by Dr. Lowe Bove et al. (2017).

3.3.1 Image processing
The images acquired by the incubator-scope were analysed by detecting and
segmenting fluorescent nuclei. The segmentation was performed by distinguishing
foreground (cells) from background. Prior to segmentation, several pre-processing
steps were implemented to restore images and increase the signal/noise ratio. In
particular, flat-field illumination correction was performed and ’hot pixels’ of
the CCD camera were removed. Following image restoration, segmentation of
the fluorescent nuclei was performed applying a method based on the Gaussian
mixture model (GMM). The histogram intensity of three images taken from the
beginning, middle, and end of the movie were combined and fitted to a GMM
using the expectation maximization algorithm (EM) to determine the appropriate
parameters Xu and Jordan (1996). The intensity distribution was described as a
weighted sum of n normal distributions:

P pX|�q “ ∞
n

k“1 ⁄
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, ‡2
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where � represents the learned parameters for the N models: ⁄
k

is the normalized
weight, µ

k

the mean intensity, and ‡2
k

the variance for each normal distribution
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in the mixture model Prince (2013). Typically, the number of distributions
used was three. Images from the GFP and RFP channels were segmented
separately; therefore di�erent parameters were learned for the GFP and RFP
fluorescence movies. The three normal distributions generally reflected the
intensity distributions of background, interphase, and mitotic/apoptotic cells.
When the segmentation process is correctly performed, it returns as output
a binary classification of the image into background (dark) and cells (clear).
As the time-lapse experiments run for several days, cells proliferate and, as a
consequence, the resulting images present very crowded and cell-dense regions.
Such high confluence images represent a challenge for segmentation because it
is more di�cult to discriminate single cells boundaries when cells are highly
compacted. In order to improve segmentation at high density, multiple strategies
were implemented: a marker-controlled watershed transform, a custom-written
object-splitting algorithm based on calculating regions of concavity in convex
objects Wienert et al. (2012), or a hybrid of both methods. A further issue
arose from the oversegmentation of nuclei having a weak fluorescence signal. A
multi-step merging algorithm was used to recombine fragments of nuclei. This
algorithm was optimized so that it does not combine apoptotic fragments with
non apoptotic nuclei.

3.3.2 Classification of mitotic states and apoptosis
Chromatin morphology visualized through H2b-FP markers was used to classify
cell cycle states and apoptosis (Figure 3.2 a). Following segmentation, split/merge
steps, each detected object (nucleus) was assigned one of five di�erent classes
(interphase, pro(meta)phase, metaphase, anaphase/telophase, and apoptosis.),
according to its position in the cell cycle. Object classification was performed
via a computer vision approach. To do so, both a support vector machine
(SVM) for supervised learning and a deep convolutional neural network (CNN)
for deep learning were implemented and trained. The non-linear SVM (with
Radial Basis Function) used quantitative image features describing brightness
(fluorescence intensity, intensity gradient), texture and shape (aspect ratio, ori-
entation, eccentricity, histogram of oriented gradients features) for classifying
detected objects. For training the SVM, two data sets were generated: (i) training
(ii) validation (Figure 3.2 d). Each set contained an equal number of images
(100 frames taken from four di�erent experiments) taken from both GFP and
RFP movies. For CNN, three datasets were generated: (i) training, (ii) test,
and (iii) validation, with the test data set fed to the algorithm while it is learn-
ing. As opposed to SVM, the training images for CNN were manipulated and
augmented (rotations, noise, translations), in order to yield a large number of
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training examples. Another di�erence between SVM and CNN consists in the
use of BF images, that contribute to the classification of nuclei status but are
not used in SVM. To provide ground truth, I manually annotated the train-
ing data,using a Fiji ImageJ plugin (https : {{github.com{quantumjot{impy ´
tools{blob{master{ImageJ{IJClassifier

.

py{). The accuracy of both SVM and
CNN classification was measured by determining a confusion matrix, which com-
pares a ground truth based on human operator classification and the SVM/CNN
prediction. After training steps, the CNN achieved an overall accuracy of >99%,
remarkably higher than SVM performance (80%). The poorer performance of
the latter was due to a poor apoptosis detection (Figure 3.2 b). Hence, CNN was
used for all data analysis presented in this work. All code was implemented in
Python and C/C++ using CVXOPT, GLPK, Numpy, Scipy, TensorFlow, and
Ca�e libraries. CNNs were implemented in Ca�e and TensorFlow.

3.3.3 Cell tracking
Following segmentation and classification, objects were assembled into tracks.
Tracking cells over several rounds of division is not a trivial task. First, sections
of tracks not containing division events (tracklets) were linked and assembled
into one sequence. Each tracklet is associated with a probabilistic model, where
the prediction of future state and error associated to the state was evaluated
via application of a Kalman filter. Hence, tracklet linking was performed by
calculating posterior probabilities of each potential linkage for all possible scenarios.
When linking tracklets, occasional classification errors came to light, and were
corrected using a temporal model of the cell cycle Held et al. (2010) implemented as
a hidden Markov model (HMM). Such a temporal model allowed defined directional
transitions between the five classes used for describing the cell cycle state of each
object (interphase, prometaphase, metaphase, anaphase and apoptosis) (Figure
3.2 e). Transition probabilities fed into the model were manually determined
(Table 3.4). Following HMM correction of mislabelled trajectories, tracklets
containing a metaphase to anaphase transition were split into separate tracks.
This step is functional for labelling of division events in later steps of the algorithm.
Finally, lineage trees were plotted by using multiple hypothesis testing and integer
programming Al-Kofahi et al. (2006), after identification of a globally optimal
solution connecting all tracklets. Such a global solution found a sequence of
high-likelihood hypotheses, considering all observations. The following hypotheses
were introduced and computed for some/ all of the tracklets 1) true positive track,
2) false positive track, 3) initializing at the beginning of the movie or near the
edge of the field of view (FOV), 4) termination at the end of the movie or near
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Interphase Prometaphase Metaphase Anaphase-Telophase Apoptosis 

Figure 3.2: Classification of cell cycle states via computer vision approaches
(a) Chromatin morphology was used to classify di�erent mitotic stages, as well as apopto-
sis (b) Confusion matrix showing the matching of human annotations vs. the annotation
of the SVM (left) and CNN system (right). The CNN resulted in better performances,
thus was chosen for performing all data analysis. (c) Schematic of the computational
pipeline implemented for the study of competition dynamics, based on three major steps:
segmentation of individual cells (cell detector), automatic annotation of morphological
classes related to cell cycle state and apoptosis (track compiler), and post-processing
analysis of single-cell tracking data. (d) CNN for object classification. The CNN inputs
are single-object patches, both in the transmission (BF) and fluorescence channels
(left). Schematic of CNN architecture, as combination of di�erent types of layers:
convolutional/ReLU/max-pooling, and fully connected layers (middle). The CNN
transforms the input image layer by layer from the original pixel values to the final class
scores with the highest score reflecting the most probable classification of the image
data (right). (e) HMM temporal model. The figure depicts the allowed directional
transitions between the five classes considered.

the edge of the FOV, 5) a merge between two tracklets, 6) a division event, or 7)
an apoptotic event.

Following identification of the global solution, tracks were merged, division
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events labelled and daughter cells assigned with a new cell ID. For each newly
born cell, information on the lineage was stored (Movie 1). Apoptosis events were,
likewise, accounted for. Cell cycle state, eventually, was automatically updated
for single tracks. Therefore, the final output of the tracking software is a list
of unique cell IDs containing information on xyt-position, cell cycle state, and
lineage of each ID.

Table 3.4: Transition Probabilities for HMM.

State Interphase Prometaphase Metaphase Anaphase Apoptosis

Interphase 0.9943 0.0047 0 0 0.0008

Prometaphase 0 0.7288 0.2770 0 -

Metaphase 0 0 0.7595 0.2402 -

Anaphase 0.1623 0 0 0.8375 -

Apoptosis 0 0 0 0 1

3.4 Post processing of segmented cell tracks

3.4.1 Determination of the cellular interaction network
A custom-written MATLAB (MathWorks) code was optimized to calculate the
number and type of neighbours each cell had during its entire life. The algorithm
used the built-in Voronoi function Barber et al. (1996), taking as input the
location of cell centroids in each frame (Figure 3.3 a,left). Such calculation
excluded cells closer than 10 µm to the edge of the FOV, because their entire
neighbourhood could not be determined. A threshold for describing the maximum
distance between two cells in contact at low density was defined by manually
measuring the cell diameter in pre-confluency conditions (i.e. free space remained
in the FOV). The definition of such a threshold was crucial for removing nuclei
from the Voronoi diagram that cannot be considered neighbours because they
are separated by a distance greater than the maximum value aforementioned. In
both pure MDCK wt populations and in the competition co-culture, the average
cell diameter was 33 µm; in 100% scribblekd induced (tet+) experiments, cells
exhibited a larger cell area with an average diameter of 60 µm. Both values were
chosen as our thresholds to determine true neighbours in the di�erent scenarios.
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3.4.2 Measurement of single cell density
The local cellular density was measured by implementing a custom-written MAT-
LAB script based on the Delaunay triangulation of cell centroids in each image
frame (Figure 3.3 a, right). Local cellular density (fl) was defined as the sum of
inverse areas of the triangles that share a common vertex with the centre of the
target cell:

fl “
Nÿ

i“1

1
A

i

(3.2)

where A
i

is the area of each triangle i sharing a vertex with the target cell.
Such a definition of cellular density has the disadvantage of under-estimating the
true cell surface area, but, conveniently, the error in this metric is systematic
(it is not a�ected by low or high density conditions). Hence, for the purpose of
this project, it provides a robust measure for comparing density at the single
cell level within a spatially heterogeneous population. Local cellular density was
computed for each cell ID and averaged among cells of the same lineage at each
time point. Cells closer than 10 µm to the edge of the FOV were excluded from
the density calculation, due to the incomplete knowledge of their neighbourhood.
The average of fl was plotted as a function of time for each cell type, in both pure
and mixed populations.

3.4.3 Measurement of division and apoptosis probability as a
function of density

The e�ect of density on proliferation and apoptosis was investigated by determining
the probability of division and death as function of cell density. A custom-written
MATLAB (MathWorks) code was optimised for this. As first step, the algorithm
discretised the local density for each cell ID at each time frame into 20 bins. The
bins were chosen so that the middle bin represented the mean local density of
all cells, while the first and last bins corresponded, respectively, to the minimum
and maximum local density measured across the population. The number of bins
chosen was found appropriate to optimize the statistics of the plot, while ensuring
that there was a su�cient number of cells in each bin (for scribblekd N> 134,000
per bin, for MDCK wt n> 405,000 per bin). The probability of cells undergoing
mitosis/apoptosis per cell per frame was then calculated for each bin as:

pdiv{apopflq “
∞

fl

fdiv{apo

∞
fl

f
(3.3)
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with fdiv{apo being the number of observed events (division or apoptosis) in
each bin and f being the total number of observations in that bin. Given equation
3.3, the net growth per cell per frame pnetgrowth is then defined as:

pnetgrowthpflq “ pdivpflq ´ papopflq (3.4)

Once computed, fdiv, fapo and pnetgrowth, they were plotted as function of local
density for induced scribblekd (tet+), non-induced scribblekd (tet-) and MDCK
wt in both pure populations and competition assays.

3.4.4 Measurement of division and apoptosis probability as
function of neighbourhood

Single cell analysis was performed to investigate the impact of local neighbourhood
composition on population dynamic during competition. Knowing, for each cell
ID, the total number of neighbours and the number belonging to each cell
lineage from previous calculations, it was possible to categorise each division
and apoptosis event as a function of the number of neighbours of each type. A
MATLAB (MathWorks) code was developed to colour code the probability of
division, apoptosis, net growth and as function of neighbourhood by colour coding
it in a grid, where the x-axis and y-axis represented the number of scribblekd and
MDCK wt neighbours, respectively. The measurement within each grid position
was computed from > 500 observations. Grid positions populated by more than
500 cells where no event (apoptosis/division) was observed were annotated with
an asterisk. In these positions, an upper bound (1/Nobservations) was provided
for the probability of the event. To determine if some neighbourhood were more
prone than others to division or death, I defined a metric for asymmetry, computed
as:

s “
ÿ

U ´
ÿ

L (3.5)

where U and L are the upper and lower triangular matrices of the neighbourhood
plot.
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Figure 3.3: Definition of cellular neighbourhood and local cellular density.
(a) Definition of local neighbourhood (left). The centre of the nucleus of each cell is
marked with a filled circle (green for MDCK wt; magenta for scribblekd ). The position
of nuclei is used to construct a Voronoi tessellation (solid lines). The composition of
the cellular interaction network is determined by the number of junctions the target
cell (striped pattern) has in common with the MDCK wt cells (junctions shown in
green) or scribblekdcells (junction shown in magenta). Once determined the neighbours
of a target, we can measure its local density (right). For doing so, centres of mass of
nuclei are used to construct a Delaunay triangulation (dashed lines). Local density is
defined as the sum of inverse areas of the triangles sharing a common vertex at the
nucleus of the cell of interest (included in the striped pattern). (b) Definition of true
neighbours based on threshold. True neighbours share a common edge with the Voronoi
polygon of the target cell (highlighted in yellow), and are separated from the target
cell by a distance below a threshold value. Dotted lines link the centroid of neighbours.
After culling of nuclei located at greater separation distance than the threshold (right),
the interaction network of the target cell consist of four neighbours, three MDCK wt
(green) and one scribbleKD (magenta).
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4 E�ect of scribble knock-down on
proliferation and apoptosis of
MDCK cells

4.1 Introduction
In this chapter, I present data showing the e�ect that scribble knock-down has
on proliferation and apoptosis rates of MDCK cells.
Polarity and morphology of the pTR MDCK scribble shRNA cell line, cultured
in the presence or absence of tetracycline, had been rigorously characterised
by other groups Norman et al. (2011). Previous studies have focussed on the
dynamics of these aspects, given the key role of scribble protein in maintaining
apico-basal polarity, and considering how relevant the loss of polarity could be
when studying cellular interactions. According to their findings, upon prolonged
tetracycline induction (72 hours), pTR MDCK scribble shRNA lose their typical
epithelial cobblestone morphology, exhibiting a flattened morphology and covering
a larger area. The only major polarity disruption was observed in the E-cadherin
localization, which exhibited greater localization to the basal domain rather then
the baso-lateral one in control conditions Norman et al. (2011).
Although having been examined in previous studies, the e�ect of scribble knock-
down on proliferation is less understood. Previous work has demonstrated that
scribble is an important protein for both maintenance of cell polarity and regula-
tion of cell motility, however it is also involved in the regulation of cell division.
In Drosophila melanogaster imaginal discs, for instance, scribble works as a sup-
pressor of Cyclin E, thus regulating entry in the S phase Humbert et al. (2008).
Experimental evidence in both Drosophila melanogaster Brumby and Richardson
(2003) and mammals Vaira et al. (2011) have shown that loss of function of
scribble is commonly associated with uncontrolled proliferation. Conversely, over-
expression of scribble was shown to repress proliferation in various mammalian in
vitro models Takizawa et al. (2006). In this chapter, I look at growth and death
rates of cells cultured in pure populations. I will describe, at both the tissue
and single-cell level, how proliferation is a�ected by scribble knock-down. This
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detailed analysis was made possible by the combination of long-term imaging with
the image analysis pipeline I developed. I will also quantitatively characterise the
apoptosis rate upon depletion of scribble. After having assessed the e�ect on pure
populations, I will present the proliferation and apoptosis profiles measured when
MDCK cells depleted of scribble protein are mixed with MDCK wt cells in a 10:90
ratio. Overall this analysis, together with confirming the competitive interaction
between the two cell types, also validated the pipeline used for measuring division
and apoptosis during long-term imaging, confirming the e�ciency of the analytical
approach for providing reliable automated quantification of single-cell events.

4.2 Induction of pTR MDCK scribble shRNA cell
line and nomenclature

In the absence of tetracycline, the expression of scribble sh RNA in pTR MDCK
scribble shRNA cells is inhibited by the tet repressor Hillen and Berens (1994).
In this work, the induction of shRNA was induced with doxycycline, a more
stable analogue of tetracycline. Western blotting with an anti-scribble antibody
was performed to validate the e�cacy of knock-down of scribble in induced
pTR MDCK scribble shRNA. For subsequent experiments and analysis, the
pTR MDCK scribble shRNA line was stably labelled with H2b-RFP, and will
be referred to as scribblekd. Likewise, the MDCK wild type line used in all
experiments stably expressed H2b-GFP and will be referred to as MDCK wt.
When scribble depletion was not induced (tet-), the scribblekd cell line expressed
scribble at a level comparable to that in MDCK wild type. Addition of doxycycline
reduced scribble protein level so that, after 72 hours of induction, the scribble
protein is barely detectable (Figure 4.1 a, top). E-cadherin expression was also
assessed, and was found to be enhanced by scribble knock-down (Figure 4.1
a, bottom). Surprisingly, non-induced scribblekd cells also displayed higher E-
cadherin expression than MDCK wt. This result is not what I was expecting, but
it might be due to incomplete repression of the promoter by the tet repressor.
These experiments also confirmed the previously observed change in epithelial
morphology upon scribble depletion, resulting in flat cells with higher surface
area and apparently larger nuclei (Figure 4.1 c), Movie 4. Therefore, addition of
doxycycline to scribblekd e�ciently knocked-down the level of scribble protein.
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Figure 4.1: E�ect of scribble knock-down on epithelial cell morphology
and E-cadherin expression (a) Top: Immunoblot showing scribble and GAPDH
expression for induced (tet+) scribblekd cells, non-induced (tet-) scribblekd cells, and
MDCK wt cells expressing H2b-GFP. Induction of scribble shRNA expression results in
a significant depletion of scribble levels. The scribblekd were incubated with doxycycline
for 72 hours. Bottom: E�ect of scribble depletion on E-cadherin expression. GAPDH
control is shown. (b) Transmission (top) and EGFP (bottom) images of MDCK wt cells
stably expressing H2b-GFP. (c) Transmission (top) images of scribblekd cells expressing
H2b-RFP (bottom), after 72 hours incubation with doxycycline. (d) Transmission (top)
images of scribblekd cells expressing H2b-RFP (bottom) cultured in the absence of
doxycycline (tet-). At both low and high density, these cells show a classic epithelial
cobblestone morphology, resembling to the MDCK wt control (compare b-d). Conversely,
the scribblekd (tet+) no longer show an epithelial cell morphology, appearing larger
and flatter, especially in post confluency conditions. Scale bars are 25 µm.

4.3 E�ect of scribble shRNA on proliferation
The e�ect of scribble knock-down on cell proliferation was evaluated by plotting
cell counts for 72-hours induced (tet+) and non-induced (tet-) scribblekd cells
grown in pure populations. Cells were seeded at an initial density of 10´3 cells/µm2
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and imaged for 50 h (Movie 4, Movie 5). Normal MDCK were also imaged and
used as control (Movie 2). Over the course of the experiment, the plots for
scribblekd count in the absence and presence of doxycycline di�ered markedly
(Figure 4.2 a); the scribblekd (tet-) and the MDCK wt showed a fivefold increase
in cell count (Figure 4.2 b) while the scribblekd (tet+) population increased 1.5
fold. Such large-scale quantification of growth rate is consistent with previous
work Wagsta� et al. (2016) and demonstrates that the growth of MDCK cells is
slowed down by scribble knock-down. To better understand the e�ect of scribble
knock-down on MDCK proliferation, I analysed the duration of the cell cycle at
single-cell resolution by measuring the temporal separation between the birth
of a cell and that of its daughters on a lineage tree (Figure 4.3 c). Indeed, the
reduced proliferation could be due to either a lower number of cell division or
to an increase in cell cycle time due to scribble depletion. To compare induced
and non-induced cells, I plotted the cell cycle duration distribution for both
populations (Figure 4.2 c). This analysis showed that, despite the di�erences in
cell count, the average duration time of the cell cycle for the scribblekd induced
and non-induced cells are very similar, 18.5 `

´ 6 hours. For comparison, the cell
cycle time measured for a population of MDCK wt displayed a mean value of 22
`
´ 6 h (Figure 4.2 c). Thus, it appears that cell cycle duration changes are not
the cause of the di�erences in cell count after 72 hours. It is important to note
that, despite accurate estimation of cell cycle duration for the vast majority of
the population, some errors subsist due to identity swaps at high cell densities
or triple divisions that lead to underestimation of the cell cycle time. Single-cell
analysis confirmed that no significant di�erence is shown in cell cycle duration
time upon induction of scribble. Moreover, MDCK wt cells seemed to have a
slightly longer cell cycle time. All division times are consistent with other reports
Gudipaty et al. (2017).

4.4 E�ect of scribble shRNA on apoptosis
The data collected from pure population experiments were analysed to determine
the change in death rates caused by scribble knock-down. For this purpose
I plotted the cumulative apoptosis count, averaged across all FOVs imaged
during an experiment. Data used for these plots were pooled from two biological
replicates, each one having 5-6 imaged FOVs. As expected, the apoptosis count
increased over time for induced scribblekd cells (magenta), non-induced (green)
scribblekd cells and wild type cells (grey) (Figure 4.3 d, right). However, when
scribble was knocked-down, the average number of apoptotic nuclei was larger
than the one observed for non-induced cells at all time points, and resulted in
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Figure 4.2: E�ects of scribble knockdown on proliferation of pure cultures
(a) Growth curve for pure non-induced scribblekd (tet-, green) and induced scribblekd

(tet+, magenta) populations. Plots are normalised to the initial cell count and are
pooled from three biological replicates, imaging three fields of view each. The solid
line indicates the mean of the experiments and the shaded area indicates the standard
deviation.(b) Proliferation profiles of non-induced scribblekd (tet-, magenta) and MDCK
wt (green) cells in pure populations. The three lines show the cell count in each field
of view imaged during one control experiment. (c) Probability density of cell-cycle
time measured for a pure population of MDCK wt (green), scribblekd in the presence
(magenta) and absence (grey) of tetracycline. The distribution represents a population
of at least 250 cells in the same field of view followed for minimum time of 50 h. Data
are pooled from two biological replicates.

a 2.5 fold increase after 50 hours (Figure 4.3 d, right). Notably, the cumulative
apoptosis count of scribblekd (tet-) reproduced accurately the curve obtained for
pure MDCK wt. These results suggested that the scribblekd (tet+) line has a
higher apoptosis baseline when cultured in pure populations. The comparison
between non-induced scribblekd and MDCK wt also confirmed that increased
apoptosis is e�ectively caused by the depletion of scribble protein, consistent with
observations from other studies. Indeed, as it was demonstrated by Wagsta� et al.

59



E�ect of scribble knock-down on proliferation and apoptosis of MDCK cells

(2016), the higher apoptosis level observed in induced scribblekd cells was due to
an over-expression of p53 levels, which, per se, was shown to promote apoptosis
through transcription-dependent and independent mechanisms, as reviewed in
Fridman and Lowe (2003). Moreover, Wagsta� and colleagues demonstrated that
the increased p53 levels in scribblekd cells cause the hypersensitivity to crowding
through the proposed model that I described in paragraph 1.6.3.

4.5 E�ect of scribble depletion on proliferation and
apoptosis in mixed cultures

Next, the fate of scribblekd induced cells surrounded by MDCK wt cells was
determined, and growth and death rates calculated as explained in the previous
paragraphs.
Mixed cultures of scribblekd and MDCK wt were plated in 10:90 relative ratio.
The scribblekd line was induced 72 hours prior to seeding via addition of doxy-
cycline to the culture medium. The two lines were mixed after trypsinization
in the appropriate proportions, to produce a cell suspension with final density
of 10´3 cells/µm2. Cells were imaged for 80 h (Movie 3). Control experiment
were performed using the same experimental condition but mixing the two lines
without doxycycline induction. This seeding protocol reliably produced isolated
or very small groups (from 2 to maximum 4 cells) of scribblekd cells surrounded
by MDCK wt cells (Figure 4.3 a), (Movie 3).

Over the course of 80 h, scribblekd (tet+) and MDCK wt proliferation showed
very di�erent growth trends, with the scribblekd cell count peaking around 40
hours at 1.85 fold the initial count before decreasing to 1.5 fold (Figure 4.3 b,
inset), whereas the MDCK wt increased sevenfold (Figure 4.3 b, left). In contrast,
control experiments of MDCK wt co-cultured with non induced scribblekd (tet-)
in a 90:10 ratio showed a two fold increase in cell count for scribblekd and a three
fold increase in MDCK wt cells after 50 h (Figure 4.3 b, right). Such growth
rates were comparable to those recorded in pure populations of each cell type,
for similar durations (Figure 4.2 a). Therefore, scribble depletion a�ected the
growth of knock-down cells mixed with wild type cells, resulting in a cell count
that is di�erent from the proliferation profile measured for pure scribblekd (tet+)
populations.

The drop of cell count of scribblekd (tet+) cells in the presence of MDCK wt
cells could be due to either a reduced division rate or to an increased cell death of
MDCK cells upon scribble depletion. To answer this, I quantified the cell death
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during time laps assays of both competition and control experiments by plotting
the cumulative count of apoptosis events for each cell type (Figure 4.3 d). The
average cumulative apoptosis count demonstrated that, in co-cultures, scribblekd

cells had significantly higher apoptosis counts than MDCK wt cells, despite being
far scarcer (Figure 4.3 d, right). In contrast, when mixing the MDCK wt and
scribblekd non-induced lines, the number of apoptoses evolved in proportion to the
initial seeding ratio (Figure 4.3 d, middle). Hence, when cultured in the presence
of MDCK wt cells, scribblekd (tet+) undergo a sustained cell death, which is 4.5
fold higher than the apoptosis baseline measured for scribblekd pure populations.

Moreover, the long-term imaging assay allowed to qualitatively investigate
in which conditions such context-dependent cell death took place. Particularly,
the parallel acquisition of both transmission and fluorescence images enabled to
discriminate whether dying cells were apically eliminated from monolayers prior
to or after apoptosis. I found that scribblekd cells would undergo apoptosis before
being eliminated in most of the cases, as suggested by the nuclear fragmentation
and cytoplasmic condensation mostly observed within the monolayer followed by
the acquisition of a rounded up morphology and apical extrusion (Figure 4.3 a),
(Movie 4).

4.6 Discussion
In the first part of the chapter, I have presented data showing the di�erent e�ects
of scribble knock-down on morphology, proliferation and apoptosis of MDCK cells.
From transmission and fluorescence images, scribblekd cells grown in standard 2D
conditions inside the incubator scope in the presence of doxycycline (Movie 4)
manifested a loss of the epithelial cobblestone morphology characteristic of MDCK
wild type cells (Movie 5). Scribblekd (tet+) cells appeared to spread more and to
assume a flatter morphology reminiscent of a mesenchymal cell type. However,
upon induction, scribblekd maintained intercellular contacts (Movie 4), suggesting
that cell-cell adhesions were maintained. To reinforce this observation, I measured
E-cadherin expression of both induced, non-induced scribblekd and wild type cells
and I found that the scribblekd (tet+) cells were enriched in E-cadherin compared
to both non-induced (tet-) and wt MDCK cells. This result confirmed the e�ects
shown by previous reports Qin et al. (2005),Norman et al. (2011). Indeed, other
groups focused on the characterisation of the e�ects of scribble knock-down on
the morphology and polarity of MDCK cells finding that, despite the di�erent
morphology, the scribblekd (tet+) cells kept a correct 2D polarity, as indicated
by the apical localization of the membrane marker gp135 and the fact that tight
junction formation is preserved (as demonstrated by the correct localization of
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ZO-1) Norman et al. (2011). Consistent with our Western Blot analysis, Norman
and colleagues observed, via immuno-fluorescence, an increased accumulation of
E-cadherin at cell-cell contacts in scribblekd (tet+). Such increased expression
resulted in a mislocalization of E-cadherin, which was found to be more localised
in the basal domain rather then the baso-lateral one.

I showed that knock-down of scribble has a dual e�ect on the proliferation rate
of MDCK cells, when looking at either tissue and single-cell scale. Particularly,
the proliferation analysis detected a significantly lower cell number of scribblekd

(tet+) cells compared to non-induced cells. To test the hypothesis that this could
be caused by a slower growth rate induced by scribble depletion, I measured
the cell cycle time of both induced and non-induced scribblekd populations by
means of single-cell analysis. However, the distribution of cell cycle duration
time did not revealed any significant di�erence between scribblekd (tet+) and
scribblekd (tet-) cells. Another consideration is that both lines have a slightly
shorter division time when compared to MDCK wt. An increased division rate
upon induction of scribble depletion is what one might expect, as loss of scribble
has being reported to cause aberrant proliferation (and loss of tissue size control)
in Drosophila melanogaster Brumby and Richardson (2003); Humbert et al. (2008)
and in various mammalian cell types scribble activity was found to negatively
regulate the cell-cycle progression from G1 to S phase Nagasaka et al. (2006). To
explain the discrepancy between single cell (distribution of cell cycle duration)
and tissue scale (cell count over time) proliferation analysis, I quantified changes
in cell death (identified by detection of nuclear fragmentation as a marker of
apoptosis) upon scribble depletion. I measured the apoptosis profile of scribblekd

(tet+) cultured in pure populations (magenta)(Figure 4.3 d, right) and found that
it reached 3 fold larger final value when compared to scribblekd (tet-) and MDCK
wt populations. This suggested a cell-autonomous increase in apoptosis rate
(+35%) upon scribble silencing. This e�ect could compensate for the unchanged
cell cycle time, and explain the cell count trend observed.

In the final section of this chapter, after having assessed the e�ect of scribble
knock-down on MDCK in pure populations, I examined the fate of scribblekd when
in the presence of wild type neighbours (Movie 3). Work of other groups revealed
increased cell death in scribblekd cells when in the presence of MDCK wt cells
Norman et al. (2011), Wagsta� et al. (2016). Such phenomenon was described as
cell competition, due to the dramatically enhanced apoptotic rate of scribblekd

(tet+) in mixed cultures. Interestingly, in this particular cell competition scenario,
the apoptotic rate of losers (induced scribblekd) was found to be greater than
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the death rate of non-induced scribblekd (tet-) in pure populations too. I found
that cells depleted of scribble were e�ectively outcompeted by wild type cells
because of decreased growth rates. I demonstrated that this was due to increase
of cell death of scribblekd, which reached higher rates than for pure population.
Thus, the increase of cell death of scribblekd (tet+) has the characteristic of a non
cell-autonomous, context-dependent phenomenon, a hallmark of cell competition.
Previous experiments performed with addition of blebbistatin to the cell culture
medium Norman et al. (2011) showed that competition-induced apoptosis hap-
pened independently of apical extrusion. Qualitative observation of time-lapse
data supported this evidence, as apoptosis systematically preceeded extrusion.

In this section, division and death rates were displayed in time, and character-
istic proliferation and apoptosis curves were retrieved for both pure and mixed
populations. These data will be important to consider in the following chapters
where, to further investigate the underlying mechanism of cell competition, prolif-
eration and apoptosis will be analysed as functions of other variables (i.e. local
density and neighbourhood).
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Figure 4.3: Knock-down of scribble triggers cell competition in MDCK
cells (a) Left: Representative image containing MDCK wt (green) and scribblekd

(magenta) cells mixed in an initial 90:10 ratio. The image corresponds to one FOV
(530 x 400) µm acquired by wide-field epifluorescence using 20x magnification. Scale
bar = 50µm. The region of interest in the white rectangle is shown to the right. Right:
Time series from the competition assay. The white arrow head indicates a scribblekd

cell undergoing apoptosis. Scale bar = 20µm (b) Left: Proliferation profiles of MDCK
wt (green) and induced scribblekd (magenta) during a competition experiment. The
inset shows the evolution of cell count in the scribblekd cells on a smaller scale. Right:
Proliferation profiles of a control experiment, where MDCK wt cells (green) were mixed
with non-induced scribblekd (tet-). In both plots, data are pooled from three biological
replicates imaging 4 fields of view for each replicate. The solid line indicates the mean
of the experiments and the shaded area the standard deviation.(c) Representative
lineage tree, obtained from classification and tracking of MDCK wt cells. The diagram
shows how to compute cell cycle time at single cell level, by measuring the temporal
separation between the birth of a cell and that of its daughters on a lineage tree
(d) Left: Quantification of apoptosis for MDCK wt (green) and scribblekd (magenta)
during competition. Middle: Quantification of apoptosis for a control experiment,
where MDCK wt cells (green) were mixed with non-induced scribblekd (tet-) in the
same relative proportions 90:10. Right: Apoptosis quantification for 100% scribblekd,
cultured in the presence (magenta) or absence(green) of tetracycline and for 100%
MDCK wt (gray). The number of apoptoses is detected and averaged across 5-6 areas
imaged during an experiment. Data are pooled from two biological replicates. Image
from Bove et al. (2017).
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5 E�ect of local cellular density on
the probability of division and
apoptosis

5.1 Introduction
Previous experiments showed that scribblekd cells are less tolerant to high density
than MDCK wt cells. Wagsta� and co-workers have proved this by seeding cells on
micro-patterned arenas with a well defined area and measuring the total density
by dividing the number of DAPI stained nuclei by the area of the arena. In this
way, they demonstrated that non-induced scribblekd (tet-) cells, when plated at
both low and high initial density, proliferated until reaching a typical maximal
density value of 4 x10´3 cells/µm2. Conversely, scribblekd (tet+), if plated at high
density, decreased their number in time as an e�ect of increased apoptosis and
extrusion. However, if plated at low density, scribblekd (tet+) cell count didn’t
drop, but fluctuated around the initial value of 4 x10´3 cells/µm2. Therefore they
concluded that, upon depletion of scribble, the MDCK cells become hypersensi-
tive to crowding and, if forced to higher cell density, respond via activation of
apoptosis. They hypothesised that such di�erent tolerance to density is the key to
explaining the loser status of induced scribblekd cells in competition. Furthermore,
they demonstrated that changes in density may induce increases in apoptosis
events that alone are su�cient to result in the elimination of the scribblekd (tet+)
cells during competition. However, a detailed characterisation of the influence of
density on apoptosis is lacking to quantitatively test this hypothesis. Moreover,
the influence of cell density on division rate was not examined, although changes
in division rate could also play a role during cell competition.

This chapter will describe how division and apoptosis probabilities are influenced
by local cellular density. Similarly to the first chapter, analysis on pure populations
was used as a comparison to better understand the e�ects observed in competition
assays, where the scribblekd cells are mixed with MDCK wt. I applied the
single-cell density measure defined in equation 3.2 to characterise quantitatively

65



E�ect of local cellular density on the probability of division and apoptosis

the exact relationship between cell density and probability of apoptosis. The
application of this analytical pipeline quantitatively confirmed some previous
observation that scribble knock-down cells are more sensitive to high cell density
leading to apoptosis Wagsta� et al. (2016). Competition-specific changes relative
to density-regulated division were also found. Such e�ects were of particular
interest, because they did not fit with the hypothesis that cell density is the main
predictor of competition outcome. This observation led me to consider other
factors that may participate to competition, and this will be topic of the following
chapter.

5.2 Scribble knock-down cells have lower
homeostatic density than wild type cells in pure
populations

To characterise division and apoptosis dependence on density, I developed an
algorithm for computing the cellular density that a given cell senses. Such method
is based on the Delaunay triangulation of cell centroids in each image frame
(Figure 3.3 a, right) for identification of neighbouring cells. However, in sub-
confluent conditions, this algorithm might identify false positives by linking the
nuclei of cells which are separated by free space. Therefore it was necessary to
define a threshold describing the maximum inter-nuclear distance separating two
neighbours cells. I assessed the accuracy of the distance threshold by comparing
the number of neighbours determined from the Voronoi diagram (number of
Voronoi edges) based on the distance threshold to the number of neighbours
determined by manual count of the E-cadherin delimited edges of a single cell
(ground truth). To do so, I fixed and imaged MDCK cells stably expressing
the H2b nuclear marker stained with an E-cadherin antibody, to detect the
presence of an adherens junction and hence the presence of a true neighbour. I
seeded cells at both high and low density (Figure 5.2). I performed a correlation
analysis between the edges detected via the Voronoi method and the number
of manually determined neighbours, calculating the Pearson coe�cient (r). I
obtained a correlation coe�cient r=0.832 for high density and r=0.951 for low
density. These results suggested that the experimental threshold applied to the
Voronoi method provides a reliable estimate of the number of neighbours of each
cell. Hence, I used the algorithm for computing the local cellular density for
each cell ID from time-lapse data of 100% scribblekd (tet+) and scribblekd (tet-).
I then averaged such parameter among cells of the same lineage, at each time
point, and plotted the mean cellular local density in time for each population of
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cells investigated. When computing density, I verified that the distance threshold
experimentally determined D

tresh

was accurate by computationally calculating
the edge lengths of the Delaunay graph constructed from each cell centroids
(Figure 5.1 b). The evolution in time of such measure e�ectively represents
the inter-nuclear separation. As expected, the average inter-nuclear distance
decreased over time and, notably, it was larger than the threshold values only
at low density (i.e. when cells are sub-confluent and still separated by some free
space). Remarkably, the larger D

tresh

value used for scribblekd (tet+), as opposed
to that used for scribblekd (tet-) and MDCK wt cells, reflected the increase in
cell spreading observed upon scribble depletion, displayed in the previous chapter
(Figure 4.1).

Consistent with previous descriptions Wagsta� et al. (2016), the mean local
density of non-induced scribblekd (tet-) and MDCK wt cells cultured in pure
population increased with time, reaching a plateau (homeostatic value) after
80 hours. Conversely, the density of induced scribblekd (tet+) had a flat trend,
fluctuating around the initial density value (Figure 5.3 a, left). The maximal
density value of both non-induced scribblekd and MDCK wt was several fold higher
(3.6 and 3-fold, respectively) than the maximal density of induced scribblekd.
Therefore, it is possible to conclude that induced scribblekd (tet+) cells have a
lower homeostatic density than MDCK wt or non-induced scribblekd (tet-) cells.

5.3 Scribble knock-down cells reach higher cellular
densities than surrounding wild type neighbours
during competition assays

The evolution of mean local density was measured for induced scribblekd cells
in competition with MDCK wt cells. Strikingly, the temporal evolution of
scribblekd cells density changed dramatically compared to their behaviour in pure
populations. In particular, competing scribblekd cells reached a final density that
surpassed the homeostatic value of surrounding MDCK wt cells by a factor of 1.4
(Figure 5.3 a, middle), with the maximal density value of MDCK wt following
exactly the same trend as observed for pure populations. Such an increase in
local density displayed by scribblekd cannot be explained by considering it as a
reflection of the density of the mixed culture. If that was the case, scribblekd

would be forced to reach a cellular density similar or comparable to that of the
majority of surrounding cells. To test if this phenomenon was specific to the
interaction of MDCK wt cells with scribblekd (tet+), I performed experiments on
mixed populations in the absence of doxycycline and plotted the local density
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Figure 5.1: Distance threshold for interacting cells used in neighbourhood
and density estimation. Two-dimensional histograms of distance between centroids
for non-induced (a) and induced (b) scribblekd and MDCK wt (c) cells. The mean value
of inter centroid distance over time is displayed as solid white line. The time evolution is
used to calculate the threshold value (D

thresh

) for interacting cells used in neighbourhood
estimation. From experimental measurement, the D

thresh

was determined to be 30 µm
for non-induced scribblekd(tet-), 60 µm for scribblekd (tet+) in which knock-down of
scribble had been induced, and 30 µm for MDCK wt. Such values correspond to the
respective average cell diameter in pre-confluency conditions. Any distance larger than
this would imply the presence of free space between cells, signifying they cannot be
classified as neighbours. In all of the three plots, the threshold value chosen is always
below the average internuclear distance. Image from Bove et al. (2017).

for both lineages (Figure 5.3 a, right). The mean cell density of non induced
scribblekd also increased, but the curves representing the average cellular density
of non-induced (tet-) and MDCK wt populations have very comparable trends
and values. Finally, the results showed by the time resolved single-cell density
analysis are fully consistent with the global density analysis previously performed
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by other groups Wagsta� et al. (2016) by means of single time-point quantification.
Furthermore, they proved the e�cacy of the cellular density definition, given by
equation 3.2, to estimate density heterogeneity in co-culture.

5.4 Scribble knock-down and wild type MDCK cells
regulate their homeostatic density di�erently

Having validated the computational approach for calculating cellular density, I
tried to rigorously explain the evolution of cell density as result of changes in
both apoptosis and division rates.
Changes in population composition can, indeed, arise not only from increases
in apoptosis but also via changes in division rates; despite this consideration,
previous studies have mainly described apoptosis changes. I investigated the
dependency of proliferation and apoptosis probability on local cellular density,
using equation 3.3.
In pure populations, MDCK wt cells showed a high baseline probability of division;
such proliferation rate was negatively regulated by density, as it decreased when
the density increased beyond fl „ 10´2µm´2. Conversely, the division probability
of pure scribblekd cells (tet+) remained approximately constant through all the
range of densities explored, at a 4-fold lower level than the MDCK wt cells
(Figure 5.3 b, left). Probability of apoptosis for both cell types increased with
density; however, the scribblekd had a higher apoptotic rate than MDCK wt at
all densities. Notably, the apoptosis rate of both scribblekd and MDCK wt was
approximately 10-fold smaller than their division rate (Figure 5.3 b, middle).
Overall, this resulted in net growths that were positive and relatively insensitive
to density until fl „ 10´2µm´2 after which they decreased (Figure 5.3 b, right).
Altogether, these data suggested that the homoeostatic density was set di�erently
for MDCK wt and scribblekd. MDCK wt cells controlled population size by a
density-dependent decrease in proliferation, whereas scribblekd cells maintained a
constant division rate and regulated their homeostatic density through a density
dependent increase in apoptosis rate.

5.5 Apoptosis of scribble knock-down cells
increases with density during cell competition

I analysed the contribution of division and apoptosis rates to the population shifts
observed when co-culturing the scribblekd induced cells in the presence of MDCK
wt, in 10:90 proportion. This analysis confirmed what was hypothesised before by
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Wagsta� et al. (2016), that the scribblekd cells increase their apoptosis rate when
forced to a density higher than their homeostatic value. Particularly, I found that
the probability of apoptosis of competing scribblekd cells undergoes a dramatic
density-dependent increase for fl>4*10´3 µm´2 (Figure 5.3 c, middle). As for
the apoptosis rate of MDCK wt cells in competitive conditions, I found that it
was comparable to that observed in pure populations until fl „ 10´2µm´2, after
which it increased sharply. From an accurate analysis of the density dependent
apoptosis profile, it emerged that when fl>10´2µm´2, the probability of apoptosis
for scribblekd cells was „ 6-7 fold higher than that measured in MDCK wt cells.
At the lowest densities instead, when fl<3*10´3 µm´2, the probability of apoptosis
for scribblekd was similar both in competitive and pure populations (Figure 5.3
b and c, middle). Remarkably, the local density observed during competitions
assays covered a larger range than in pure populations (Figure 5.3 c). This e�ect
could be due to the fact that, when cultured in pure populations, scribblekd cells
maintained their homeostatic density by exactly compensating proliferation with
cell death. Hence, these results confirmed that apoptosis is upregulated with
increasing density, as hypothesised previously Wagsta� et al. (2016).

5.6 Division of scribble knocked-down cells
increases with density during cell competition

From the comparative analysis of division probabilities in pure populations and
competitive conditions, some clear di�erences in behaviour between scribblekd

and MDCK wt cells emerged. On the one hand, the birth rate of MDCK wt
cells showed a similar trend in both pure population and co-culture conditions:
the division probability stayed constant with density until fl>10´2µm´2 (Figure
5.3 b-c, left, green). Conversely, the pdiv of scribblekd cells exhibited a density
dependent behaviour during competition assays. Indeed, at low density, the pdiv of
scribblekd was comparable to the value measured for pure population; however, for
fl>10´2µm´2, a sharp increase was observed (Figure 5.3 b-c, left, magenta). Such
behaviour is interesting, especially when compared to the constant trend (at both
low and high density) of pdiv measured for scribblekd cells in pure populations,
where the value registered is 4 folds lower than the wt curve. Therefore, at high
density (fl>10´2µm´2), the division rate for competing scribblekd cells is higher
than the division rate of MDCK wt and non competing induced scribblekd cells.

70



E�ect of local cellular density on the probability of division and apoptosis

5.7 Net growth of wild type cells is greater than
that of scribble knock-down cells at all densities

The implementation of an algorithm to compute both apoptosis and division
dependence on density allowed me to precisely quantify the net growth of each
competing population within the density range explored, as formulated by equation
3.4. For both scribblekd and MDCK wt cells, the net growth was generally
decreasing with increasing density, as expected. A sharp net growth reduction
was observed for densities fl>10´2µm´2, and resulted from the combination of a
density dependent increase in apoptosis and decrease in division (Figure 5.3 c,
right). Despite the higher pdiv of scribblekd cells at high density, their net growth
was still lower than that of the competing wild type cells, due to the dramatic
increase in papo observed in the same density regime. MDCK wt cells dominated
the competition, with a net growth 4 fold higher than that of scribblekd cells, at
low density. However, when density increased, the MDCK wt cells’ net growth
dropped to 0.025%, thus converging to the net growth measured for scribblekd cells.
Still, in the range of density explored in our experiments, there was no regime
where scribblekd cells have higher net growth than MDCK wt cells, indicating
that they are losers of this competition.

5.8 A purely density dependent model does not
reproduce the experimental cell count

Previous work has suggested that mechanical competition may be the result of
cell-autonomous increases in apoptosis with increasing density Wagsta� et al.
(2016). To test this hypothesis, I collaborated with a PhD student in the Charras
lab, Daniel Gradeci, who developed a quantitative model on the basis of the
experimental results I have described so far. The model, based on coupled rate
equations, investigated how the density dependence of cell division and apoptosis
determine the time evolution of cell count in the competing populations and the
overall population fitness. In this model, the density of the MDCK wt cells (WT)
and scribblekd cells (KD) increases at a rate proportional to a density-dependent
division rate (fwt

div

, fkd

div

), and decreases proportionally with a density-dependent
death rate (fwt

apo

,fk

apo

d), as given by equation 5.1 and equation 5.2. The functions
describing dependence of birth (fwt

div

, fkd

div

) and death (fwt

apo

,fk

apo

d) rates of MDCK
wt and scribblekd cells were obtained by fitting an analytical function to the
density dependent birth and death rates determined experimentally in Figure 5.3.
In particular, it was found that birth rates followed a Gaussian behaviour whereas
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apoptosis rate displayed a negative logistic behaviour (Figure 5.4 a). The coupled
equations (5.1 - 5.4) were solved numerically to predict the temporal evolution
of cell counts of MDCK wt and scribblekd cells (Figure 5.4 b), subject to the
experimental initial conditions for the cell count and density of the two cell types.
By formulating the equations in such way, we tested the hypothesis that division
and apoptosis rate are equally a�ected by the densities of the MDCK wt and
scribblekd cells, such that fpflq ” fpfl

wt

` fl
kd

q. This hypothesis implies that cells
cannot recognise which type their neighbours belong to but can determine their
local density. MDCK wt and scribblekd cells contribute equally to the measured
density. However, this model failed to quantitatively reproduce the experimental
cell count, predicting a lower count of MDCK wt cells (Figure 5.4). This suggests
that alterations in cell behaviour due to density alone are not su�cient to explain
the outcome of my experiments.
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5.9 Discussion
Cell competition induced by loss of scribble had been characterised as an example
of mechanical competition Norman et al. (2011), where loser cells are eliminated
by winner cells due to their lower tolerance to high cellular density.
In this chapter, I have quantitatively described the relationship between division,
apoptosis and net growth probabilities as a function of local cellular density,
which I measured by means of the novel single-cell approach image analysis which
I developed.
Indeed, when cells are cultured in pure populations, the density in each cell
population first increases before reaching a plateau (homeostatic density). The
homeostatic density is strongly a�ected by scribble depletion. I measured the time-
course of mean cellular density of both scribblekd and MDCK wt populations,
either in pure culture and in competitive conditions. The density analysis con-
firmed that induced scribblekd cells have a lower homeostatic density value than
that of MDCK wt cells and non-induced scribblekd cells. I also found that, when
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placed in competitive conditions, scribblekd cells showed a three-fold increase in
their local density compared to the average value measured in pure population
culture. Notably, the relative di�erence of homeostatic values among the three
pure populations and the increase of density during competition matched up with
values reported by other groups Wagsta� et al. (2016), where density measurement
were performed at a single-time point. Hence, the e�cacy of the density definition
we proposed was validated.

Consequently, I tested the hypothesis that density had an influence on the
apoptosis rate by measuring the probability of apoptosis as function of local
density. I found that scribblekd (tet+) cells set their homoeostatic population
size by increasing apoptosis with increasing density. Such e�ect, present in pure
population, is dramatically exaggerated during competition, as a result of the
higher density values that cells are exposed to due to compaction by their wild
type neighbours.

In addition to this, I characterised the sensitivity of cell division to density, as
it could also a�ect population dynamics. It emerged that birth rate is, likewise,
density regulated; specifically, MDCK wt cells decrease their mitotic rate as
density increases. This result is not surprising, and it proves the transition to
a contact-inhibition regime for cellular density greater than 10´2µm´2. MDCK
wt cells are, indeed, well known to exhibit contact inhibition of proliferation in
in vitro culture Atala (2012). Interestingly, such behaviour was not observed for
scribblekd cells; their division rate was approximately constant when cultured in
pure populations. A similar lack of proliferation control fits with loss of scribble
function, as scribble is an important negative regulator of cell cycle progression
Nagasaka et al. (2006). Surprisingly, during competition, scribblekd cells showed
an increase in their proliferation rate for densities greater than 10´2µm´2. This
observation raised the question of whether division was also density regulated,
as an e�ect of scribble induced competition. The importance of examining
division is clear, especially when considering that the probability of division was
approximately one order of magnitude larger than the probability of apoptosis.
As a consequence, any e�ect on division will be likely to dominate the competition
outcome.
Having quantified specific density dependence of birth and death rates for both
MDCK wt and scribblekd cells, I asked if such density related changes were
su�cient to predict the temporal evolution of cell count and the overall population
fitness that I measured with the single-cell approach. This question was addressed
by collaborating with Daniel Gradeci, a Physics PhD student, who developed a
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quantitative model based on the experimental results that I found. Interestingly,
the model could not e�ciently reproduce cell counts of MDCK wt cells, when
assuming that cells can only determine their local density but not the cell type
of their neighbourhood. This observation further emphasised the importance
of considering division as well as apoptosis when studying cell competition,
and suggested that factors other than density might be involved in setting the
competition outcome.
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Figure 5.2: Validation of neighbourhood analysis using the Voronoi method.
High density (d,e) and low density (a,b) images of MDCK stably expressing H2b-RFP
(magenta, a-b, d-e) and E-cadherin GFP (grey, c,f). Scale bar = 25µm. I applied
the Voronoi tessellation and Delaunay triangulation algorithms to the nuclei images
(a-b, d-e). The Voronoi diagram and the Delaunay triangulation are highlighted in
yellow. I manually scored the number of E-cadherin delimited edges for each cell as
a ground truth. (g) I determined the correlation between the edges detected via the
Voronoi method and the manually detected edges, at high (shown in green circle) and
low densities (displayed in magenta markers). I calculated the Pearson coe�cient (r)
and obtained r=0.832 for high density and r=0.951 for low density, indicating that the
Voronoi method provides a reliable estimate of the number of neighbours. Image from
Bove et al. (2017).
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Figure 5.3: Probability of apoptosis and division are sensitive to local den-
sity in pure and competitive conditions. (a) Evolution of local density for MDCK
wt and scribblekd cells cultured both in pure and mixed populations. The solid line
indicates the mean of the experiments and the shaded area indicates the standard
deviation. Data are pooled from three biological replicates. Left: Temporal evolution
of local density for pure populations of MDCK wt (green), non-induced scribblekd (tet-,
black), and induced scribblekd (tet+, magenta). Middle: Temporal evolution of local
density for MDCK wt (green) and scribblekd (magenta) seeded at a 90:10 ratio during
a competition assay. Right: Temporal evolution of local density for MDCK wt (green)
and non induced scribblekd (magenta) seeded at 90:10 ratio. (b) Probability of division
(pdiv), apoptosis (papo), and net growth (pdiv-papo) per cell per frame as function of local
density computed for induced scribblekd (tet+, magenta) and MDCK wt (green) pure
populations. (c) Probability of division, apoptosis, and net growth per cell per frame
for MDCK wt and induced scribblekd during competition. Data are pooled from 8 fields
of view from two biological replicates. (b-c) Data points are indicated by solid circles.
Trend lines computed using smoothing splines are plotted as dashed lines. Image from
Bove et al. (2017).
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b a 
MDCK scribKD (tet+)10%  
MDCK wt 90%  

Figure 5.4: A density dependent rate equation model for cell competition
cannot predict the evolution f cell count. (a) Probability (per unit time per cell)
of apoptosis (dashed lines) and probability of division (solid lines) for MDCK wt (green
lines) and scribblekd (magenta lines) cells determined the rates f

apo

and f
div

for our
model. These functions were fitted to the experimental data in (5.3). (b) Temporal
evolution of cell count predicted by the symmetric interaction model initialised with
the mean experimental cell count at t=0 for MDCK wt (solid blue line) and scribblekd

(solid red line). The model curves are overlaid with the experimental cell count from
(4.3 b) for MDCK wt (green) and scribblekd cells (magenta). Image from Bove et al.
(2017).
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6 E�ect of local cellular
neighbourhood on the probability
of division and apoptosis

6.1 Introduction
In the previous chapter, I described some competition-specific changes relative to
division and apoptosis rates discovered for scribblekd cells. Such changes came to
light after investigation of proliferation and death density dependent probabilities.
The working hypothesis was that the competition phenomenon observed was
triggered by mechanical cues and, accordingly, cell density was the main predictor
of its outcome. However, the density induced mitotic behaviour of scribblekd cells
was di�cult to understand within the mechanical competition framework, and
suggested that other factors could have a role. Indeed, the numerical simulation
resulting from the implementation of a coupled rate equation model, where
rates of division and apoptosis depended on cell density, failed to reproduce
the experimentally observed cell count of MDCK wt cells. Therefore, I asked if
contact-mediated biochemical interactions between loser and winner cells might
have an impact on the population evolution. The induction of behaviour in
one cell lineage in response to interaction with another one is a key concept
in cell competition Vincent et al. (2013). To address this question, I used the
single-cell analysis approach to generate neighbourhood plots, which display how
the probability of apoptosis or division depends on the number and type of
neighbours. To provide a negative control, I performed time-lapse experiments on
co-cultures of MDCK wt H2b-GFP cells mixed with MDCK wt H2b-RFP cells in
90:10 relative seeding ratio. The neighbourhood analysis of these controls was
very di�erent from neighbourhood plots of competition assays, thus elucidating
that cellular interactions could be players in scribble induced competition.
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6.2 Apoptosis of scribble knock-down cells
increases with number of neighbours

To detect inductive behaviours during cell competition, each apoptosis event was
categorised as a function of the number of neighbours of each type. This analysis
was made possible by the implementation of a neighbourhood-based distance
algorithm to retrieve the interaction network for each cell at each time point. I
generated neighbourhood plots, where the probability of apoptosis is colour-coded
and placed in a grid as function of the number of scribblekd and MDCK wt
neighbours, respectively on the x-axis and y-axis. Each grid position typically
grouped 104 - 105 observations (cells per frame) (Figure 6.2). Grid positions
representing less than 500 observations were not considered in the computation,
and are displayed in the plots as grey boxes. Grid positions for which many
observations were made but no division or apoptosis event was detected are
marked by an asterisk and coloured as 1/N observations to provide an upper
bound for the probability in that position.
I used neighbourhood plots to elucidate the role of cellular neighbourhood in
the apoptosis of scribblekd cells observed during competition (Figure 6.1, mid-
dle). Briefly, an apoptosis diagram with uniform colour indicates a behaviour
independent on the composition of the cell neighbourhood, whereas a diagram
showing asymmetry about the diagonal identifies a behaviour dependent on
neighbourhood.

Notably, the probability of apoptosis is higher in scribblekd cells than MDCK
wt cells for most grid positions. The diagram relative to MDCK wt apoptosis
(Figure 6.1 a, middle) was approximately uniform with low apoptosis probabilities
and therefore coloured in cold colours, whereas the scribblekd plot (Figure 6.1 b,
middle) showed some higher apoptosis probabilities and was therefore coloured in
warmer colours. This was apparent especially on the upper quadrant. In summary,
the neighbourhood analysis revealed that apoptosis is increased in scribblekd cells
possessing many neighbours, this observation is highly consistent with the results
already presented that apoptosis increases at high density. In addition, apoptosis
in scribblekd is slightly more sensitive to neighbourhood than apoptosis in MDCK
wt cells. However, this feature is not clearly displayed in the (Figure 6.1 d). This
is due to the lack of detected apoptosis events in some positions in the first row
of both grids (Figure 6.1), as demonstrated by the presence of asterisks. The
probability value assigned to those positions was 1/N observations, therefore,
although providing an upper bound, it a�ected the value of the s parameter. The
comparison of these results with those retrieved from control experiment, where
MDCK wt cells expressing both fluorescent nuclear markers are co-cultured in
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a 90% H2b-GFP and 10% H2b-RFP mixture, are very informative. Indeed, in
control experiments, the papo of MDCK wt labelled with GFP and RFP nuclear
marker showed very similar patterns, when plotted in the neighbourhood plots
(Figure 6.4, middle). Particularly, both cell lineages displayed apoptosis diagrams
with uniform colour distribution and very low (average) values of papo„ 0, 3x10´3-
0, 4x10´3 (frame´1), consistent with average value observed for the MDCK wt
in competition (Figure 6.1, a middle). Such analysis provides an example of how
the neighbourhood plot would look like when confronting two non competing
populations. Similarly, neighbourhood plots for mixed populations of MDCK
wt mixed with non induced scribblekd (tet -) in 90:10 showed low sensitivity to
neighbourhood, and a much lower degree of asymmetry in apoptosis (Figure 6.3).
Nevertheless, these diagrams are not identical to those shown in (Figure 6.1 a,
middle), probably because of an incomplete repression of the promoter by the
tet repressor, as suggested in section 4.2. Altogether, the evidences I presented
here reinforce the concept that the increase in apoptosis of scribblekd is, indeed,
a signature of mechanical cell competition.

6.3 Division of MDCK wild type cells increases in
scribble knock-down enriched cellular
neighbourhoods

I investigated the e�ect of neighbourhood on the division probability pdiv using
a similar algorithm as the one I described in the previous paragraph. Division
events were categorised according to the number of neighbours of each lineage.
This enabled me to generate neighbourhood plots where pdiv (frame´1) is colour-
coded and placed in a grid as function of the number of scribblekd and MDCK
wt neighbours, respectively on the x-axis and y-axis.
Interestingly, I found that the probability of division of MDCK wt is strongly
influenced by cellular neighbourhood, as displayed by the warm colour patch in
the lower quadrant (red arrow Figure 6.1 a). In contrast, pdiv for scribblekd cells
is insensitive to neighbourhood, as suggested by the uniformly coloured diagram
displayed in (Figure 6.1 b, left). The asymmetric distribution of probability,
quantified by means of the s parameter (equation 3.5), is displayed in (Figure
6.1 d): when it comes to pdiv, MDCK wt have a three fold higher value of s than
scribblekd cells. To test if such e�ect is specifically induced by cell competition, I
plotted neighbourhood diagrams of pdiv for MDCK wt labelled with green H2b
(90%) mixed with MDCK wt tagged with red H2b (10%)(Figure 6.4, left). In
contrast to the marked asymmetric behaviour found in (Figure 6.1 a, left), these
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neighbourhood plots showed a very low degree of asymmetry; particularly, the
division probability of MDCK wt H2b-GFP is quite constant (uniform blue colour)
across all grid positions. It is important to note that the scale used for Figure 6.1
and Figure 6.4 are the same. Overall, these results indicate a non cell-autonomous
behaviour that positively regulates proliferation of the MDCK wt (winner) cells
in the presence of a majority of scribblekd cells.

6.4 Net growth of both cell lineages is dominated
by the contribution of division

Shifts in the composition of a cell population arise from imbalance, at the single-
cell level, of both proliferation and cell death rates. Hence, in order to gain
insight into the dynamics of the cell competition process and how it shapes the
population make up, I combined the contribution of apoptosis and division in
one single parameter, the net growth ( frame´1) computed, in analogy to the
definition provided in equation 3.4, as the di�erence between pdiv ( frame´1) and
papo ( frame´1). Thus, pnetgrowth describes the fitness of a cell in a particular
neighbourhood. The analysis on pdiv and papo presented in this chapter indicates
that, for both cell lineages, papo is lower than pdiv by approximately an order
of magnitude. This results, valid for both competitive (Figure 6.1) and non-
competitive (Figure 6.4) scenarios, was not surprising, as it confirmed what was
found in (Figure 5.3 b-c). Accordingly, the net growth neighbourhood plots reflect
the prevalent contribution of division (Figure 6.1 a-b, right). Indeed, net growth
is positive and highest in the lower quadrant of the neighbourhood diagram for
MDCK wt cells (Figure 6.1 a, right). In contrast, pnetgrowth of scribblekd cells is
very low, either zero or negative in the upper quadrant, which represents the
region dominated by MDCK wt (Figure 6.1 b, right). Net growth diagrams
plotted from non competitive assays (Figure 6.4, right) showed a net growth quite
uniform for both GFP and RFP labelled MDCK wt, with a trend that negatively
correlates to the number of total neighbours (the lower net growth, the greatest
the number of total neighbours). No particular symmetry to the diagonal was
detectable, so no neighbourhood e�ect was found, as one would expect for a non
competitive control.
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6.5 An asymmetric model for describing the density
dependent division of MDCK wt cells

Following from the model discussed in the paragraph 5.8, the hypothesis that the
division rate of MDCK wt cells is non cell-autonomous was tested by adding an
asymmetric dependency term to equation 5.1 and equation 5.3, such that fpflq “
fpfl

wt

` p1 ´ aqfl
kd

q. Such addition was used to modify only the terms describing
density depended division rate of MDCK wt cells, based on our experimental
finding that the MDCK wt cells exhibit an asymmetric neighbourhood dependence
of division rate (Figure 6.1 a, left). Such formulation allows to model the situation
where the local cell density of MDCK wt cells is lower if there are scribblekd cells
in their neighbourhood. The coupled rate equations were changed, as reported
below:
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The introduction of the asymmetric term enabled to model di�erent types of
competitive interactions. For instance, if a=0, the model returns the symmetric
dependence, characteristic of a cell-autonomous behaviour, as described in para-
graph 5.8. Conversely, if a>1, the birth rate of MDCK wt is positively influenced
by the presence (i.e. the density) of scribblekd cells, as the term pfl

wt

` p1 ´ aqfl
kd

q
decreases. This described the enhancement of division rate of MDCK wt when
in neighbourhoods with high proportions of scribblekd cells, as observed in my
experiments (Figure 6.1). Therefore, numerical simulations were performed, set-
ting a>1 and treating "a" as a parameter which was varied to reproduce the
experimental cell count evolution (Figure 6.5 b). Interestingly, the numerical
simulations performed after implementation of equation 6.1 and equation 6.3
showed that the scenario that most accurately reproduced the experimental cell
counts assumed an asymmetric dependency of the birth rate of MDCK wt on
the density of scribblekd cells. Indeed, the value of a=2.6 enabled to quantita-
tively reproduce the experimental cell count (Figure 6.5 a-b), accounting for the
increased birth rate of MDCK wt cells in scribblekd populated neighbourhoods.
This result reinforced the notion that the MDCK wt cells exhibited division
induction dependent on local neighbourhood.
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6.6 Discussion: Single cell analysis revealed
non-autonomous behaviours in scribble
competition

In this chapter, I described how I used the sophisticated single cell approach
developed for characterising, at tissue scale level, the cell-cell interactions occurring
during loss of scribble induced competition. The aim was to gain further insight
into the mechanism underlying such competition, to determine the cellular events
leading to the final population shift outcome. Despite the considerable number
of suggested mechanisms Wagsta� et al. (2016), Merino et al. (2015), Vincent
et al. (2011) potentially responsible for competition events, some common features
in the mode of competition were recently identified: (i) slower division rate of
loser cells, (ii) increased proliferation of winner cells and (iii) non-autonomous
apoptosis of loser cells Kucinski et al. (2017). The distinctive factor of (i-iii) is
the induction of non-autonomous cell behaviour. A preliminary description of
scribble induced competition highlighted only one of the features listed above: the
increase of apoptotic rate of loser cells in the presence of winner cells, accordingly
to (iii). No emphasis was laid on the role of cellular interactions, as this result was
mostly characterised as function of sensitivity to cellular density. By analysing the
dependence of death rates of both MDCK wt and scribblekd on neighbourhood
composition, I was able to discriminate neighbourhood e�ects from density e�ects,
thus adding quantitative evidence to mechanism (iii). Firstly, the analysis of
apoptosis diagrams suggested that death of scribblekd increased with increasing
number of total neighbours, consistent with the notion that it increases at high
density. In addition, by looking at the colour of grid positions in (Figure 6.1
middle, b), the apoptosis of scribblekd cells was found to be more sensitive to
neighbourhood than the apoptosis of MDCK wt cells. Globally, I found that
apoptosis plots were generally more symmetric than division plots (Figure 6.1
d). This suggested that the apoptosis rate was more influenced by the number
rather than the cell-type of neighbours, and highlighted the need to consider the
contribution of division e�ect.

The most striking dependence was, indeed, revealed in neighbourhood plots of
division of competing MDCK wt cells. I found that the probability of division of
MDCK wt cells was significantly increased in neighbourhoods mostly populated by
scribblekd cells. Proliferation of the winner cell type seemed a�ected (specifically
up regulated) by local cellular neighbourhood. Therefore, I was able to identify
another non-autonomous behaviour of scribble competition, which is reminiscent
of mechanism (ii). With the help of my collaborator, Daniel Gradeci, I investigated
the dependence of apoptosis and division on neighbour cell-type, evident from our
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experimental data, by introducing an asymmetry parameter in the coupled rate
equation model for the evolution of cell count. Indeed, the scenario that enabled
accurate simulation of the experimental outcomes relied on the assumption that
the local cellular density seen by MDCK wt cells decreases due to the presence
of scribblekd cells. Such e�ect caused the proliferation rate of MDCK wt to be
higher in neighbourhood populated by scribblekd cells. This model was able to
quantitatively reproduce the experimentally observed cell counts of both MDCK
wt and scribblekd, conversely to the symmetric interaction model discussed in
paragraph 5.8 which failed to do so.

An interesting question arising from the analysis of these data is to investigate
the causality relationship between death of scribblekd cells and proliferation of
MDCK wt cells during competition. Winner cell proliferation can be attributed to
di�erent events: winners -loser recognition signals or compensatory mechanisms
triggered by loser cell death Levayer and Moreno (2013). Previous studies showed
that dying cells were able to secrete mitotic signals, thus increasing proliferation
of neighbouring cells Ryoo et al. (2004). Such apoptosis induced proliferation
seemed to respond, in Dropophila melanogaster, to cellular injuries or stress and
was mediated by JNK pathway Mcmahon et al. (2015). This mechanism was
called the "active model", as apoptotic cells actively signalled to neighbour cells
by secretion of growth stimulating factors, both dpp and wg Vincent et al. (2011),
as opposed to a passive model, where proliferation would occur as an indirect
results of physical changes at the cell-cell boundaries due to empty space left by
the dead cells. Further experiments will be needed to understand the molecular
mechanisms underlying the sensitivity of mitotic behaviour of MDCK wt cells to
density and neighbourhood in the in vitro model I examined. For instance, this
could be done by inhibiting the apoptosis of scribblekd cells using specific p53 in-
hibitors; this approach has already been validated by Wagsta� et al. (2016). If the
division rate of MDCK wt measured in neighbourhoods dominated by scribblekd

cells is comparable to that observed in MDCK wt neighbourhood, then one must
conclude that the increased proliferation was caused by the previous death of
scribblekd, thus demonstrating the apoptosis-induced mechanism (either active
or passive). Otherwise, if the non-autonomous cell division of MDCK wt cells is
still observed, then one could argue that this is caused by some other signalling
interplay between loser and winners cells. Then, a dynamic characterisation of
the molecular changes occurring at the interface between cell types would be
necessary, together with the establishment of genetic or pharmacological tools for
controlling the expression or the activity of the main pro-mitotic candidates.

Division of scribblekd cells did not show any particular dependence or symmetry,
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being quite constant in all neighbourhood. Many studies performed in Drosophila
melanogaster had outlined slow division rate of loser cells as a hallmark of com-
petition, notably showing that it was due to JNK activity. Beyond inducing
losers’ cell death, JNK had been noted to inhibit growth of neoplastic tumour
suppressor (Lgl,Dgl, Scrib) mutant cells Brumby and Richardson (2003), and
Minute Kucinski et al. (2017). However, JNK activity in scribblekd cells was
analysed by previous groups Norman et al. (2011), and found to be unaltered
during competition with MDCK wt, as well as not required for apoptosis of
outcompeted cells. This could explain the absence of such competition feature.

In conclusion, I was able to outline more precisely the experimental/cellular
signature of scribble competition, revealing the presence of non-autonomous
behaviour a�ecting both proliferation of winner cells and apoptosis of loser cells.

6.7 Future directions
Further insight into the dynamics of competition events will be gained by gener-
ation of time-resolved neighbourhood plot. Time-resolved neighbourhood plots
may enable comparison of competition at low and high density, or before and after
drug treatment. With the help of my collaborator Daniel Gradeci, I developed the
code to perform such analysis and I have tested it on the MDCK wt: scribblekd

competition (Figure 6.6). Nevertheless, for this analysis to be informative, a
larger number of observation and events is required, to collect su�cient statistics
for each condition that we want to compare. However, such considerations must
be included early on in experimental design, for instance starting from very sparse
initial density conditions. Results displayed in Figure 6.6, although showing
evident di�erences between low (Figure 6.6 a,d) and high density (Figure 6.6
b,e), are di�cult to interpret because epithelial cells grow in colonies. Growth in
colonies may explain why, even at low densities, some cells have a large number
of neighbours. Indeed, my data shows that the majority of cells, both belonging
to MDCK wt and scribblekd cells, at low density have an average number of four
neighbours, which is quite large considering that, in confluent monolayers, the
average number of neighbour a cell has is six. This may be because the cells that
I used grow in colonies; therefore cells fully surrounded by neighbours exist from
early on in the experiment. Indeed, the most striking asymmetry in the division
neighbourhood plot of MDCK wt is observed at low density, where cells are at the
periphery of a colony. This data is interesting, as it can help clarifying the role
that proliferation of winner cells have in the competition outcomes. The numerical
simulation was used to make prediction on how the net growth of the competing
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cell lines varies with the densities of MDCK wt and scribblekd cells. Plots (Figure
6.5, c) shows that scribblekd cells may outcompete MDCK wt cells in regions of
high scribblekd density and low MDCK wt density (bottom right hand corner of
Figure 6.5 c). Such a regime is never observed in our experimental conditions and
would require external manipulation for it to be attainable. Finally, a series of
di�erent experimental designs will be employed for performing competition assays
under tightly controlled micro- environmental conditions, and are discussed in
the following section.
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Figure 6.1: Probability of apoptosis, division, and net growth are sensitive
to the composition of local neighbourhood. Neighbourhood plots showing the
colour coded probability per cell per frame of division, apoptosis and net growth for
MDCK wt (a) and scribblekd (b) during competition. The diagonal (black dashed line)
indicates grid positions with equal numbers of MDCK wt and scribblekd neighbours.
Numbers in each grid position indicate the number of detected events (division or apop-
tosis). Measurements for each grid position are typically computed from observations
of >500 cells. Grid positions for which many observations were made but no event
detected are marked by an asterisk and coloured as 1/N observations to provide an
upper-bound for the probability in that position. Data are pooled from 12 time-lapse
movies from three biological replicates. The red arrow indicates a warm colour patch in
the lower quadrant of MDCK wt division plot, where probability of division is influenced
by the presence of neighbours belonging to the other cell type. (c) Definition of the
parameter s used for calculating the asymmetry of neighbourhood plots around the
diagonal (d) Calculation of asymmetry performed on neighbourhood plots shown in
a-b. The asymmetry defines whether the behaviour is cell-autonomous (low s values)
or dependent on the cell-type of neighbours (high s values).
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Figure 6.2: Number of observations in each position of neighbourhood plots
(a,b) Neighbourhood plots showing the colour coded number of observations for MDCK
wt (left panels) and scribblekd (right panels) during competition. The number of
scribblekd neighbours is shown on the x-axis and the number of MDCK wt neighbours
is shown on the y-axis. The diagonal (black dashed line) indicates grid positions
with equal numbers of MDCK wt and scribblekd neighbours. Numbers in each grid
position indicate the number of observations for MDCK wt and scribblekd cells with
that particular neighbourhood. Data are pooled from 12 time-lapse movies from three
biological replicates. Only grid positions with more than 500 observations are included.

90



E�ect of local cellular neighbourhood on the probability of division and apoptosis

Figure 6.3: Probability of apoptosis, division and net growth are not af-
fected by neighbourhood in the absence of tetracycline induction Neigh-
bourhood plots showing the probability per cell per frame of division, apoptosis and
net-growth for MDCK wt (a) and non-induced scribblekd (b) co cultured in 90:10
ratio. The number of scribblekd neighbours is shown on the x-axis and the number
of MDCK wt neighbours is shown on the y-axis. The diagonal (black dashed line)
indicates grid positions with equal numbers of green and red neighbours. Numbers
in each grid position indicate the number of detected events (division or apoptosis).
Measurements for each grid position are typically computed from observations of >500
cells. Grid positions for which many observations were made but no event detected are
marked by an asterisk and coloured as 1/N observations to provide an upper-bound for
the probability in that position. Data are pooled from 9 time-lapse movies from two
biological replicates.(c) Asymmetry calculation performed neighbourhood plots in a
and b. The parameter s defines whether the behaviour is cell-autonomous (low s values)
or dependent on the cell type of neighbours (high s values).
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Figure 6.4: Probability of apoptosis, division and net growth are not af-
fected by neighborhood for co-coltures of MDCK wt H2b-GFP admixed to
MDCK wt H2b-RFP. Neighbourhood plots showing the colour coded probability
per cell per frame of division, apoptosis and net-growth for MDCK wt labelled with
H2b-GFP (a) and MDCK wt expressing H2b-RFP(b) when co-cultured in 90:10 ra-
tio. The number of red neighbours is shown on the x-axis and the number of green
neighbours is shown on the y-axis. The diagonal (black dashed line) indicates grid
positions with equal numbers of green and red neighbours. Numbers in each grid
position indicate the number of detected events (division or apoptosis). Measurements
for each grid position are typically computed from observations of >500 cells. Grid
positions for which many observations were made but no event detected are marked
by an asterisk and coloured as 1/N observations to provide an upper-bound for the
probability in that position. Data are pooled from 17 time-lapse movies from three
biological replicates. (c) Calculation of asymmetry performed on neighbourhood plots
shown in a-b. The asymmetry defines whether the behaviour is cell-autonomous (low s
values) or dependent on the cell-type of neighbours (high s values).
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Figure 6.5: Asymmetric interaction model for cell competition (a) Temporal
evolution of cell count predicted by the asymmetric interaction model (a=2.64) initialised
with the mean experimental cell count at t=0 for MDCK wt (solid blue line) and
scribblekd (solid red line).(b) Error (1-Standard Error of Mean, S.E.M.) between
numerical simulation and experimental data as function of the fitting parameter a.
The model most accurately matches the experimental data for a=2.64. However, the
broadness of the peak shows that the model outcome is not very sensitive to changes in
a in the vicinity of 2.6.(c) Heat maps of net growth as a function of local density of
MDCK wt cells on the y-axis and local density of scribblekd cells on the x-axis for the
asymmetric interaction model (a=2.64) for MDCK wt cells (left) and scribblekd cells
(middle). Warm colours indicate high net growths while cold colours indicate low net
growths. Dashed line indicates the contour of zero net growth, or density homeostasis.
Right: Relative fitness landscape for the asymmetric density dependent model (a=2.64),
defined as the net growth of the MDCK wt cells minus the net growth of the scribblekd

cells. MDCK wt cells have a higher fitness than scribblekd cells everywhere, except
within the region delineated by the dashed line

.
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Figure 6.6: Time-resolved neighbourhood analysis Neighbourhood plots show-
ing probability of division for MDCK wt (a, b) and scribblekd (d,e). Data were split
between low (t<40 h, a,d) and high (t>40 h, b,e) density; the resulting plots are
displayed alongside with neighbourhood plots taking into account the whole duration
of the experiment as shown in the original version of the manuscript (c,f). (a-f) The
diagonal (black dashed line) indicates grid positions with equal numbers of MDCK
wt and scribblekd neighbours. (c,f) The white dashed line separates grid positions
representative of the low density (lower quadrant) from those representative of high
density (upper quadrant).
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7 Development of cell assays for
deciphering the role of
micro-environment during cell
competition

7.1 Influence of topology and seeding ratios on
competition outcomes

Cell competition was initially thought to take place only at the interface between
cell lineages; nevertheless, the discovery of mechanical competition revealed that
direct contact is not necessary and that extrusion may take place several cell
diameters away from this interface. For instance, mechanical competition was
initially described as consequence of a fast growing population, compressing a
slower growing one Levayer et al. (2016). In this hypothesis, when competition
can arise several cell diameters away from the interface between the two popu-
lations, one would expect that cell density should be the single most important
parameter. However, from the analysis I presented in this chapter, I was able to
characterise induction of specific cell behaviours in both the scribblekd and the
MDCK wt cell lineage, as a result of the contact with the other lineage. The
experimental signature of scribble competition revealed a more sophisticated
underlying mechanism than the sole dependence on density hypothesised for a
mechanical competition. The evidence gathered and described so far showed
how initial seeding density is a key parameter in scribble competition. All of the
experiments I presented in the previous chapters were performed starting from
identical initial conditions: the initial density of the cell suspension was 10´3

cells/µm2 and the relative seeding density of MDCK wt and scribblekd lines was
90:10. In addition to this, the protocol I adopted for seeding mixtures of cells for
competition assays robustly resulted in isolated, doublets or very small (up to 4
cells) clusters of scribblekd cells surrounded by MDCK wt cells. Therefore, in such
configuration, the scribblekd cells mostly have interactions with the MDCK wt
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neighbours since the beginning of the experiment. Topology was shown to have
an important role in determining the outcomes of cell competition. Indeed in
2015, Levayer and colleagues Levayer et al. (2015) demonstrated that winner-loser
cell mixing resulting from cell intercalation is crucial for promoting elimination
of wild type cells by myc over-expressing clones. Increased surface of contact
between winner and loser cells was shown to be the result of junction remodelling
and preferential stabilization of winner-loser interfaces. Notably, shared surface
between losers and winners correlated with the probability of elimination of loser
cells in this "fitness fingerprint" model of cell competition Levayer et al. (2015).
A larger surface of contact correlated with an increased probability of apoptosis.
Therefore, to further characterise how cell behaviour is modulated by the fraction
of cellular interactions and to gain more insight on the role of such interactions
in the temporal evolution of cell population, I decided to investigate di�erent
experimental designs.
Firstly, I asked whether scribblekd cells would be outcompeted by MDCK wt
cells when changing the relative seeding ratio of the mixtures to be, respectively,
50:50 or 90:10 (Movies 6 and 7). These movies proved to be more di�cult to
analyse through the processing pipeline described in paragraph 3.3, due to the
presence of GFP cytoplasmic fluorescence in the scribblekd cells. Such cytoplas-
mic fluorescence was, indeed, hard to segment and distinguish from the nuclear
fluorescence of MDCK wt cells. However, qualitative conclusions could be made;
scribblekd apoptosis was frequent and caused, in both 50:50 and 90:10 assays,
a significant decrease of the population sizes. Strikingly, in such competitive
environment, scribblekd cells were not compacted by the MDCK wt cells. In
contrast to the 90:10 condition, their surface area increased during the assay,
similarly to what observed in pure scribblekd (tet+) assays. To determine the
experimental signatures in these competitive environments and compare them
to the one characterised previously, Dr Lowe is developing deep learning tools
that will enable this more complex segmentation. Therefore, by analysing growth
and death rates, it will be possible to retrieve the rate of population evolution
in the epithelium. Calculation of pdiv papo as function of local cellular density,
neighbourhood dependent apoptosis and division will help investigate the impor-
tance of density and the duration/extent of interactions needed for competition
to occur, elucidating their role. It will also allow me to determine if competition
in 50:50 or 10:90 occurs through di�erent mechanisms than for 90:10 initial
seeding densities. As discussed above, the topology produced from my seeding
protocol was characterised by small clusters of scribblekd cells surrounded by
MDCK wt cells. This resulted in scribblekd cells surrounded and sharing contact
areas mainly with MDCK wt neighbours since the very first frames. According
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to the results of Levayer et al, if 50% of interactions are not competitive ( i.e.
half of the neighbouring cells belong to the same lineage), then cells thrive and
can escape competition Levayer et al. (2015). This suggests that colony shape
plays a important role in survival. Therefore, an intriguing question to ask is if
there are some colony shape and spatial arrangements able to promote survival
of scribblekd cells. To this extent, I developed an experimental assay where cells
belonging to one lineage are present in well defined, 10-15 cell diameters large
colonies, and are surrounded by the other lineage. To do so, I firstly seeded
the non-induced scribblekd cells very sparsely, and let them grow in clusters as
epithelial cells typically do. Later, I seeded MDCK wt cells at high density to
fill the empty space in between scribblekd cells colonies. Furthermore, I induced
scribblekd cells one day prior imaging, with the addition of doxycycline. Such
di�erential seeding protocol produced interesting cluster topology, with smooth
boundaries, which have been suggested to favour survival (Figure 7.1). The
scribblekd cells maintained a compact morphology, reaching very high density
within their colony (Figure 7.1 a). Such experiment allowed to detect where
apoptosis occurred relative to the centre of the scribblekd cells’ colonies. For
instance, from comparing the perimeter of colonies at the beginning (Figure 7.1
a) and at the end of the assay (Figure 7.1 b), it is evident that the areas most
a�ected by apoptosis were close to the interfaces between the two cell populations.
Colony boundaries retracted, as an e�ect of progressive cell death of scribblekd

starting from the edges. Space left empty by scribblekd cell death was taken
over by the MDCK wt cells. A rigorous single cell analysis will allow to detect
any induced behaviour in which one of the physical/biological variables is al-
tered by contact with competing cells. Furthermore, it will allow to investigate if
the mechanism of competition is the same as in the 10:90 relative seeding scenario.

A topological configuration like the one displayed in (Figure 7.1) is suitable
for a mechanical characterisation of the events happening within the tissue, with
single cell resolution. The detection of regions where competition takes place can
be performed by borrowing concepts from fluid dynamics. The movement of cells
can, indeed, be approximated to a fluid flow on time-scales of hours. As each cell
trajectory is known from image analysis, it is possible to determine the velocity
field over the whole area of imaging and hence calculate the divergence in each
region. A positive divergence indicates a local expansion in the fluid, which in a
cell monolayer might be due to clonal expansion as during mechanical competition
(Figure 7.1 d-e top). A negative divergence indicates a local contraction, which
could be due to a cell extrusion event, or to removal of apoptotic bodies (Figure 7.1
d-e top). Performing experiments as illustrated in (Figure 7.1) enables focusing
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on the dynamic interplay between MDCK wt and scribblekd cells, combining
the density dependence analysis of proliferation and death described previously
with motion analysis. This will allow to show any potential role for collective
behaviours of one of the cell lineages. Indeed, although mechanics has been
hypothesized to play a crucial role in mechanical competition, little characterisa-
tion exists for lack of a good experimental and analytical system. Generation of
neighbourhood plots of divergence will enable the detection of conditions in which
mechanical competition occurs. Therefore, such information will complement the
neighbourhood division and apoptosis dependence for combining physical and
biological characterisation of the competitive environment.

7.2 Development of BioMEMs based techniques to
use in competition assays

Tumours grow in conditions where space and nutrient availability tend to be
limited Hanahan and Weinberg (2011). An intriguing follow up to this study
is to evaluate the impact of micro-environmental conditions on cell lineages
interactions, thus mimicking in vitro a more physiologically relevant scenario.
To do so, new culture techniques are needed for controlling both geometrical
confinement and biochemical environment (in particular the nutrient supply)
during the competition assay. In recent years, micro-fabrication technologies
have been extensively used to investigate fundamental question in cell biology,
due to the several advantages o�ered in terms of geometry, surface chemistry
and fluid control at micrometer scale. Therefore, during my PhD, I explored
the biological application o�ered by micro-electromechanical based techniques
(BioMEMs) to use in competition assays. Particularly, I designed and fabricated
micro-patterned substrates (in collaboration with Dr Julien Gautrot, QMUL)
that allow to mimick the physical confinement observed in tumours. To simulate
spatial constraint, I confined cells in arenas of 400 µm diameter by covalently
coupling PEG brushes to areas outside the arenas, where we want to prevent
cell adhesion. The robustness and high chemical stability (during storage and
cell culture conditions) of brushed-based micro-patterns made this technique the
most suitable for long-term bioassays. Our preliminary data indicates that this
successfully maintains confinement over more than 4 days (Figure 7.3 b). The
set-up of competition assays in such devices o�ered the advantage of not having to
worry about edge e�ects and cells escaping the FOV. Furthermore, it represents a
condition where cells have an excess of nutrient availability. Indeed, the number
of cells cultured in the dish is considerably lower compared to standard culture
in Petri dishes (given the large portion of non adhesive area). Nevertheless, the
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Figure 7.1: Assessing the influence of colony topology on cell competition.
(a-b) m-RFP and EGFP images of scribblekd (red) and MDCK wt (green) cells co-
cultured by using a di�erential seeding protocol in order to obtain colonies of one cell
lineage (in this case scribblekd) with smooth boundaries. Apoptosis of scribblekd at the
interface within the two populations caused the colonies’ area to decrease, while MDCK
wt cells take over and expand (b). The scribblekd maintained compact morphology
and high density throughout the assay, as demonstrated by the constant area of the
nuclei. Time indicating the start (t=0 h) and the end (t=60 h) of the time-lapse
experiments are shown in a and b. (c) The MDCK wt also reached very high density, as
demonstrated by the formation of blisters (white arrow). (d) Top: schematic diagram
of cell extrusion event leading to inward movement of the neighbouring cells in the
epithelial monolayer. Such local contraction is detected by negative divergence of the
cell velocity field (e, top). Conversely, clonal expansion (d, bottom) of a lineage would
be displayed by a positive divergence of the cell velocity field (e, bottom). (d) Image at
the bottom was adapted from Levayer et al. (2016).

volume of culture medium provided is the same. To look more closely at the
role of cell-cell interactions, I performed preliminary experiments on a di�erent
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micro-patterned geometry, where 1-2 cell diameters wide epithelial sheets are
cultured on ring-shaped substrates (Figure 7.3 c). This situation provides a
simplified one dimensional system, ideal to test hypotheses on induced behaviour
due to cellular interactions.
Lastly, in order to determine the impact of nutrient limitations, I optimised cell
culture in micro-fabricated culture chambers of 400-1000 µm in diameter and 40
µm in height based on previously published devices Hung et al. (2005), (Figure
7.2 a,c). Such microfluidic culture chamber o�ered the advantage of controlling
the amount of nutrients available. Indeed, the limited height of the column of
fluid provides an e�ective nutrient limitation. In this device, cells were seeded in
each chamber through a seeding line. Once they adhered to the substrate, they
were fed through a separate feeding line connected to a syringe pump (Figure
7.2 a). Feeding frequency was controlled by the image acquisition software. For
instance, growth medium was replenished at chosen intervals. In my preliminary
experiments, replenishing culture medium every 6 hours was su�cient to maintain
healthy cell growth in the micro-wells (Figure 7.2 b). Conversely, cells died if
medium was not replenished at least every 24h. This system enables to determine
how interactions between competing cells are changed by micro-environmental
conditions and drug/inhibitor treatments.

100



Development of cell assays for deciphering the role of micro-environment during

cell competition

a 

c 

b 

d 

Figure 7.2: Microfluidic cell culture device for controlling the soluble envi-
ronment. (a) Schematic of the microfluidic device for long term cell culture. Four cell
culture chambers (each 1 mm diameter) are connected by two main fluidic channels
(200 µm in width). The vertical seeding line is split into 4 distribution channels and
used for injecting cells into the chambers. The horizontal feeding line carries the culture
medium. Each chamber is surrounded by a polar array of narrow perfusion channels. (b)
Representative composite image of a culture chamber seeded with MDCK wt cells. (c)
SEM images of the silicon master used to cast the PDMS mould. Left: Detail showing
a single cell culture chamber surrounded by the polar array of perfusion channels, used
for feeding cells. Right: SEM image of the entire microfluidic platform, showing the
four C-shape culture chamber wells and the distributing channels used for seeding
cells into each chamber (black arrow). (d) Image of the fully assembled microfluidic
device, where the PDMS culture chamber was bonded to a glass cover slip via plasma
treatment.
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Figure 7.3: Micro patterning for developing cell competition assays under
geometrical confinement (a) Schematic of a cell culture device assembled by gluing
micro-patterned glass to the bottom of Petri-dishes. (b) Representative transmission
(top) and fluorescence (bottom) images of competition assays performed by seeding
MDCK wt and scribblekd on the micro-patterned arenas. Cells adhere and grow only
within the circular confined area. (c) Representative phase (top) and fluorescence
(bottom) images of competition assays performed by seeding MDCK wt and scribblekd

cells on the micro-patterned rings substrate.
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8 Final discussion

8.1 Summary of data presented
In this thesis, I presented results that highlight two dominant factors in scribble
cell competition, that were not noticed in any previous study because of the
qualitative nature of the analysis approaches utilised. First, I showed that the
probability of division depends strongly on cell density (as would be expected
for contact inhibition of proliferation) and that the probability of division is
always several fold larger than that of apoptosis, except at the highest densities.
Second, I showed that the probability of net growth of MDCK wt cells is highest
in regions where they are in contact with scribblekd cells and that this e�ect is
not caused by an increase in apoptosis of the scribblekd cells in that region of
the diagram. I concluded that such e�ect was e�ectively driven by an increase
in proliferation of MDCK wt cells in those regions. Most previous studies of
competition concentrated on apoptosis; this results demonstrates that attention
also needs to be paid to cell proliferation. Such observations were made possible
by the unbiased approach in which analysis of cell competition was performed,
with high-throughput at the single-cell level. I will now discuss the implication of
such findings in the broader context of cell competition .

8.2 Is it correct to define cells depleted of scribble
as loser cells?

The analysis of experimental data, supported by the computational model I
presented, suggested an asymmetric density dependence for MDCK wt and
scribblekd cells. Indeed, the numerical simulation (Figure 6.5) demonstrated that
the scribblekd cells are equally influenced by the presence of cells of the same
lineage (fl

kd

) and by interaction with other cell type neighbours (fl
wt

). Therefore,
scribblekd cells proliferation and death is a�ected by the total cell density rather
than the cell type. Mechanical competition postulated that the competing cell
types have di�erent sensitivities to density, with the cell type more tolerant to
density (winners) growing to reach its homeostatic density. In doing so, winner
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cells expose the less tolerant cell type to densities beyond its homeostatic density.
This increased cell density is su�cient to cause increased apoptosis of the loser
cells. In turn, the increased apoptosis allows the more tolerant cell type to grow
further. Thus, it appears that each cell type is ignorant of the identity of its
neighbours and only sensitive to changes in density. As the current definition
of cell competition implies sensing of the other cell type in presence, one could
argue that the elimination of scribblekd cells is not due to cell competition in
the strictest sense and hence that it may not be correct to label them as loser
cells. For instance, competition could take place between scribblekd cells that,
for some reason, acquire di�erent sensitivity to density. Indeed, Wagsta� et al
demonstrated that it is possible to induce hypersensitivity to density by simply
activating in a dose dependent manner the activity of p53 in wild type MDCK by
addition of Nutlin-3 Wagsta� et al. (2016). This demonstrated that it is possible
to induce the mechanical loser status only by increasing activity of p53.

The phenomenon of mechanical competition does need further characterisation
to elucidate the exact role of cellular interactions. Investigations are needed,
especially for finding more physiological occurrences of such phenomenon. In
light of what discussed so far, the competition triggered by scribble depletion
seems to perfectly fit in the definition of mechanical competition, as far as the
behaviour of the scribblekd (loser) cells is concerned. As discussed in paragraph
6.6, the analysis of division probability as function of neighbourhood composition
highlighted an important non cell-autonomous behaviour of MDCK wt cells.
The increase in winner cells’ proliferation induced by the presence of the loser
cell type reveals a more subtle feature of scribble cell competition, which goes
beyond the definition of mechanical competition given above. Indeed, the mitotic
response of winner cells in the presence of loser cells indicates that these cells
must sense the presence of neighbours with a di�erent identity. Notably, such
behaviour was not observed when they were surrounded by a comparable number
of similar wild type neighbours. Further investigations are required to prove the
existence of a similar unidirectional recognition (MDCK wt sensing the presence
of scribblekd cells) and to establish what pro-mitotic factors are activated in
MDCK wt cells when they come into contact with scribblekd (loser) cells. This
could be done, for instance, by comparing the transcriptional profile of MDCK wt
cells in contact with scribblekd cells with that of MDCK wt cells surrounded by
wild type neighbours. Another possibility to address this question is to perform
competition assay between scribblekd cells and MDCK cells stably expressing
the Fucci sensor, which enables live monitoring cells transitioning from G1 to S
phase during cell cycle progression Sakaue-Sawano et al. (2008). Furthermore,
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the temporal sequence in which these events (apoptosis of losers and proliferation
of winners) take place is another important feature to assess. This observation
will be discussed in the following section.
Levayer and colleagues showed that, in Minute and Myc dependent competition
(which are the best described examples of the fitness fingerprint model), the
probability of elimination of loser cells correlates with the surface of contact
shared with winner cells Levayer et al. (2015). Assessing this e�ect would
contribute to delineate the complete signature of scribble competition which, from
the considerations discussed so far, seems to lie in between the fitness fingerprint
and the mechanical competition. In particular, a rigorous study of changes in
actin organization and tension at the interface of loser-loser, winner-winner and
loser-winner junctions needs to be performed. Coupling a similar analysis with
the neighbourhood plots on the experimental data I collected could help tackle
the unanswered question of whether the morphology and the amount of surface
contact shared between losers and winner have a role in determining the outcome
of cell competition. Indeed, if winner-loser interface morphology plays a role, one
would expect to see di�erent outcomes when comparing results from experiments
where relative seeding density and topology arrangement of competing lines are
changed, as illustrated in paragraph 7.1.

8.3 Importance of determining the temporal
sequence in which loser cells’ apoptosis and
winner cells’ proliferation events occur

Investigating the causality relationship between death of scribblekd cells and pro-
liferation of MDCK wt cells during competition is of great importance to define
the nature of winner-loser interactions. As illustrated in section 6.6, di�erent
alternative hypotheses can justify the increased proliferation of MDCK wt cells
in the presence of scribblekd cells: (i) a compensatory mechanism triggered by
apoptosis of losers, either active or passive or (ii) winner-loser recognition signals
and induction of division by contact with loser cells. In addition, recent work
demonstrated a third possible mechanism to explain the winner cells’ prolifera-
tion in Minute-induced competition in the Drosophila melanogaster wing disc
model Kucinski et al. (2017). Particularly, Kucinski and co-workers found that
JAK/STAT signalling, a conserved cytokine signalling pathway that can promote
growth Zeidler et al. (2000), was involved in such non cell-autonomous prolifera-
tion. They showed that this happened via secretion of a specific ligand, a soluble
pro-mitotic signal produced by loser cells prior to their apoptosis. Such signal
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is, indeed, responsible for promoting growth of loser cell type but, at the same
time, it stimulates the proliferation of winner cells. Notably, winner cells have
higher responses than losers to such signals. Therefore, in this case, proliferation
of winner cells is independent from both winner-loser interactions or losers cell
death Kucinski et al. (2017). This possibility could be tested by culturing cells
under constant flow conditions in micro-fluidic devices (Figure 7.2).
A first, straightforward approach to address this question is to block the apoptosis
of scribblekd cells, to see if this a�ects the proliferation of MDCK wt cells. Norman
and collaborators showed that the pan-caspase inhibitor Z-VAD-FMK does not
prevent apoptosis of scribblekd during competition Norman et al. (2011). Indeed,
later work of Wagsta� et al showed that the apoptosis of scribblekd is mediated
by p53 activation. The involvement of p53 in triggering apoptosis of scribblekd

cells is consistent with previous reports displaying Bac and Bax activation in
dying scribblekd cells Norman et al. (2011). Such pro-apoptotic proteins, together
with the p53 protein, were demonstrated to be transported into the mitochondria,
where they cause an increase in the permeability of mitochondrial membranes.
This, in turn, induces the release of cytochrome c, which is responsible for the
assembly of the "apoptosome" complex Wawryk-Gawda et al. (2014). Once
this complex is formed, it activates the group of e�ector caspases. Altogether,
these considerations explained the ine�cacy of pan-caspase to block apoptosis in
scribblekd loser cells. Furthermore, Z-VAD-FMK does not e�ciently inhibit the
activity of some caspases (i.e. capsase 2 and 4) Chauvier et al. (2007), which are
activated downstream of p53 signalling. Wagsta� and colleagues demonstrated
that it was possible to block the apoptosis of scribblekd cells by addition of a
chemical inhibitor of p53, pifithrin-– Wagsta� et al. (2016). Hence, by performing
competition assay between induced scribblekd cells and MDCK wt in the presence
of such drug, one would expect to rescue the loser phenotype and prevent their
elimination from the monolayer. Therefore, the analysis of division neighbourhood
plots of such experiments should reveal if the increased proliferation of winner cells
still occurs. If the MDCK wt cells continue proliferating faster in the presence
of viable scribblekd cells, the existence of winner-loser recognition signals will
need to be explored, as hypothesised in (ii). Conversely, a symmetric division
neighbourhood plot would suggest that the behaviour of MDCK wt was due to a
compensatory mechanism triggered by apoptosis of loser cells (i).

In addition to this preliminary experiment, a better understanding of the
process would be gained by investigating the temporal sequence in which both
losers and winners commit to their fate (either cell death or division). For instance,
the commitment of MDCK wt cells to division could be monitored by using a
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stable cell line expressing the Fucci sensor Sakaue-Sawano et al. (2008), which
enables live monitoring of cell cycle transitions from G1 to S phase. The decision
of scribblekd cells to commit to apoptosis could be detected by monitoring the
oscillations of expression of p53 and its negative regulator Mdm2 Lahav et al.
(2004). Indeed, previous reports demonstrated the existence of a feedback loop
system for DNA damage repair, where p53 oscillations are observed in a series
of discrete pulses, with the mean number of pulses increasing according to the
DNA damage. Hence, by performing competition experiments between MDCK
wt Fucci and MDCK scribblekd cells stably expressing fluorescent p53, I envisage
it will be possible to gain more insight into the characterisation of winner-loser
interactions.

8.4 Computational model for cellular interactions
To aid interpretation and design of the experimental assays, I collaborated with
Daniel Gradeci, a PhD student in the Charras lab, in developing a computational
model of cellular interactions. The quantitative model described in section 5.8
was of great help for disentangling the non-autonomous behaviour of competing
MDCK wt cells. Nevertheless, such a model ignores several aspects of the exper-
iments, for instance any physical and chemical information relative to cellular
interactions. Therefore, a long term objective is to develop a cellularised model
that will consist of several computational layers for simulating: i) physical inter-
actions between cells, ii) reaction-di�usion in the medium, and iii) cell decision
making. Physical interactions between cells will be simulated using a cellular
Potts model, which determines how the shape of each cell in the epithelium
evolves based on its intercellular adhesion energy, contractility, and cell elasticity.
Such parameters could be experimentally calibrated via E-Cadherin (as a proxy
for adhesion energy) and phospho-MLC (as a proxy for contractility) Western
blotting. In a separate layer, reaction-di�usion within the model area will be
simulated to investigate potential roles for competition for capture of growth
factors, nutrients, or drugs (Figure 8.1). Finally, in the decision making layer, a
game theory approach will be implemented to model local decision-making (Figure
8.1); these properties make it ideal to model the evolution of the population.
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Output neighbourhood plots for 
comparisons with experiments 

Make fate decisions for each cell 
based on survival strategy 

Calculate concentration profile for 
all species based on adsorption by  
cells and diffusion from the bulk 

Calculate cell shapes based on 
mechanical, adhesive properties, 
and motion vectors 

d 

Figure 8.1: Computational model for cellular interactions The model will
consist of several computational layers that will simulate: i) physical interactions
between cells, ii) reaction-di�usion in the medium, and iii) cell decision making. The
model will be calibrated layer-wise. Parameters determining the physical layer will
initially be inferred from homogenous populations but, in the case of non-autonomous
behaviours, they may change at the interface between two cell lineages. The reaction-
di�usion layer will be parametrized using published di�usion constants for growth
factors/nutrients/drugs.

8.5 Importance of the elimination of
scribble-depleted cells for early stages of
tumourigenesis

In this thesis, I have discussed the role of scribble as a tumour suppressor protein.
The involvement of scribble in the phenomenon of cell competition supports
the theory of competition as a defence mechanism against the spreading of
dangerous, pre-cancerous cells. It appears, indeed, that the loss of scribble protein
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in one cell within a normal epithelium cannot trigger, by itself, the first stage of
tumourigenesis. The induction of apoptosis in the scribble-depleted cell would
prevent any further tumourigenesis. This observation is consistent with the notion
that scribble depletion causes an increase in the levels of p53, a well known tumour
suppressor gene and a general sensor of cell stress. Therefore, it appears that the
loss of expression of one important tumour-suppressor (scribble) is compensated
by increased expression of another tumour-suppressor protein (p53), which has
an important role in initiating apoptosis in damaged cells. For the cancer to
develop, the acquisition of resistance to cell death is an essential pre-requisite for
transformed cells to have Hanahan and Weinberg (2011), which is not met by the
scribblekd cells. In section 1.6.2, I also mentioned the emergence of experimental
evidence showing the cooperation of scribble with other oncogenes. In such
circumstances, loss of scribble was demonstrated to enhance the tumourigenic
ability of the transformed cells Zhan et al. (2011). When loss of scribble is
induced in cells already transformed and over-expressing Myc, such cells acquire
the ability to escape apoptosis, allowing for the proliferation and spreading of
the myc phenotype. The block of apoptosis and enhancement of tumourigenesis
produced by cooperation of scribble down-regulation and Myc over expression
was demonstrated both in 3D cultures of human epithelial cells and in murine
cancer models. The study of the interactions between similar double mutants
with wild type cells by means of the single-cell approach described in this thesis
would be of great interest for understanding the role of competing interactions in
a more physiologically relevant setting.
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